JP6745448B2 - Method for measuring liquid film breakage ratio in thin liquid film - Google Patents

Method for measuring liquid film breakage ratio in thin liquid film Download PDF

Info

Publication number
JP6745448B2
JP6745448B2 JP2019017651A JP2019017651A JP6745448B2 JP 6745448 B2 JP6745448 B2 JP 6745448B2 JP 2019017651 A JP2019017651 A JP 2019017651A JP 2019017651 A JP2019017651 A JP 2019017651A JP 6745448 B2 JP6745448 B2 JP 6745448B2
Authority
JP
Japan
Prior art keywords
liquid film
sound pressure
ratio
measured
pressure ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019017651A
Other languages
Japanese (ja)
Other versions
JP2020125943A (en
Inventor
竹内 彰敏
彰敏 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi Prefectural University Corp
Original Assignee
Kochi Prefectural University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi Prefectural University Corp filed Critical Kochi Prefectural University Corp
Priority to JP2019017651A priority Critical patent/JP6745448B2/en
Publication of JP2020125943A publication Critical patent/JP2020125943A/en
Application granted granted Critical
Publication of JP6745448B2 publication Critical patent/JP6745448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、薄層の液膜における液膜破断割合測定方法に関し、例えば自動車エンジンのシリンダ壁面の油膜における気泡の発生や油膜破断状態の発生等についての薄層の液膜における液膜破断割合測定方法に関する。 The present invention relates to a method for measuring a liquid film breakage ratio in a thin liquid film, for example, a liquid film breakage ratio measurement in a thin liquid film for occurrence of bubbles and an oil film breakage state in an oil film on a cylinder wall surface of an automobile engine. Regarding the method.

自動車や各種動力機械等においては、CO排出量削減のための低燃費エンジンの開発が急務となっている。また、例えば、省エネルギ化に伴い、エンジンのピストン部は少量の低粘度の微量な油で潤滑される傾向にあり、条件によっては気泡の発生や油膜破断状態の発生に陥る危険性を含んでいる。こうした燃費向上のための1つの課題として、エンジンにおける摩擦低減があり、具体的にはピストン壁面での潤滑機能に大きな影響を与えるピストン(リング・スカート部等)とシリンダ壁面間の気泡の発生や油膜破断状態の発生を知る必要がある。しかし、現状では高温・密閉構造のシリンダ内部の状態を測定することは難しく、特に常に変化する気泡の発生や油膜破断状態の発生を通常のピストン・シリンダ材において連続的に把握できる実用的な測定方法は全く確立されていない。 In automobiles, various power machines, and the like, there is an urgent need to develop low fuel consumption engines for reducing CO 2 emissions. Further, for example, with the energy saving, the piston part of the engine tends to be lubricated with a small amount of a small amount of low-viscosity oil, and depending on the conditions, there is a risk that bubbles may occur or an oil film may break. There is. One of the issues for improving fuel efficiency is to reduce friction in the engine. Specifically, the generation of bubbles between the piston (ring, skirt, etc.) and the cylinder wall, which greatly affects the lubrication function on the piston wall, It is necessary to know the occurrence of oil film breakage. However, at present, it is difficult to measure the state inside a cylinder with a high temperature and closed structure, and in particular it is a practical measurement that can continuously detect the occurrence of constantly changing bubbles and the occurrence of oil film breakage in ordinary piston and cylinder materials. No method is established.

技術的には、固体であるシリンダ壁面の表面に存在するオイル(液体)の量(膜厚)や気泡の発生や油膜破断状態の発生を測定する方法が要求されることから、こうした固体表面に存在する薄層の液体の膜厚を測定する方法の適用が考えられる。具体的には、現在、レーザ誘起蛍光法(LIF法)を用いた方法を挙げることができる。
LIF法を適用した具体例として図4に例示する。レーザ(光源)から発せられた光が、シリンダ(の一部)の透光部,オイル層を介してピストンまたはピストンリングの表面で反射し、再びオイル層,透光部を介して光センサ(例えばPMT)によって受光される。オイル層の膜厚(量)または汚染状態等(質)に変化があれば、ここを通過する光(光量または波長分布)に変化が生じることから、光センサの出力によってオイルの量(膜厚)や状態を測定することができる。
Technically, a method is required to measure the amount (film thickness) of oil (liquid) existing on the surface of a cylinder wall that is a solid, the occurrence of bubbles, and the occurrence of an oil film rupture state. Application of the method of measuring the film thickness of the existing thin layer liquid is considered. Specifically, a method using a laser-induced fluorescence method (LIF method) can be mentioned at present.
FIG. 4 illustrates a specific example to which the LIF method is applied. The light emitted from the laser (light source) is reflected by the surface of the piston or piston ring through the light transmitting portion of the cylinder (a part of it) and the oil layer, and again through the oil layer and the light transmitting portion to the optical sensor ( The light is received by, for example, PMT. If there is a change in the film thickness (quantity) of the oil layer or the pollution state (quality), the light (light quantity or wavelength distribution) that passes through the oil layer will change. ) Or condition can be measured.

しかしながら、上記のようなLIF法を用いた方法は、以下に挙げるような問題点や課題が生じることがあり、実用性に欠ける。
(i)LIF法の適用には、オイル層と接するシリンダの少なくとも一部が光透過性を有することが条件となり、こうした構造を通常のエンジンに設けることは実用性の点において困難である。
(ii)また、こうした課題は、エンジンに関する技術分野だけではなく、例えば軸受等摺動部に関する技術分野や金属等表面処理に関する技術分野等においても、摺動部等を構成する各種部材に加工処理を必要とする測定方法を適用することは実用的ではなく、同様の課題を有している。
However, the method using the LIF method as described above may have the following problems and problems and is not practical.
(I) The application of the LIF method requires that at least a part of the cylinder in contact with the oil layer has a light-transmitting property, and it is difficult to provide such a structure in a normal engine in terms of practicality.
(Ii) Further, these problems are not limited to the technical field related to the engine, and are applied to various members constituting the sliding part, for example, in the technical field related to sliding parts such as bearings and the technical field related to surface treatment of metals and the like. It is not practical to apply a measurement method that requires the above, and has the same problem.

本発明は、こうした実情に鑑みてなされたものであり、その目的は、測定対象となる液膜に接することなく、簡便な構成で、固体壁面間に存在する薄層の液膜内に発生した気泡や油膜破断状態を定量的に連続測定することが可能で、精度が高く、かつ操作性が良く汎用性の高い、液膜の破断割合測定方法を提供することである。 The present invention has been made in view of these circumstances, and its purpose is to generate a thin layer liquid film existing between solid wall surfaces with a simple configuration without contacting the liquid film to be measured. An object of the present invention is to provide a liquid film breakage ratio measuring method capable of quantitatively and continuously measuring a bubble or an oil film breakage state, having high accuracy, good operability, and high versatility.

本発明者らは、鋭意研究を重ねた結果、以下に示す薄層の液膜における液膜破断割合測定方法によって上記目的を達成できることを見出し、本発明を完成するに到った。 As a result of intensive studies, the present inventors have found that the above object can be achieved by the following method for measuring the liquid film breakage ratio in a thin liquid film, and have completed the present invention.

本発明に係る対薄層の液膜における液膜破断割合測定方法は、
薄層の液膜を介して対向する2つの同じ材質の固体の壁面のいずれか1の壁面Caに、少なくとも1の超音波探触子が配設された測定デバイスを用い、
前記両壁面Ca,Cbの間(膜厚)が30μm以下の場合において、
(A1)該超音波探触子から他の壁面Cbに向けて発信された複数の周波数の超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、該膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B1)測定された該音圧hについて、予め前記超音波探触子から発信された複数の周波数の超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
(C1)測定に用いられた周波数および設定された音圧比Hから得られた「周波数−音圧比」特性を基に、周波数ゼロ条件の音圧比Haを推算または実測する
(D1)該音圧比Haを用い、[周波数ゼロ条件における「音圧比Ha−液膜破断割合」特性を基に、液膜破断割合を測定する
ことを特徴とする。
The liquid film breakage ratio measuring method in the liquid film of the thin layer according to the present invention,
Using a measurement device in which at least one ultrasonic probe is arranged on one wall surface Ca of two solid wall surfaces made of the same material and facing each other through a thin liquid film,
When the thickness (film thickness) between the two wall surfaces Ca and Cb is 30 μm or less,
(A1) Ultrasonic waves having a plurality of frequencies emitted from the ultrasonic probe toward another wall surface Cb are reflected by the boundary surface between the wall surface Cb and the liquid film and received by the ultrasonic probe. Then, the change in the sound pressure h (echo height) of the ultrasonic wave due to the change in the film thickness or the presence of the liquid film breakage is measured (B1). The normalized sound pressure ratio H (=h/ho) based on the sound pressure ho measured in the void state where there is no liquid film between both wall surfaces Ca and Cb for ultrasonic waves of a plurality of frequencies transmitted from the child. ) Is set (C1) Based on the "frequency-sound pressure ratio" characteristic obtained from the frequency used for the measurement and the set sound pressure ratio H, the sound pressure ratio Ha under the frequency zero condition is estimated or actually measured (D1). Using the sound pressure ratio Ha, the liquid film breakage ratio is measured based on the characteristic of “sound pressure ratio Ha-liquid film breakage ratio under zero frequency condition”.

また、本発明は、薄層の液膜を介して対向する2つの同じ材質の固体の壁面のいずれか1の壁面Caに、少なくとも1の超音波探触子と少なくとも1の渦流深傷用プローブが配設された測定デバイスを用い、
(A2)該超音波探触子から他の壁面Cbに向けて発信された超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、該膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B2)測定された該音圧hについて、予め前記超音波探触子から発信された超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
(E2)渦流深傷用プローブにおいて誘起された磁界によって生じる前記壁面Cbにおける渦流を起因とするインダクタンス変化量を基に前記膜厚を測定する
(F2)予め液膜破断のない液膜および既知の液膜破断状態における膜厚の変化に伴う音圧比の変量を推算または実測し、「膜厚−音圧比−液膜破断割合」特性を設定する
(C2)該設定された「膜厚−音圧比−液膜破断割合」特性を基に、測定された膜厚における「音圧比−液膜破断割合」特性を特定する
(D2)特定された「音圧比−液膜破断割合」特性を基に、測定された音圧比を用いて液膜破断割合を測定する
ことを特徴とする。
Further, the present invention provides that at least one ultrasonic probe and at least one eddy current deep wound probe are provided on any one wall surface Ca of two solid walls made of the same material and facing each other through a thin liquid film. Using a measuring device equipped with
(A2) The ultrasonic wave transmitted from the ultrasonic probe toward another wall surface Cb is reflected by the boundary surface between the wall surface Cb and the liquid film and is received by the ultrasonic probe, The change in the sound pressure h (echo height) of the ultrasonic wave due to the change in thickness and the presence of the liquid film breakage is measured (B2) The measured sound pressure h is transmitted from the ultrasonic probe in advance. The normalized sound pressure ratio H (=h/ho) is set on the basis of the sound pressure ho measured in a void state where there is no liquid film between both wall surfaces Ca and Cb for the ultrasonic wave (E2) vortex flow The film thickness is measured based on the amount of inductance change caused by the vortex flow on the wall surface Cb generated by the magnetic field induced in the probe for deep wound (F2) Liquid film without liquid film breakage in advance and known liquid film breakage state The variation of the sound pressure ratio due to the change of the film thickness in is calculated or measured, and the characteristic of "film thickness-sound pressure ratio-liquid film breakage ratio" is set (C2). The "sound pressure ratio-liquid film breakage ratio" characteristic in the measured film thickness is specified based on the "proportion" property (D2) The sound measured based on the specified "sound pressure ratio-liquid film breakage ratio" property It is characterized in that the liquid film breakage ratio is measured using the pressure ratio.

また、本発明は、薄層の液膜を介して対向する2つの同じ材質の固体の壁面のいずれか1の壁面Caに、少なくとも1の超音波探触子と少なくとも1の渦流深傷用プローブが配設された測定デバイスを用い、
(A1)該超音波探触子から他の壁面Cbに向けて発信された複数の周波数の超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、該膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B1)測定された該音圧hについて、予め前記超音波探触子から発信された複数の周波数の超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
(E2)渦流深傷用プローブにおいて誘起された磁界によって生じる前記壁面Cbにおける渦流を起因とするインダクタンス変化量を基に前記膜厚を測定する
(F3)予め前記超音波探触子から発信された複数の周波数の超音波に対して、液膜破断のない液膜および既知の液膜破断状態における膜厚の変化に伴う音圧比の変量を推算または実測し、「膜厚−周波数−音圧比−液膜破断割合」特性を設定する
(C3)該設定された「膜厚−周波数−音圧比−液膜破断割合」特性を基に、測定された膜厚を用いて「周波数−音圧比−液膜破断割合」特性を特定する
(D3)特定された「周波数−音圧比−液膜破断割合」特性を基に、測定に用いられた周波数およびその時に測定された音圧比を用いて液膜破断割合を測定する
ことを特徴とする。
Further, the present invention provides that at least one ultrasonic probe and at least one eddy current deep wound probe are provided on any one wall surface Ca of two solid walls made of the same material and facing each other through a thin liquid film. Using a measuring device equipped with
(A1) Ultrasonic waves of a plurality of frequencies transmitted from the ultrasonic probe toward another wall surface Cb are reflected by the boundary surface between the wall surface Cb and the liquid film and received by the ultrasonic probe. Then, the change in the sound pressure h (echo height) of the ultrasonic wave due to the change in the film thickness or the presence of the liquid film breakage is measured (B1). The normalized sound pressure ratio H (=h/ho) based on the sound pressure ho measured in the void state where there is no liquid film between both wall surfaces Ca and Cb for ultrasonic waves of a plurality of frequencies transmitted from the child. ) Is set (E2), the film thickness is measured based on an inductance change amount caused by the vortex flow on the wall surface Cb caused by the magnetic field induced in the eddy current deep wound probe (F3), in advance, the ultrasonic probe. For ultrasonic waves of multiple frequencies transmitted from, calculate or measure the variation of the sound pressure ratio that accompanies the change in film thickness without liquid film breakage and known liquid film breakage conditions. -Sound pressure ratio-Liquid film breakage ratio" characteristic is set (C3) Based on the set "Film thickness-Frequency-Sound pressure ratio-Liquid film breakage ratio" characteristic, "Frequency- (D3) Based on the specified "frequency-sound pressure ratio-liquid film breakage ratio" characteristic, the frequency used for measurement and the sound pressure ratio measured at that time are used. It is characterized in that the liquid film breakage rate is measured.

固体壁面間に存在するオイル等の薄層の液膜を測定するには、既述のような課題があった。本発明者は、その検証過程において、薄層の液膜を介して対向する2つの固体の壁面のいずれか1の壁面Caに超音波を発信・受信する超音波探触子が配設され、
(i)該2つの固体が同じ材質であり、該膜厚が30μm以下の場合においては、該超音波探触子から発信された複数の周波数の超音波に対する音圧比(エコー高さ比)を測定し、その周波数特性を基に推算(実測)された周波数ゼロ条件の音圧比Haから、液膜破断割合を測定し、
(ii)こうした条件に限定されない場合においては、同一壁面Caに配設された渦流深傷用プローブを用いて測定された膜厚と、前記超音波探触子によって測定された音圧比から、予め設定された「膜厚−音圧比−液膜破断割合」特性を基に、液膜破断割合を測定し、また、
(iii)同様の条件において、同一壁面Caに配設された渦流深傷用プローブを用いて測定された膜厚と、前記超音波探触子によって測定された複数の周波数の超音波に対する音圧比から、予め設定された「膜厚−周波数−音圧比−液膜破断割合」特性を基に、液膜破断割合を測定する、
ことが可能であり、測定対象となる液膜に接することなく、簡便な構成で、固体壁面間に存在する薄層の液膜の連続測定が可能で、精度が高く、かつ操作性が良く汎用性の高い、壁面間に存在する液膜の破断割合測定方法を提供することができるとの知見を得た。本発明の基本的な概念およびその実証については後述する。ここで、「膜厚」とは液層や破断状態の存在の有無を問わず測定される両壁面Ca,Cbの間の距離をいい、「液膜破断割合」とは、液膜を形成する液層において、気泡または液膜破断の存在がない状態(無破断状態)に対して、液膜が全く存在しない空隙状態(破断状態)を基準(割合1)とする気泡の発生や破断された液膜発生状態の比率(割合)をいう。本発明では、該液膜に超音波が照射された場合において、反射波によって測定される照射面積中の破断状態の面積(破断状態の壁面において超音波が全量反射する)の比率(割合)となる。なお、ここでいう「周波数ゼロ条件」とは、複数の周波数に対する実測音圧から得られた「周波数−音圧比」特性を基に近似式により周波数ゼロの場合の音圧比Haを推算するときに、変数である「周波数」をゼロと設定したことをいう。実施態様では、「周波数ゼロ条件」として、例えば0.5MHz以下の極低周波の超音波を用いた場合を適用することができる場合がある。
The measurement of a thin liquid film of oil or the like existing between solid wall surfaces has the above-mentioned problems. In the verification process, the present inventor arranges an ultrasonic probe for transmitting and receiving ultrasonic waves on any one wall surface Ca of two solid surfaces facing each other through a thin liquid film.
(I) When the two solids are the same material and the film thickness is 30 μm or less, the sound pressure ratio (echo height ratio) to ultrasonic waves of a plurality of frequencies transmitted from the ultrasonic probe is calculated. The liquid film breakage ratio was measured from the sound pressure ratio Ha of the frequency zero condition, which was estimated (measured) based on the measured frequency characteristics,
(Ii) In the case of not being limited to such conditions, from the film thickness measured using the eddy current deep wound probe arranged on the same wall surface Ca and the sound pressure ratio measured by the ultrasonic probe, Based on the set "film thickness-sound pressure ratio-liquid film breakage ratio" characteristic, the liquid film breakage ratio was measured, and
(Iii) Under the same conditions, the film thickness measured using the eddy current deep wound probe arranged on the same wall surface Ca, and the sound pressure ratio for ultrasonic waves of a plurality of frequencies measured by the ultrasonic probe. From the above, based on the preset "film thickness-frequency-sound pressure ratio-liquid film breakage ratio" characteristic, the liquid film breakage ratio is measured,
It is possible to continuously measure thin liquid films existing between solid wall surfaces without contacting the liquid film to be measured and with a simple structure. It was found that it is possible to provide a method of measuring the breakage ratio of a liquid film existing between wall surfaces, which has high property. The basic concept of the present invention and its demonstration will be described later. Here, the "film thickness" means the distance between both wall surfaces Ca and Cb measured regardless of the presence or absence of a liquid layer or a fractured state, and the "liquid film fracture ratio" forms a liquid film. In the liquid layer, generation or breakage of bubbles based on the void state (breakage state) in which no liquid film exists at all (ratio 1) to the state where there is no bubble or liquid film breakage (non-breakage state) It refers to the ratio of liquid film generation. In the present invention, when the liquid film is irradiated with ultrasonic waves, a ratio (ratio) of an area in a fractured state (total amount of ultrasonic waves reflected on a wall surface in a fractured state) in an irradiation area measured by reflected waves, Become. The “frequency zero condition” used here means when the sound pressure ratio Ha at the frequency of zero is estimated by an approximate expression based on the “frequency-sound pressure ratio” characteristic obtained from the measured sound pressure for a plurality of frequencies. , The variable “frequency” is set to zero. In the embodiment, it may be possible to apply, as the “frequency zero condition”, the case of using an ultrasonic wave having an extremely low frequency of 0.5 MHz or less, for example.

本発明に係る液膜破断割合測定方法の基本概念を例示する説明図。Explanatory drawing which illustrates the basic concept of the liquid film fracture|rupture ratio measuring method which concerns on this invention. 本発明に係る「周波数−音圧比−液膜破断割合」特性を例示する説明図。Explanatory drawing which illustrates the "frequency-sound pressure ratio-liquid film breakage ratio" characteristic which concerns on this invention. 本発明に係る測定デバイスを例示する構成図。The block diagram which illustrates the measuring device concerning the present invention. 従来技術に係る膜厚測定装置を例示する説明図。Explanatory drawing which illustrates the film thickness measuring device which concerns on a prior art.

<本発明に係る液膜破断割合測定方法の基本的な概念>
[1]基本となる構成について
超音波探触子Bを用いて、シリンダ等対向する2つの固体の壁面Ca,Cbに介在するオイル等液膜Aにおける液膜破断割合αを測定する。具体的には、図1(A)に例示するように、液膜Aを介して壁面Caと壁面Cbが対向し、一方の壁面Caに配設された超音波探触子Bから液膜Aに対して超音波を照射する測定デバイスを基本構成とする。
<Basic Concept of Liquid Film Breakage Ratio Measuring Method According to the Present Invention>
[1] Basic configuration Using an ultrasonic probe B, a liquid film breakage ratio α in a liquid film A such as oil interposed between two opposing solid wall surfaces Ca and Cb such as a cylinder is measured. Specifically, as illustrated in FIG. 1A, the wall surface Ca and the wall surface Cb are opposed to each other with the liquid film A in between, and the ultrasonic probe B disposed on one wall surface Ca to the liquid film A. The basic configuration is a measuring device that irradiates ultrasonic waves to the.

[2]超音波探触子を用いた液膜破断割合測定について
本発明に係る超音波探触子を用いた液膜破断割合測定方法の基本的な概念について、図1(B)〜(D)を例示して説明する。図1(A)に例示する測定デバイスが用いられ、超音波探触子Bから膜厚sの液膜Aに対して超音波が照射されたとき、以下のような技術効果を得ることができる。
[2−1]図1(B),(C)に例示するように、壁面Caに配設された超音波探触子(図示せず)から発信された超音波は、壁面Caと液膜Aの境界面において反射するとともに、その一部は液膜Aに入射する。液膜A中を伝播した超音波は、液膜Aと壁面Cbの境界面において反射するとともに、一部は壁面Cbに入射する。液膜Aと壁面Cbの境界面において反射した超音波は、液膜Aを通過し液膜Aと壁面Caの境界面において再度反射するとともに、一部は壁面Caに入射する。このとき、壁面Caに入射し壁面Caを透過した反射波は、超音波探触子Bで受信される。
その受信された超音波の強度は、図1(B),(C)に例示するように、
(1a)液膜Aに対して超音波が照射された領域(Ao)を基準とすると、
(1b)その領域Ao内において気泡あるいは液膜破断が発生した領域(A)の割合(破断割合)が少量の場合(図中の例では液膜破断α=0.2)には、壁面Caと破断した液膜Aの境界面において発生する反射波が増大することから超音波探触子Bに受信される超音波の強度は上昇し、
(1c)液膜A内に大きな気泡あるいは液膜破断が発生した場合(図中の例では液膜破断α=0.8)には、壁面Caと破断した液膜Aの境界面において発生する反射波が大きく増大することから超音波探触子Bに受信される超音波の強度は大きく上昇する。
[2−2]このとき、測定された超音波の強度と液膜破断割合αとの相関は、図1(D)に例示するように、液膜破断割合αの増大に伴い超音波の強度が増大する傾向がある。図1(D)においては、超音波の強度について、壁面Ca,Cb間に液膜Aが存在しない状態(液膜破断割合α=1)で超音波探触子Bによって受信された超音波のエコー高さhoを基準に、液膜の実測条件で受信された超音波のエコー高さhを正規化し、液膜破断割合α=1のエコー高さhoと実測状態のエコー高さhの比h/ho(以下「音圧比H」という)として表した。
[2−3]また、図1(D)に例示するように、測定された超音波の強度(音圧比H)は、液膜破断割合αとともに膜厚s双方の影響を受ける。
ただし、後述するように、所定の条件においては、膜厚sに依存せずに「測定された超音波の強度(音圧比H)を基に液膜破断割合αを測定することができる。
[2] Measurement of Liquid Film Breakage Ratio Using Ultrasonic Probe Regarding the basic concept of the liquid film breakage ratio measuring method using the ultrasonic probe according to the present invention, FIGS. ) Will be described as an example. When the measuring device illustrated in FIG. 1A is used and the ultrasonic wave is applied from the ultrasonic probe B to the liquid film A having the film thickness s, the following technical effects can be obtained. ..
[2-1] As illustrated in FIGS. 1B and 1C, the ultrasonic waves transmitted from the ultrasonic probe (not shown) arranged on the wall surface Ca are the same as the wall surface Ca and the liquid film. The light is reflected at the boundary surface of A and a part of the light is incident on the liquid film A. The ultrasonic waves that have propagated in the liquid film A are reflected at the boundary surface between the liquid film A and the wall surface Cb, and part of them are incident on the wall surface Cb. The ultrasonic waves reflected at the boundary surface between the liquid film A and the wall surface Cb pass through the liquid film A, are reflected again at the boundary surface between the liquid film A and the wall surface Ca, and partly enter the wall surface Ca. At this time, the reflected wave that has entered the wall surface Ca and transmitted through the wall surface Ca is received by the ultrasonic probe B.
The intensity of the received ultrasonic wave is, as illustrated in FIGS. 1(B) and (C),
(1a) Based on the area (Ao) where the liquid film A is irradiated with ultrasonic waves,
(1b) in the area where bubbles or liquid film breaking occurred within its area Ao If the ratio of (A B) (rupture ratio) of a small amount (liquid film rupture alpha = 0.2 in the example in the figure), the wall Since the reflected wave generated at the interface between Ca and the broken liquid film A increases, the intensity of the ultrasonic wave received by the ultrasonic probe B increases,
(1c) When a large bubble or liquid film breakage occurs in the liquid film A (liquid film breakage α=0.8 in the example in the figure), it occurs at the boundary surface between the wall surface Ca and the broken liquid film A. Since the reflected wave greatly increases, the intensity of the ultrasonic wave received by the ultrasonic probe B greatly increases.
[2-2] At this time, the correlation between the measured ultrasonic wave intensity and the liquid film breakage ratio α is such that, as illustrated in FIG. 1D, the ultrasonic wave intensity increases as the liquid film breakage ratio α increases. Tends to increase. In FIG. 1D, regarding the intensity of the ultrasonic wave, the ultrasonic wave received by the ultrasonic probe B in the state where the liquid film A does not exist between the wall surfaces Ca and Cb (liquid film breakage ratio α=1) is shown. The echo height h of the ultrasonic waves received under the actual measurement conditions of the liquid film is normalized with reference to the echo height ho, and the ratio of the echo height ho of the liquid film breakage ratio α=1 to the measured echo height h It was expressed as h/ho (hereinafter referred to as "sound pressure ratio H").
[2-3] Further, as illustrated in FIG. 1D, the measured ultrasonic wave intensity (sound pressure ratio H) is affected by both the liquid film breakage ratio α and the film thickness s.
However, as described later, under a predetermined condition, the liquid film breakage ratio α can be measured based on “the measured ultrasonic wave intensity (sound pressure ratio H)” without depending on the film thickness s.

[3]発信する超音波の周波数と液膜破断割合測定について
超音波探触子を用いた液膜破断割合測定方法の検証過程において、具体的な測定条件として、
(3a)壁面Ca,Cbが同じ材質であること
(3b)膜厚sが30μm以下であること
(3c)複数の周波数の超音波を照射し、その「音圧比−周波数」特性を特定すること
を具備する場合は、膜厚sに依存せずに「測定された超音波の強度(音圧比H)−発信された超音波の周波数」特性を基に、液膜破断割合αを測定することができるとの知見を得た。
つまり、発信された超音波が、壁面Ca−液膜A−壁面Cbに入射されたとき、極低周波の超音波の波長は膜厚sに比べて極めて長く、気泡あるいは液膜破断のない液膜Aに入射された超音波の殆ど全てが液膜Aを透過して壁面Cbに入射される。入射された超音波は、同じ材質の壁面Ca,Cbと液膜Aとの境界面において反射され、その反射波の強度は、超音波の照射領域内の液膜破断割合(気泡含有率)に依存し、膜厚sには依存しない。
[3] About the frequency of the ultrasonic wave to be transmitted and the liquid film breakage ratio measurement In the verification process of the liquid film breakage ratio measurement method using the ultrasonic probe, as specific measurement conditions,
(3a) The wall surfaces Ca and Cb are made of the same material (3b) The film thickness s is 30 μm or less (3c) Ultrasonic waves of a plurality of frequencies are irradiated and the “sound pressure ratio-frequency” characteristic is specified. In the case of including, the liquid film breakage ratio α should be measured based on the characteristics of “measured ultrasonic wave intensity (sound pressure ratio H)-transmitted ultrasonic wave frequency” without depending on the film thickness s. We obtained the knowledge that
That is, when the transmitted ultrasonic wave is incident on the wall surface Ca-the liquid film A-the wall surface Cb, the wavelength of the ultrasonic wave of extremely low frequency is extremely longer than the film thickness s, and liquid without bubble or liquid film breakage. Almost all of the ultrasonic waves incident on the film A pass through the liquid film A and enter the wall surface Cb. The incident ultrasonic waves are reflected at the boundary surface between the wall surfaces Ca and Cb of the same material and the liquid film A, and the intensity of the reflected wave is determined by the liquid film breakage ratio (bubble content ratio) in the ultrasonic irradiation region. And does not depend on the film thickness s.

具体的には、図1(A)に例示する測定デバイスを用いて壁面Cbに向けて複数の周波数の超音波が発信された場合、壁面Cbと液膜Aとの境界面において反射されて超音波探触子に受信された超音波について、膜厚sの変化や液膜破断領域(A)の存在に伴う該超音波の音圧比(エコー高さ比)の変化を測定すると、図2(A)〜(C)に例示するような「周波数f−音圧比H−膜厚s−液膜破断割合α」特性が得られる。ここで、
[3−1]測定結果を基に「音圧比H−膜厚s−周波数f」特性を、図2(D)に例示する。測定された音圧比Hは、極低周波数(図中では0.01MHz)では殆ど膜厚sに依存しない、との知見を得ることができる。
[3−2]得られた「周波数f−音圧比H−膜厚s−液膜破断割合α」特性を基に、各膜厚s,液膜破断割合αについての「周波数f−音圧比H」特性に対し、例えば多次関数を用いて周波数ゼロ条件の音圧比(Ha:「周波数f−音圧比H」特性の切片〈f=0ときの音圧比〉に相当する)を求める。
[3−3]得られた音圧比Haを基に、「音圧比Ha−液膜破断割合α−膜厚s」特性として纏めると、図2(E)に例示するように、液膜破断割合α≒音圧比Haとなる相関領域がある。
[3−4]複数の周波数の超音波を発信して測定された音圧比Hについて、「周波数f−音圧比H」特性を求め、周波数ゼロ条件の音圧比Haを推算することによって、膜厚sに依存せずに(膜厚sの測定が不要)「音圧比Ha−液膜破断割合α」特性(例えば液膜破断割合α=音圧比Ha)を基に、液膜破断割合αを測定することができる。
Specifically, when ultrasonic waves having a plurality of frequencies are emitted toward the wall surface Cb using the measuring device illustrated in FIG. 1A, the ultrasonic waves are reflected at the boundary surface between the wall surface Cb and the liquid film A and are superposed. As for the ultrasonic wave received by the ultrasonic probe, the change in the sound pressure ratio (echo height ratio) of the ultrasonic wave due to the change in the film thickness s and the existence of the liquid film rupture region (A B ) is measured. The characteristics of “frequency f-sound pressure ratio H-film thickness s-liquid film breakage ratio α” as illustrated in (A) to (C) are obtained. here,
[3-1] The "sound pressure ratio H-film thickness s-frequency f" characteristic is illustrated in FIG. 2D based on the measurement results. It is possible to obtain the knowledge that the measured sound pressure ratio H hardly depends on the film thickness s at an extremely low frequency (0.01 MHz in the figure).
[3-2] Based on the characteristics of "frequency f-sound pressure ratio H-film thickness s-liquid film breakage ratio α", "frequency f-sound pressure ratio H" for each film thickness s and liquid film breakage ratio α is obtained. With respect to the characteristic, a sound pressure ratio (corresponding to the intercept <the sound pressure ratio at f=0> of the Ha: “frequency f-sound pressure ratio H” characteristic) is obtained by using, for example, a multi-dimensional function.
[3-3] Based on the obtained sound pressure ratio Ha, when summarized as “sound pressure ratio Ha-liquid film breakage ratio α-film thickness s” characteristics, as shown in FIG. There is a correlation region where α≈sound pressure ratio Ha.
[3-4] For the sound pressure ratio H measured by transmitting ultrasonic waves of a plurality of frequencies, the "frequency f-sound pressure ratio H" characteristic is obtained, and the sound pressure ratio Ha under the frequency zero condition is estimated to obtain the film thickness. The liquid film breakage ratio α is measured based on the “sound pressure ratio Ha−liquid film breakage ratio α” characteristic (for example, liquid film breakage ratio α=sound pressure ratio Ha) without depending on s (measurement of film thickness s). can do.

このとき、測定条件(3a)〜(3c)は以下のような意義を有する。
(3a)壁面Ca,Cbが同じ材質であること
発信された超音波が壁面Ca−液膜A−壁面Cbに入射されたとき、壁面Caと液膜Aおよび壁面Cbと液膜Aとの境界面における反射特性が同じであり、音圧比は液膜破断割合と一意的な関係を示し、超音波測定に影響を及ぼさない。つまり、壁面Ca,Cbが異なる材質の場合、破断割合αの変化に伴い壁面Caと液膜Aおよび壁面Cbと液膜Aとの境界面における反射特性が変わるため、音圧比と液膜破断割合との一意的な関係が得られなくなる。同材質に限定することで、こうした不確定要因を排除することができる。
(3b)膜厚sが30μm以下であること
液膜の測定に使用される超音波の周波数fは0.5〜100MHzであり、このとき膜厚sが30μmを超えると低周波領域(長波長領域)の超音波の液膜A内での多重反射成分の発生や壁面Ca,Cbと液膜Aとの境界面での反射特性に影響を与えることがあり、液膜破断割合α≒音圧比Haとの相関が成立しない。膜厚sが30μm以下の場合、こうした影響を殆ど受けることがなく、液膜破断割合α≒音圧比Haが成立する。
(3c)複数の周波数の超音波を照射し、その「音圧比−周波数」特性を特定すること
上記のように、本発明においては、極低周波の超音波が液膜Aに入射された場合の、測定される音圧比Hが膜厚sに依存せずに液膜破断割合と相関する特性を利用する。このとき測定対象に対する「音圧比−周波数」特性を特定するためには、複数の周波数の超音波を照射した時の音圧比Hが必要となる。また、測定に用いる超音波の周波数は、低周波域において約0.5MHzが限界であり、それ以下では外乱を含むノイズの影響を受け、実測精度を確保することが難しい。
At this time, the measurement conditions (3a) to (3c) have the following meanings.
(3a) The wall surfaces Ca and Cb are the same material. When the transmitted ultrasonic waves are incident on the wall surface Ca-the liquid film A-the wall surface Cb, the boundary between the wall surface Ca and the liquid film A and between the wall surface Cb and the liquid film A. The reflection characteristics on the surface are the same, the sound pressure ratio shows a unique relationship with the liquid film breakage ratio, and does not affect the ultrasonic measurement. That is, when the wall surfaces Ca and Cb are different materials, the reflection characteristics at the boundary surface between the wall surface Ca and the liquid film A and between the wall surface Cb and the liquid film A change with the change of the breakage ratio α, so that the sound pressure ratio and the liquid film breakage ratio. No longer has a unique relationship with. By limiting to the same material, such an uncertain factor can be eliminated.
(3b) The film thickness s is 30 μm or less The frequency f of the ultrasonic wave used for measuring the liquid film is 0.5 to 100 MHz, and when the film thickness s exceeds 30 μm, the low frequency region (long wavelength) Area), which may affect the generation of multiple reflection components in the liquid film A and the reflection characteristics at the boundary surface between the wall surfaces Ca and Cb and the liquid film A. Correlation with Ha is not established. When the film thickness s is 30 μm or less, there is almost no such influence, and the liquid film breakage ratio α≈sound pressure ratio Ha is established.
(3c) Irradiating ultrasonic waves of a plurality of frequencies and specifying the "sound pressure ratio-frequency" characteristic thereof. As described above, in the present invention, when extremely low frequency ultrasonic waves are incident on the liquid film A. The property that the measured sound pressure ratio H correlates with the liquid film breakage ratio without depending on the film thickness s is used. At this time, in order to specify the “sound pressure ratio-frequency” characteristic with respect to the measurement target, the sound pressure ratio H when ultrasonic waves of a plurality of frequencies are applied is required. Further, the frequency of ultrasonic waves used for measurement is limited to about 0.5 MHz in the low frequency range, and below that, it is difficult to secure the measurement accuracy due to the influence of noise including disturbance.

<本発明に係る第1の液膜破断割合測定方法について>
本発明に係る第1の液膜破断割合測定方法は、薄層の液膜を介して対向する2つの同じ材質の固体の壁面のいずれか1の壁面Caに、少なくとも1の超音波探触子が配設された測定デバイスを用い、前記両壁面Ca,Cbの間(膜厚)が30μm以下の場合において、
(A1)該超音波探触子から他の壁面Cbに向けて発信された複数の周波数の超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、該膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B1)測定された該音圧hについて、予め前記超音波探触子から発信された複数の周波数の超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
(C1)測定に用いられた周波数および設定された音圧比Hから得られた「周波数−音圧比」特性を基に、周波数ゼロ条件の音圧比Haを推算または実測する
(D1)該音圧比Haを用い、[周波数ゼロ条件における「音圧比Ha−液膜破断割合」特性を基に、液膜破断割合を測定する。
具体的には、壁面Ca,Cbを構成する2つの固体が同じ材質であり、膜厚が30μm以下の場合において、測定デバイスとして図1(A)に例示する構成を用い、以下の態様によって、実測された「周波数−音圧比」特性を基に推算(実測)された周波数ゼロ条件の音圧比Haから、精度よく液膜破断割合αを測定することができる。
<Regarding the first liquid film breakage ratio measuring method according to the present invention>
The first liquid film rupture ratio measuring method according to the present invention is provided with at least one ultrasonic probe on any one wall surface Ca of two solid walls of the same material which face each other with a thin liquid film interposed therebetween. Using a measuring device in which the space (film thickness) between both wall surfaces Ca and Cb is 30 μm or less,
(A1) Ultrasonic waves of a plurality of frequencies transmitted from the ultrasonic probe toward another wall surface Cb are reflected by the boundary surface between the wall surface Cb and the liquid film and received by the ultrasonic probe. Then, the change in the sound pressure h (echo height) of the ultrasonic wave due to the change in the film thickness or the presence of the liquid film breakage is measured (B1), for the measured sound pressure h, the ultrasonic probe is performed in advance. The normalized sound pressure ratio H (=h/ho) based on the sound pressure ho measured in the void state where there is no liquid film between both wall surfaces Ca and Cb for ultrasonic waves of a plurality of frequencies transmitted from the child. ) Is set (C1) Based on the "frequency-sound pressure ratio" characteristic obtained from the frequency used for the measurement and the set sound pressure ratio H, the sound pressure ratio Ha under the frequency zero condition is estimated or actually measured (D1). Using the sound pressure ratio Ha, the liquid film breakage ratio is measured based on the characteristic of “sound pressure ratio Ha-liquid film breakage ratio under zero frequency condition”.
Specifically, when the two solids forming the wall surfaces Ca and Cb are the same material and the film thickness is 30 μm or less, the configuration illustrated in FIG. The liquid film breakage ratio α can be accurately measured from the sound pressure ratio Ha under the zero frequency condition estimated (measured) based on the actually measured “frequency-sound pressure ratio” characteristic.

(A1)該超音波探触子から他の壁面Cbに向けて発信された複数の周波数の超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、該膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B1)測定された該音圧hについて、予め前記超音波探触子から発信された複数の周波数の超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
ここで用いる超音波探触子Bは、複数の周波数の超音波を発信・受信可能であればその態様は問わない。具体的には、例えば、
(i)複数の超音波探触子B1,B2,B3・・が、測定対象となる液膜Aの特定領域に対して焦点が定められて超音波が入射できるように壁面Caに設けられた構成、
(ii)所定の短時間(数msecまたは数μsec等)で順次異なる周波数の超音波が発信される1の超音波探触子Bが用いられる構成、
等々を用いることができる。
また、測定に用いる超音波の周波数fは、低周波域において約0.5MHzが限界であり、外乱を含むノイズの影響を受けない周波数領域を用いて実測精度を確保することが好ましい。例えば1MHz以上50MHz以内の3以上の周波数での推算または実測が好ましい。
このとき、測定された該音圧hについて、液膜の破断状態(両壁面Ca,Cbの間に液膜のない空隙状態)において測定された音圧hoを基に正規化した音圧比H(=h/ho)を設定することによって、明確な基準により測定値を比較・検証することができる。
(A1) Ultrasonic waves of a plurality of frequencies transmitted from the ultrasonic probe toward another wall surface Cb are reflected by the boundary surface between the wall surface Cb and the liquid film and received by the ultrasonic probe. Then, the change in the sound pressure h (echo height) of the ultrasonic wave due to the change in the film thickness or the presence of the liquid film breakage is measured (B1), for the measured sound pressure h, the ultrasonic probe is performed in advance. The normalized sound pressure ratio H (=h/ho) based on the sound pressure ho measured in the void state where there is no liquid film between both wall surfaces Ca and Cb for ultrasonic waves of a plurality of frequencies transmitted from the child. ), the ultrasonic probe B used here does not matter as long as it can transmit and receive ultrasonic waves of a plurality of frequencies. Specifically, for example,
(I) A plurality of ultrasonic probes B1, B2, B3... Are provided on the wall surface Ca so that ultrasonic waves can be incident on a specific region of the liquid film A to be measured with a focus. Constitution,
(Ii) A configuration in which one ultrasonic probe B is used which sequentially emits ultrasonic waves of different frequencies in a predetermined short time (several msec or several μsec),
Etc. can be used.
Further, the frequency f of the ultrasonic wave used for measurement has a limit of about 0.5 MHz in the low frequency range, and it is preferable to ensure the measurement accuracy by using the frequency range that is not affected by noise including disturbance. For example, estimation or actual measurement at 3 or more frequencies within a range of 1 MHz to 50 MHz is preferable.
At this time, with respect to the measured sound pressure h, the sound pressure ratio H (normalized based on the sound pressure ho measured in the fractured state of the liquid film (a void state without the liquid film between both wall surfaces Ca and Cb)) =h/ho), the measured values can be compared and verified by a clear standard.

(C1)測定に用いられた周波数および設定された音圧比Hから得られた「周波数−音圧比」特性を基に、周波数ゼロ条件の音圧比Haを推算または実測する。
具体的には、測定に用いられた周波数および上記(B1)によって設定された音圧比Hを基に、例えば多次関数を用いて「周波数−音圧比」特性を設定する。例えば、図2(A)〜(C)に例示するような膜厚s=2,5,10における「周波数f−音圧比H」特性について、多次関数として例えば、5次関数「H(f)=af+bf+cf+df+ef+Ha」を用い、周波数ゼロ条件の音圧比Haを推算することができる。また、用いる周波数を「周波数ゼロ条件」に近い、例えば0.5MHzとし、実測した音圧から「周波数ゼロ近傍の」音圧比Haとすることができる。例えば、図2(A)〜(C)に例示する各膜厚sに対応する「周波数−音圧比」特性を基にした場合には、図2(A)(s=2μm)からは液膜破断割合α=1,0.7,0.5,0.2および0の場合の音圧比Haは、それぞれ1,約0.65,約0.4,約0.15および0となる。図2(B)(s=5μm)および図2(C)(s=10μm)について同様に推算した結果を纏めると、図2(E)に例示する「音圧比Ha−液膜破断割合」特性を得ることができる。
(C1) The sound pressure ratio Ha under the frequency zero condition is estimated or actually measured based on the “frequency-sound pressure ratio” characteristic obtained from the frequency used for the measurement and the set sound pressure ratio H.
Specifically, based on the frequency used for measurement and the sound pressure ratio H set by the above (B1), a "frequency-sound pressure ratio" characteristic is set using, for example, a multi-order function. For example, regarding the “frequency f-sound pressure ratio H” characteristic in the film thickness s=2, 5, 10 as illustrated in FIGS. 2A to 2C, for example, a quintic function “H(f )=af 5 +bf 4 +cf 3 +df 2 +ef+Ha”, the sound pressure ratio Ha under the frequency zero condition can be estimated. Further, the frequency to be used can be set close to the “frequency zero condition”, for example, 0.5 MHz, and the sound pressure ratio Ha can be set to “near the frequency zero” from the actually measured sound pressure. For example, when the “frequency-sound pressure ratio” characteristic corresponding to each film thickness s illustrated in FIGS. 2(A) to (C) is used as the basis, the liquid film starts from FIG. 2(A) (s=2 μm). The sound pressure ratio Ha in the case of the breakage ratio α=1, 0.7, 0.5, 0.2 and 0 is 1, about 0.65, about 0.4, about 0.15 and 0, respectively. 2(B) (s=5 μm) and FIG. 2(C) (s=10 μm) are summarized in the same manner, the characteristics of “sound pressure ratio Ha-liquid film breakage ratio” illustrated in FIG. Can be obtained.

(D1)該音圧比Haを用い、[周波数ゼロ条件における「音圧比Ha−液膜破断割合」特性を基に、液膜破断割合を測定する。
具体的には、上記(C1)において得られた周波数ゼロ条件における「音圧比Ha−液膜破断割合」特性に実測の音圧hから推算または実測された音圧比Haを適用することによって液膜破断割合αを測定することができる。このとき、例えば図2(E)に例示された特性において、音圧比Ha≒液膜破断割合αとなる領域において測定する場合には、得られた音圧比Haに対応する液膜破断割合αを、測定領域において測定された「液膜破断割合」とすることができる。
このように、以上の測定方法においては、測定される被膜領域の膜厚sは変動要素として全く関与せず、膜厚sに依存せずに「液膜破断割合」を測定することが可能となる。こうした測定方法によって、測定対象となる液膜に接することなく、簡便な構成で、固体壁面間に存在する薄層の液膜の連続測定が可能で、精度が高く、かつ操作性が良く汎用性の高い、壁面間に存在する液膜の破断割合測定方法を提供することが可能となった。
(D1) Using the sound pressure ratio Ha, the liquid film breakage ratio is measured based on the characteristic of “sound pressure ratio Ha-liquid film breakage ratio under frequency zero condition”.
Specifically, the liquid film is obtained by applying the sound pressure ratio Ha estimated or actually measured from the actually measured sound pressure h to the “sound pressure ratio Ha-liquid film breakage ratio” characteristic in the frequency zero condition obtained in (C1) above. The breakage rate α can be measured. At this time, in the characteristic illustrated in FIG. 2(E), for example, when measuring in a region where the sound pressure ratio Ha is equal to the liquid film breakage ratio α, the liquid film breakage ratio α corresponding to the obtained sound pressure ratio Ha is calculated. The “liquid film breakage ratio” measured in the measurement area can be used.
As described above, in the above measuring method, the film thickness s of the film region to be measured is not involved as a variable factor at all, and the “liquid film breakage ratio” can be measured without depending on the film thickness s. Become. With such a measuring method, it is possible to continuously measure a thin liquid film existing between solid wall surfaces without contacting the liquid film to be measured, with a simple structure, and with high accuracy, good operability and versatility. It has become possible to provide a method of measuring the breakage ratio of a liquid film existing between wall surfaces, which has a high degree of breakage.

<本発明に係る第2の液膜破断割合測定方法について>
上記の第1液膜破断割合測定方法における測定条件(3b)が充足されない場合は、測定された超音波の強度(音圧比H)は、液膜破断割合αと膜厚sの双方の影響を受けることから、測定デバイスとして、薄層の液膜を介して対向する2つの固体の壁面のいずれか1の壁面Caに、少なくとも1の超音波探触子と少なくとも1の渦流深傷用プローブが配設された測定デバイスを用いることが好ましい。つまり、本発明に係る第2の液膜破断割合測定方法は、該測定デバイスを用い、
(A2)該超音波探触子から他の壁面Cbに向けて発信された超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、該膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B2)測定された該音圧hについて、予め前記超音波探触子から発信された超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
(E2)渦流深傷用プローブにおいて誘起された磁界によって生じる前記壁面Cbにおける渦流を起因とするインダクタンス変化量を基に前記膜厚を測定する
(F2)予め液膜破断のない液膜および既知の液膜破断状態における膜厚の変化に伴う音圧比の変量を推算または実測し、「膜厚−音圧比−液膜破断割合」特性を設定する
(C2)該設定された「膜厚−音圧比−液膜破断割合」特性を基に、測定された膜厚における「音圧比−液膜破断割合」特性を特定する
(D2)特定された「音圧比−液膜破断割合」特性を基に、測定された音圧比を用いて液膜破断割合を測定する。
具体的には、測定デバイスとして図3に例示する構成を用い、以下の態様によって、渦流深傷用プローブDを用いて測定された膜厚と、超音波探触子Bによって測定された音圧比から、予め設定された「膜厚−音圧比−液膜破断割合」特性を基に、精度よく液膜破断割合αを測定することができる。このとき、超音波探触子Bとして、単一の周波数の超音波を発信する超音波振動子を有する探触子を用いることができる。
<Regarding the second liquid film breakage ratio measuring method according to the present invention>
When the measurement condition (3b) in the first liquid film breakage ratio measurement method is not satisfied, the measured ultrasonic wave intensity (sound pressure ratio H) affects both the liquid film breakage ratio α and the film thickness s. Therefore, as a measuring device, at least one ultrasonic probe and at least one eddy current deep wound probe are provided on any one wall surface Ca of the two solid surfaces facing each other through the thin liquid film. Preference is given to using arranged measuring devices. That is, the second liquid film breakage ratio measuring method according to the present invention uses the measuring device,
(A2) The ultrasonic wave transmitted from the ultrasonic probe toward another wall surface Cb is reflected by the boundary surface between the wall surface Cb and the liquid film and is received by the ultrasonic probe, The change in the sound pressure h (echo height) of the ultrasonic wave due to the change in thickness and the presence of the liquid film breakage is measured (B2) The measured sound pressure h is transmitted from the ultrasonic probe in advance. The normalized sound pressure ratio H (=h/ho) is set on the basis of the sound pressure ho measured in a void state where there is no liquid film between both wall surfaces Ca and Cb for the ultrasonic wave (E2) vortex flow The film thickness is measured based on the amount of inductance change caused by the vortex flow on the wall surface Cb generated by the magnetic field induced in the probe for deep wound (F2) Liquid film without liquid film breakage in advance and known liquid film breakage state The variation of the sound pressure ratio due to the change of the film thickness in is calculated or measured, and the "film thickness-sound pressure ratio-liquid film breakage ratio" characteristic is set (C2). The set "film thickness-sound pressure ratio-liquid film breakage". The "sound pressure ratio-liquid film breakage ratio" characteristic in the measured film thickness is specified based on the "proportion" property (D2) The sound measured based on the specified "sound pressure ratio-liquid film breakage ratio" property The liquid film breakage ratio is measured using the pressure ratio.
Specifically, using the configuration illustrated in FIG. 3 as a measuring device, the film thickness measured using the eddy current deep-drowning probe D and the sound pressure ratio measured by the ultrasonic probe B according to the following mode. Therefore, the liquid film breakage ratio α can be accurately measured based on the preset “film thickness-sound pressure ratio-liquid film breakage ratio” characteristic. At this time, as the ultrasonic probe B, it is possible to use a probe having an ultrasonic transducer that transmits an ultrasonic wave of a single frequency.

図3に例示するように、壁面Caに、超音波探触子Bと渦流深傷用プローブDが配設された測定デバイスが用いられる。
(A2)該超音波探触子から他の壁面Cbに向けて発信された超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、該膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B2)測定された該音圧hについて、予め前記超音波探触子から発信された超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
(E2)渦流深傷用プローブにおいて誘起された磁界によって生じる前記壁面Cbにおける渦流を起因とするインダクタンス変化量を基に前記膜厚を測定する
ここで、渦流深傷用プローブDとしては、対向する2つの固体の壁面のいずれか1の壁面Caに配置され、その出力の取り出し可能な構成を有するデバイスであれば、特に限定されない。また、図3では、超音波探触子Bと渦流深傷用プローブDが同心状に一体化して配設された構成が例示する。渦流深傷用プローブ中央に中空部が設けられ、該中空部に前記超音波探触子が挿入されて一体として形成された測定デバイスを用いることによって、測定対象となる液膜Aの測定領域のずれをなくすことができ、コンパクト化することができる。ただし、これに限定されるものではなく、測定対象となる液膜Aに対してそれぞれの測定領域のずれがないように両者を別々に配設することも可能である。複数の超音波探触子Bを用いる場合においても、例えば同心円状に配置された発信周波数の異なる超音波振動子を有する超音波探触子Bを用い、測定領域のずれをなくすことができれば同様である。
As illustrated in FIG. 3, a measuring device in which the ultrasonic probe B and the eddy current deep wound probe D are arranged on the wall surface Ca is used.
(A2) The ultrasonic wave transmitted from the ultrasonic probe toward another wall surface Cb is reflected by the boundary surface between the wall surface Cb and the liquid film and is received by the ultrasonic probe, The change in the sound pressure h (echo height) of the ultrasonic wave due to the change in thickness and the presence of the liquid film breakage is measured (B2) The measured sound pressure h is transmitted from the ultrasonic probe in advance. The normalized sound pressure ratio H (=h/ho) is set on the basis of the sound pressure ho measured in a void state where there is no liquid film between both wall surfaces Ca and Cb for the ultrasonic wave (E2) vortex flow The film thickness is measured based on the amount of inductance change caused by the vortex flow on the wall surface Cb generated by the magnetic field induced in the deep wound probe. Here, the eddy current deep wound probe D includes two facing solids. The device is not particularly limited as long as it is a device that is arranged on any one of the wall surfaces Ca and has a configuration capable of taking out its output. Further, FIG. 3 illustrates a configuration in which the ultrasonic probe B and the eddy current deep wound probe D are concentrically integrated and arranged. By using a measuring device in which a hollow portion is provided in the center of the eddy current deep wound probe and the ultrasonic probe is inserted into the hollow portion to form a unit, the measurement area of the liquid film A to be measured is measured. The shift can be eliminated and the device can be made compact. However, the present invention is not limited to this, and it is also possible to dispose the liquid film A to be measured separately so that there is no deviation of each measurement region. Even in the case of using a plurality of ultrasonic probes B, for example, if the ultrasonic probes B having concentrically arranged ultrasonic transducers having different oscillation frequencies are used and the displacement of the measurement region can be eliminated, the same is true. Is.

(F2)予め液膜破断のない液膜および既知の液膜破断状態における膜厚の変化に伴う音圧比の変量を推算または実測し、「膜厚−音圧比−液膜破断割合」特性を設定する。
具体的には、本測定デバイスについて、予め「膜厚−音圧比−液膜破断割合」特性を推算または実測して、図1(E)に例示するような「膜厚−音圧比−液膜破断割合」特性を設定する。また、この「膜厚−音圧比−液膜破断割合」特性を、各要素についての多次関数として近似して設定することが好適である。実測時の誤差要因を平準化するとともに、適正な特性を設定することができる。
(F2) Estimate or actually measure the variation of the sound pressure ratio associated with the change in film thickness in a liquid film without liquid film breakage or a known liquid film breakage state, and set the "film thickness-sound pressure ratio-liquid film breakage ratio" characteristic To do.
Specifically, for this measuring device, the “film thickness-sound pressure ratio-liquid film breakage ratio” characteristic is estimated or actually measured in advance, and “film thickness-sound pressure ratio-liquid film” as illustrated in FIG. Set the break rate property. In addition, it is preferable to set the "thickness-sound pressure ratio-liquid film breakage ratio" characteristic by approximating it as a multi-dimensional function for each element. It is possible to level error factors during actual measurement and set appropriate characteristics.

(C2)設定された「膜厚−音圧比−液膜破断割合」特性を基に、測定された膜厚における「音圧比−液膜破断割合」特性を特定する。
具体的には、例えば測定された膜厚s=20μmの場合、図1(D)に例示するような特性曲線を特定する。図1(D)には、膜厚s=5,20μmの場合のみの特性曲線が例示されているが、むろん連続した膜厚sに対応した特性曲線が準備され、変動する測定対象となる液膜Aの条件に合致した特性曲線を特定できるようにすることが好ましい。また、こうした特性曲線を、膜厚sおよび音圧比Hを変動要素とする多元多次関数とすることによって、迅速に適切な「音圧比−液膜破断割合」特性を特定することが可能となる。
(C2) Based on the set "film thickness-sound pressure ratio-liquid film breakage ratio" characteristic, the "sound pressure ratio-liquid film breakage ratio" property in the measured film thickness is specified.
Specifically, for example, when the measured film thickness s=20 μm, the characteristic curve illustrated in FIG. 1D is specified. In FIG. 1(D), the characteristic curve is illustrated only when the film thickness s=5, 20 μm, but of course, a characteristic curve corresponding to the continuous film thickness s is prepared and the liquid to be measured that fluctuates is measured. It is preferable to be able to specify a characteristic curve that matches the conditions of the film A. In addition, by using such a characteristic curve as a multidimensional polynomial function having the film thickness s and the sound pressure ratio H as variable elements, it is possible to quickly specify an appropriate “sound pressure ratio-liquid film breakage ratio” characteristic. ..

(D2)特定された「音圧比−液膜破断割合」特性を基に、測定された音圧比を用いて液膜破断割合を測定する。
具体的には、例えば測定された膜厚s=20μmであって、測定された音圧比Hが0.7の場合、図1(D)に例示するような「膜厚−音圧比−液膜破断割合」特性から、測定された液膜破断割合α≒0.4が得られる。特性曲線を関数として特定された場合においても、変数として測定された膜厚sおよび音圧比Hを適用することによって、測定対象となる液膜に接することなく、簡便な構成で、固体壁面間に存在する薄層の液膜の連続測定が可能で、精度が高く、かつ操作性が良く汎用性の高い、壁面間に存在する液膜の破断割合測定方法を提供することが可能となった。
(D2) Based on the specified “sound pressure ratio-liquid film breakage ratio” characteristic, the liquid film breakage ratio is measured using the measured sound pressure ratio.
Specifically, for example, when the measured film thickness s=20 μm and the measured sound pressure ratio H is 0.7, “film thickness-sound pressure ratio-liquid film” as illustrated in FIG. From the "breakage ratio" characteristic, the measured liquid film breakage ratio α≈0.4 is obtained. Even when the characteristic curve is specified as a function, by applying the film thickness s and the sound pressure ratio H that are measured as variables, a simple structure can be provided between the solid wall surfaces without contacting the liquid film to be measured. It has become possible to provide a method for measuring the breakage ratio of a liquid film existing between wall surfaces, which enables continuous measurement of an existing thin liquid film, has high accuracy, is easy to operate, and is highly versatile.

<本発明に係る第3の液膜破断割合測定方法について>
上記の第1液膜破断割合測定方法における測定条件(3b)が充足されない場合、本発明に係る第3の液膜破断割合測定方法を用いることができる。つまり、測定された超音波の強度(音圧比H)は、液膜破断割合αとともに膜厚s双方の影響を受けることから、測定デバイスとして、薄層の液膜を介して対向する2つの固体の壁面のいずれか1の壁面Caに、少なくとも1の超音波探触子と少なくとも1の渦流深傷用プローブが配設された測定デバイスを用い、
(A1)該超音波探触子から他の壁面Cbに向けて発信された複数の周波数の超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、該膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B1)測定された該音圧hについて、予め前記超音波探触子から発信された複数の周波数の超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
(E2)渦流深傷用プローブにおいて誘起された磁界によって生じる前記壁面Cbにおける渦流を起因とするインダクタンス変化量を基に前記膜厚を測定する
(F3)予め前記超音波探触子から発信された複数の周波数の超音波に対して、液膜破断のない液膜および既知の液膜破断状態における膜厚の変化に伴う音圧比の変量を推算または実測し、「膜厚−周波数−音圧比−液膜破断割合」特性を設定する
(C3)該設定された「膜厚−周波数−音圧比−液膜破断割合」特性を基に、測定された膜厚を用いて「周波数−音圧比−液膜破断割合」特性を特定する
(D3)特定された「周波数−音圧比−液膜破断割合」特性を基に、測定に用いられた周波数およびその時に測定された音圧比を用いて液膜破断割合を測定する。
具体的には、測定デバイスとして図3に例示する構成を用い、以下の態様によって、測定された膜厚と、測定された複数の周波数の超音波に対する音圧比から、予め設定された「膜厚−周波数−音圧比−液膜破断割合」特性を基に、精度よく液膜破断割合αを測定することができる。なお、上記第1または第2の測定方法と同様の内容については、同様の技術効果を得ることができる。
<Regarding the third liquid film rupture ratio measuring method according to the present invention>
When the measurement condition (3b) in the above-mentioned first liquid film breakage ratio measurement method is not satisfied, the third liquid film breakage ratio measurement method according to the present invention can be used. That is, since the measured ultrasonic wave intensity (sound pressure ratio H) is affected by both the liquid film breakage ratio α and the film thickness s, two solids facing each other through a thin liquid film are used as a measuring device. Using a measuring device in which at least one ultrasonic probe and at least one eddy current deep wound probe are disposed on any one wall surface Ca of the
(A1) Ultrasonic waves of a plurality of frequencies transmitted from the ultrasonic probe toward another wall surface Cb are reflected by the boundary surface between the wall surface Cb and the liquid film and received by the ultrasonic probe. Then, the change in the sound pressure h (echo height) of the ultrasonic wave due to the change in the film thickness or the presence of the liquid film breakage is measured (B1), for the measured sound pressure h, the ultrasonic probe is performed in advance. The normalized sound pressure ratio H (=h/ho) based on the sound pressure ho measured in the void state where there is no liquid film between both wall surfaces Ca and Cb for ultrasonic waves of a plurality of frequencies transmitted from the child. ) Is set (E2), the film thickness is measured based on the amount of inductance change caused by the vortex flow in the wall surface Cb caused by the magnetic field induced in the eddy current deep wound probe (F3), in advance, the ultrasonic probe. For ultrasonic waves of multiple frequencies transmitted from, calculate or measure the variation of the sound pressure ratio that accompanies the change of the film thickness in the liquid film without liquid film breakage and the known liquid film breakage condition, -Sound pressure ratio-liquid film breakage ratio" characteristic is set (C3) Based on the set "film thickness-frequency-sound pressure ratio-liquid film breakage ratio" characteristic, "frequency- (D3) Based on the specified "frequency-sound pressure ratio-liquid film breakage ratio" characteristic, the frequency used for measurement and the sound pressure ratio measured at that time are used. Measure the liquid film breakage ratio.
Specifically, the configuration illustrated in FIG. 3 is used as a measuring device, and a preset “film thickness” is set from the measured film thickness and the measured sound pressure ratio to ultrasonic waves of a plurality of frequencies according to the following mode. The liquid film breakage ratio α can be accurately measured based on the characteristics of “−frequency−sound pressure ratio−liquid film breakage ratio”. The same technical effect can be obtained for the same contents as the first or second measuring method.

図3に例示するように、壁面Caに、超音波探触子Bと渦流深傷用プローブDが配設された測定デバイスが用いられる。
(A1)該超音波探触子から他の壁面Cbに向けて発信された複数の周波数の超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、該膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B1)測定された該音圧hについて、予め前記超音波探触子から発信された複数の周波数の超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
ことによって、超音波を用いた液膜破断割合の連続測定において、設定された「周波数」および変動要素である「膜厚」,「液膜破断割合」および「音圧比」の変化量を測定することができる。
このとき、測定された音圧比Hは「液膜破断割合」だけではなく、変動要素である「膜厚」によっても影響をうけることから、
(E2)渦流深傷用プローブにおいて誘起された磁界によって生じる前記壁面Cbにおける渦流を起因とするインダクタンス変化量を基に前記膜厚を測定する
ことによって、液膜破断割合αの測定において必要とされる「周波数」,「膜厚」および「音圧比」という3つの要素を推算または実測することができる。
As illustrated in FIG. 3, a measuring device in which the ultrasonic probe B and the eddy current deep wound probe D are arranged on the wall surface Ca is used.
(A1) Ultrasonic waves of a plurality of frequencies transmitted from the ultrasonic probe toward another wall surface Cb are reflected by the boundary surface between the wall surface Cb and the liquid film and received by the ultrasonic probe. Then, the change in the sound pressure h (echo height) of the ultrasonic wave due to the change in the film thickness or the presence of the liquid film breakage is measured (B1), for the measured sound pressure h, the ultrasonic probe is performed in advance. The normalized sound pressure ratio H (=h/ho) based on the sound pressure ho measured in the void state where there is no liquid film between both wall surfaces Ca and Cb for ultrasonic waves of a plurality of frequencies transmitted from the child. ) Is set, in the continuous measurement of the liquid film breakage ratio using ultrasonic waves, changes in the set “frequency” and variable factors “film thickness”, “liquid film breakage ratio” and “sound pressure ratio” The quantity can be measured.
At this time, the measured sound pressure ratio H is affected not only by the “liquid film breakage ratio” but also by the “film thickness” that is a variable factor.
(E2) It is required in the measurement of the liquid film breakage ratio α by measuring the film thickness based on the inductance change amount caused by the vortex flow on the wall surface Cb generated by the magnetic field induced in the eddy current deep wound probe. It is possible to estimate or actually measure three factors of "frequency", "film thickness" and "sound pressure ratio".

(F3)予め前記超音波探触子から発信された複数の周波数の超音波に対して、液膜破断のない液膜および既知の液膜破断状態における膜厚の変化に伴う音圧比の変量を推算または実測し、「膜厚−周波数−音圧比−液膜破断割合」特性を設定する
ことによって、予め「膜厚」を変動要素とする「周波数−音圧比−液膜破断割合」特性を特定することができる。このとき、変動要素である「膜厚」を渦流深傷用プローブDによって測定することによって、
(C3)該設定された「膜厚−周波数−音圧比−液膜破断割合」特性を基に、測定された膜厚を用いて「周波数−音圧比−液膜破断割合」特性を特定する。
(F3) Variables of the sound pressure ratio due to the change of the film thickness in a liquid film without liquid film breakage and in a known liquid film breakage state, with respect to ultrasonic waves of a plurality of frequencies transmitted in advance from the ultrasonic probe. By estimating or actually measuring and setting the "film thickness-frequency-sound pressure ratio-liquid film breakage ratio" characteristic, the "frequency-sound pressure ratio-liquid film breakage ratio" characteristic with "film thickness" as a variable factor is specified in advance. can do. At this time, by measuring the "film thickness", which is a variable element, by the eddy current deep wound probe D,
(C3) Based on the set "film thickness-frequency-sound pressure ratio-liquid film breakage ratio" characteristic, the "frequency-sound pressure ratio-liquid film breakage ratio" property is specified using the measured film thickness.

(D3)特定された「周波数−音圧比−液膜破断割合」特性を基に、測定に用いられた周波数およびその時に測定された音圧比を用いて液膜破断割合を測定する
ことによって、同時かつ連続的に測定された「周波数」,「膜厚」および「音圧比」という3つの要素を用いて、測定対象となる液膜に接することなく、簡便な構成で、固体壁面間に存在する薄層の液膜の連続測定が可能で、精度が高く、かつ操作性が良く汎用性の高い、壁面間に存在する液膜の破断割合測定方法を提供することが可能となった。
(D3) Based on the specified "frequency-sound pressure ratio-liquid film breakage ratio" characteristic, the liquid film breakage ratio is measured simultaneously by measuring the frequency used for measurement and the sound pressure ratio measured at that time. And, by using three elements of "frequency", "film thickness", and "sound pressure ratio" that are continuously measured, it exists between solid wall surfaces with a simple structure without contacting the liquid film to be measured. It has become possible to provide a method for measuring the breakage ratio of a liquid film existing between wall surfaces, which enables continuous measurement of a thin liquid film, has high accuracy, is easy to operate, and is highly versatile.

A 液膜
Ao 超音波が照射された領域
領域Ao内で液膜破断が発生した領域
B 超音波探触子
Ca,Cb 壁面
H 音圧比
s 膜厚
α 液膜破断割合(α=A/A
A liquid film Ao region A where ultrasonic wave is irradiated region B where liquid film breakage occurs in region B ultrasonic probe Ca, Cb wall surface H sound pressure ratio s film thickness α liquid film breakage ratio (α=A B /A 0 )

Claims (3)

薄層の液膜を介して対向する2つの同じ材質の固体の壁面のいずれか1の壁面Caに、少なくとも1の超音波探触子が配設された測定デバイスを用い、
前記両壁面Ca,Cbの間(膜厚)が30μm以下の場合において、
(A1)該超音波探触子から他の壁面Cbに向けて複数の周波数の超音波が発信され、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信された該超音波の音圧h(エコー高さ)を測定する
(B1)測定された該音圧hについて、予め前記超音波探触子から発信された複数の周波数の超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
(C1)測定に用いられた周波数および設定された音圧比Hから得られた「周波数−音圧比」特性を基に、周波数ゼロ条件の音圧比Haを推算または実測する
(D1)該音圧比Haを用い、[周波数ゼロ条件における「音圧比Ha−液膜破断割合」特性を基に、液膜破断割合を測定する
ことを特徴とする薄層の液膜における液膜破断割合測定方法。
Using a measurement device in which at least one ultrasonic probe is arranged on one wall surface Ca of two solid wall surfaces made of the same material and facing each other through a thin liquid film,
When the thickness (film thickness) between the two wall surfaces Ca and Cb is 30 μm or less,
(A1) Ultrasonic waves having a plurality of frequencies are emitted from the ultrasonic probe toward another wall surface Cb, reflected at the boundary surface between the wall surface Cb and the liquid film, and received by the ultrasonic probe. Further, the sound pressure h (echo height) of the ultrasonic wave is measured (B1), with respect to the measured sound pressure h, both wall surfaces with respect to ultrasonic waves of a plurality of frequencies transmitted from the ultrasonic probe in advance. The normalized sound pressure ratio H (=h/ho) is set based on the sound pressure ho measured in the void state where there is no liquid film between Ca and Cb (C1). Based on the “frequency-sound pressure ratio” characteristic obtained from the sound pressure ratio H, the sound pressure ratio Ha under the frequency zero condition is estimated or actually measured (D1). -Liquid film breakage ratio" characteristic, the liquid film breakage ratio is measured, and a liquid film breakage ratio measuring method in a thin-layer liquid film.
薄層の液膜を介して対向する2つの同じ材質の固体の壁面のいずれか1の壁面Caに、少なくとも1の超音波探触子と少なくとも1の渦流深傷用プローブが配設された測定デバイスを用い、
(A2)該超音波探触子から他の壁面Cbに向けて発信された超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B2)測定された該音圧hについて、予め前記超音波探触子から発信された超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
(E2)渦流深傷用プローブにおいて誘起された磁界によって生じる前記壁面Cbにおける渦流を起因とするインダクタンス変化量を基に前記膜厚を測定する
(F2)予め液膜破断のない液膜および既知の液膜破断状態における膜厚の変化に伴う音圧比の変量を推算または実測し、「膜厚−音圧比−液膜破断割合」特性を設定する
(C2)該設定された「膜厚−音圧比−液膜破断割合」特性を基に、測定された膜厚における「音圧比−液膜破断割合」特性を特定する
(D2)特定された「音圧比−液膜破断割合」特性を基に、測定された音圧比を用いて液膜破断割合を測定する
ことを特徴とする薄層の液膜における液膜破断割合測定方法。
Measurement in which at least one ultrasonic probe and at least one eddy current deep wound probe are arranged on one of the two wall surfaces Ca of solids made of the same material and facing each other through a thin liquid film Using the device
(A2) The ultrasonic wave transmitted from the ultrasonic probe toward another wall surface Cb is reflected at the boundary surface between the wall surface Cb and the liquid film and received by the ultrasonic probe, and the film thickness Change of the sound pressure h (echo height) of the ultrasonic wave due to the change of the liquid crystal and the presence of liquid film breakage (B2) The measured sound pressure h is transmitted from the ultrasonic probe in advance. A normalized sound pressure ratio H (=h/ho) is set on the basis of the sound pressure ho measured in a void state where there is no liquid film between both wall surfaces Ca and Cb for ultrasonic waves (E2) Vortex depth The film thickness is measured based on the amount of change in inductance caused by the vortex flow on the wall surface Cb caused by the magnetic field induced in the flaw probe (F2) in a liquid film without liquid film breakage and in a known liquid film breakage state in advance. The variation of the sound pressure ratio associated with the change of the film thickness is estimated or actually measured, and the "film thickness-sound pressure ratio-liquid film breakage ratio" characteristic is set (C2). The set "film thickness-sound pressure ratio-liquid film breakage ratio". Based on the characteristic, the "sound pressure ratio-liquid film breakage ratio" characteristic in the measured film thickness is specified (D2) The sound pressure ratio measured based on the specified "sound pressure ratio-liquid film breakage ratio" characteristic A method for measuring a liquid film breakage ratio in a thin-layer liquid film, comprising measuring the liquid film breakage ratio using
薄層の液膜を介して対向する2つの同じ材質の固体の壁面のいずれか1の壁面Caに、少なくとも1の超音波探触子と少なくとも1の渦流深傷用プローブが配設された測定デバイスを用い、
(A1)該超音波探触子から他の壁面Cbに向けて発信された複数の周波数の超音波が、該壁面Cbと液膜との境界面において反射されて該超音波探触子に受信され、膜厚の変化や液膜破断の存在に伴う該超音波の音圧h(エコー高さ)の変化を測定する
(B1)測定された該音圧hについて、予め前記超音波探触子から発信された複数の周波数の超音波に対して両壁面Ca,Cbの間が液膜のない空隙状態において測定された音圧hoを基に、正規化した音圧比H(=h/ho)を設定する
(E2)渦流深傷用プローブにおいて誘起された磁界によって生じる前記壁面Cbにおける渦流を起因とするインダクタンス変化量を基に前記膜厚を測定する
(F3)予め前記超音波探触子から発信された複数の周波数の超音波に対して、液膜破断のない液膜および既知の液膜破断状態における膜厚の変化に伴う音圧比の変量を推算または実測し、「膜厚−周波数−音圧比−液膜破断割合」特性を設定する
(C3)該設定された「膜厚−周波数−音圧比−液膜破断割合」特性を基に、測定された膜厚を用いて「周波数−音圧比−液膜破断割合」特性を特定する
(D3)特定された「周波数−音圧比−液膜破断割合」特性を基に、測定に用いられた周波数およびその時に測定された音圧比を用いて液膜破断割合を測定する
ことを特徴とする薄層の液膜における液膜破断割合測定方法。
Measurement in which at least one ultrasonic probe and at least one eddy current deep wound probe are arranged on one of the two wall surfaces Ca of solids made of the same material and facing each other through a thin liquid film Using the device
(A1) Ultrasonic waves of a plurality of frequencies transmitted from the ultrasonic probe toward another wall surface Cb are reflected by the boundary surface between the wall surface Cb and the liquid film and received by the ultrasonic probe. Then, the change in the sound pressure h (echo height) of the ultrasonic wave due to the change in the film thickness or the presence of the liquid film breakage is measured (B1), for the measured sound pressure h, the ultrasonic probe is previously measured. The sound pressure ratio H (=h/ho) normalized based on the sound pressure ho measured in the void state where there is no liquid film between both wall surfaces Ca and Cb for ultrasonic waves of multiple frequencies transmitted from (E2) The thickness is measured based on the amount of inductance change caused by the vortex flow in the wall surface Cb caused by the magnetic field induced in the eddy current deep wound probe (F3) from the ultrasonic probe in advance. With respect to the transmitted ultrasonic waves of multiple frequencies, the variation of the sound pressure ratio associated with the change of the film thickness in the liquid film without the liquid film breakage and the known liquid film breakage state was estimated or measured, and the "film thickness-frequency- The sound pressure ratio-liquid film breakage ratio characteristic is set (C3), based on the set "film thickness-frequency-sound pressure ratio-liquid film breakage ratio" characteristic, "frequency-sound" is measured using the measured film thickness. (D3) Based on the specified "frequency-sound pressure ratio-liquid film breakage ratio" characteristic, the frequency used for measurement and the sound pressure ratio measured at that time are used. A method for measuring a liquid film breakage ratio in a thin-layer liquid film, which comprises measuring a liquid film breakage ratio.
JP2019017651A 2019-02-04 2019-02-04 Method for measuring liquid film breakage ratio in thin liquid film Active JP6745448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019017651A JP6745448B2 (en) 2019-02-04 2019-02-04 Method for measuring liquid film breakage ratio in thin liquid film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019017651A JP6745448B2 (en) 2019-02-04 2019-02-04 Method for measuring liquid film breakage ratio in thin liquid film

Publications (2)

Publication Number Publication Date
JP2020125943A JP2020125943A (en) 2020-08-20
JP6745448B2 true JP6745448B2 (en) 2020-08-26

Family

ID=72083792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019017651A Active JP6745448B2 (en) 2019-02-04 2019-02-04 Method for measuring liquid film breakage ratio in thin liquid film

Country Status (1)

Country Link
JP (1) JP6745448B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255569B2 (en) * 2020-07-23 2023-04-11 株式会社三洋物産 game machine
JP7255572B2 (en) * 2020-07-23 2023-04-11 株式会社三洋物産 game machine
JP7255571B2 (en) * 2020-07-23 2023-04-11 株式会社三洋物産 game machine
JP7255573B2 (en) * 2020-07-23 2023-04-11 株式会社三洋物産 game machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332531B2 (en) * 2006-02-13 2009-09-16 公立大学法人高知工科大学 Method for obtaining film thickness calibration curve
JP4792005B2 (en) * 2007-05-23 2011-10-12 公立大学法人高知工科大学 Ultrasonic measurement method such as film thickness and ultrasonic measurement system such as film thickness
US8640528B2 (en) * 2009-01-28 2014-02-04 Aktiebolaget Skf Lubrication condition monitoring
JP2015045514A (en) * 2013-08-27 2015-03-12 三井造船株式会社 Oil film thickness inspection method
JP2018124247A (en) * 2017-02-03 2018-08-09 高知県公立大学法人 Device and method for measuring thickness of liquid film adhered to wall surface using opposing emission angle-type ultrasonic probes
CN108007402A (en) * 2017-12-07 2018-05-08 青岛河澄知识产权有限公司 A kind of oil film thickness static demarcating method
CN109186509B (en) * 2018-09-10 2020-07-10 武汉科技大学 Device and method for measuring lip edge deformation of deformation piston of variable-gap sealing hydraulic cylinder

Also Published As

Publication number Publication date
JP2020125943A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP6745448B2 (en) Method for measuring liquid film breakage ratio in thin liquid film
Karabutov et al. Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer
RU2659584C2 (en) Methods for measuring properties of multiphase oil-water-gas mixtures
US6668654B2 (en) Method and apparatus for generating specific frequency response for ultrasound testing
Krautkrämer Determination of the size of defects by the ultrasonic impulse echo method
KR20020034995A (en) System and method for ultrasonic laser testing using a laser source to generate ultrasound having a tunable wavelength
Ying et al. Multi-mode laser-ultrasound imaging using Time-domain Synthetic Aperture Focusing Technique (T-SAFT)
CN104062358A (en) Ultrasonic Inspection Device And Method Of Ultrasonic Inspection
Tallon et al. Impact of strong scattering resonances on ballistic and diffusive wave transport
Yoshitake et al. Measurement of high viscosity with laser induced surface deformation technique
Takeuchi Investigation on lubrication condition of piston pin in real engine block with ultrasonic technique
US11099001B2 (en) Inspection apparatus, inspection method, computer program and recording medium
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
Quan et al. Photoacoustic generation in liquids with low optical absorption
KR101215362B1 (en) Apparatus and method for detecting photothermal effect
Ermolov Progress in the theory of ultrasonic flaw detection. Problems and prospects
JP3184368B2 (en) Sample evaluation device by ultrasonic vibration measurement
JP2007064651A (en) Inspection device of paving gap and inspection method of paving gap
Hess et al. Noncontact, nondestructive evaluation of realistic cracks with surface acoustic waves by scanning excitation and detection lasers
JP2018124247A (en) Device and method for measuring thickness of liquid film adhered to wall surface using opposing emission angle-type ultrasonic probes
Pal Fourier transform ultrasound spectroscopy for the determination of wave propagation parameters
CN205826515U (en) Acoustical signal detector based on surface wave and reflecting light sonomicroscope
Wang et al. Ultrasonic detection method based on flexible capillary water column arrays coupling
Chen et al. Monitoring the Cumulative Process of Corrosion Defects at the Elbow of a Welded Pipe Using Magnetostrictive-Based Torsional Guided Waves
Yamamoto Optical visualization of ultrasonic waves propagating in a fluid waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6745448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250