JP6749494B2 - Fuel injection valve and manufacturing method thereof - Google Patents

Fuel injection valve and manufacturing method thereof Download PDF

Info

Publication number
JP6749494B2
JP6749494B2 JP2019528983A JP2019528983A JP6749494B2 JP 6749494 B2 JP6749494 B2 JP 6749494B2 JP 2019528983 A JP2019528983 A JP 2019528983A JP 2019528983 A JP2019528983 A JP 2019528983A JP 6749494 B2 JP6749494 B2 JP 6749494B2
Authority
JP
Japan
Prior art keywords
wall surface
surface portion
injection hole
fuel injection
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019528983A
Other languages
Japanese (ja)
Other versions
JPWO2019012855A1 (en
Inventor
良平 松竹
良平 松竹
克哉 大貫
克哉 大貫
伸也 中谷
伸也 中谷
拓矢 渡井
拓矢 渡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2019012855A1 publication Critical patent/JPWO2019012855A1/en
Application granted granted Critical
Publication of JP6749494B2 publication Critical patent/JP6749494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/388Trepanning, i.e. boring by moving the beam spot about an axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8069Fuel injection apparatus manufacture, repair or assembly involving removal of material from the fuel apparatus, e.g. by punching, hydro-erosion or mechanical operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、内燃機関に用いられ、燃料を噴射する燃料噴射弁及びその製造方法に関する。 The present invention relates to a fuel injection valve used in an internal combustion engine to inject fuel and a method for manufacturing the same.

本技術分野の背景技術として、特開2016―200134号公報(特許文献1)がある。特許文献1には、燃料が噴射される噴孔を形成するボディ部を備える燃料噴射装置であって、ボディ部は、噴孔の燃料の流入口に接続し燃料の流路である入口側流路を形成する入口側流路形成部、および、入口側流路と噴孔の燃料の流出口とに接続し、燃料の流路である出口側流路を形成する出口側流路形成部を有し、出口側流路形成部の表面粗さが、入口側流路形成部の表面粗さに比べて大きくなるように形成された燃料噴射装置が記載されている(要約参照)。 As background art of this technical field, there is JP-A-2016-200134 (Patent Document 1). Patent Document 1 discloses a fuel injection device including a body portion forming an injection hole for injecting fuel, wherein the body portion is connected to an inflow port of the fuel of the injection hole and is an inlet side flow which is a flow path of the fuel. An inlet-side passage forming portion that forms a passage, and an outlet-side passage forming portion that connects the inlet-side passage and the fuel outlet of the injection hole to form an outlet-side passage that is a fuel passage. There is described a fuel injection device that is formed so that the surface roughness of the outlet side flow passage forming portion is larger than the surface roughness of the inlet side flow passage forming portion (see the abstract).

さらに特許文献1には、出口側流路形成部の表面粗さが、入口側流路形成部の表面粗さよりも大きい態様として、例えば出口側流路形成部に複数の凸部(段落0064及び図8等参照)または溝(段落0051及び図4等参照)を設けることが記載されている。特許文献1には、凸部の効果として、段落0069に次のような効果が記載されている。燃料の流速は、表面粗さが比較的小さな入口側流路形成部を通る際に維持されやすい。そして、燃料は、表面粗さが比較的大きい出口側流路形成部を通過する際に、流れが乱されやすくなる。そして、流れが乱された燃料は流出口から噴射される際に、様々な方向に拡散されることで微粒化される。 Further, in Patent Document 1, as an aspect in which the surface roughness of the outlet side flow passage forming portion is larger than the surface roughness of the inlet side flow passage forming portion, for example, a plurality of convex portions (paragraphs 0064 and 0064 and 8 etc.) or a groove (see paragraph 0051 and FIG. 4 etc.) is provided. In Patent Document 1, as an effect of the convex portion, the following effect is described in paragraph 0069. The fuel flow velocity is likely to be maintained when passing through the inlet-side flow passage forming portion having a relatively small surface roughness. The flow of the fuel is likely to be disturbed when passing through the outlet-side flow path forming portion having a relatively large surface roughness. Then, the fuel whose flow is disturbed is atomized by being diffused in various directions when being injected from the outlet.

また、特許文献1には、噴孔は、ボディ部の外側からレーザ照射を行うことで形成されることが記載されている(段落0018参照)。 Further, Patent Document 1 describes that the injection hole is formed by performing laser irradiation from the outside of the body portion (see paragraph 0018).

レーザ照射を行う噴孔の製造方法の背景技術として、特開平09―236066号公報(特許文献2)がある。特許文献2では、仕上げ工程の取りしろ除去にレーザビームを照射して行うが、この場合、レーザ照射は、安定性を保つために、電力容量及び焦点を一定にして行われる。この焦点は、取りしろの始端位置、すなわち噴孔の入口側部に合わせられる(段落0029参照)。 As a background art of a method of manufacturing a nozzle hole for performing laser irradiation, there is JP-A-09-236066 (Patent Document 2). In Patent Document 2, laser beam irradiation is performed to remove the margin in the finishing process, but in this case, laser irradiation is performed with a constant power capacity and focus in order to maintain stability. This focus is aligned with the starting position of the allowance, that is, at the inlet side of the injection hole (see paragraph 0029).

特許文献2では、レーザ照射の課題として、噴孔仕上げ前の下孔の中心軸に対してレーザビームを平行にして、ノズル本体を回転させつつレーザ照射を行い〔レーザの焦点は、孔の入口側(始端位置)aに合わせられる〕、このレーザビームの熱エネルギによって取りしろを溶解、除去する方法が記載されている(段落0012参照)。そして、噴孔の入口側に対して出口側の仕上げ孔径が小さくなることが課題として挙げられている。 In Patent Document 2, as a problem of laser irradiation, laser irradiation is performed while rotating the nozzle body by making the laser beam parallel to the central axis of the pilot hole before finishing the injection hole [the focus of the laser is the entrance of the hole. Side (starting end position a)], a method of melting and removing the margin by the thermal energy of the laser beam is described (see paragraph 0012). The problem is that the finish hole diameter on the outlet side becomes smaller than that on the inlet side of the injection hole.

特許文献2には、この課題を解決する方法として、下孔の中心軸に対してレーザビームを傾けて照射する方法が開示されている(段落0030参照)。この場合のレーザビームの傾きは、レーザビームの照射方向の延長線が取りしろ領域より外側に次第にそれる方向に設定される。このレーザビームの照射方法により、入口部から出口部に至るまで孔径が均一な円筒状の噴孔が得られる(段落0033参照)。 As a method for solving this problem, Patent Document 2 discloses a method of irradiating a laser beam with an inclination with respect to the central axis of the pilot hole (see paragraph 0030). In this case, the inclination of the laser beam is set such that the extension line of the irradiation direction of the laser beam gradually deviates outside the marginal region. By this laser beam irradiation method, a cylindrical injection hole having a uniform hole diameter from the inlet to the outlet can be obtained (see paragraph 0033).

特開2016―200134号公報JP, 2016-200134, A 特開平09―236066号公報Japanese Patent Laid-Open No. 09-236066

燃料噴射弁の噴霧の微粒化は、燃料噴射弁へ燃料を供給する燃料ポンプの供給圧力、又は噴射孔の入口側流路形成部から出口側流路形成部に向かう経路形状で決定される流体の擾乱が支配的であり、噴射孔の出口側流路形成部の凹凸だけではその効果は限定的である。 The atomization of the spray of the fuel injection valve is determined by the supply pressure of the fuel pump that supplies the fuel to the fuel injection valve, or the fluid shape determined by the path shape from the inlet side flow passage forming portion of the injection hole to the outlet side flow passage forming portion. Is dominant, and the effect is limited only by the unevenness of the outlet side flow path forming portion of the injection hole.

特許文献1の燃料噴射装置(以下、燃料噴射弁という)のように、出口側流路形成部の開口径と入口側流路形成部の開口径が同じ噴射孔や、出口側流路形成部の開口径が入口側流路形成部の開口径より大きい噴射孔では、燃料は噴射孔内で拡散し始めてしまう。このため燃料は、凸部または溝への接触が少ないまま、燃焼機関筒内へと噴出されてしまい、燃料が凹凸に接触することによる噴霧の微粒化の効果は小さい。燃料の凹凸への接触を増やし、噴霧を微粒化することが必要である。 As in the fuel injection device of Patent Document 1 (hereinafter referred to as a fuel injection valve), an injection hole in which the opening diameter of the outlet side flow passage forming portion and the opening diameter of the inlet side flow passage forming portion are the same, or an outlet side passage forming portion In the injection hole whose opening diameter is larger than the opening diameter of the inlet side flow passage forming portion, the fuel starts to diffuse in the injection hole. For this reason, the fuel is ejected into the combustion engine cylinder with a small amount of contact with the protrusions or grooves, and the effect of atomizing the spray due to the contact of the fuel with the irregularities is small. It is necessary to increase contact with fuel irregularities and atomize the spray.

特許文献2では、噴射孔を加工する場合、焦点位置をレーザ入射側の上面(出口側流路形成部側)で固定するため、上面側はエネルギ密度が高いが下面側(入口側流路形成部側)に向かうに連れて徐々にエネルギ密度が小さなり、加工に必要なエネルギを得にくくなる。そのため、下面側では材料の除去に時間が掛かり、加工が遅くなってしまう。 In Patent Document 2, when the injection hole is processed, the focus position is fixed on the upper surface (outlet side flow path forming portion side) on the laser incident side, so that the upper surface side has a high energy density, but the lower surface side (inlet side flow path formation). The energy density becomes gradually smaller toward the part side), and it becomes difficult to obtain the energy required for processing. Therefore, it takes time to remove the material on the lower surface side, and the processing becomes slow.

本発明の目的は、噴霧の微粒化に適した噴射孔を有する燃料噴射弁を提供すること、また噴霧の微粒化に適した噴射孔を有する燃料噴射弁の製造方法を提供することにある。 An object of the present invention is to provide a fuel injection valve having an injection hole suitable for atomizing spray, and a method for manufacturing a fuel injection valve having an injection hole suitable for atomizing spray.

上記目的を達成するために、本発明の燃料噴射弁の製造方法は、
噴射孔を有する噴射孔形成部材を先端側に備えた燃料噴射弁の製造方法であって、
先端側の離れた位置から前記噴射孔形成部材に向かってレーザを照射して前記噴射孔の入口開口側から出口開口側に向かって断面積が小さくなるように前記噴射孔の第一内壁面部を形成する第一内壁面部形成工程と、
先端側の離れた位置から前記噴射孔形成部材に向かってレーザを照射して前記第一内壁面部に対して前記出口開口側に位置し前記第一内壁面部の表面粗さに対して大きな表面粗さを有する、前記噴射孔の第二内壁面部を形成する第二内壁面部形成工程と、を有する。
また、上記目的を達成するために、本発明の燃料噴射弁は、
複数の噴射孔を有する噴射孔形成部材を先端側に備えた燃料噴射弁において、
前記噴射孔は、入口開口側から出口開口側に向かって断面積が小さくなるように形成された第一内壁面部と、前記第一内壁面部に対して前記出口開口側に形成され前記第一内壁面部の表面粗さに対して大きな表面粗さを有する第二内壁面部と、を有し、
前記第二内壁面部は、前記入口開口側から前記出口開口側に向かって断面積が大きくなるように形成される。
In order to achieve the above object, the method for manufacturing a fuel injection valve of the present invention is
A method for manufacturing a fuel injection valve having an injection hole forming member having an injection hole on a tip side,
The first inner wall surface portion of the injection hole is radiated from a distant position on the tip side toward the injection hole forming member so that the cross-sectional area decreases from the inlet opening side of the injection hole toward the outlet opening side. A step of forming a first inner wall surface portion,
A laser beam is radiated toward the injection hole forming member from a distant position on the tip end side, and the surface roughness is larger than the surface roughness of the first inner wall surface portion and is located on the outlet opening side with respect to the first inner wall surface portion. A second inner wall surface portion forming step of forming a second inner wall surface portion of the injection hole.
Further, in order to achieve the above object, the fuel injection valve of the present invention,
In a fuel injection valve having an injection hole forming member having a plurality of injection holes on the tip side,
The injection hole has a first inner wall surface portion formed to have a smaller cross-sectional area from the inlet opening side toward the outlet opening side, and the first inner wall formed on the outlet opening side with respect to the first inner wall surface portion. a second inner wall portion having a large surface roughness relative to the surface roughness of the surface, was closed,
It said second inner wall section, said cross-sectional area from the inlet opening side toward the outlet opening side Ru formed to be larger.

本発明によれば、噴霧の微粒化に適した噴射孔を有する燃料噴射弁を提供することができる。また、噴霧の微粒化に適した噴射孔を有する燃料噴射弁の製造方法を提供することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a fuel injection valve having an injection hole suitable for atomizing spray. Further, it is possible to provide a method for manufacturing a fuel injection valve having injection holes suitable for atomizing spray. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

本発明の一実施例に係る電磁式燃料噴射弁100の構造を示す断面図であり、中心軸線100aに平行な切断面を示す断面図である。FIG. 3 is a cross-sectional view showing the structure of the electromagnetic fuel injection valve 100 according to the embodiment of the present invention, which is a cross-sectional view showing a cross section parallel to the central axis 100a. 図1の噴射孔形成部材301の近傍を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows the vicinity of the injection hole formation member 301 of FIG. 噴射孔形成部材301の外観(先端面)を示す平面図である。3 is a plan view showing the outer appearance (tip surface) of the injection hole forming member 301. FIG. 図2の噴射孔301oの近傍(図3のY−Y断面)を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows the vicinity (Y-Y cross section of FIG. 3) of the injection hole 301o of FIG. 噴射孔301oの出口開口縁にR部を設けた例を示す図であり、図2の噴射孔301oの近傍(図3のY−Y断面)を拡大して示す拡大断面図である。It is a figure which shows the example which provided the R part in the exit opening edge of the injection hole 301o, and is an expanded sectional view which expands and shows the vicinity (Y-Y cross section of FIG. 3) of the injection hole 301o of FIG. 噴射孔301oの加工においてレーザ焦点位置をレーザ入射側の上面(第二レーザ照射面側)で固定した場合のレーザ照射状態を示す模式図である。It is a schematic diagram which shows the laser irradiation state at the time of processing the injection hole 301o, when fixing a laser focal position on the laser incident side upper surface (second laser irradiation surface side). 本発明の一実施例に係る噴射孔301oの加工方法(レーザ照射状態)を示す模式図である。It is a schematic diagram which shows the processing method (laser irradiation state) of the injection hole 301o which concerns on one Example of this invention. 第二レーザ照射面301obの形成過程とレーザエネルギの消費位置を説明する図である。It is a figure explaining the formation process of the 2nd laser irradiation surface 301ob, and the consumption position of laser energy.

以下、本発明に係る実施例について説明する。 Examples of the present invention will be described below.

以下の説明で用いる上下関係は図1又は図2における上下関係に基づいて定義し、この上下関係は電磁式燃料噴射弁100の実装状態における上下関係を限定するものではない。また、電磁式燃料噴射弁100の上端部を基端部と呼び、電磁式燃料噴射弁100の下端部を先端部と呼んで説明する場合がある。従って、電磁式燃料噴射弁100上の任意の位置を基準として基端側という場合には、その任意の位置に対して電磁式燃料噴射弁100の基端部の側を、電磁式燃料噴射弁100上の任意の位置を基準として先端側という場合には、その任意の位置に対して電磁式燃料噴射弁100の先端部の側を、それぞれ意味する。なお図1において、A側は基端側であり、燃料の流れる方向において上流側であり、開閉弁方向における開弁方向である。また、B側は先端側であり、燃料の流れる方向において下流側であり、開閉弁方向における閉弁方向である。 The vertical relationship used in the following description is defined based on the vertical relationship in FIG. 1 or FIG. 2, and this vertical relationship does not limit the vertical relationship in the mounted state of the electromagnetic fuel injection valve 100. Further, the upper end of the electromagnetic fuel injection valve 100 may be referred to as a base end, and the lower end of the electromagnetic fuel injection valve 100 may be referred to as a tip. Therefore, when the base end side is based on an arbitrary position on the electromagnetic fuel injection valve 100, the base end side of the electromagnetic fuel injection valve 100 with respect to the arbitrary position is referred to as the electromagnetic fuel injection valve. When the tip end side is based on an arbitrary position on 100, it means the tip end side of the electromagnetic fuel injection valve 100 with respect to the arbitrary position. In FIG. 1, the A side is the base end side, the upstream side in the fuel flow direction, and the valve opening direction in the on-off valve direction. The B side is the tip side, is the downstream side in the fuel flow direction, and is the valve closing direction in the opening/closing valve direction.

図1及び図2を用いて、電磁式燃料噴射弁100の構成について説明する。図1は、本発明の一実施例に係る電磁式燃料噴射弁100の構造を示す断面図であり、中心軸線100aに平行な切断面を示す断面図である。図2は、図1の噴射孔形成部材301の近傍を拡大して示す拡大断面図である。 The configuration of the electromagnetic fuel injection valve 100 will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view showing a structure of an electromagnetic fuel injection valve 100 according to an embodiment of the present invention, and is a cross-sectional view showing a cross section parallel to a central axis 100a. FIG. 2 is an enlarged cross-sectional view showing the vicinity of the injection hole forming member 301 of FIG. 1 in an enlarged manner.

電磁式燃料噴射弁100は、燃料を供給する燃料供給部200と、燃料の流通を許したり遮断したりする弁部300aが先端部に設けられたノズル部300と、弁部300aを駆動する電磁駆動部400と、で構成される。本実施例では、ガソリンを燃料とする内燃機関用の電磁式燃料噴射弁を例にとり、説明する。本発明は、例えば圧電素子で駆動される燃料噴射弁、或いはディーゼルエンジンに用いられるような燃料噴射弁にも適用可能である。 The electromagnetic fuel injection valve 100 includes a fuel supply unit 200 for supplying fuel, a nozzle unit 300 provided with a valve unit 300a for permitting or interrupting the flow of fuel at its tip, and an electromagnetic unit for driving the valve unit 300a. And a drive unit 400. In this embodiment, an electromagnetic fuel injection valve for an internal combustion engine that uses gasoline as a fuel will be described as an example. The present invention is also applicable to, for example, a fuel injection valve driven by a piezoelectric element or a fuel injection valve used in a diesel engine.

本実施例の電磁式燃料噴射弁100では、図面の上端側に燃料供給部200が、下端側にノズル部300が構成され、燃料供給部200とノズル部300との間に電磁駆動部400が構成されている。すなわち、中心軸線100a方向に沿って、燃料供給部200、電磁駆動部400及びノズル部300が上端側から下端側に向かってこの順に配置されている。燃料はA側の燃料供給部200から供給され、B側のノズル部300から噴射される。A側を上流側、B側を下流側と呼ぶ。 In the electromagnetic fuel injection valve 100 of the present embodiment, the fuel supply unit 200 is configured on the upper end side of the drawing, and the nozzle unit 300 is configured on the lower end side, and the electromagnetic drive unit 400 is provided between the fuel supply unit 200 and the nozzle unit 300. It is configured. That is, the fuel supply unit 200, the electromagnetic drive unit 400, and the nozzle unit 300 are arranged in this order from the upper end side to the lower end side along the direction of the central axis 100a. The fuel is supplied from the fuel supply section 200 on the A side and is injected from the nozzle section 300 on the B side. The A side is called the upstream side and the B side is called the downstream side.

燃料供給部200は、ノズル部300に対して反対側の端部が図示しない燃料配管に連結される。ノズル部300は、燃料供給部200に対して反対側の端部が、図示しない吸気管或いは内燃機関の燃焼室形成部材(シリンダブロック、シリンダヘッド等)に形成された取付穴に挿入される。電磁式燃料噴射弁100は燃料供給部200を通じて燃料配管から燃料の供給を受け、ノズル部300の先端部から吸気管或いは燃焼室内に燃料を噴射する。電磁式燃料噴射弁100の内部には、燃料供給部200の前記端部からノズル部300の先端部まで、燃料がほぼ電磁式燃料噴射弁100の中心軸線100a方向に沿って流れるように、燃料通路101(101a〜101h)が構成されている。 The fuel supply unit 200 has an end opposite to the nozzle unit 300 connected to a fuel pipe (not shown). The end of the nozzle portion 300 opposite to the fuel supply portion 200 is inserted into an attachment hole formed in an intake pipe (not shown) or a combustion chamber forming member (cylinder block, cylinder head, etc.) of an internal combustion engine. The electromagnetic fuel injection valve 100 receives the fuel supplied from the fuel pipe through the fuel supply unit 200, and injects the fuel from the tip of the nozzle unit 300 into the intake pipe or the combustion chamber. Inside the electromagnetic fuel injection valve 100, the fuel flows from the end of the fuel supply unit 200 to the tip of the nozzle unit 300 substantially along the direction of the central axis 100a of the electromagnetic fuel injection valve 100. The passage 101 (101a to 101h) is configured.

以下、燃料供給部200、電磁駆動部400及びノズル部300の構成について、詳細に説明する。 Hereinafter, the configurations of the fuel supply unit 200, the electromagnetic drive unit 400, and the nozzle unit 300 will be described in detail.

燃料供給部200は、後述する電磁駆動部400を構成する固定鉄心401の一端部から延設された燃料パイプ201によって構成される。すなわち本実施例では、固定鉄心401と燃料パイプ201とが一つの部材で一体的に成形されている。 The fuel supply unit 200 is composed of a fuel pipe 201 extending from one end of a fixed iron core 401 which constitutes an electromagnetic drive unit 400 described later. That is, in this embodiment, the fixed iron core 401 and the fuel pipe 201 are integrally formed by one member.

燃料パイプ201の上端部には燃料通路101aに連通する燃料供給口201aが開口している。燃料供給口201aに対して下方の外周面には拡径して段部を構成する拡径部201bが設けられている。この拡径部201bと燃料供給口201aとの間にOリング202が取り付けられている。さらに、Oリング202と拡径部201bとの間には、バックアップリング203が設けられている。 A fuel supply port 201a communicating with the fuel passage 101a is opened at the upper end of the fuel pipe 201. An enlarged diameter portion 201b is provided on the outer peripheral surface below the fuel supply port 201a to enlarge the diameter to form a step. An O-ring 202 is attached between the expanded diameter portion 201b and the fuel supply port 201a. Further, a backup ring 203 is provided between the O ring 202 and the expanded diameter portion 201b.

Oリング202は、燃料供給口201aが燃料配管に取り付けられた際に、燃料漏れを防止するシールとして機能する。また、バックアップリング203はOリング202をバックアップするためのものである。バックアップリング203は複数のリング状部材が積層されて構成される場合もある。燃料供給口201aの内側には燃料に混入した異物を濾しとるフィルタ204が配設されている。 The O-ring 202 functions as a seal that prevents fuel leakage when the fuel supply port 201a is attached to the fuel pipe. The backup ring 203 is for backing up the O-ring 202. The backup ring 203 may be formed by stacking a plurality of ring-shaped members. A filter 204 is provided inside the fuel supply port 201a to filter out foreign matter mixed in the fuel.

ノズル部300は、その先端部(下端部)に弁部300aを備え、弁部300aから上流側に向かって燃料通路101fを構成する、中空の筒状体(ノズル体)300bを備えている。尚、ノズル体300bの先端部外周面にはチップシール103が設けられている。 The nozzle portion 300 is provided with a valve portion 300a at its tip (lower end portion) and a hollow cylindrical body (nozzle body) 300b that constitutes the fuel passage 101f from the valve portion 300a toward the upstream side. A tip seal 103 is provided on the outer peripheral surface of the tip of the nozzle body 300b.

弁部300aは、例えばマルテンサイト系ステンレス等の金属により形成されている噴射孔形成部材301と、ガイド部材302と、プランジャロッド102の一端部(先端側)に設けられた弁体303とを備えている。 The valve portion 300a includes an injection hole forming member 301 formed of, for example, a metal such as martensitic stainless steel, a guide member 302, and a valve body 303 provided at one end (tip end side) of the plunger rod 102. ing.

噴射孔形成部材301の内側には上端面301aから下方に向けて凹形状部301pが形成されている。凹形状部301pには、中心軸線100aに平行な円筒形状を成す内周面301cが上端面301aから凹形状部301pの奥側(下方)に向かって形成されている。内周面301cの下端には段部301dが形成され、段部301dの内周から凹形状部301pの奥側に向けて内周壁面301eが形成されている。 Inside the injection hole forming member 301, a concave portion 301p is formed downward from the upper end surface 301a. In the concave portion 301p, a cylindrical inner peripheral surface 301c parallel to the central axis 100a is formed from the upper end surface 301a toward the inner side (downward) of the concave portion 301p. A step portion 301d is formed at the lower end of the inner peripheral surface 301c, and an inner peripheral wall surface 301e is formed from the inner periphery of the step portion 301d toward the inner side of the concave portion 301p.

段部301dには、ガイド部材302が載置される。内周壁面301eは奥側に向かって縮径するように形成され、燃料室301fを形成している。内周壁面301eの下端には円錐形状(円錐台形状)の弁座構成面301gが形成され、弁座構成面301gを形成する円錐形状の頂点部には、弁体303との干渉を避ける逃げ部301hが設けられている。 The guide member 302 is placed on the step portion 301d. The inner peripheral wall surface 301e is formed so as to reduce its diameter toward the inner side, and forms a fuel chamber 301f. A conical (conical trapezoidal) valve seat constituting surface 301g is formed at the lower end of the inner peripheral wall surface 301e, and a conical apex portion forming the valve seat constituting surface 301g is a relief for avoiding interference with the valve body 303. The portion 301h is provided.

円錐形状の弁座構成面301gには弁体303と接触する弁座(シート部)301bが環状に設けられている。弁座構成面301gと弁体303との接触幅は非常に狭く、線接触に近い。このため、弁座構成面301gと弁体303との接触幅に相当する環状部分を弁座301bと呼び、弁座301bと弁座構成面301gとを区別している。しかし、弁座301bは弁座構成面301gの上端と下端との間に構成されており、弁座構成面301gを弁座301bと呼ぶ場合もある。 A valve seat (seat portion) 301b that is in contact with the valve body 303 is provided in an annular shape on the conical valve seat constituting surface 301g. The contact width between the valve seat constituting surface 301g and the valve body 303 is very narrow, and is close to line contact. Therefore, the annular portion corresponding to the contact width between the valve seat constituting surface 301g and the valve body 303 is called a valve seat 301b, and the valve seat 301b and the valve seat constituting surface 301g are distinguished from each other. However, the valve seat 301b is formed between the upper end and the lower end of the valve seat constituting surface 301g, and the valve seat constituting surface 301g may be referred to as the valve seat 301b.

噴射孔形成部材301の外側には、上端面301aから下方に向けて中心軸線100aに平行な外周面301iが円筒形状に形成されている。外周面301iの下端は端面(下端面)301jに接続されている。端面301jには、その中心部に、端面301jから下方に突出する曲面部(或いは球面部)301kが形成されている。 On the outer side of the injection hole forming member 301, an outer peripheral surface 301i is formed in a cylindrical shape downward from the upper end surface 301a and parallel to the central axis 100a. The lower end of the outer peripheral surface 301i is connected to the end surface (lower end surface) 301j. A curved surface portion (or spherical surface portion) 301k protruding downward from the end surface 301j is formed at the center of the end surface 301j.

上述した構成により、噴射孔形成部材301は、内周面301cと外周面301iとによって構成される筒状部301lと、内周壁面301eと弁座構成面301gと逃げ部301hと曲面部(或いは球面部)301kを含む端面301jとによって構成される底部301mとを有しており、有底筒状に形成されている。 With the above-described configuration, the injection hole forming member 301 has a tubular portion 301l formed of the inner peripheral surface 301c and the outer peripheral surface 301i, an inner peripheral wall surface 301e, a valve seat forming surface 301g, a relief portion 301h, and a curved surface portion (or And a bottom portion 301m configured by an end surface 301j including a spherical surface portion 301k, and is formed in a bottomed tubular shape.

噴射孔形成部材301の底部301mには、底部301mを貫通するように、噴射孔301oが形成されている。噴射孔301oは、その出口が噴射孔形成部材301の底部301mの外側面(下面)に開口し、その入口が噴射孔形成部材301の裏面側(弁座構成面301g側に構成される内側面)に開口している。曲面部(或いは球面部)301kには噴射孔301oが複数設けられている。 An injection hole 301o is formed in the bottom portion 301m of the injection hole forming member 301 so as to penetrate the bottom portion 301m. The outlet of the injection hole 301o is opened to the outer surface (lower surface) of the bottom portion 301m of the injection hole forming member 301, and the inlet thereof is the back surface side of the injection hole forming member 301 (the inner surface formed on the valve seat forming surface 301g side). ) Is open. A plurality of injection holes 301o are provided in the curved surface portion (or spherical surface portion) 301k.

噴射孔形成部材301は後述する加工工程により製作され、ノズル体300bの先端部に形成された凹部内周面300baに挿入されて固定されている。このとき、噴射孔形成部材301の先端面の外周とノズル体300bの先端面内周とが溶接され、燃料をシールしている。 The injection hole forming member 301 is manufactured by the processing step described later, and is inserted and fixed to the inner peripheral surface 300ba of the concave portion formed at the tip of the nozzle body 300b. At this time, the outer circumference of the tip end surface of the injection hole forming member 301 and the inner circumference of the tip end surface of the nozzle body 300b are welded to seal the fuel.

ガイド部材302は噴射孔形成部材301の内側に配置されている。ガイド部材302の中心部には、上端面から下端面に貫通する貫通孔302aが形成されている。貫通孔302aはプランジャロッド102の先端側(下端側)のガイド面を構成し、中心軸線100aに沿う方向(開閉弁方向)におけるプランジャロッド102の移動を案内する。ガイド部材302の外周面には燃料通路101gが形成され、ガイド部材302の下端面には燃料通路101hが形成されている。 The guide member 302 is arranged inside the injection hole forming member 301. A through hole 302a is formed at the center of the guide member 302 so as to penetrate from the upper end surface to the lower end surface. The through hole 302a constitutes a guide surface on the tip side (lower end side) of the plunger rod 102, and guides the movement of the plunger rod 102 in the direction along the central axis 100a (opening/closing valve direction). A fuel passage 101g is formed on the outer peripheral surface of the guide member 302, and a fuel passage 101h is formed on the lower end surface of the guide member 302.

弁体303は閉弁時に弁部301aが弁座301bと接触し、弁座301bと協働して燃料をシールする。弁部300aは、燃料を噴射する主要部であり、燃料噴霧を形成する噴霧形成部を構成する。 When the valve body 303 is closed, the valve portion 301a contacts the valve seat 301b, and cooperates with the valve seat 301b to seal the fuel. The valve part 300a is a main part for injecting fuel and constitutes a spray forming part for forming fuel spray.

電磁駆動部400は、固定鉄心401と、コイル402と、外周ヨーク403と、可動鉄心404と、第1ばね部材(コイルばね)405と、ばね力調整部材406と、第2ばね部材(スプリング)407と、ばね座部材408とで構成されている。 The electromagnetic drive unit 400 includes a fixed iron core 401, a coil 402, an outer peripheral yoke 403, a movable iron core 404, a first spring member (coil spring) 405, a spring force adjusting member 406, and a second spring member (spring). 407 and a spring seat member 408.

固定鉄心401は、燃料パイプ201に対して反対側の端部(下端部)に形成された下端面401aと、中心部に燃料通路101cを構成する貫通孔401bと、燃料パイプ201が延設される側の端部に径方向に張り出して形成されたフランジ部401cとを有する。固定鉄心401の外周面401dはノズル体300bに形成された拡径部300baの内周面に嵌合されている。固定鉄心401及びノズル体拡径部300baの外周側にはコイル402が巻回されている。 The fixed core 401 has a lower end surface 401a formed at an end (lower end) on the opposite side to the fuel pipe 201, a through hole 401b forming a fuel passage 101c in the center, and a fuel pipe 201 extending. And a flange portion 401c formed so as to project in the radial direction at the end portion on the side of the base. The outer peripheral surface 401d of the fixed iron core 401 is fitted to the inner peripheral surface of the expanded diameter portion 300ba formed in the nozzle body 300b. A coil 402 is wound around the fixed iron core 401 and the outer peripheral side of the nozzle body expanded diameter portion 300ba.

外周ヨーク403はコイル402の外周側を囲むように設けられ、電磁式燃料噴射弁100のハウジング部材を兼ねている。外周ヨーク403の上端側内周面403aが固定鉄心401のフランジ部401cの外周面に接続されて固定されている。また、外周ヨーク403の下端側内周面403bは、ノズル体拡径部300baの外周面に接続されて固定されている。 The outer peripheral yoke 403 is provided so as to surround the outer peripheral side of the coil 402, and also serves as a housing member of the electromagnetic fuel injection valve 100. The inner peripheral surface 403a on the upper end side of the outer peripheral yoke 403 is connected and fixed to the outer peripheral surface of the flange portion 401c of the fixed iron core 401. Further, the inner peripheral surface 403b on the lower end side of the outer peripheral yoke 403 is connected and fixed to the outer peripheral surface of the nozzle body enlarged diameter portion 300ba.

固定鉄心401の下端部側には、可動鉄心404が配置されている。可動鉄心404の端面(上端面)404aは固定鉄心401の端面(下端面)401aと対向している。また、可動鉄心404の外周面はノズル体拡径部300baの内周面と僅かな隙間を介して対向しており、可動鉄心404はノズル体拡径部300baの内側で中心軸線100aに沿う方向に移動可能に設けられている。 A movable iron core 404 is arranged on the lower end side of the fixed iron core 401. The end surface (upper end surface) 404a of the movable iron core 404 faces the end surface (lower end surface) 401a of the fixed iron core 401. Further, the outer peripheral surface of the movable iron core 404 faces the inner peripheral surface of the nozzle body enlarged diameter portion 300ba with a slight gap, and the movable iron core 404 extends in the direction along the central axis 100a inside the nozzle body enlarged diameter portion 300ba. It is provided to be movable.

可動鉄心404の中央部には、上端面404a側から下端面404b側に窪んだ凹部404cが形成されている。凹部404cの底面に中心軸線100aに沿う方向に下端面404bまで貫通する貫通孔404dが形成されている。貫通孔404dを挿通するようにプランジャロッド102が設けられている。可動鉄心404とプランジャロッド102とは、中心軸線100aに沿う方向に、相対変位可能に構成されている。可動鉄心404の貫通孔404dの周囲には、凹部404cの底面に開口し、下端面404bに貫通する貫通孔により形成された燃料通路101dが設けられている。 At the center of the movable iron core 404, a recess 404c is formed which is recessed from the upper end surface 404a side to the lower end surface 404b side. The bottom surface of the recess 404c is formed with a through hole 404d penetrating to the lower end surface 404b in the direction along the central axis 100a. The plunger rod 102 is provided so as to be inserted through the through hole 404d. The movable iron core 404 and the plunger rod 102 are configured to be relatively displaceable in the direction along the central axis 100a. Around the through hole 404d of the movable iron core 404, a fuel passage 101d formed by a through hole that opens to the bottom surface of the recess 404c and penetrates the lower end surface 404b is provided.

プランジャロッド102は第1ばね405により閉弁方向(下方向)に付勢され、下端部に構成された弁体303が弁座301bに接触している。このために、第1ばね405の上端部はばね力調整部材406の下端面に当接し、第1ばね405の下端部はプランジャロッド102の上端部に形成された拡径部102aの上端面に当接している。可動鉄心404は第2ばね部材407により開弁方向(上方向)に付勢され、凹部404cの底面がプランジャロッド102の拡径部102aの下端面と接触している。このために、第2ばね部材407の上端部は可動鉄心404の下端面404bに当接し、第2ばね部材407の下端部はばね座部材408のばね座面408aに当接している。 The plunger rod 102 is biased in the valve closing direction (downward direction) by the first spring 405, and the valve element 303 formed at the lower end is in contact with the valve seat 301b. For this reason, the upper end of the first spring 405 contacts the lower end surface of the spring force adjusting member 406, and the lower end of the first spring 405 contacts the upper end surface of the expanded diameter portion 102 a formed at the upper end of the plunger rod 102. Abutting. The movable iron core 404 is biased in the valve opening direction (upward direction) by the second spring member 407, and the bottom surface of the recessed portion 404c is in contact with the lower end surface of the expanded diameter portion 102a of the plunger rod 102. Therefore, the upper end portion of the second spring member 407 abuts on the lower end surface 404b of the movable iron core 404, and the lower end portion of the second spring member 407 abuts on the spring seat surface 408a of the spring seat member 408.

第1ばね405の付勢力は第2ばね407の付勢力よりも大きく設定されている。このため、弁体303は弁座301bに接触した状態を維持することができる。一方、可動鉄心404はプランジャロッド102の拡径部102aによって、開弁方向への変位を規制されている。本実施例では、上述した構成により、第1ばね405の付勢力はプランジャロッド拡径部102aを介して可動鉄心404に伝達され、可動鉄心404が受ける開弁方向の付勢力、即ち第2ばね407の付勢力及び固定鉄心401による磁気吸引力は、可動鉄心404を介してプランジャロッド102に伝達される。 The biasing force of the first spring 405 is set to be larger than the biasing force of the second spring 407. Therefore, the valve body 303 can maintain the state of being in contact with the valve seat 301b. On the other hand, the movable iron core 404 is restricted in displacement in the valve opening direction by the enlarged diameter portion 102a of the plunger rod 102. In the present embodiment, with the configuration described above, the urging force of the first spring 405 is transmitted to the movable iron core 404 via the plunger rod enlarged diameter portion 102a, and the urging force of the movable iron core 404 in the valve opening direction, that is, the second spring. The biasing force of 407 and the magnetic attraction force of the fixed iron core 401 are transmitted to the plunger rod 102 via the movable iron core 404.

第1ばね405の付勢力を調整するために、燃料パイプ201の中空部201c内に、ばね力調整部材406が設けられている。また、第1ばね405は下側部分が固定鉄心401の貫通孔401b内に配置され、上側部分が燃料パイプ201の中空部201c内に配置されている。第1ばね405とばね力調整部材406とは燃料通路101a、101c内に配置され、ばね力調整部材406の中心部には燃料通路101bが構成されている。 In order to adjust the biasing force of the first spring 405, a spring force adjusting member 406 is provided inside the hollow portion 201c of the fuel pipe 201. The lower portion of the first spring 405 is arranged in the through hole 401b of the fixed iron core 401, and the upper portion thereof is arranged in the hollow portion 201c of the fuel pipe 201. The first spring 405 and the spring force adjusting member 406 are arranged in the fuel passages 101a and 101c, and the fuel passage 101b is formed at the center of the spring force adjusting member 406.

上述した固定鉄心401、コイル402及び外周ヨーク403は、可動鉄心404に対する磁気吸引力を発生する電磁石を構成する。 The fixed iron core 401, the coil 402, and the outer peripheral yoke 403 described above form an electromagnet that generates a magnetic attraction force to the movable iron core 404.

上述したばね座部材408には、中心部に中心軸線100aに沿う方向に貫通する貫通孔408bが形成されている。貫通孔408bはプランジャロッド102の上端側のガイド面を構成し、中心軸線100aに沿う方向(開閉弁方向)におけるプランジャロッド102の移動を案内する。ばね座部材408には燃料通路101eが形成されている。 The spring seat member 408 described above has a through hole 408b formed at the center thereof so as to penetrate in the direction along the central axis 100a. The through hole 408b constitutes a guide surface on the upper end side of the plunger rod 102 and guides the movement of the plunger rod 102 in the direction along the central axis 100a (opening/closing valve direction). A fuel passage 101e is formed in the spring seat member 408.

コイル402はボビンに巻かれた状態で固定鉄心401及びノズル体拡径部300baの外周側に組み付けられ、その周囲には樹脂材がモールドされている。このモールドに使用される樹脂材により、コイル402から引き出されたターミナル104を有するコネクタ105が一体的に成形されている。 The coil 402 is assembled on the outer peripheral side of the fixed iron core 401 and the nozzle body expanded diameter portion 300ba in a state of being wound on a bobbin, and a resin material is molded around the periphery thereof. The connector 105 having the terminal 104 drawn out from the coil 402 is integrally molded with the resin material used for this molding.

次に、電磁式燃料噴射弁100の動作について説明する。 Next, the operation of the electromagnetic fuel injection valve 100 will be described.

コイル402に通電されていない状態では、プランジャロッド102を閉弁方向に付勢する第1ばね部材405の付勢力により、弁体303が弁座301bに当接して閉弁している。この状態を閉弁静止状態という。このとき、可動鉄心404は第2ばね部材407によって開弁方向に付勢され、凹部404cの底面がプランジャロッド拡径部102aと当接している。可動鉄心404は開弁方向への変位がプランジャロッド拡径部102aによって規制され、上端面404aと固定鉄心下端面401aとの間には弁体303のストロークに対応するギャップが生じている。 When the coil 402 is not energized, the valve body 303 is in contact with the valve seat 301b to close the valve by the biasing force of the first spring member 405 that biases the plunger rod 102 in the valve closing direction. This state is called the valve closed stationary state. At this time, the movable iron core 404 is biased in the valve opening direction by the second spring member 407, and the bottom surface of the concave portion 404c is in contact with the plunger rod expanded diameter portion 102a. Displacement of the movable iron core 404 in the valve opening direction is restricted by the plunger rod enlarged diameter portion 102a, and a gap corresponding to the stroke of the valve body 303 is formed between the upper end face 404a and the fixed iron core lower end face 401a.

コイル402に通電されると、固定鉄心401、コイル402及び外周ヨーク403によって構成された電磁石により磁束が発生する。この磁束は、コイル402を囲むように構成された固定鉄心401(フランジ部401cを含む)、外周ヨーク403、ノズル体拡径部300ba及び可動鉄心404を環状に流れる。このとき、可動鉄心上端面404aと固定鉄心下端面401aとの間に磁気吸引力が作用し、可動鉄心404が固定鉄心401に向けて引き付けられる。プランジャロッド102は可動鉄心404によって引き上げられ、弁体303の弁部301aが弁座301bから離れる。これにより、弁体303と弁座301bとの間の燃料通路が開く。 When the coil 402 is energized, a magnetic flux is generated by the electromagnet composed of the fixed iron core 401, the coil 402 and the outer peripheral yoke 403. This magnetic flux flows annularly through the fixed iron core 401 (including the flange portion 401c) configured to surround the coil 402, the outer peripheral yoke 403, the nozzle body expanded portion 300ba, and the movable iron core 404. At this time, a magnetic attraction force acts between the movable iron core upper end surface 404a and the fixed iron core lower end surface 401a, and the movable iron core 404 is attracted toward the fixed iron core 401. The plunger rod 102 is pulled up by the movable iron core 404, and the valve portion 301a of the valve body 303 separates from the valve seat 301b. This opens the fuel passage between the valve body 303 and the valve seat 301b.

可動鉄心上端面404aが固定鉄心下端面401aと当接すると、可動鉄心上端面404aは固定鉄心下端面401aに吸着された状態となって動きを止めるが、プランジャロッド102は開弁方向への移動を続ける。やがて、プランジャロッド102は第1ばね部材405の付勢力により開弁方向への移動を続けることができなくなり、第1ばね部材405により閉弁方向に押し戻される。閉弁方向に押し戻されたプランジャロッド102はプランジャロッド拡径部102aの下端面が可動鉄心凹部404cの底面に当接して静止状態となる。この状態を開弁静止状態という。また、通電を開始して閉弁静止状態から開弁静止状態に至るまでの期間を開弁動作期間という。 When the upper end surface 404a of the movable core comes into contact with the lower end surface 401a of the fixed core, the upper end surface 404a of the movable core is attracted to the lower end surface 401a of the fixed core and stops moving, but the plunger rod 102 moves in the valve opening direction. Continue. Eventually, the plunger rod 102 cannot continue moving in the valve opening direction due to the urging force of the first spring member 405, and is pushed back by the first spring member 405 in the valve closing direction. The plunger rod 102 pushed back in the valve closing direction is in a stationary state with the lower end surface of the plunger rod expanded portion 102a abutting the bottom surface of the movable iron core recess 404c. This state is called the valve open stationary state. Also, the period from the start of energization to the valve-opening stationary state until the valve-opening stationary state is called the valve opening operation period.

開弁静止状態でコイル402への通電を遮断すると、可動鉄心上端面404aと固定鉄心下端面401aとの間に磁気吸引力が小さくなり、この磁気吸引力と第2ばね部材407の付勢力との合力よりも第1ばね部材405の付勢力が大きくなると、プランジャロッド102及び可動鉄心404は閉弁方向に移動を始める。弁体303の弁部301aが弁座301bに当接すると、プランジャロッド102は閉弁方向への移動を止める。この後も可動鉄心404は閉弁方向への移動を継続するが、やがて第2ばね部材407の付勢力により閉弁方向への移動を続けることができなくなる。さらに可動鉄心404は第2ばね部材407により開弁方向に押し戻され、可動鉄心凹部404cの底面がプランジャロッド拡径部102aの下端面に当接して静止状態(閉弁静止状態)となる。この閉弁静止状態では、弁体303と弁座301bとの間の燃料通路が閉じられる。 When the coil 402 is de-energized while the valve is open, the magnetic attraction force between the upper end surface 404a of the movable iron core and the lower end surface 401a of the fixed iron core becomes smaller, and this magnetic attraction force and the urging force of the second spring member 407 are combined. When the urging force of the first spring member 405 becomes larger than the resultant force, the plunger rod 102 and the movable iron core 404 start moving in the valve closing direction. When the valve portion 301a of the valve body 303 contacts the valve seat 301b, the plunger rod 102 stops moving in the valve closing direction. After this, the movable iron core 404 continues to move in the valve closing direction, but eventually it becomes impossible to continue to move in the valve closing direction due to the urging force of the second spring member 407. Further, the movable iron core 404 is pushed back in the valve opening direction by the second spring member 407, and the bottom surface of the movable iron core recess 404c comes into contact with the lower end surface of the plunger rod expanded diameter portion 102a to be in a stationary state (valve closing stationary state). In this valve closed stationary state, the fuel passage between the valve body 303 and the valve seat 301b is closed.

本実施例では、プランジャロッド102と可動鉄心404とが相対変位可能な電磁式燃料噴射弁について説明したが、プランジャロッド102と可動鉄心404とが固定された構造であってもよい。或いは、プランジャロッド102と可動鉄心404とが他の相対変位可能な構造であってもよい。また、固定鉄心401、コイル402及び外周ヨーク403によって構成した電磁石も、本実施例と異なる構成にしても構わない。 In this embodiment, the electromagnetic fuel injection valve in which the plunger rod 102 and the movable iron core 404 can be displaced relative to each other has been described, but the plunger rod 102 and the movable iron core 404 may be fixed. Alternatively, the plunger rod 102 and the movable iron core 404 may have another structure capable of relative displacement. Further, the electromagnet composed of the fixed iron core 401, the coil 402, and the outer peripheral yoke 403 may have a structure different from that of this embodiment.

次に、図3乃至図8を用いて、電磁式燃料噴射弁100の製造方法について説明する。
特に本発明は、噴射孔301oの加工方法に製造方法として特徴がある。以下、噴射孔301oの加工方法について、詳細に説明する。
Next, a method of manufacturing the electromagnetic fuel injection valve 100 will be described with reference to FIGS. 3 to 8.
In particular, the present invention is characterized as a manufacturing method in the processing method of the injection hole 301o. Hereinafter, a method of processing the injection hole 301o will be described in detail.

最初に、図3乃至図5を用いて、加工された噴射孔301oの形態について、説明する。 First, the form of the processed injection hole 301o will be described with reference to FIGS.

図3は、噴射孔形成部材301の外観(先端面)を示す平面図である。図4は、図2の噴射孔301oの近傍(図3のY−Y断面)を拡大して示す拡大断面図である。 FIG. 3 is a plan view showing the outer appearance (front end surface) of the injection hole forming member 301. FIG. 4 is an enlarged cross-sectional view showing the vicinity of the injection hole 301o of FIG. 2 (Y-Y cross section of FIG. 3) in an enlarged manner.

本実施例では、図3に示すような噴射孔形成部材301に複数の噴射孔301oを形成する。なお本実施例では、噴射孔形成部材301に6個の噴射孔301oを形成する。 In this embodiment, a plurality of injection holes 301o are formed in the injection hole forming member 301 as shown in FIG. In this embodiment, six injection holes 301o are formed in the injection hole forming member 301.

図4に示すように、噴射孔301oは、上流側に形成された第一レーザ照射面301oaと、下流側に形成された第二レーザ照射面301obとを有する。第一レーザ照射面301oa及び第二レーザ照射面301obはレーザを照射することにより形成される噴孔内周面である。 As shown in FIG. 4, the injection hole 301o has a first laser irradiation surface 301oa formed on the upstream side and a second laser irradiation surface 301ob formed on the downstream side. The first laser-irradiated surface 301oa and the second laser-irradiated surface 301ob are inner peripheral surfaces of injection holes formed by irradiating a laser.

第一レーザ照射面301oaは、噴射孔形成部材301の内側面301qに開口する開口面301oiを有し、開口面301oiの開口縁301oieで内側面301qに接続される。また、第一レーザ照射面301oaの下流側端部は、境界300ocで第二レーザ照射面301obに接続される。第二レーザ照射面301obは、噴射孔形成部材301の外側面301rに開口する開口面301ooを有し、開口面301ooの開口縁301ooeで外側面301rに接続される。また、第二レーザ照射面301obの上流側端部は、境界300ocで第一レーザ照射面301oaに接続される。第二レーザ照射面301obは第一レーザ照射面301oaに対して噴射孔301oの入口(開口面301oi)側に位置し、第一レーザ照射面301oaは第二レーザ照射面301obに対して噴射孔301oの出口(開口面301oo)側に位置する。 The first laser irradiation surface 301oa has an opening surface 301oi that opens to the inner surface 301q of the injection hole forming member 301, and is connected to the inner surface 301q at the opening edge 301oi of the opening surface 301oi. The downstream end of the first laser irradiation surface 301oa is connected to the second laser irradiation surface 301ob at the boundary 300oc. The second laser irradiation surface 301ob has an opening surface 301oo that opens to the outer surface 301r of the injection hole forming member 301, and is connected to the outer surface 301r at an opening edge 301ooe of the opening surface 301oo. The upstream end of the second laser irradiation surface 301ob is connected to the first laser irradiation surface 301oa at the boundary 300oc. The second laser irradiation surface 301ob is located closer to the entrance (opening surface 301oi) of the ejection hole 301o than the first laser irradiation surface 301oa, and the first laser irradiation surface 301oa is ejected from the second laser irradiation surface 301ob. Is located on the exit side (opening surface 301oo) side of the.

第二レーザ照射面301obの表面粗さは、第一レーザ照射面301oaの表面粗さよりも大きい。第一レーザ照射面301oa及び第二レーザ照射面301obは、噴射孔301oの入口(開口面301oi)から出口(開口面301oo)まで、上流側(入口開口面301oi側)から下流方向(出口開口面301oo側)に向かって断面積が小さくなるように形成される。すなわち、第一レーザ照射面301oa及び第二レーザ照射面301obは、入口開口面301oi側から出口開口面301oo側に向かって、断面積が漸減するように形成される。このため本実施例では、出口開口縁301ooeに囲まれる出口開口面301ooの面積S301ooは、第一レーザ照射面301oaと第二レーザ照射面301obとの境界線300ocに囲まれる面積S300ocに対して小さい。 The surface roughness of the second laser irradiation surface 301ob is larger than the surface roughness of the first laser irradiation surface 301oa. The first laser irradiation surface 301oa and the second laser irradiation surface 301ob are from the inlet (opening surface 301oi) to the outlet (opening surface 301oo) of the injection hole 301o, from the upstream side (inlet opening surface 301oi side) to the downstream direction (outlet opening surface). It is formed so that the cross-sectional area decreases toward 301oo side). That is, the first laser irradiation surface 301oa and the second laser irradiation surface 301ob are formed such that their cross-sectional areas gradually decrease from the entrance opening surface 301oi side toward the exit opening surface 301oo side. Therefore, in this embodiment, the area S301oo of the exit opening surface 301oo surrounded by the exit opening edge 301ooe is smaller than the area S300oc surrounded by the boundary line 300oc between the first laser irradiation surface 301oa and the second laser irradiation surface 301ob. ..

噴射孔301oの断面積は、中心軸301cに垂直な断面の面積とする。以下の説明でも同様である。 The cross-sectional area of the injection hole 301o is the area of the cross section perpendicular to the central axis 301c. The same applies to the following description.

図5は、噴射孔301oの出口開口縁にR部を設けた例を示す図であり、図2の噴射孔301oの近傍(図3のY−Y断面)を拡大して示す拡大断面図である。なお、図4に示す構成と同様な構成には同じ符号を付し、説明を省略する。 FIG. 5 is a diagram showing an example in which an R portion is provided at the outlet opening edge of the injection hole 301o, and is an enlarged cross-sectional view showing the vicinity of the injection hole 301o of FIG. 2 (Y-Y cross section of FIG. 3) in an enlarged manner. is there. The same components as those shown in FIG. 4 are designated by the same reference numerals and the description thereof will be omitted.

図5に示すように、第二レーザ照射面301obは上流側から下流方向に向かって断面積が大きくなるように形成してもよい。このため本例では、出口開口縁301ooeに囲まれる出口開口面301ooの面積S301ooは、第一レーザ照射面301oaと第二レーザ照射面301obとの境界線300ocに囲まれる面積S300ocに対して大きい。 As shown in FIG. 5, the second laser irradiation surface 301ob may be formed so that the cross-sectional area increases from the upstream side to the downstream direction. Therefore, in this example, the area S301oo of the exit opening surface 301oo surrounded by the exit opening edge 301ooe is larger than the area S300oc surrounded by the boundary line 300oc between the first laser irradiation surface 301oa and the second laser irradiation surface 301ob.

次に、図6を用いて、本発明の比較例となる加工方法を用いて噴射孔301oを形成する場合について説明する。図6は、噴射孔301oの加工においてレーザ焦点位置をレーザ入射側の上面(第二レーザ照射面側)で固定した場合のレーザ照射状態を示す模式図である。 Next, a case where the injection hole 301o is formed by using the processing method as the comparative example of the present invention will be described with reference to FIG. FIG. 6 is a schematic diagram showing a laser irradiation state when the laser focus position is fixed on the laser incident side upper surface (second laser irradiation surface side) in the processing of the injection hole 301o.

レーザ500は集光レンズ501で集光し、噴射孔形成部材301へ照射され、噴射孔301oが加工される。図6では、レーザ500は噴射孔形成部材301の先端面301r側の外側から噴射孔形成部材301に照射される。このとき、下流側の断面積に対して上流側の断面積が大きくなる噴射孔301oは、比較例の加工方法では、焦点500dの位置(焦点位置)が先端面301r上に固定された状態で、出口開口縁301ooe上を移動する。このため、レーザ照射面301osでは、出口開口301oo(出口開口縁301ooe)から離れるほどエネルギ密度が低くなり、噴射孔301oの加工時間が長くなる。上流側と下流側の断面積の比は、レーザ500の中心軸500cを噴射孔301oの中心軸301cに対して傾斜させた状態で、レーザ500を噴射孔301o内に入射し、中心軸500cの傾斜角度を変えることにより調整する。 The laser 500 is condensed by the condensing lens 501 and irradiated on the ejection hole forming member 301, and the ejection hole 301o is processed. In FIG. 6, the laser 500 is irradiated onto the injection hole forming member 301 from the outside on the tip end surface 301r side of the injection hole forming member 301. At this time, in the injection hole 301o in which the cross-sectional area on the upstream side is larger than the cross-sectional area on the downstream side, in the processing method of the comparative example, the position of the focal point 500d (focal point position) is fixed on the tip surface 301r. , Move on the outlet opening edge 301ooe. Therefore, on the laser irradiation surface 301os, the energy density becomes lower as the distance from the outlet opening 301oo (outlet opening edge 301ooe) decreases, and the processing time of the injection hole 301o becomes longer. The ratio of the cross-sectional areas of the upstream side and the downstream side is such that the laser 500 enters the injection hole 301o with the center axis 500c of the laser 500 being inclined with respect to the center axis 301c of the injection hole 301o. Adjust by changing the tilt angle.

この比較例では、レーザ500の中心軸500cと噴射孔301oの中心軸301cとは、ともに直線である。そして、レーザ500の中心軸500cは、噴射孔301oの中心軸301cと交差しない。すなわち、レーザ500の中心軸500cと噴射孔301oの中心軸301cとを含む仮想平面(図6)上において、レーザ500の中心軸500cは、噴射孔301oの中心軸301cに対して、焦点位置500dと同じ側にある。 In this comparative example, the central axis 500c of the laser 500 and the central axis 301c of the injection hole 301o are both straight lines. The central axis 500c of the laser 500 does not intersect with the central axis 301c of the injection hole 301o. That is, on the virtual plane (FIG. 6) including the central axis 500c of the laser 500 and the central axis 301c of the ejection hole 301o, the central axis 500c of the laser 500 is at the focal position 500d with respect to the central axis 301c of the ejection hole 301o. On the same side as.

なお、この加工方法では、表面粗さが異なる第一レーザ照射面301oaと第二レーザ照射面301obとを形成することは、意図していない。 In this processing method, it is not intended to form the first laser irradiation surface 301oa and the second laser irradiation surface 301ob having different surface roughness.

次に、図7及び図8を用いて、本実施例に係る噴射孔301oの加工方法について説明する。 Next, a method of processing the injection hole 301o according to the present embodiment will be described with reference to FIGS. 7 and 8.

図7は、本発明の一実施例に係る噴射孔301oの加工方法(レーザ照射状態)を示す模式図である。 FIG. 7 is a schematic diagram showing a processing method (laser irradiation state) of the injection hole 301o according to one embodiment of the present invention.

本実施例では、レーザ500は噴射孔形成部材301の先端面301r側の離れた位置から噴射孔形成部材301に向かって照射される。レーザ500は、中心軸500cを噴射孔301oの中心軸301cに対して傾斜させた状態で、噴射孔301o内に入射される。レーザ500の焦点500dの位置は、最初、先端面301r上に合わせられる。またこのときの焦点500dは、完成する噴射孔301oの出口開口縁301ooeよりも内側に位置するように設定される。 In the present embodiment, the laser 500 is irradiated toward the injection hole forming member 301 from a position remote from the tip surface 301r side of the injection hole forming member 301. The laser 500 is incident on the injection hole 301o in a state where the central axis 500c is inclined with respect to the central axis 301c of the injection hole 301o. The position of the focal point 500d of the laser 500 is initially adjusted on the tip surface 301r. Further, the focus 500d at this time is set so as to be located inside the outlet opening edge 301ooe of the completed injection hole 301o.

レーザ500による加工が始まると、焦点500dの位置は、噴射孔301oの内周面に沿うように歳差運動(円周運動)させながら、完成後のレーザ照射面301oaに沿うように下流側(出口開口縁301ooe側)から上流側(入口開口縁301oie側)へ下降させる。本実施例では、レーザ500の焦点500dの位置をレーザ照射面301oaに沿って移動させながら加工を行うため、第一レーザ照射面301oaのどの箇所でも高密度のレーザで加工することができ、噴射孔301oを高速に加工できる。 When the processing by the laser 500 is started, the position of the focal point 500d is precessed (circular movement) along the inner peripheral surface of the injection hole 301o, and the downstream side (along the completed laser irradiation surface 301oa). From the outlet opening edge 301ooe side) to the upstream side (the inlet opening edge 301oie side). In this embodiment, since the processing is performed while moving the position of the focus 500d of the laser 500 along the laser irradiation surface 301oa, it is possible to perform processing with a high-density laser at any position on the first laser irradiation surface 301oa. The hole 301o can be processed at high speed.

また、レーザ500の焦点500dの位置を下降させるに従って、レーザ500の傾き角度を小さくして、レーザ500を立てるように設定する。焦点500dがレーザ500の入射側から見てレーザ照射面301oaの奥側に位置する場合に、レーザ500は噴射孔301oの出口開口縁301ooeと干渉する場合がある。この場合、レーザ500の焦点500dの位置を下降させるに従って、レーザ500の傾き角度を小さくすることにより、レーザ500が出口開口縁301ooeと干渉するのを防ぐことができる。 Further, as the position of the focal point 500d of the laser 500 is lowered, the tilt angle of the laser 500 is reduced and the laser 500 is set to stand up. When the focus 500d is located on the far side of the laser irradiation surface 301oa from the incident side of the laser 500, the laser 500 may interfere with the outlet opening edge 301ooe of the injection hole 301o. In this case, it is possible to prevent the laser 500 from interfering with the exit opening edge 301ooe by decreasing the tilt angle of the laser 500 as the position of the focus 500d of the laser 500 is lowered.

本実施例では、レーザ500の中心軸500cと噴射孔301oの中心軸301cとは、ともに直線である。そして、レーザ500の中心軸500cは噴射孔301oの中心軸301cと交差するように設定される。すなわち、レーザ500の中心軸500cと噴射孔301oの中心軸301cとを含む仮想平面(図7)上において、レーザ500の中心軸500cは、噴射孔301oの中心軸301cに対して、交差するように設定される。 In this embodiment, the central axis 500c of the laser 500 and the central axis 301c of the injection hole 301o are both straight lines. The central axis 500c of the laser 500 is set so as to intersect the central axis 301c of the injection hole 301o. That is, the center axis 500c of the laser 500 intersects the center axis 301c of the injection hole 301o on a virtual plane (FIG. 7) including the center axis 500c of the laser 500 and the center axis 301c of the injection hole 301o. Is set to.

また、第二レーザ照射面301obは下流側(出口開口面301oo側)に向かって噴射孔301oの断面積が大きくなるように形成する。すなわち、第二レーザ照射面301obは出口開口面301oo側に向かって噴射孔301oの断面積が漸増するように形成する。このために、レーザ500の焦点500dの位置が噴射孔301oの径方向において調整される。本実施例では、焦点500dを第一レーザ照射面301oaに沿って下降させながら、径方向外方(噴射孔301oの中心軸301cから離れる方向)に向かって移動させる。 The second laser irradiation surface 301ob is formed so that the cross-sectional area of the injection hole 301o increases toward the downstream side (outlet opening surface 301oo side). That is, the second laser irradiation surface 301ob is formed so that the cross-sectional area of the injection hole 301o gradually increases toward the outlet opening surface 301oo. Therefore, the position of the focus 500d of the laser 500 is adjusted in the radial direction of the injection hole 301o. In the present embodiment, the focus 500d is moved radially outward (away from the central axis 301c of the injection hole 301o) while being lowered along the first laser irradiation surface 301oa.

図8を用いて、第二レーザ照射面301obの形成過程、及びレーザエネルギの消費位置について、説明する。図8は、第二レーザ照射面301obの形成過程とレーザエネルギの消費位置を説明する図である。 The process of forming the second laser irradiation surface 301ob and the laser energy consumption position will be described with reference to FIG. FIG. 8 is a diagram illustrating a process of forming the second laser irradiation surface 301ob and a position where the laser energy is consumed.

図8では、図5に示す第二レーザ照射面301obの形成過程(形成工程)を示している。第二レーザ照射面301obの加工点500lは、レーザ500のごく一部のレーザ510aで加工される。この時、500bのレーザ部分は、第二レーザ照射面301obで遮断されるため、第一レーザ照射面301oaには到達しない。 FIG. 8 shows a process (formation process) of forming the second laser irradiation surface 301ob shown in FIG. The processing point 500l on the second laser irradiation surface 301ob is processed by the laser 510a, which is a small part of the laser 500. At this time, the laser portion of 500b is blocked by the second laser irradiation surface 301ob and does not reach the first laser irradiation surface 301oa.

この場合、レーザ500の焦点500dが加工点500hに到達する時点、又はその直前に、レーザ500が出口開口301oo側の開口縁(完成する前の開口縁)と干渉するように、レーザ500の傾き角度を設定する。或いは、レーザ500の焦点500dが加工点500hに到達した時点、またはその直後に、レーザ500の傾き角度が大きくなるようにレーザ照射角度を変化させ、レーザ500が出口開口301oo側の開口縁(完成する前の開口縁)と干渉するようにする。すなわち、レーザ500は、第二レーザ照射面301obを形成するために、その一部が噴射孔形成部材301と干渉するように設定される。 In this case, the inclination of the laser 500 is adjusted so that the laser 500 interferes with the opening edge on the exit opening 301oo side (the opening edge before completion) at or immediately before the focal point 500d of the laser 500 reaches the processing point 500h. Set the angle. Alternatively, when the focal point 500d of the laser 500 reaches the processing point 500h or immediately after that, the laser irradiation angle is changed so that the tilt angle of the laser 500 becomes large, and the laser 500 has an opening edge on the exit opening 301oo side (completion). Interference before opening). That is, the laser 500 is set so that a part thereof interferes with the injection hole forming member 301 to form the second laser irradiation surface 301ob.

前者では、第一レーザ照射面301oaの加工と同時に、第二レーザ照射面301obを加工することができる。後者によれば、第一レーザ照射面301oaを加工した後で、第二レーザ照射面301obを個別に加工することができ、レーザ500の設定を変更することができる。 In the former case, the second laser irradiation surface 301ob can be processed simultaneously with the processing of the first laser irradiation surface 301oa. According to the latter, after processing the first laser irradiation surface 301oa, the second laser irradiation surface 301ob can be processed individually, and the setting of the laser 500 can be changed.

本実施例では、第二レーザ照射面301obはレーザ500のごく一部のレーザ510aで加工されるため、レーザ510aのエネルギ密度は低い。また、レーザ500のごく一部のレーザ510aが遮られるだけなので、レーザ500の照射経路が確保され、大部分のレーザ500は加工点500h(焦点500dの位置)に到達することができる。 In the present embodiment, the second laser irradiation surface 301ob is processed by the laser 510a, which is a small portion of the laser 500, so that the energy density of the laser 510a is low. Further, since only a part of the laser 510a of the laser 500 is blocked, the irradiation path of the laser 500 is secured, and most of the laser 500 can reach the processing point 500h (the position of the focal point 500d).

エネルギ密度の低い低密度レーザ500aでは溶融・蒸発・凝固による加工となる。すなわち、第二レーザ照射面301obでは、溶融及び蒸発により噴射孔形成部材301の材料が除去されて、第二レーザ照射面301ob(噴射孔301oの第二内壁面部)が加工される。なお、噴射孔301oを加工する対象物である、噴射孔301oが形成される前の噴射孔形成部材301をワークと呼んで説明する場合がある。 The low density laser 500a having a low energy density is processed by melting, evaporation and solidification. That is, on the second laser irradiation surface 301ob, the material of the injection hole forming member 301 is removed by melting and evaporation, and the second laser irradiation surface 301ob (the second inner wall surface portion of the injection hole 301o) is processed. The injection hole forming member 301 before the injection hole 301o is formed, which is an object for processing the injection hole 301o, may be referred to as a work for description.

一方、レーザ500の大部分は第一レーザ照射面301oaの加工点500hに集光し、第一レーザ照射面301oaを高密度レーザで加工することができる。このため、第一レーザ照射面301oaは昇華による加工となる。すなわち、第一レーザ照射面301oaでは、昇華により噴射孔形成部材301(ワーク)の材料が除去されて、第一レーザ照射面301oa(噴射孔301oの第一内壁面部)が加工される。このため、第一レーザ照射面301oaは第二レーザ照射面301obと比べて滑らかである。すなわち、第二レーザ照射面301obの面粗さRzは第一レーザ照射面301oaの面粗さRzより大きい。また、第二レーザ照射面301obは、入口開口面301oi側から出口開口301oo側に向かって断面積が大きくなるように形成される。さらに第二レーザ照射面301obは、溶融した際に照射面にダレが生じてR部301orとなる。 On the other hand, most of the laser 500 can be focused on the processing point 500h on the first laser irradiation surface 301oa, and the first laser irradiation surface 301oa can be processed by the high density laser. Therefore, the first laser irradiation surface 301oa is processed by sublimation. That is, on the first laser irradiation surface 301oa, the material of the injection hole forming member 301 (workpiece) is removed by sublimation, and the first laser irradiation surface 301oa (first inner wall surface portion of the injection hole 301o) is processed. Therefore, the first laser irradiation surface 301oa is smoother than the second laser irradiation surface 301ob. That is, the surface roughness Rz of the second laser irradiation surface 301ob is larger than the surface roughness Rz of the first laser irradiation surface 301oa. The second laser irradiation surface 301ob is formed so that the cross-sectional area increases from the entrance opening surface 301oi side toward the exit opening 301oo side. Further, when the second laser irradiation surface 301ob is melted, sagging occurs on the irradiation surface and becomes the R portion 301or.

第二レーザ照射面301obのR部301orのR、又は第二レーザ照射面301obの中心軸301c方向の範囲(長さ)は、噴射孔301oの孔径が小さくなるにつれて、又は噴射孔301oが深くなるにつれて大きくする。さらに、第一レーザ照射面301oaの入口面301oiから出口面301ooにかけての傾斜角度が大きくなるほど、第二レーザ照射面301obのR部301orのR又は第二レーザ照射面301obの中心軸301c方向の範囲(長さ)を大きくする。上述したようにR部301orのR、又は第二レーザ照射面301obの中心軸301c方向の範囲(長さ)を設定することにより、第一レーザ照射面301oa及び第二レーザ照射面301obの加工のためのレーザ500の設定が容易になる。 The R of the R portion 301or of the second laser irradiation surface 301ob or the range (length) of the second laser irradiation surface 301ob in the direction of the central axis 301c becomes smaller as the diameter of the injection hole 301o becomes smaller or becomes deeper. As it grows. Further, as the inclination angle from the entrance surface 301oi of the first laser irradiation surface 301oa to the exit surface 301oo increases, the R of the R portion 301or of the second laser irradiation surface 301ob or the range in the central axis 301c direction of the second laser irradiation surface 301ob. Increase (length). As described above, by setting the R of the R portion 301or or the range (length) of the second laser irradiation surface 301ob in the direction of the central axis 301c, the first laser irradiation surface 301oa and the second laser irradiation surface 301ob can be processed. Setting of the laser 500 for this purpose becomes easy.

図4に示す第二レーザ照射面301obを形成する場合、第二レーザ照射面301obの範囲ではレーザ500の焦点を第二レーザ照射面301obからずらし、加工面が材料の溶融及び蒸発により形成されるようにする。この場合、加工面は昇華による加工面とはならず、加工面の表面粗さRzを大きくすることができる。 When the second laser irradiation surface 301ob shown in FIG. 4 is formed, the focus of the laser 500 is shifted from the second laser irradiation surface 301ob within the range of the second laser irradiation surface 301ob, and the processed surface is formed by melting and evaporation of the material. To do so. In this case, the processed surface does not become a processed surface due to sublimation, and the surface roughness Rz of the processed surface can be increased.

本実施例の加工方法では、噴射孔301oの第一レーザ照射面(第一内壁面部)301oaを形成する第一内壁面部形成工程と、第二レーザ照射面(第二内壁面部)301obを形成する第二内壁面部形成工程と、を有する。第一内壁面部形成工程は、先端側の離れた位置から噴射孔形成部材301に向かってレーザ500を照射して、噴射孔301oの入口開口301oi側から出口開口301oo側に向かって断面積が小さくなるように噴射孔301oの第一内壁面部301oaを形成する。第二内壁面部形成工程は、先端側の離れた位置から噴射孔形成部材301に向かってレーザ500を照射して第一内壁面部301oaに対して出口開口301oo側に位置し第一内壁面部301oaの表面粗さRzに対して大きな表面粗さRzを有する、噴射孔301oの第二内壁面部301obを形成する。 In the processing method of this embodiment, a first inner wall surface forming step of forming the first laser irradiation surface (first inner wall surface) 301oa of the injection hole 301o and a second laser irradiation surface (second inner wall surface) 301ob are formed. A second inner wall surface portion forming step. In the step of forming the first inner wall surface portion, the laser 500 is radiated from the distant position on the tip side toward the injection hole forming member 301, and the cross-sectional area of the injection hole 301o decreases from the inlet opening 301oi side toward the outlet opening 301oo side. The first inner wall surface portion 301oa of the injection hole 301o is formed so that The second inner wall surface portion forming step is performed by irradiating the laser 500 toward the injection hole forming member 301 from a position distant from the tip end side to locate the first inner wall surface portion 301oa on the outlet opening 301oo side with respect to the first inner wall surface portion 301oa. The second inner wall surface portion 301ob of the injection hole 301o having a surface roughness Rz larger than the surface roughness Rz is formed.

本実施例では、第一レーザ照射面301oaが上流側から下流側に向かって縮径するように構成されているため、表面粗さRzを大きくした第二レーザ照射面301obに接触するように燃料を誘導する。これにより、第二レーザ照射面301obに接触する燃料量を増やし、噴霧の微粒化を促進することができる。また、噴射孔301oにおける流路が収束することにより噴霧の指向性が安定する。 In the present embodiment, since the first laser irradiation surface 301oa is configured to reduce its diameter from the upstream side to the downstream side, the fuel is contacted with the second laser irradiation surface 301ob whose surface roughness Rz is increased. Induce. As a result, the amount of fuel contacting the second laser irradiation surface 301ob can be increased and atomization of the spray can be promoted. Further, the directivity of the spray is stabilized by converging the flow path in the injection hole 301o.

なお、特許文献2に記載されているように、レーザの焦点を取りしろの始端位置、すなわち噴射孔の入口開口側に合わせ、且つ噴射孔仕上げ前の下孔の中心軸に対してレーザビームを平行にして、ノズル本体を回転させつつレーザ照射を行う方式では、噴射孔は、入口側に対して出口側の孔径が小さくなるテーパ状の孔になってしまっていた。しかしながら、近年のレーザ技術の発達によりレーザの集光効率が上がり、電力容量及び焦点を一定にした加工を行うと、入口側の孔径Φdaより出口側の孔径Φdbが大きい逆テーパの噴射孔となる。 As described in Patent Document 2, the laser beam is focused on the start position of the focus of the laser, that is, on the inlet opening side of the injection hole, and with respect to the central axis of the pilot hole before finishing the injection hole. In the method of irradiating laser while making the nozzle body parallel while rotating the nozzle body, the injection hole is a tapered hole in which the hole diameter on the outlet side is smaller than that on the inlet side. However, due to the recent development of laser technology, the efficiency of laser focusing is improved, and when processing is performed with a constant power capacity and focus, a reverse taper injection hole with a hole diameter Φdb on the outlet side is larger than a hole diameter Φda on the inlet side. ..

本実施例では、レーザ500の焦点500dを第一レーザ照射面301oa上で移動させる加工方法により、入口開口面301oi側から出口開口面301oo側に向かって第一レーザ照射面301oaが縮径する噴射孔301oを確実に形成することができる。 In this embodiment, by the processing method in which the focus 500d of the laser 500 is moved on the first laser irradiation surface 301oa, the diameter of the first laser irradiation surface 301oa is reduced from the entrance opening surface 301oi side toward the exit opening surface 301oo side. The hole 301o can be reliably formed.

第一レーザ照射面301oaの表面粗さRzは、1.6未満となるようにすることが好ましく、1.0以上1.6未満の範囲にすると良い。第二レーザ照射面301obの表面粗さRzは、1.6以上8.0以下となるようにすることが好ましく、より好ましくは3.0以上8.0以下の範囲にすると良い。 The surface roughness Rz of the first laser irradiation surface 301oa is preferably less than 1.6, and is preferably in the range of 1.0 or more and less than 1.6. The surface roughness Rz of the second laser irradiation surface 301ob is preferably 1.6 or more and 8.0 or less, and more preferably 3.0 or more and 8.0 or less.

噴射孔301oが形成される前の噴射孔形成部材301(ワーク)に本実施例の加工方法により噴射孔301oを形成し、適宜仕上げ加工を施して噴射孔301oが形成された噴射孔形成部材301を完成する。完成した噴射孔形成部材301は燃料噴射弁100のノズル体300bの先端部に組み付けられる。 The injection hole forming member 301 (work) before the injection hole 301o is formed is formed with the injection hole 301o by the processing method of the present embodiment, and is appropriately finished to form the injection hole 301o. To complete. The completed injection hole forming member 301 is attached to the tip of the nozzle body 300b of the fuel injection valve 100.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成・材料を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications.
For example, the above-described embodiments have been described in detail for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations and materials. Further, it is possible to add/delete/replace other configurations with respect to a part of the configurations of the embodiment.

301…噴射孔形成部材、301g…弁座構成面、301j…噴射孔形成部材301の端面、301k…噴射孔形成部材301の曲面部、301m…噴射孔形成部材301の底部、301o…噴射孔、301oa…噴射孔301oの第一レーザ照射面(第一内壁面部)、301ob…噴射孔301oの第二レーザ照射面(第二内壁面部)、301oi…噴射孔301oの入口開口面、301oo…噴射孔301oの出口開口面、301r…噴射孔形成部材301の先端面、500…レーザ、500a…第二レーザ照射面301obを加工するレーザ、500b…第二レーザ照射面301obの加工で第一レーザ照射面301oaに到達しなくなるレーザ、500c…レーザの中心軸、500h…第一レーザ照射面301oaを加工する高エネルギ密度レーザの加工点、500l…第二レーザ照射面301obを加工する低エネルギ密度レーザの加工点、501…集光レンズ。 Reference numeral 301... Injection hole forming member, 301g... Valve seat constituting surface, 301j... End surface of injection hole forming member 301, 301k... Curved surface portion of injection hole forming member 301, 301m... Bottom portion of injection hole forming member 301, 301o... Injection hole, 301oa... First laser irradiation surface (first inner wall surface portion) of injection hole 301o, 301ob... Second laser irradiation surface (second inner wall surface portion) of injection hole 301o, 301oi... Entrance opening surface of injection hole 301o, 301oo... Injection hole Outlet opening surface of 301o, 301r... Tip surface of injection hole forming member 301, 500... Laser, 500a... Laser for processing second laser irradiation surface 301ob, 500b... First laser irradiation surface by processing of second laser irradiation surface 301ob Laser which does not reach 301oa, 500c... Central axis of laser, 500h... Processing point of high energy density laser for processing first laser irradiation surface 301oa, 500l... Processing of low energy density laser for processing second laser irradiation surface 301ob Points, 501... Condensing lens.

Claims (11)

噴射孔を有する噴射孔形成部材を先端側に備えた燃料噴射弁の製造方法であって、
先端側の離れた位置から前記噴射孔形成部材に向かってレーザを照射して前記噴射孔の入口開口側から出口開口側に向かって断面積が小さくなるように前記噴射孔の第一内壁面部を形成する第一内壁面部形成工程と、
先端側の離れた位置から前記噴射孔形成部材に向かってレーザを照射して前記第一内壁面部に対して前記出口開口側に位置し前記第一内壁面部の表面粗さに対して大きな表面粗さを有する、前記噴射孔の第二内壁面部を形成する第二内壁面部形成工程と、を有する燃料噴射弁の製造方法。
A method for manufacturing a fuel injection valve having an injection hole forming member having an injection hole on a tip side,
The first inner wall surface portion of the injection hole is radiated from a distant position on the tip side toward the injection hole forming member so that the cross-sectional area decreases from the inlet opening side of the injection hole toward the outlet opening side. A step of forming a first inner wall surface portion,
A laser beam is radiated toward the injection hole forming member from a distant position on the tip end side, and the surface roughness is larger than the surface roughness of the first inner wall surface portion and is located on the outlet opening side with respect to the first inner wall surface portion. And a second inner wall surface portion forming step of forming a second inner wall surface portion of the injection hole having a height.
請求項1に記載の燃料噴射弁の製造方法において、
前記第二内壁面部形成工程は、前記第二内壁面部を前記入口開口側から前記出口開口側に向かって断面積が大きくなるように形成する燃料噴射弁の製造方法。
The method for manufacturing a fuel injection valve according to claim 1, wherein
The second inner wall surface portion forming step is a method of manufacturing a fuel injection valve, wherein the second inner wall surface portion is formed such that a cross-sectional area increases from the inlet opening side toward the outlet opening side.
請求項2に記載の燃料噴射弁の製造方法において、
前記第一内壁面部は昇華により前記噴射孔形成部材の材料が除去されて形成され、前記第二内壁面部は溶融及び蒸発により前記噴射孔形成部材の材料が除去されて形成される燃料噴射弁の製造方法。
The method for manufacturing a fuel injection valve according to claim 2,
In the fuel injection valve, the first inner wall surface portion is formed by removing the material of the injection hole forming member by sublimation, and the second inner wall surface portion is formed by removing the material of the injection hole forming member by melting and evaporation. Production method.
請求項3に記載の燃料噴射弁の製造方法において、
前記第一内壁面部形成工程は、レーザの焦点を前記第一内壁面部の面上に合わせ、前記焦点を前記第一内壁面部に沿って前記出口開口側から前記入口開口側に移動させて前記第一内壁面部を形成する燃料噴射弁の製造方法。
The method for manufacturing a fuel injection valve according to claim 3,
In the step of forming the first inner wall surface portion, the laser is focused on the surface of the first inner wall surface portion, the focus is moved from the outlet opening side to the inlet opening side along the first inner wall surface portion, and (1) A method of manufacturing a fuel injection valve forming an inner wall surface portion.
請求項4に記載の燃料噴射弁の製造方法において、
前記第二内壁面部形成工程は、前記第一内壁面部形成工程で前記第一内壁面部を形成するレーザの一部が前記噴射孔形成部材と干渉するようにして、前記第二内壁面部を形成する燃料噴射弁の製造方法。
The method for manufacturing a fuel injection valve according to claim 4,
In the second inner wall surface portion forming step, the second inner wall surface portion is formed such that a part of the laser forming the first inner wall surface portion in the first inner wall surface portion forming step interferes with the injection hole forming member. Manufacturing method of fuel injection valve.
請求項5に記載の燃料噴射弁の製造方法において、
前記第一内壁面部形成工程で、レーザの中心軸を前記噴射孔の中心軸と交差するように設定する燃料噴射弁の製造方法。
The method for manufacturing a fuel injection valve according to claim 5,
A method of manufacturing a fuel injection valve, wherein a central axis of a laser is set to intersect a central axis of the injection hole in the step of forming the first inner wall surface portion.
請求項6に記載の燃料噴射弁の製造方法において、
前記第一内壁面部形成工程で、前記焦点を第一レーザ内壁面部に沿って前記出口開口側から前記入口開口側に移動させながら、前記噴射孔の径方向外方に向かって移動させる燃料噴射弁の製造方法。
The method for manufacturing a fuel injection valve according to claim 6,
In the step of forming the first inner wall surface portion, the fuel injection valve is moved outward in the radial direction of the injection hole while moving the focus along the first laser inner wall surface portion from the outlet opening side to the inlet opening side. Manufacturing method.
請求項7に記載の燃料噴射弁の製造方法において、
前記第一内壁面部形成工程で、前記焦点を第一レーザ内壁面部に沿って前記出口開口側から前記入口開口側に移動させながら、前記噴射孔の中心軸に対するレーザの中心軸の傾き角度を小さくする燃料噴射弁の製造方法。
The method for manufacturing a fuel injection valve according to claim 7,
In the step of forming the first inner wall surface portion, the tilt angle of the central axis of the laser with respect to the central axis of the injection hole is reduced while moving the focal point from the outlet opening side along the first laser inner wall surface portion to the inlet opening side. For manufacturing a fuel injection valve.
請求項8に記載の燃料噴射弁の製造方法において、
前記第二内壁面部形成工程で、前記噴射孔の中心軸に対するレーザの中心軸の傾き角度を大きくして、前記第二内壁面部を形成する燃料噴射弁の製造方法。
The method for manufacturing a fuel injection valve according to claim 8,
A method of manufacturing a fuel injection valve, wherein in the step of forming the second inner wall surface portion, the inclination angle of the central axis of the laser with respect to the central axis of the injection hole is increased to form the second inner wall surface portion.
複数の噴射孔を有する噴射孔形成部材を先端側に備えた燃料噴射弁において、
前記噴射孔は、入口開口側から出口開口側に向かって断面積が小さくなるように形成された第一内壁面部と、前記第一内壁面部に対して前記出口開口側に形成され前記第一内壁面部の表面粗さに対して大きな表面粗さを有する第二内壁面部と、を有し、
前記第二内壁面部は、前記入口開口側から前記出口開口側に向かって断面積が大きくなるように形成された燃料噴射弁。
In a fuel injection valve having an injection hole forming member having a plurality of injection holes on the tip side,
The injection hole has a first inner wall surface portion formed to have a smaller cross-sectional area from the inlet opening side toward the outlet opening side, and the first inner wall formed on the outlet opening side with respect to the first inner wall surface portion. a second inner wall portion having a large surface roughness relative to the surface roughness of the surface, was closed,
The second inner wall surface portion is a fuel injection valve formed so that a cross-sectional area increases from the inlet opening side toward the outlet opening side .
請求項10に記載の燃料噴射弁において、
前記第一内壁面部は前記噴射孔形成部材の材料が昇華した状態の表面により構成され、前記第二内壁面部は前記噴射孔形成部材の材料が溶融及び蒸発した状態の表面により構成される燃料噴射弁。
The fuel injection valve according to claim 10 ,
A fuel injection in which the first inner wall surface portion is formed by a surface of the injection hole forming member in a sublimated state, and the second inner wall surface portion is formed by a surface of the injection hole forming member in a melted and evaporated state. valve.
JP2019528983A 2017-07-11 2018-06-04 Fuel injection valve and manufacturing method thereof Active JP6749494B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017135164 2017-07-11
JP2017135164 2017-07-11
PCT/JP2018/021313 WO2019012855A1 (en) 2017-07-11 2018-06-04 Fuel injection valve and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2019012855A1 JPWO2019012855A1 (en) 2020-03-19
JP6749494B2 true JP6749494B2 (en) 2020-09-02

Family

ID=65001896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019528983A Active JP6749494B2 (en) 2017-07-11 2018-06-04 Fuel injection valve and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6749494B2 (en)
DE (1) DE112018002615T5 (en)
WO (1) WO2019012855A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236066A (en) * 1997-03-24 1997-09-09 Hitachi Ltd Fuel injection valve
US6642476B2 (en) * 2001-07-23 2003-11-04 Siemens Automative Corporation Apparatus and method of forming orifices and chamfers for uniform orifice coefficient and surface properties by laser
JP2007321592A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp Fuel injection valve
JP2010048237A (en) * 2008-08-25 2010-03-04 Denso Corp Fuel ejection nozzle and its manufacturing method
US20150251277A1 (en) * 2014-03-05 2015-09-10 Caterpillar Inc. Method of laser drilling a component
JP6292188B2 (en) * 2015-04-09 2018-03-14 株式会社デンソー Fuel injection device

Also Published As

Publication number Publication date
DE112018002615T5 (en) 2020-05-14
JPWO2019012855A1 (en) 2020-03-19
WO2019012855A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP6039492B2 (en) Fuel injection valve and manufacturing method thereof
JP3953530B2 (en) A valve with a combined valve seat and injection hole disc
JP3578353B2 (en) Plate with injection hole used for valve and method of manufacturing plate with injection hole
CN102162417B (en) Fuel injection valve
US5979801A (en) Fuel injection valve with swirler for imparting swirling motion to fuel
JP6020380B2 (en) Fuel injection valve
JP2006118493A (en) Fuel injection device
JP2003206826A (en) Fuel injection valve
US20110147493A1 (en) Method for forming periodic structure and fuel injection system having the periodic structure
JP6749494B2 (en) Fuel injection valve and manufacturing method thereof
JP6294434B2 (en) Manufacturing method of fuel injection valve
JP2662041B2 (en) Drilling method using laser beam and method for manufacturing nozzle of fuel injection valve using the same
WO2016143166A1 (en) Fuel injection valve
JP2004518908A (en) Fuel injection valve
JP2008064095A (en) Fuel injection valve
JP2017025926A (en) Fuel injection valve
JP2008516137A (en) Fuel injection valve
WO2018155092A1 (en) Fuel injection device
JP6779143B2 (en) Fuel injection valve
WO2019202829A1 (en) Component for flow rate control device, and fuel injection valve
US20070007366A1 (en) Method for producing and fixing a perforated disk
JP2004511702A (en) Fuel injection valve
JP2010048243A (en) Nozzle body, fuel injection valve incorporated with nozzle body and nozzle body forming method
JPH08177683A (en) Valve assembly and assembling method thereof
JP7272645B2 (en) fuel injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200811

R150 Certificate of patent or registration of utility model

Ref document number: 6749494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350