JP6746942B2 - Anisotropically conductive film and connection structure - Google Patents

Anisotropically conductive film and connection structure Download PDF

Info

Publication number
JP6746942B2
JP6746942B2 JP2016030518A JP2016030518A JP6746942B2 JP 6746942 B2 JP6746942 B2 JP 6746942B2 JP 2016030518 A JP2016030518 A JP 2016030518A JP 2016030518 A JP2016030518 A JP 2016030518A JP 6746942 B2 JP6746942 B2 JP 6746942B2
Authority
JP
Japan
Prior art keywords
conductive particles
film
conductive
anisotropic conductive
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016030518A
Other languages
Japanese (ja)
Other versions
JP2017147211A (en
Inventor
雅男 斉藤
雅男 斉藤
恭志 阿久津
恭志 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016030518A priority Critical patent/JP6746942B2/en
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to US15/546,150 priority patent/US20180022968A1/en
Priority to CN201680014149.2A priority patent/CN107431294A/en
Priority to PCT/JP2016/058753 priority patent/WO2016152791A1/en
Priority to CN202210176664.8A priority patent/CN114582545A/en
Priority to KR1020177014948A priority patent/KR102018042B1/en
Publication of JP2017147211A publication Critical patent/JP2017147211A/en
Priority to HK18104541.6A priority patent/HK1245509A1/en
Application granted granted Critical
Publication of JP6746942B2 publication Critical patent/JP6746942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、異方導電性フィルム、及び異方導電性フィルムを用いて接続された接続構造体に関する。 The present invention relates to an anisotropic conductive film and a connecting structure connected using the anisotropic conductive film.

異方導電性フィルムは、ICチップなどの電子部品の実装に広く使用されている。近年では、高密度実装の観点から、異方導電性フィルムを用いた接続構造体の導電粒子捕捉効率や接続信頼性を向上させ、ショート発生率を低下させるために、異方導電フィルムの絶縁性接着剤層に、複数の導電粒子を接触又は近接して配列させた粒子部位(即ち、導電粒子ユニット)を格子状に配置し、その導電粒子ユニット同士の間隔を電極パターンに応じて変えることが提案されている(特許文献1)。 The anisotropic conductive film is widely used for mounting electronic components such as IC chips. In recent years, from the viewpoint of high-density mounting, in order to improve the conductive particle capturing efficiency and connection reliability of the connection structure using the anisotropic conductive film, and to reduce the short-circuit occurrence rate, the insulating property of the anisotropic conductive film is reduced. Particle portions (ie, conductive particle units) in which a plurality of conductive particles are arranged in contact with or close to each other are arranged in a grid on the adhesive layer, and the distance between the conductive particle units can be changed according to the electrode pattern. It has been proposed (Patent Document 1).

特表2002−519473号公報Special table 2002-519473 gazette

しかしながら、特許文献1に記載の異方導電性フィルムでは、移動度の高い球状の導電粒子を型に複数個充填することにより導電粒子ユニットを形成するため、導電粒子の型への充填率や型内における導電粒子の位置が不安定になる。 However, in the anisotropic conductive film described in Patent Document 1, since the conductive particle unit is formed by filling a plurality of spherical conductive particles having high mobility into the mold, the filling rate of the conductive particles in the mold and the mold. The position of the conductive particles inside becomes unstable.

また、球状の導電粒子は、異方導電性接続において対向する端子間に挟まれるとき、まず、導電粒子と端子面とが点接触するため、導電粒子の中心が対向する対向面内に存在しないと導電粒子が端子間から外れるため、端子における導電粒子の捕捉効率が上がりにくいという問題もある。
そのため、特許文献1に記載の異方導電性フィルムは導通信頼性に問題があった。
Further, when the spherical conductive particles are sandwiched between the terminals facing each other in the anisotropic conductive connection, first, since the conductive particles and the terminal surface are in point contact with each other, the centers of the conductive particles do not exist in the facing surfaces facing each other. Since the conductive particles are separated from between the terminals, there is also a problem that the efficiency of capturing the conductive particles at the terminals is difficult to increase.
Therefore, the anisotropic conductive film described in Patent Document 1 has a problem in conduction reliability.

これに対し、本発明は、接続端子がファインピッチであっても導電粒子を十分に捕捉でき、かつショートを抑制することのできる異方導電性フィルムの提供を課題とする。 On the other hand, an object of the present invention is to provide an anisotropic conductive film capable of sufficiently capturing conductive particles and suppressing a short circuit even when the connection terminals have a fine pitch.

本発明者は、異方導電性フィルムに使用する導電粒子に関し、球状の導電粒子を型に複数個充填して導電粒子ユニットを形成することに代えて、特定値以上のアスペクト比を有する粒子を使用すると、接続する端子での導電粒子の捕捉面積を大きくすることができるので導通信頼性が向上すること、また型を使用して導電粒子を配列させるにあたり、球状の導電粒子に比して粒子の移動度が低くなるので、所期の配列に導電粒子を高精度に配置でき、配置不良の発生率が低減し、異方導電性フィルムの生産効率が向上することを見出し、本発明を想到した。 The present inventor relates to conductive particles used for an anisotropic conductive film, in place of forming a conductive particle unit by filling a plurality of spherical conductive particles in a mold, particles having an aspect ratio of a specific value or more are used. When used, it is possible to increase the capture area of the conductive particles in the terminal to be connected, thereby improving the conduction reliability, and in arranging the conductive particles using the mold, the particles are larger than the spherical conductive particles. Therefore, it is possible to arrange the conductive particles in a desired arrangement with high accuracy, the occurrence rate of arrangement defects is reduced, and the production efficiency of the anisotropic conductive film is improved, and the present invention is conceived. did.

即ち、本発明は、絶縁接着剤層に導電粒子を含有する異方導電性フィルムであって、導電粒子のアスペクト比が1.2以上であり、平面視で導電粒子同士が非接触で分散しており、異方導電性フィルムのフィルム面と導電粒子の長手方向とのなす角度が40°未満である異方導電性フィルムを提供する。 That is, the present invention is an anisotropic conductive film containing conductive particles in an insulating adhesive layer, wherein the conductive particles have an aspect ratio of 1.2 or more, and the conductive particles are dispersed without contact in a plan view. The anisotropic conductive film has an angle between the film surface of the anisotropic conductive film and the longitudinal direction of the conductive particles of less than 40°.

また、本発明は、上述の異方導電性フィルムを用いて第1電子部品の接続端子と第2電子部品の接続端子とを異方導電性接続した接続構造体を提供する。 The present invention also provides a connection structure in which the connection terminals of the first electronic component and the connection terminals of the second electronic component are anisotropically conductively connected using the above anisotropic conductive film.

本発明の異方導電性フィルムによれば、導電粒子が特定値以上のアスペクト比を有するので、異方導電性接続時に端子と導電粒子の接触面積を大きくすることができ、端子における導電粒子の捕捉性を向上させることができる。 According to the anisotropic conductive film of the present invention, since the conductive particles have an aspect ratio of a specific value or more, it is possible to increase the contact area between the terminal and the conductive particles during anisotropic conductive connection, the conductive particles of the terminal Capturability can be improved.

また、異方導電性フィルムの製造工程において、型に導電粒子を充填して導電粒子を配列させる場合に、導電粒子として特定値以上のアスペクト比を有する粒子を使用すると球状粒子に比して粒子が過度に移動することを抑えられるので、導電粒子が型から欠落しにくくなり、導電粒子を所期の配列に精確に配置することができる。 Further, in the manufacturing process of the anisotropic conductive film, when the conductive particles are arranged by filling the mold with the conductive particles, particles having an aspect ratio of a specific value or more are used as the conductive particles as compared with spherical particles. Since it is possible to prevent the conductive particles from being excessively moved, it becomes difficult for the conductive particles to drop from the mold, and the conductive particles can be accurately arranged in the desired arrangement.

さらに、平面視で導電粒子同士が非接触で分散しているため、導電粒子が特定値以上のアスペクト比を有するにもかかわらず、異方導電性接続した端子におけるショートの発生を低減させることができる。 Furthermore, since the conductive particles are dispersed in a non-contact manner in a plan view, it is possible to reduce the occurrence of a short circuit in the anisotropically connected terminal, even though the conductive particles have an aspect ratio of a specific value or more. it can.

図1Aは、実施例の異方導電性フィルム1Aの導電粒子の平面図である。FIG. 1A is a plan view of conductive particles of the anisotropic conductive film 1A of the example. 図1Bは、実施例の異方導電性フィルム1Aの導電粒子の断面図である。FIG. 1B is a cross-sectional view of the conductive particles of the anisotropic conductive film 1A of the example. 図1Cは、実施例の異方導電性フィルム1Aの導電粒子の断面図である。FIG. 1C is a cross-sectional view of the conductive particles of the anisotropic conductive film 1A of the example. 図2Aは、実施例の異方導電性フィルム1Bの導電粒子の平面図である。FIG. 2A is a plan view of conductive particles of the anisotropic conductive film 1B of the example. 図2Bは、実施例の異方導電性フィルム1Bの導電粒子の断面図である。FIG. 2B is a cross-sectional view of the conductive particles of the anisotropic conductive film 1B of the example. 図3Aは、実施例の異方導電性フィルム1Cの導電粒子の平面図である。FIG. 3A is a plan view of the conductive particles of the anisotropic conductive film 1C of the example. 図3Bは、実施例の異方導電性フィルム1Cの導電粒子の断面図である。FIG. 3B is a cross-sectional view of the conductive particles of the anisotropic conductive film 1C of the example.

以下、図面を参照しつつ本発明を詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。 Hereinafter, the present invention will be described in detail with reference to the drawings. In each figure, the same reference numerals represent the same or equivalent constituent elements.

図1Aは本発明の一実施例の異方導電性フィルム1Aにおける導電粒子2の配置を示す平面図であり、図1B、図1Cはその断面図である。また、図2Aは導電粒子の配置が異なる実施例の異方導電性フィルム1Bの平面図であり、図2Bはその断面図である。これらの異方性導電フィルム1A、1Bではアスペクト比が1.2以上の円柱状の導電粒子2が使用されており、平面視で導電粒子2同士が非接触で絶縁接着剤層3に分散している。 FIG. 1A is a plan view showing an arrangement of conductive particles 2 in an anisotropic conductive film 1A according to an embodiment of the present invention, and FIGS. 1B and 1C are sectional views thereof. Further, FIG. 2A is a plan view of an anisotropic conductive film 1B of an example in which conductive particles are arranged differently, and FIG. 2B is a sectional view thereof. In these anisotropic conductive films 1A and 1B, columnar conductive particles 2 having an aspect ratio of 1.2 or more are used, and the conductive particles 2 are dispersed in the insulating adhesive layer 3 in a non-contact manner in a plan view. ing.

<導電粒子の形状>
・アスペクト比
本発明の異方導電性フィルムでは、導電粒子2のアスペクト比(平均長軸長/平均短軸長)が1.2以上、好ましくは1.3以上、より好ましくは3以上であり、また、15以下、好ましくは10以下、より好ましくは5以下である。アスペクト比が小さすぎると異方導電性接続時に端子における導電粒子の捕捉性を向上させることができず、反対に大きすぎると端子間スペースの幅によってはショートが発生し易くなる。また導電粒子2の材質によっては取り扱いが困難になるため、異方性導電フィルムの製造コスト上昇の要因になる。
<Shape of conductive particles>
Aspect ratio In the anisotropic conductive film of the present invention, the aspect ratio (average major axis length/average minor axis length) of the conductive particles 2 is 1.2 or more, preferably 1.3 or more, more preferably 3 or more. Further, it is 15 or less, preferably 10 or less, more preferably 5 or less. If the aspect ratio is too small, the ability to capture conductive particles at the terminals cannot be improved during anisotropic conductive connection, while if it is too large, short circuits are likely to occur depending on the width of the space between the terminals. Further, depending on the material of the conductive particles 2, it becomes difficult to handle, which causes a rise in the manufacturing cost of the anisotropic conductive film.

ここで、アスペクト比とは導電粒子2の平均長軸長と平均短軸長の比をいう。導電粒子2が円柱、角柱等の柱状の場合、長軸長L1は導電粒子2の高さ方向(即ち、長手方向)の長さであり、画像観察型の粒度分布測定装置を用いて最大長として測定することができる。平均長軸長は、例えば任意の50個の導電粒子の最大長を平均することにより算出する。短軸長L2は導電粒子2の横断面の径のうち最も幅広い長さであり、金属顕微鏡や電子顕微鏡(SEM)を用いて測定することができる。平均短軸長は、例えば任意の50個の短軸長を平均することにより算出する。これも金属顕微鏡や電子顕微鏡(SEM)を用いて測定することができる。フィルム内に導電粒子が含まれている場合は、平面視観察および断面観察を行えば求められる。また、導電粒子のみを測定する場合は導電粒子を平坦な面に凝集しないように戴置し、平面視観察から平均長軸長を求めることができる。平均短軸長は焦点合わせなどから求めることができる。 Here, the aspect ratio means the ratio of the average major axis length and the average minor axis length of the conductive particles 2. When the conductive particles 2 have a columnar shape such as a cylinder or a prism, the major axis length L1 is the length of the conductive particles 2 in the height direction (that is, the longitudinal direction), and the maximum length can be obtained using an image observation type particle size distribution measuring device. Can be measured as The average major axis length is calculated, for example, by averaging the maximum lengths of arbitrary 50 conductive particles. The short axis length L2 is the widest length of the diameter of the cross section of the conductive particle 2, and can be measured using a metallographic microscope or an electron microscope (SEM). The average minor axis length is calculated, for example, by averaging 50 arbitrary minor axis lengths. This can also be measured using a metallographic microscope or an electron microscope (SEM). When the film contains conductive particles, it can be obtained by observing in plan view and observing a cross section. When measuring only the conductive particles, the conductive particles may be placed on a flat surface so as not to agglomerate, and the average major axis length can be determined from a plan view observation. The average minor axis length can be obtained by focusing.

なお、柱状の導電粒子は、その縦断面形状が矩形に限定されず、側面が短手方向に膨らんだ形状や、上下の端面が長手方向に膨らんだ形状も含まれる。これらの場合にも上述の方法でアスペクト比を求めることができ、フィルム中の平均長軸長、平均短軸長、アスペクト比も同様に求めることができる。また、測定はレーザースキャン型の三次元形状測定装置KS−1100((株)キーエンス製)によって行うことも可能である。 The columnar conductive particles are not limited to having a rectangular vertical cross-sectional shape, and include a shape in which the side surfaces are swollen in the lateral direction and a shape in which the upper and lower end surfaces are swollen in the longitudinal direction. Also in these cases, the aspect ratio can be obtained by the above-described method, and the average major axis length, the average minor axis length, and the aspect ratio in the film can be similarly obtained. The measurement can also be performed by a laser scanning type three-dimensional shape measuring device KS-1100 (manufactured by Keyence Corporation).

本発明の異方導電性フィルムでは導電粒子2のアスペクト比を上述の範囲とすることにより、端子と導電粒子2との接触面積を大きくし、端子における導電粒子2の捕捉性を向上させる。これに対し、アスペクト比が高すぎると、異方導電性接続時に導電粒子2の連結が起こりやすくなり、ショートの発生率が高くなる。一方、アスペクト比が低すぎると端子における導電粒子の捕捉率が低下し、導通抵抗が高くなりやすい。 In the anisotropic conductive film of the present invention, by setting the aspect ratio of the conductive particles 2 in the above range, the contact area between the terminals and the conductive particles 2 is increased, and the trapping property of the conductive particles 2 at the terminals is improved. On the other hand, if the aspect ratio is too high, the conductive particles 2 are likely to be connected during anisotropic conductive connection, and the occurrence rate of short circuits increases. On the other hand, if the aspect ratio is too low, the capture rate of the conductive particles in the terminal is lowered and the conduction resistance is apt to be increased.

また、導電粒子2のアスペクト比を上述の範囲とすることにより、異方導電性フィルムの製造工程において型に導電粒子2を充填する場合に導電粒子2が過度に移動することを抑えられるので導電粒子2が型から欠落しにくくなり、導電粒子2を所期の配列に精確に配置することができる。またアスペクト比は、全ての導電粒子2で略同一であることが好ましい。具体的には、導電粒子の長軸長と短軸長の比の分布に関し、全導電粒子の平均長軸長と平均短軸長の比であるアスペクト比の±20%の範囲に全導電粒子の90%以上が存在することが好ましく、±20%に全導電粒子の95%以上が存在することがより好ましく、±10%に全導電粒子の95%以上が存在することがさらにより好ましい。このように個々の導電粒子の長軸長と短軸長の比が揃うことで、特にファインピッチのバンプに対して捕捉向上とショート抑制が期待できる。 In addition, by setting the aspect ratio of the conductive particles 2 in the above range, it is possible to prevent the conductive particles 2 from excessively moving when the mold is filled with the conductive particles 2 in the manufacturing process of the anisotropic conductive film. The particles 2 are less likely to drop from the mold, and the conductive particles 2 can be accurately arranged in the intended arrangement. Further, it is preferable that all the conductive particles 2 have substantially the same aspect ratio. Specifically, regarding the distribution of the ratio of the major axis length to the minor axis length of the conductive particles, all the conductive particles are within a range of ±20% of the aspect ratio, which is the ratio of the average major axis length to the average minor axis length of all the conductive particles. Of 90% or more is preferably present, more preferably ±20% is 95% or more of all conductive particles, and even more preferably 95% or more of all conductive particles is ±10%. In this way, the ratio of the major axis length to the minor axis length of the individual conductive particles is made uniform, so that it is expected to improve the trapping and suppress the short circuit, particularly for the fine pitch bumps.

導電粒子2の平均長軸長は、好ましくは4μm以上60μm以下、より好ましくは6μm以上20μm以下である。この長さであれば取扱性がよく、また異方導電性接続時の熱押圧ツールによる押圧力を良好に分散させることができるので、熱押圧ツールの圧着面が、接続する基板面に対して傾いてしまう片当たりが生じて相対的に押圧力が強い領域と弱い領域ができても、導通抵抗の上昇を抑制することができる。平均短軸長は、好ましくは1μm以上が好ましく、端子間に捕捉される場合に片あたりを防止するため2.5μm以上がより好ましく、端子が平面ではなく凹凸が存在する場合に端子にしっかりと挟み込まれるためには3μm以上が更により好ましい。 The average major axis length of the conductive particles 2 is preferably 4 μm or more and 60 μm or less, more preferably 6 μm or more and 20 μm or less. With this length, the handleability is good and the pressing force of the heat pressing tool at the time of anisotropic conductive connection can be dispersed well, so the crimping surface of the heat pressing tool is Even if there is a region where the pressing force is relatively strong and a region where the pressing force is relatively weak due to tilting, it is possible to suppress an increase in conduction resistance. The average minor axis length is preferably 1 μm or more, more preferably 2.5 μm or more to prevent uneven contact when trapped between terminals, and firmly when the terminals are not flat but have irregularities It is even more preferable that the thickness is 3 μm or more in order to be sandwiched.

・断面形状
導電粒子2の形状は、上述のアスペクト比を有し、且つその横断面形状が円、楕円等の外形が曲線で形成される形状であることが望ましい。これにより、異方導電性接続時の熱押圧ツールによる押圧力を良好に分散させることができるので、片当たりが生じた場合でも導通抵抗の上昇を抑制することができる。
-Cross-sectional shape It is desirable that the shape of the conductive particles 2 has the above-described aspect ratio, and that the cross-sectional shape thereof is a shape in which the outer shape such as a circle or an ellipse is formed by a curved line. As a result, the pressing force of the heat pressing tool at the time of anisotropic conductive connection can be dispersed well, so that it is possible to suppress the increase in conduction resistance even if one-sided contact occurs.

また、縦断面形状において短手方向の外形と長手方向の外形はそれぞれ直線であっても曲線であってもよい。縦断面形状において短手方向及び長手方向の外形がそれぞれ直線のとき(即ち、縦断面形状が矩形のとき)導電粒子2は円柱、角柱等の柱状となり、縦断面形状において短手方向に略平行な面が半円状の場合や長手方向に略平行な面が円弧状の場合には所謂カプセル型の柱状になる。熱押圧ツールによる押圧力を分散させる点からは横断面が円、楕円等の曲線で形成された形状となる円柱、楕円柱等が好ましい。また、球体が複数塊状になったものであってもよい。この場合、長手方向を側面から見た場合に***した形状になる。これにより、端子における導電粒子の圧痕で接続状態を正確に評価することも可能となる。一方、端子における粒子の捕捉性を向上させる点からは、六角柱、五角柱、四角柱、三角柱等の多角柱、五芒星柱、六芒星柱等であってもよい。 Further, in the longitudinal sectional shape, the outer shape in the lateral direction and the outer shape in the longitudinal direction may each be a straight line or a curved line. In the vertical cross-sectional shape, when the lateral and longitudinal external shapes are straight lines (that is, when the vertical cross-sectional shape is rectangular), the conductive particles 2 are columnar such as cylinders and prisms, and are substantially parallel to the lateral direction in the vertical cross-sectional shape. When the surface is semicircular or when the surface substantially parallel to the longitudinal direction is arcuate, it becomes a so-called capsule-shaped column. From the viewpoint of dispersing the pressing force of the heat pressing tool, a cylinder, an elliptic cylinder, or the like whose cross section is a shape formed by a curve such as a circle or an ellipse is preferable. Also, a plurality of spherical bodies may be formed. In this case, the shape is raised when the longitudinal direction is viewed from the side. As a result, it is possible to accurately evaluate the connection state by the indentation of the conductive particles on the terminal. On the other hand, from the viewpoint of improving the ability of capturing particles at the terminal, a polygonal prism such as a hexagonal prism, a pentagonal prism, a quadrangular prism, and a triangular prism, a pentagram column, a hexagonal column, and the like may be used.

・表面形状
導電粒子の表面には突起が形成されていてもよい。例えば、特開2015-8129号公報等に記載の導電粒子を使用することができる。このような突起が形成されることで、異方性接続時に端子に設けられている保護膜を突き破ることができる。突起の形成は導電粒子の表面に均等に存在することが好ましいが、異方導電性フィルムの製造工程のうち導電粒子を配列させるために導電粒子を型に充填する工程において、突起の一部に欠損が生じてもよい。突起の高さは、一例として10〜500nm、又は粒子短軸長の10%以下とすることができる。
-Surface shape Protrusions may be formed on the surface of the conductive particles. For example, the conductive particles described in JP-A-2015-8129 can be used. By forming such protrusions, the protective film provided on the terminal can be pierced during anisotropic connection. The formation of the protrusions is preferably present evenly on the surface of the conductive particles, but in the process of filling the conductive particles in the mold in order to arrange the conductive particles in the process of manufacturing the anisotropic conductive film, a part of the protrusions is formed. Defects may occur. The height of the protrusions may be, for example, 10 to 500 nm, or 10% or less of the particle short axis length.

<導電粒子の材質>
導電粒子2の材質としては、例えば、柱状のガラスの表面に無電解メッキ、CVD等の手法により導電層を形成したものを使用することができる。導電層としては、金、銀、ニッケル、銅、ITO等の薄膜を例示することができる。導電層の厚みは、通常5nm以上であり、好ましくは10〜800nm、より好ましくは100〜500nmである。このような導電性柱状ガラス粒子を使用する場合、異方導電性接続時に導電粒子に過度の押圧力が負荷されても導電性柱状ガラス粒子自体の破砕により応力を緩和することができ、しかも異方性導電接続後にバンプの圧痕を確認する際の検査が容易になる。また、熱による膨張収縮の影響を受けにくく、金属イオンによる腐食や金属イオンのマイグレーションも生じない。更に、紫外線硬化型の絶縁性接着剤を使用した際に、紫外線をある程度透過するため、硬化不足が起こりにくい。
<Material of conductive particles>
As the material of the conductive particles 2, for example, a material in which a conductive layer is formed on the surface of columnar glass by a method such as electroless plating or CVD can be used. Examples of the conductive layer include thin films of gold, silver, nickel, copper, ITO and the like. The thickness of the conductive layer is usually 5 nm or more, preferably 10 to 800 nm, and more preferably 100 to 500 nm. When such conductive columnar glass particles are used, even if an excessive pressing force is applied to the conductive particles during anisotropic conductive connection, the stress can be relieved by crushing the conductive columnar glass particles themselves, and The inspection for confirming the indentation of the bump after the anisotropic conductive connection is facilitated. Further, it is hardly affected by expansion and contraction due to heat, and corrosion by metal ions and migration of metal ions do not occur. Furthermore, when an ultraviolet-curable insulating adhesive is used, it transmits ultraviolet light to some extent, so that insufficient curing is unlikely to occur.

また、樹脂コアに導電層を設けたものを使用してもよい。樹脂コアの製造工程では樹脂コアの凝集体が得られる場合があるが、その場合、樹脂コアの凝集体から、上述のアスペクト比を有するものを分級して使用する。即ち、樹脂コアの製造方法によっては、その中間工程で凝集体(2次粒子)が得られる場合がある。その場合には、凝集した樹脂コアの解砕を行う。解砕では、溶媒の乾燥時に凝集した樹脂コアの凝集体を、粒子形状を変形させずに解きほぐすことが好ましい。このような操作は、解砕され易くなるように配合時に予め分散剤や表面改質剤を添加してもよく、粒子形状が変形しにくい解砕処理を行ってもよい。解砕処理を繰り返してもよく、解砕工程間や前後に、分級してもよい。一例として気流式微粉砕装置を用いることで行うことができる。より具体的には、卓上型ラボジェットミルA−O JET MILLやコジェットシステム(どちらも株式会社セイシン企業製)などが挙げられる。サイクロン式の回収機構を組み合わせてもよい。このような樹脂コアとしては、圧縮変形に優れるプラスチック材料から形成したものが好ましく、例えば(メタ)アクリレート系樹脂、ポリスチレン系樹脂、スチレン−(メタ)アクリル共重合樹脂、ウレタン系樹脂、エポキシ系樹脂、フェノール樹脂、アクリロニトリル・スチレン(AS)樹脂、ベンゾグアナミン樹脂、ジビニルベンゼン系樹脂、スチレン系樹脂、ポリエステル樹脂等で形成することができる。樹脂コアが圧縮変形に優れることにより、異方導電性接続で端子に形成された粒子の圧痕から、接続状態を評価しやすくなる。導電層は、上述のように無電解メッキなど公知の手法で形成することができる。導電層の材質や、厚みも上記と略同様である。 Alternatively, a resin core provided with a conductive layer may be used. In the production process of the resin core, an aggregate of the resin core may be obtained. In that case, the aggregate of the resin core having the above-mentioned aspect ratio is classified and used. That is, depending on the method for producing the resin core, an aggregate (secondary particle) may be obtained in the intermediate step. In that case, the aggregated resin core is crushed. In the crushing, it is preferable that the aggregate of the resin core aggregated when the solvent is dried is unraveled without deforming the particle shape. In such an operation, a dispersant or a surface modifier may be added in advance at the time of blending so as to facilitate crushing, or crushing treatment in which the particle shape is not easily deformed may be performed. The crushing treatment may be repeated, and the classification may be performed before or after the crushing step. As an example, it can be performed by using an air flow type fine pulverizer. More specifically, a desktop lab jet mill A-O JET MILL, a co-jet system (both manufactured by Seishin Enterprise Co., Ltd.) and the like can be mentioned. A cyclone type recovery mechanism may be combined. As such a resin core, those formed from a plastic material excellent in compression deformation are preferable, and examples thereof include (meth)acrylate resin, polystyrene resin, styrene-(meth)acrylic copolymer resin, urethane resin, and epoxy resin. , Phenol resin, acrylonitrile/styrene (AS) resin, benzoguanamine resin, divinylbenzene resin, styrene resin, polyester resin, or the like. The excellent compression deformation of the resin core facilitates the evaluation of the connection state from the indentation of particles formed on the terminal by the anisotropic conductive connection. The conductive layer can be formed by a known method such as electroless plating as described above. The material and thickness of the conductive layer are substantially the same as above.

表面に突起を有する導電粒子の場合、突起を有する樹脂コアの凝集体から所定のアスペクト比を有するものを分級し、その表面に導電層を設ければよい。また、所定のアスペクト比を有する樹脂コアを分級した後、その樹脂コアに突起粒子を設けてもよい。 In the case of conductive particles having protrusions on the surface, particles having a predetermined aspect ratio may be classified from the aggregate of resin cores having protrusions, and a conductive layer may be provided on the surface. Further, after the resin core having a predetermined aspect ratio is classified, the resin core may be provided with the projection particles.

<導電粒子の配列>
本発明の異方導電性フィルムでは、平面視で導電粒子2同士が非接触に分散しており、任意の導電粒子2aと該導電粒子2aに最近接した導電粒子2bとの平面視における距離(即ち、平面視における最近接距離)L3が、該導電粒子2aの短軸長L2の0.5倍以上であることが好ましく(図1A、図2A)、あるいは、任意の導電粒子2aと該導電粒子2aに最近接した導電粒子2bが、異方導電性フィルムの長手方向には重畳しないことが好ましい(図2A)。これにより異方導電性接続した端子でショートを起こりにくくすることができる。
<Arrangement of conductive particles>
In the anisotropic conductive film of the present invention, the conductive particles 2 are dispersed in a non-contact manner in a plan view, and the distance between a given conductive particle 2a and the conductive particle 2b closest to the conductive particle 2a in a plan view ( That is, the closest distance L3 in plan view is preferably 0.5 times or more the short axis length L2 of the conductive particles 2a (FIGS. 1A and 2A), or any conductive particles 2a and the conductive particles 2a. It is preferable that the conductive particles 2b closest to the particles 2a do not overlap in the longitudinal direction of the anisotropic conductive film (FIG. 2A). As a result, it is possible to prevent a short circuit from occurring easily at the terminals that are anisotropically connected.

また、本発明の異方導電性フィルムにおいては、個々の導電粒子2の長軸方向Aが略同一方向に揃っていてもよく、規則性を持って異なる方向を有してもよい。例えば、図1Aに示す異方導電性フィルム1Aのように、導電粒子2の長軸方向Aが異方導電性フィルム1Aの長手方向に揃っている場合には、導電粒子のアスペクト比が1.2以上であることにより、異方導電性接続時にフィルムの長手方向にアライメントずれが生じても端子が導電粒子を捕捉し易くなる。 Further, in the anisotropic conductive film of the present invention, the major axis directions A of the individual conductive particles 2 may be aligned in substantially the same direction, or may have different directions with regularity. For example, when the major axis direction A of the conductive particles 2 is aligned with the longitudinal direction of the anisotropic conductive film 1A as in the anisotropic conductive film 1A shown in FIG. 1A, the aspect ratio of the conductive particles is 1. When the number is 2 or more, the terminal easily captures the conductive particles even if the misalignment occurs in the longitudinal direction of the film during anisotropic conductive connection.

反対に導電粒子2の長軸方向Aが異方導電性フィルムの短手方向に揃っている場合には、導電粒子の個数密度を高くしても異方導電性接続時にショートが起こりにくくなるので、導電粒子の個数密度を高くすることでアライメントズレが生じても端子が導電粒子を捕捉し易くなる。 On the contrary, in the case where the major axis direction A of the conductive particles 2 is aligned with the short side direction of the anisotropic conductive film, even if the number density of the conductive particles is increased, a short circuit is less likely to occur during anisotropic conductive connection. By increasing the number density of the conductive particles, the terminal can easily capture the conductive particles even if the alignment shift occurs.

また、図2Aに示す異方導電性フィルム1Bのように導電粒子2の長軸方向Aをフィルム長手方向に斜交する方向に揃えることも好ましい。一般的に、異方性接続されるバンプはフィルムの長手方向と直交する方向に延在するからである。 It is also preferable to align the major axis direction A of the conductive particles 2 in a direction oblique to the longitudinal direction of the film as in the anisotropic conductive film 1B shown in FIG. 2A. This is because the bumps that are anisotropically connected generally extend in the direction orthogonal to the longitudinal direction of the film.

これらのように導電粒子2の長手方向Aが略同一方向に揃っていることにより、製品検査における合否の判定が容易になる。 Since the longitudinal directions A of the conductive particles 2 are aligned in substantially the same direction as described above, the pass/fail judgment in the product inspection becomes easy.

一方、個々の導電粒子2の長軸方向Aが規則性を持って異なる方向を有していてもよい。これにより、導電粒子2の長軸方向の揃っている方向が異なる異方性導電フィルムのそれぞれの効果(例えば、異方性導電フィルム1Aの効果と異方性導電フィルム1Bの効果)を両立させることができる。このため、導電粒子数の削減効果をより期待できることになる。導電粒子2の長手方向Aの配列にどのような規則性をもたせるかは、接続対象となるバンプの寸法やバンプ間距離などレイアウトによって適宜選択すればよい。 On the other hand, the major axis directions A of the individual conductive particles 2 may have different directions with regularity. Thereby, the respective effects (for example, the effect of the anisotropic conductive film 1A and the effect of the anisotropic conductive film 1B) of the anisotropic conductive films in which the major axis directions of the conductive particles 2 are different are made compatible. be able to. Therefore, the effect of reducing the number of conductive particles can be expected more. The regularity of the arrangement of the conductive particles 2 in the longitudinal direction A may be appropriately selected according to the layout such as the size of bumps to be connected and the distance between bumps.

異方導電性フィルムにおいて、導電粒子2を上述の配列に配置させる手法としては、延伸フィルム上に散布した後に任意の方向に延伸する手法や、後述するように、型を用いて導電粒子を配列させることが好ましい。 In the anisotropic conductive film, as a method of arranging the conductive particles 2 in the above-described arrangement, a method of spreading the conductive particles on the stretched film and then stretching in an arbitrary direction, or as will be described later, the conductive particles are arranged by using a mold. Preferably.

また、平面視における導電粒子2の配列態様としては、導電粒子2の中心を縦横に規則配列させることが好ましい。規則配列のより具体的な態様としては、導電粒子2の中心が、正方格子、長方格子、斜方格子、三角格子、六方格子等に格子状に配列した態様をあげることができる。これらを組み合わせてもよい。格子間隔を適宜設定することにより、異方導電性接続時においてショートを抑制しつつ導電粒子の捕捉性を向上させることができる。 As a mode of arrangement of the conductive particles 2 in a plan view, it is preferable that the centers of the conductive particles 2 be regularly arranged in the vertical and horizontal directions. As a more specific mode of the regular array, a mode in which the centers of the conductive particles 2 are arrayed in a square lattice, a rectangular lattice, an orthorhombic lattice, a triangular lattice, a hexagonal lattice, or the like can be cited. You may combine these. By appropriately setting the lattice spacing, it is possible to improve the trapping property of the conductive particles while suppressing a short circuit during anisotropic conductive connection.

導電粒子を規則配列させるにあたり、フィルム短手方向に導電粒子2の中心が配列した配列軸Pを形成し、その配列軸P上の導電粒子について、任意の導電粒子のフィルム短手方向の外接線を、該導電粒子に隣接する導電粒子のフィルム短手方向の外接線と一致させること(図1A)、あるいは任意の導電粒子のフィルム短手方向の外接線が、該導電粒子に隣接する導電粒子を貫くことようにすることが好ましい。これにより、異方導電性接続時に端子における導電粒子の捕捉性を向上させることができる。 In order to regularly arrange the conductive particles, an array axis P in which the centers of the conductive particles 2 are arrayed in the lateral direction of the film is formed, and with respect to the conductive particles on the array axis P, an outer tangent line of the arbitrary conductive particles in the lateral direction of the film. Of the conductive particles adjacent to the conductive particles in the lateral direction of the film in the lateral direction of the film (FIG. 1A), or the external tangent line of the conductive particles in the lateral direction of the film is adjacent to the conductive particles. Is preferable. As a result, it is possible to improve the trapping property of the conductive particles in the terminal during the anisotropic conductive connection.

また、導電粒子2の短手方向に導電粒子2の中心が配列した配列軸Pがある場合(図1A)、あるいは、導電粒子2の長手方向に導電粒子2の中心が配列した配列軸Pがある場合(図2A)、配列軸P内で隣接する導電粒子2が、異方導電性フィルムの短手方向に重畳することが好ましい。これにより、異方導電性接続時に端子における導電粒子の捕捉性を向上させることができる。 Further, when there is an array axis P in which the centers of the conductive particles 2 are arranged in the lateral direction of the conductive particles 2 (FIG. 1A), or when the array axis P in which the centers of the conductive particles 2 are arrayed in the longitudinal direction of the conductive particles 2 is In some cases (FIG. 2A), it is preferable that the conductive particles 2 adjacent to each other in the array axis P overlap in the lateral direction of the anisotropic conductive film. As a result, it is possible to improve the trapping property of the conductive particles at the terminal during anisotropic conductive connection.

一方、異方導電性フィルムのフィルム面Sと導電粒子の長軸方向Aとのなす角度は、図1Cに示したように0°とし、導電粒子2の長軸方向Aをフィルム面Sと平行にしてもよく、図2Bに示したように、導電粒子2の長軸方向Aをフィルム面Sに対して傾斜させてもよい。傾斜させる場合、異方導電性フィルムのフィルム面Sと導電粒子の長軸方向Aとのなす角度θを40°未満とし、好ましくは15°以内とする。これにより、導電粒子2と端子面を略平行にすることができ、捕捉時の導電粒子のズレを最小限に抑えることができる。即ち、異方導電性接続時に熱圧着ツールの押圧面と被押圧面との平行がずれて片当たりが生じることを抑制することができる。 On the other hand, the angle between the film surface S of the anisotropic conductive film and the major axis direction A of the conductive particles is 0° as shown in FIG. 1C, and the major axis direction A of the conductive particles 2 is parallel to the film surface S. Alternatively, as shown in FIG. 2B, the major axis direction A of the conductive particles 2 may be inclined with respect to the film surface S. When tilted, the angle θ between the film surface S of the anisotropic conductive film and the major axis direction A of the conductive particles is less than 40°, and preferably within 15°. Thereby, the conductive particles 2 and the terminal surface can be made substantially parallel to each other, and the deviation of the conductive particles at the time of capturing can be minimized. That is, it is possible to prevent the pressing surface and the pressed surface of the thermocompression-bonding tool from deviating from each other in parallel during the anisotropic conductive connection and causing one-sided contact.

<導電粒子の密度>
本発明の異方導電性フィルムにおいて、導電粒子2の個数密度は、接続対象の端子幅や端子ピッチに応じて導通信頼性の確保上適切な範囲に調整することができる。通常、一組の対向する端子に3個以上、好ましくは10個以上の導電粒子が捕捉されれば良好な導通特性を得られる。実用上、100個/mm2以上であれば端子幅が広い(一例として100〜200μm程度)ものを十分に接続することができ、500個/mm2以上あれば好ましく、1000個/mm2以上あればより好ましい。また、ファインピッチ(一例として端子幅および端子間スペースがそれぞれ30μm以下)のものは、導電粒子が捕捉されない端子を発生させることなく、またショート発生を防止するために50000個/mm2以下が好ましく、30000個/mm2以下であることがより好ましい。
<Density of conductive particles>
In the anisotropic conductive film of the present invention, the number density of the conductive particles 2 can be adjusted within an appropriate range in terms of ensuring conduction reliability according to the terminal width and terminal pitch of the connection target. Usually, good conduction characteristics can be obtained when 3 or more, preferably 10 or more conductive particles are trapped in one set of opposing terminals. In practice, if the number is 100/mm 2 or more, a terminal having a wide terminal width (as an example, about 100 to 200 μm) can be sufficiently connected, and 500/mm 2 or more is preferable, and 1000/mm 2 or more. It is more preferable if there is. Fine pitches (for example, the terminal width and inter-terminal space of 30 μm or less) are preferably 50,000 pieces/mm 2 or less in order to prevent generation of terminals in which conductive particles are not captured and to prevent occurrence of short circuit. , 30,000 pieces/mm 2 or less is more preferable.

<導電粒子の固定方法>
導電粒子2を絶縁接着剤層3に所定の配列で固定する方法としては、導電粒子2の配列に対応した凹みを有する型を機械加工やレーザー加工、フォトリソグラフィなど公知の方法で作製し、その型に導電粒子2を入れ、その上に絶縁接着剤層形成用組成物を充填し、型から取り出すことにより絶縁接着剤層3に導電粒子2を転写すればよい。このような型から、更に剛性の低い材質で型を作成しても良い。
<Method of fixing conductive particles>
As a method of fixing the conductive particles 2 to the insulating adhesive layer 3 in a predetermined arrangement, a mold having depressions corresponding to the arrangement of the conductive particles 2 is prepared by a known method such as machining, laser processing, or photolithography. The conductive particles 2 may be transferred to the insulating adhesive layer 3 by putting the conductive particles 2 in a mold, filling the composition for forming an insulating adhesive layer on the mold, and removing from the mold. From such a mold, the mold may be made of a material having lower rigidity.

また、絶縁接着剤層3に導電粒子2を上述の配列に配置するために、絶縁接着剤層形成組成物層の上に、貫通孔が所定の配置で形成されている部材を設け、その上から導電粒子Pを供給し、貫通孔を通過させるなどの方法でもよい。 In order to arrange the conductive particles 2 in the insulating adhesive layer 3 in the above arrangement, a member having through holes formed in a predetermined arrangement is provided on the insulating adhesive layer forming composition layer, It is also possible to supply the conductive particles P from the above and pass through the through holes.

<層構成>
本発明において異方導電性フィルムは、種々の層構成をとることができる。例えば、導電粒子2を単層の絶縁接着剤層3上に配置し、その導電粒子2を絶縁接着剤層の層内に押し込むことにより、前述の異方性導電フィルム1Aのように導電粒子2を絶縁接着剤層3の界面から一定の深さで存在させてもよい。
<Layer composition>
In the present invention, the anisotropic conductive film can have various layer configurations. For example, the conductive particles 2 are arranged on the insulating adhesive layer 3 of a single layer, and the conductive particles 2 are pushed into the layer of the insulating adhesive layer to form the conductive particles 2 like the anisotropic conductive film 1A. May be present at a constant depth from the interface of the insulating adhesive layer 3.

また、導電粒子を単層の絶縁接着剤層上に配置した後に、別途絶縁接着剤層をラミネートするなど絶縁樹脂層を2層構成にしてもよく、これを繰り返して3層以上の構成にしてもよい。2層目以降の絶縁接着剤層はタック性の向上や、異方性接続時の樹脂および導電粒子の流動を制御する目的で形成する。 In addition, the insulating resin layer may be formed into a two-layer structure by disposing the conductive particles on the single-layer insulating adhesive layer and then laminating an insulating adhesive layer separately, and repeating this to form a structure of three or more layers. Good. The second and subsequent insulating adhesive layers are formed for the purpose of improving tackiness and controlling the flow of resin and conductive particles during anisotropic connection.

導電粒子を固定化するために、絶縁接着剤層形成用組成物に光重合性樹脂および光重合開始剤を含有させ、光照射して導電粒子を固定化してもよい。異方性接続時に寄与しない反応性樹脂を用いて、導電粒子の固定化や、上述の転写に利用してもよい。例えば光硬化性樹脂を用いて導電粒子の固定化を行い、異方性接続時には熱硬化性樹脂に接着機能を発揮させるなどすればよい。これは例えば、光硬化性樹脂にアクリル重合性樹脂を用い、熱硬化性樹脂にエポキシ樹脂を使用することができる。 In order to fix the conductive particles, the composition for forming an insulating adhesive layer may contain a photopolymerizable resin and a photopolymerization initiator, and the particles may be irradiated with light to fix the conductive particles. A reactive resin that does not contribute to anisotropic connection may be used for immobilizing the conductive particles or for the above-mentioned transfer. For example, the photo-curable resin may be used to fix the conductive particles, and the thermosetting resin may exhibit an adhesive function during anisotropic connection. For this, for example, an acrylic polymerizable resin can be used as the photocurable resin and an epoxy resin can be used as the thermosetting resin.

異方性導電フィルム1Aの全厚みの最低溶融粘度としては、100〜10000Pa・sが好ましく、500〜5000Pa・sがより好ましく、特に好ましくは1000〜3000Pa・sである。この範囲であれば、絶縁接着剤層に導電粒子を精密に配置することができ、且つ異方導電性接続時の押し込みにより樹脂流動が導電粒子の捕捉性に支障を来たすことを防止できる。最低溶融粘度の測定は、レオメータ(ティー・エイ・インスツルメント社製、ARES)を用いて、昇温速度5℃/min、測定温度範囲50〜200℃、振動周波数1Hzの条件で求めることができる。 The minimum melt viscosity of the anisotropic conductive film 1A in the entire thickness is preferably 100 to 10000 Pa·s, more preferably 500 to 5000 Pa·s, and particularly preferably 1000 to 3000 Pa·s. Within this range, the conductive particles can be precisely arranged in the insulating adhesive layer, and it is possible to prevent the resin flow from interfering with the trapping property of the conductive particles due to the pressing during the anisotropic conductive connection. The minimum melt viscosity can be measured using a rheometer (ARES, manufactured by TA Instruments) under the conditions of a temperature rising rate of 5°C/min, a measurement temperature range of 50 to 200°C, and a vibration frequency of 1 Hz. it can.

<絶縁接着剤層>
絶縁接着剤層3は、公知の異方性導電性フィルムで使用される絶縁性接着剤から当該異方導電性フィルムの用途などに応じて適宜選択して形成することができる。好ましい絶縁性接着剤としては、(メタ)アクリレート化合物、エポキシ化合物等の重合性樹脂と熱重合開始剤又は光重合開始剤とを含むペースト状又はフィルム状の樹脂をあげることができる。ここで光重合開始剤としては、光ラジカル重合開始剤、光カチオン重合開始剤、光アニオン重合開始剤をあげることができ、熱重合開始剤としては、熱ラジカル重合開始剤、熱カチオン重合開始剤、熱アニオン重合開始剤をあげることができる。特に、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合性樹脂、アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合性樹脂、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合性樹脂、エポキシ化合物と熱アニオン重合開始剤とを含む熱アニオン重合性樹脂、エポキシ化合物と光カチオン重合開始剤とを含む光カチオン重合性樹脂等をあげることができる。これらの樹脂は併用することができる。またこれらの樹脂は、必要に応じて、それぞれ重合したものとすることができる。
<Insulating adhesive layer>
The insulating adhesive layer 3 can be formed by appropriately selecting an insulating adhesive used in a known anisotropic conductive film according to the application of the anisotropic conductive film. As a preferable insulating adhesive, a paste-like or film-like resin containing a polymerizable resin such as a (meth)acrylate compound or an epoxy compound and a thermal polymerization initiator or a photopolymerization initiator can be mentioned. Examples of the photopolymerization initiator include photoradical polymerization initiators, photocationic polymerization initiators, and photoanionic polymerization initiators, and examples of the thermal polymerization initiators include thermal radical polymerization initiators and thermal cationic polymerization initiators. The thermal anionic polymerization initiator can be used. In particular, a photoradical polymerizable resin containing an acrylate compound and a photoradical polymerization initiator, a thermal radical polymerizable resin containing an acrylate compound and a thermal radical polymerization initiator, and a thermal cationic polymerization containing an epoxy compound and a thermal cationic polymerization initiator. Examples thereof include a thermosetting resin, a thermal anionic polymerizable resin containing an epoxy compound and a thermal anionic polymerization initiator, and a photocationic polymerizable resin containing an epoxy compound and a photocationic polymerization initiator. These resins can be used together. Further, these resins may be polymerized, respectively, if necessary.

より具体的には、例えば絶縁性接着剤層のうち熱硬化型エポキシ系接着剤は、膜形成樹脂、液状エポキシ樹脂(硬化成分)、硬化剤、シランカップリング剤等から構成することができる。 More specifically, for example, the thermosetting epoxy adhesive in the insulating adhesive layer can be composed of a film forming resin, a liquid epoxy resin (curing component), a curing agent, a silane coupling agent, and the like.

膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。 Examples of the film-forming resin include a phenoxy resin, an epoxy resin, an unsaturated polyester resin, a saturated polyester resin, a urethane resin, a butadiene resin, a polyimide resin, a polyamide resin, and a polyolefin resin, and two or more of them are used in combination. be able to. Among these, a phenoxy resin can be preferably used from the viewpoint of film formability, processability, and connection reliability.

液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などを挙げることができ、これらの2種以上を併用することができる。 Examples of the liquid epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, modified epoxy resin thereof, alicyclic epoxy resin, and the like, and two or more kinds of them may be used in combination. You can

硬化剤としては、ポリアミン、イミダゾール等のアニオン系硬化剤やスルホニウム塩などのカチオン系硬化剤、フェノール系硬化剤等の潜在性硬化剤を挙げることができる。 Examples of the curing agent include anionic curing agents such as polyamines and imidazoles, cationic curing agents such as sulfonium salts, and latent curing agents such as phenol curing agents.

シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。 Examples of the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.

熱硬化型エポキシ系接着剤には、必要に応じて充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを配合することができる。 A filler, a softening agent, an accelerator, an antiaging agent, a coloring agent (pigment, dye), an organic solvent, an ion catcher agent and the like can be added to the thermosetting epoxy adhesive as required.

絶縁接着剤層3には、必要に応じてシリカ微粒子、アルミナ、水酸化アルミ等の絶縁性フィラーを加えても良い。絶縁性フィラーの大きさは、異方導電性接続に支障をきたさない大きさとし、通常、導電粒子の平均短軸長より小さくすることが好ましい。絶縁性フィラーの配合量は、絶縁接着剤層を形成する樹脂100質量部に対して3〜40質量部とすることが好ましい。これにより、異方導電性接続時に絶縁接着剤層3が溶融しても、溶融した樹脂で導電粒子2が不用に移動することを抑制することができる。 Insulating fillers such as silica fine particles, alumina, and aluminum hydroxide may be added to the insulating adhesive layer 3 if necessary. The size of the insulative filler is set to a size that does not hinder the anisotropic conductive connection, and is usually preferably smaller than the average minor axis length of the conductive particles. The compounding amount of the insulating filler is preferably 3 to 40 parts by mass with respect to 100 parts by mass of the resin forming the insulating adhesive layer. Thereby, even if the insulating adhesive layer 3 melts during anisotropic conductive connection, it is possible to prevent the conductive particles 2 from unnecessarily moving by the melted resin.

<フィルム厚>
異方導電性フィルムの厚さ(即ち、絶縁接着剤層3の厚さ)は、好ましくは3μm以上50μm以下、より好ましくは5μm以上20μm以下である。この範囲であれば、実用上問題なく使用可能である。
<Film thickness>
The thickness of the anisotropic conductive film (that is, the thickness of the insulating adhesive layer 3) is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 20 μm or less. Within this range, it can be used practically without any problems.

なお、絶縁接着剤層3の厚み(即ち、異方導電性フィルムの厚み)は、導電粒子2の長軸長L1を100とすると、好ましくは90以下、より好ましくは25以下であり、導電粒子2の短軸長L2を100とすると、好ましくは100以上、より好ましくは120以上である。これは、導電粒子2の長軸方向Aと端子面を略平行にして捕捉状態を良好にするために、導電粒子2の長軸方向Aを異方導電性フィルムのフィルム面Sに略平行にするためである。 The thickness of the insulating adhesive layer 3 (that is, the thickness of the anisotropic conductive film) is preferably 90 or less, more preferably 25 or less when the major axis length L1 of the conductive particles 2 is 100. When the minor axis length L2 of 2 is 100, it is preferably 100 or more, more preferably 120 or more. This is because the long axis direction A of the conductive particles 2 is made substantially parallel to the film surface S of the anisotropic conductive film in order to make the terminal surface substantially parallel to the terminal surface to improve the trapping state. This is because

<接続構造体>
本発明の異方導電性フィルムは、FPC、ICチップ、ICモジュールなどの第1電子部品と、FPC、リジッド基板、セラミック基板、ガラス基板、プラスチック基板などの第2電子部品とを熱又は光により異方導電性接続する際に好ましく適用することができる。また、ICチップやICモジュールをスタックして第1電子部品同士を異方導電性接続することもできる。このようにして得られる接続構造体も本発明の一部である。
<Connection structure>
The anisotropic conductive film of the present invention heats or illuminates a first electronic component such as an FPC, an IC chip or an IC module and a second electronic component such as an FPC, a rigid substrate, a ceramic substrate, a glass substrate or a plastic substrate. It can be preferably applied when making anisotropic conductive connection. In addition, it is also possible to stack IC chips and IC modules to anisotropically connect the first electronic components to each other. The connection structure thus obtained is also part of the present invention.

異方導電性フィルムを用いた電子部品の接続方法としては、例えば、異方導電性フィルムのフィルム厚方向で導電粒子が近くに存在する側の界面を配線基板などの第2電子部品に仮貼りし、仮貼りされた異方性導電フィルムに対し、ICチップなどの第1電子部品を搭載し、第1電子部品側から熱圧着することが、接続信頼性を高める点から好ましい。また、光硬化を利用して接続することもできる。なお、この接続では接続作業効率の点から、図1A、図2Aに示すように、電子部品の端子10の長手方向を異方導電性フィルム1A、1Bの短手方向に合わせることが好ましい。 As a method of connecting an electronic component using an anisotropic conductive film, for example, an interface on the side where conductive particles exist in the film thickness direction of the anisotropic conductive film is temporarily attached to a second electronic component such as a wiring board. Then, it is preferable to mount the first electronic component such as an IC chip on the temporarily attached anisotropic conductive film and perform thermocompression bonding from the first electronic component side in order to improve the connection reliability. It is also possible to connect by utilizing light curing. In this connection, from the viewpoint of connection work efficiency, as shown in FIGS. 1A and 2A, it is preferable to align the longitudinal direction of the terminal 10 of the electronic component with the lateral direction of the anisotropic conductive films 1A and 1B.

以下、実施例に基づき、本発明を具体的に説明する。
実施例1〜3、比較例1〜3
(1)異方導電性フィルムの製造
導電粒子Aとして、表面に0.3μm厚のニッケルメッキ(下地)とその表面に0.1μm厚の金メッキ(表層)が施された導電性円柱状ガラス粒子(日本電気硝子株式会社、PF−39SSSCA)(平均長軸長14μm、平均短軸長3.9μm))を用意した。
また、導電粒子Aを割り、分級することにより、表1に示したサイズの導電性円柱状ガラス粒子B(平均長軸長8μm、平均短軸長3.9μm)及び導電性円柱状ガラス粒子C(平均長軸長5.2μm、平均短軸長3.9μm)を得た。また、導電性球状ガラス粒子D(積水化学工業株式会社、AUL704、粒径4μm)を用意した。
Hereinafter, the present invention will be specifically described based on Examples.
Examples 1-3, Comparative Examples 1-3
(1) Production of Anisotropic Conductive Film As the conductive particles A, conductive cylindrical glass particles whose surface is plated with nickel having a thickness of 0.3 μm (base) and gold plating having a thickness of 0.1 μm (surface layer). (Nippon Electric Glass Co., Ltd., PF-39SSSCA) (average major axis length 14 μm, average minor axis length 3.9 μm)) was prepared.
Further, by dividing and classifying the conductive particles A, conductive columnar glass particles B (average major axis length 8 μm, average minor axis length 3.9 μm) and conductive columnar glass particles C having the sizes shown in Table 1 are obtained. (Average major axis length of 5.2 μm, average minor axis length of 3.9 μm) were obtained. In addition, conductive spherical glass particles D (Sekisui Chemical Co., Ltd., AUL 704, particle size 4 μm) were prepared.

一方、表2に示す組成の樹脂組成物をそれぞれ調製し、それを、フィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に第1絶縁性樹脂層を厚み15μm又は13μm、第2絶縁性樹脂層を3μm又は5μmで形成した。 On the other hand, each resin composition having the composition shown in Table 2 was prepared, applied on a PET film having a film thickness of 50 μm, and dried in an oven at 80° C. for 5 minutes to form a first insulating film on the PET film. The resin layer was formed with a thickness of 15 μm or 13 μm, and the second insulating resin layer was formed with a thickness of 3 μm or 5 μm.

また、平面視では図3Aに示すように、導電粒子2の長軸方向がフィルムの長手方向に揃い、導電粒子2の中心が4方格子配列となり、フィルム断面においては図3Bに示すようにフィルム面Sと導電粒子2の長手方向Aとのなす角度(傾斜角θ)が表1に示す角度と個数密度となる粒子配列に対応する凸部のパターンを有する金型を作成し、公知の透明性樹脂のペレットを溶融させた状態で該金型に流し込み、冷やして固めることで、凹部が、図3A、図3Bに示す配列パターンに対応する樹脂型を形成した(実施例1〜3、比較例1、3)。樹脂型の寸法は、実施例1〜3では導電粒子の平均長軸長および平均短軸長のそれぞれ1.3倍の大きさを開口部の上限とした。比較例3では、平面視における開口部の大きさを実施例1より小さくし、且つ凸型の高さを実施例1より高くした。実施例1〜3と比較例3の凸部間の最近接距離は4μm以上とした。 Further, in plan view, as shown in FIG. 3A, the major axis direction of the conductive particles 2 is aligned with the longitudinal direction of the film, the centers of the conductive particles 2 are in a four-sided lattice arrangement, and the film cross section shows the film as shown in FIG. 3B. The angle (tilt angle θ) formed by the surface S and the longitudinal direction A of the conductive particles 2 is the angle shown in Table 1 and a mold having a pattern of convex portions corresponding to the particle arrangement corresponding to the number density is prepared, and the known transparent The resin mold was poured into the mold in a molten state, cooled and solidified to form resin molds having concave portions corresponding to the arrangement patterns shown in FIGS. 3A and 3B (Examples 1 to 3 and Comparative Example). Examples 1, 3). In Examples 1 to 3, the size of the resin mold had an upper limit of 1.3 times the average major axis length and the average minor axis length of the conductive particles. In Comparative Example 3, the size of the opening in plan view was made smaller than that in Example 1, and the height of the convex mold was made higher than that in Example 1. The closest distance between the protrusions of Examples 1 to 3 and Comparative Example 3 was 4 μm or more.

この樹脂型の凹部に表1の導電粒子を充填し、その上に上述の第2絶縁性樹脂層4(3μm)を被せ、60℃、0.5MPaで押圧することで貼着させた。そして、型から絶縁性樹脂を剥離し、第2絶縁性樹脂層4の導電粒子が存在する側の界面に、第1絶縁性樹脂層5(15μm)を60℃、0.5MPaで積層することで実施例1〜3及び比較例3の異方導電性フィルム1Cを製造した。 The conductive particles shown in Table 1 were filled in the concave portion of the resin mold, and the second insulating resin layer 4 (3 μm) described above was covered on the concave portion and pressed at 60° C. and 0.5 MPa for attachment. Then, the insulating resin is peeled off from the mold, and the first insulating resin layer 5 (15 μm) is laminated at 60° C. and 0.5 MPa on the interface of the second insulating resin layer 4 on the side where the conductive particles are present. Then, anisotropic conductive films 1C of Examples 1 to 3 and Comparative Example 3 were manufactured.

また、比較例1の異方導電性フィルムは、樹脂型における凹部形状を変更する以外は実施例1と同様にして製造し、比較例2の異方導電性フィルムは、樹脂型を使用することなく、第2絶縁性樹脂層用の樹脂組成物に導電粒子を分散させて第2絶縁性樹脂層を5μmの乾燥厚になるように形成し、それに第1絶縁性樹脂層13μmを積層することにより製造した。なお、第2絶縁性樹脂層の塗布ギャップは、導電粒子の平均長軸長よりも小さくしたので、導電粒子の長軸長がギャップを通過する際に概ねフィルム面と略平行になり、導電粒子の傾斜角θは15°以下となった。 Also, the anisotropic conductive film of Comparative Example 1 is manufactured in the same manner as in Example 1 except that the shape of the recess in the resin mold is changed, and the anisotropic conductive film of Comparative Example 2 uses the resin mold. First, the conductive particles are dispersed in the resin composition for the second insulating resin layer to form the second insulating resin layer having a dry thickness of 5 μm, and the first insulating resin layer 13 μm is laminated thereon. Manufactured by. Since the coating gap of the second insulating resin layer was smaller than the average major axis length of the conductive particles, the major axis length of the conductive particles became substantially parallel to the film surface when passing through the gap, The inclination angle θ was less than 15°.

なお、表1において個数密度および面積占有率(異方導電性フィルムの平面視における導電粒子の面積割合)は、異方導電性フィルムの異方導電性接続に使用する部分から任意に抽出した5箇所における200μm×200μmの平面観察から求めた。 In Table 1, the number density and the area occupancy (area ratio of conductive particles in a plan view of the anisotropic conductive film) were arbitrarily extracted from the portion of the anisotropic conductive film used for anisotropic conductive connection. It was determined by observing a plane of 200 μm×200 μm at the location.

また、フィルムの断面観察を任意の断面とそれに直交する断面(導電粒子の長軸および短軸のそれぞれの断面観察)でそれぞれ行い、連続した導電粒子200個について長軸方向の長さと短軸方向の長さを計測してアスペクト比を求めた。また、断面から傾斜角度θも計測して求めた。その結果、導電性円柱状ガラス粒子A,B,C,Dの全個数の90%以上が平均長軸長および平均短軸長から求められるアスペクト比の±20%以内であった。 Further, the cross-section of the film is observed on an arbitrary cross section and a cross section orthogonal thereto (observation of each cross section of the major axis and the minor axis of the conductive particles), and the length in the major axis direction and the minor axis direction of 200 continuous conductive particles are observed. The length was measured to determine the aspect ratio. The tilt angle θ was also measured and obtained from the cross section. As a result, 90% or more of all the conductive columnar glass particles A, B, C and D were within ±20% of the aspect ratio obtained from the average major axis length and the average minor axis length.

なお、表1において第2絶縁性樹脂層の厚みは、フィルム厚み測定器((株)ミツトヨ製、ライトマチックVL−50)により計測した数値である。 In addition, in Table 1, the thickness of the second insulating resin layer is a numerical value measured by a film thickness measuring device (manufactured by Mitutoyo Corporation, Lightmatic VL-50).

(2)評価
各実施例及び比較例の異方導電性フィルムに対し、(a)初期導通特性、(b)ショート発生率、(c)導電粒子捕捉効率を次のように評価した。結果を表1に示す。
(2) Evaluation With respect to the anisotropic conductive films of Examples and Comparative Examples, (a) initial conduction characteristics, (b) short circuit occurrence rate, and (c) conductive particle capturing efficiency were evaluated as follows. The results are shown in Table 1.

(a)初期導通特性
各実施例及び比較例の異方導電性フィルムを、初期導通および導通信頼性の評価用ICとガラス基板との間に挟み、加熱加圧(180℃、20MPa、5秒)して各評価用接続物を得た。この場合、異方導電性フィルムの長手方向とバンプの短手方向を合わせた。そして、評価用接続物の導通抵抗を測定し、5Ω以下をOK、5Ωを超える場合をNGとした。
(A) Initial Conduction Characteristic The anisotropic conductive film of each Example and Comparative Example is sandwiched between an IC for evaluation of initial conduction and continuity reliability and a glass substrate, and heated and pressed (180° C., 20 MPa, 5 seconds). ) And each connection for evaluation was obtained. In this case, the longitudinal direction of the anisotropic conductive film and the lateral direction of the bump were aligned. Then, the conduction resistance of the connection product for evaluation was measured, and 5 Ω or less was OK and 5 Ω or more was NG.

ここで、評価用ICとガラス基板は、それらの端子パターンが対応しており、サイズは次の通りである。 Here, the terminal patterns of the evaluation IC and the glass substrate correspond to each other, and the sizes are as follows.

初期導通および導通信頼性の評価用IC
外形 0.7×20mm
厚み 0.2mm
バンプ仕様 金メッキ、高さ12μm、サイズ15×100μm、バンプ間距離15μm 端子数1300個(IC外形長辺に、それぞれ650個)
IC for evaluation of initial conduction and conduction reliability
Outline 0.7×20mm
Thickness 0.2 mm
Bump specifications Gold plating, height 12 μm, size 15×100 μm, distance between bumps 15 μm Number of terminals 1300 (650 on each long side of IC outline)

ガラス基板
ガラス材質 コーニング社製
外径 30×50mm
厚み 0.5mm
電極 ITO配線
Glass substrate Glass material Corning outside diameter 30 x 50 mm
Thickness 0.5 mm
Electrode ITO wiring

(b)ショート発生率
ショート発生率は、(a)で得た評価用接続物において、任意に抽出したバンプ間スペース200個の金属顕微鏡による観察から、隣接するバンプ間に連結した導電粒子の凝集もしくは連結体を確認することで求めた。ショート発生率の評価は、このような凝集もしくは連結体がないものをOK、1個以上でも存在するものをNGとした。
(B) Short-circuit occurrence rate The short-circuit occurrence rate is the aggregation of the conductive particles connected between the adjacent bumps from the observation with a metallurgical microscope of 200 spaces between bumps arbitrarily extracted in the evaluation connection obtained in (a). Alternatively, it was determined by confirming the linked body. In the evaluation of the short-circuit occurrence rate, those without such aggregates or linked bodies were OK, and those with even one or more were NG.

(c)導電粒子捕捉効率
各実施例及び比較例の(a)で得た評価用接続物において、バンプ100個における粒子捕捉数の計測から、バンプ1個当たりに捕捉された導電粒子の面積の端子面積に対する割合により次の基準で評価した。
A:捕捉された導電粒子の面積の総和が端子面積に対して8%以上
B:捕捉された導電粒子の面積の総和が端子面積に対して5%以上8%未満
C:捕捉された導電粒子の面積の総和が端子面積に対して5%未満







(C) Conductive particle trapping efficiency In the connection for evaluation obtained in (a) of each example and comparative example, from the measurement of the number of trapped particles in 100 bumps, the area of the conductive particles trapped per bump was determined. The following criteria evaluated based on the ratio to the terminal area.
A: The total area of the captured conductive particles is 8% or more of the terminal area B: The total area of the captured conductive particles is 5% or more and less than 8% of the terminal area C: The captured conductive particles Less than 5% of terminal area







Figure 0006746942
Figure 0006746942

Figure 0006746942
Figure 0006746942

表1から、アスペクト比が1.3より大きく、かつ導電粒子が配列している実施例1〜3は初期導通性、ショート発生率、導電粒子捕捉効率のいずれも良好である。これに対し、比較例1では、導電粒子が球状なので導電粒子捕捉効率が劣る。比較例2では、導電粒子のアスペクト比が1.3以上であるが、導電粒子の配置がランダムであり、平面視で重畳している導電粒子が存在するため、ショート発生率が劣っている。比較例3では、傾斜角度が過度に大きいことにより捕捉が低下したため、初期導通特性が劣っている。 From Table 1, Examples 1 to 3 in which the aspect ratio is larger than 1.3 and the conductive particles are arranged have good initial conductivity, short-circuit occurrence rate, and conductive particle capturing efficiency. On the other hand, in Comparative Example 1, since the conductive particles are spherical, the conductive particle capturing efficiency is poor. In Comparative Example 2, the aspect ratio of the conductive particles is 1.3 or more, but the conductive particles are randomly arranged, and there are conductive particles that are superposed in a plan view, so that the short-circuit occurrence rate is inferior. In Comparative Example 3, the initial conduction characteristics are inferior because the trapping is lowered due to the excessively large inclination angle.

次に実施例4〜6として、実施例1〜3で得られた異方性導電フィルムを図2Aのようにフィルムの長手方向と導電粒子の長軸方向Aとのなす角度Φを80°に傾斜させてガラス基板に貼り合せる以外は、同様にして評価した。得られた実施例4〜6の評価結果は、実施例1〜3と略同様に初期導通性、ショート発生率、導電粒子捕捉効率のいずれも良好であった。 Next, as Examples 4 to 6, the anisotropic conductive films obtained in Examples 1 to 3 were adjusted to an angle Φ of 80° between the longitudinal direction of the film and the major axis direction A of the conductive particles as shown in FIG. 2A. The evaluation was performed in the same manner except that the glass substrate was tilted and bonded to the glass substrate. The obtained evaluation results of Examples 4 to 6 were good in all of the initial conductivity, the short-circuit occurrence rate, and the conductive particle capturing efficiency, as in Examples 1 to 3.

1A、1B、1C 異方導電性フィルム
2 導電粒子
3 絶縁接着剤層
4 第2絶縁性樹脂層
5 第1絶縁性樹脂層
10 端子
A 導電粒子の長手方向
P 導電粒子の配列軸
S フィルム面
1A, 1B, 1C Anisotropically conductive film 2 Conductive particles 3 Insulating adhesive layer 4 Second insulating resin layer 5 First insulating resin layer 10 Terminals A Longitudinal direction of conductive particles P Arrangement axis of conductive particles S Film surface

Claims (12)

絶縁接着剤層に導電粒子を含有する異方導電性フィルムであって、導電粒子のアスペクト比が1.2以上であり、平面視で導電粒子同士が非接触で分散しており、異方導電性フィルムのフィルム面と導電粒子の長軸方向とのなす角度が40°未満であり、個々の導電粒子の長軸方向が規則性を持って異なる方向を有している異方導電性フィルム。 An anisotropic conductive film containing conductive particles in an insulating adhesive layer, wherein the conductive particles have an aspect ratio of 1.2 or more, and the conductive particles are dispersed in a non-contact manner in plan view. Ri angle is 40 ° less than der between the long axis direction of the film surface and the conductive particles sex film, each conductive long axis direction regularity to have anisotropic that have different directions conductive particle film .. 任意の導電粒子と該導電粒子に最近接した導電粒子との平面視における距離が、該導電粒子の短軸長の0.5倍以上である請求項1記載の異方導電性フィルム。 The anisotropic conductive film according to claim 1, wherein the distance between the arbitrary conductive particles and the conductive particles closest to the conductive particles in a plan view is 0.5 times or more the minor axis length of the conductive particles. 任意の導電粒子と該導電粒子に最近接した導電粒子が、異方導電性フィルムの長手方向で重畳しない請求項1又は2記載の異方導電性フィルム。 The anisotropic conductive film according to claim 1 or 2, wherein the arbitrary conductive particles and the conductive particles closest to the conductive particles do not overlap in the longitudinal direction of the anisotropic conductive film. 異方導電性フィルムのフィルム面と導電粒子の長軸方向とのなす角度が15°以内である請求項1〜3のいずれかに記載の異方導電性フィルム。 The anisotropic conductive film according to any one of claims 1 to 3, wherein an angle formed by the film surface of the anisotropic conductive film and a major axis direction of the conductive particles is within 15°. 導電粒子の長軸方向が、平面視で異方導電性フィルムの長手方向に対して平行又は斜交して揃っている請求項1〜4のいずれかに記載の異方導電性フィルム。 The anisotropic conductive film according to any one of claims 1 to 4, wherein the major axis direction of the conductive particles is aligned parallel or oblique to the longitudinal direction of the anisotropic conductive film in a plan view. 導電粒子が平面視で規則配列している請求項1〜5のいずれかに記載の異方導電性フィルム。 The anisotropic conductive film according to claim 1, wherein the conductive particles are regularly arranged in a plan view. 平面視で導電粒子が格子状に配列している、請求項6記載の異方導電性フィルム。 The anisotropic conductive film according to claim 6, wherein the conductive particles are arranged in a grid pattern in a plan view. フィルム短手方向の配列軸上の導電粒子において、任意の導電粒子のフィルム短手方向の外接線が、該導電粒子に隣接する導電粒子のフィルム短手方向の外接線と一致する請求項7記載の異方導電性フィルム 8. In the conductive particles on the alignment axis in the lateral direction of the film, the tangent line in the lateral direction of the film of any conductive particle matches the tangent line in the lateral direction of the film of the conductive particles adjacent to the conductive particles. Anisotropic conductive film フィルム短手方向の配列軸上の導電粒子において、任意の導電粒子のフィルム短手方向の外接線が、該導電粒子に隣接する導電粒子を貫く請求項7記載の異方導電性フィルム The anisotropic conductive film according to claim 7, wherein, in the conductive particles on the array axis in the lateral direction of the film, the tangential line of the arbitrary conductive particles in the lateral direction of the film penetrates through the conductive particles adjacent to the conductive particles. 該絶縁接着剤層が、複数の絶縁接着剤層から構成されている請求項1〜9のいずれかに記載の異方性導電フィルム。The anisotropic conductive film according to claim 1, wherein the insulating adhesive layer is composed of a plurality of insulating adhesive layers. 請求項1〜10のいずれかに記載の異方導電性フィルムを用いて第1電子部品の接続端子と第2電子部品の接続端子とを異方導電性接続した接続構造体。 Anisotropic conductive film of the first electronic component connecting terminal and anisotropic conductive connection with the connecting structure and the connecting terminal of the second electronic component using according to any of claims 1-10. 請求項1〜10のいずれかに記載の異方導電性フィルムを用いて第1電子部品の接続端子と第2電子部品の接続端子とを異方導電性接続する、接続構造体の製造方法。A method for manufacturing a connection structure, comprising anisotropically conductively connecting a connection terminal of a first electronic component and a connection terminal of a second electronic component using the anisotropic conductive film according to claim 1.
JP2016030518A 2015-03-20 2016-02-20 Anisotropically conductive film and connection structure Active JP6746942B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2016030518A JP6746942B2 (en) 2016-02-20 2016-02-20 Anisotropically conductive film and connection structure
CN201680014149.2A CN107431294A (en) 2015-03-20 2016-03-18 Anisotropic conductive film and connecting structure body
PCT/JP2016/058753 WO2016152791A1 (en) 2015-03-20 2016-03-18 Anisotropic conductive film and connection structure
CN202210176664.8A CN114582545A (en) 2015-03-20 2016-03-18 Anisotropic conductive film and connection structure
US15/546,150 US20180022968A1 (en) 2015-03-20 2016-03-18 Anisotropic conductive film and connection structure
KR1020177014948A KR102018042B1 (en) 2015-03-20 2016-03-18 Anisotropic conductive film and connection structure
HK18104541.6A HK1245509A1 (en) 2015-03-20 2018-04-06 Anisotropic conductive film and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016030518A JP6746942B2 (en) 2016-02-20 2016-02-20 Anisotropically conductive film and connection structure

Publications (2)

Publication Number Publication Date
JP2017147211A JP2017147211A (en) 2017-08-24
JP6746942B2 true JP6746942B2 (en) 2020-08-26

Family

ID=59681512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016030518A Active JP6746942B2 (en) 2015-03-20 2016-02-20 Anisotropically conductive film and connection structure

Country Status (1)

Country Link
JP (1) JP6746942B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386783A (en) * 1987-07-10 1988-04-18 Shin Etsu Polymer Co Ltd Antisotropically electrically conductive adhesive film
JP4032439B2 (en) * 1996-05-23 2008-01-16 日立化成工業株式会社 Connection member, electrode connection structure and connection method using the connection member
CN102017816A (en) * 2008-04-28 2011-04-13 日立化成工业株式会社 Circuit connecting material, film-like adhesive, adhesive reel, and circuit connecting structural body
JP6151597B2 (en) * 2013-07-29 2017-06-21 デクセリアルズ株式会社 Manufacturing method of conductive adhesive film, conductive adhesive film, and manufacturing method of connector

Also Published As

Publication number Publication date
JP2017147211A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP6932110B2 (en) Heteroconductive film and connecting structures
US10892243B2 (en) Anisotropic electrically conductive film and connection structure
WO2016152791A1 (en) Anisotropic conductive film and connection structure
JP7052254B2 (en) Filler-containing film
TWI771331B (en) Anisotropic conductive film and production method of the same, and connected structure and production method of the same
CN110265843B (en) Anisotropic conductive film
CN107112253B (en) Film for forming bump, semiconductor device, method for manufacturing semiconductor device, and connection structure
JP2017204463A (en) Anisotropic Conductive Film
WO2016067828A1 (en) Anisotropic conductive film and connection structure
TWI737634B (en) Anisotropic conductive film and connection structure
TW202036987A (en) Anisotropic conductive film and connected structure
TW201639115A (en) Multilayer board
JP2022097589A (en) Anisotropically conductive film
JP2022069457A (en) Anisotropic conductive film
TWI750239B (en) Film containing filler
US11013126B2 (en) Connection structure
JP6746942B2 (en) Anisotropically conductive film and connection structure
TWI775562B (en) Method for manufacturing anisotropic conductive film, anisotropic conductive film, wound body of anisotropic conductive film, method for manufacturing connection structure, connection structure, method for manufacturing filler disposing film, and filler disposing film
JP2022069456A (en) Anisotropic conductive film
US20230118485A1 (en) Anisotropic conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6746942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250