JP6744829B2 - Building reinforcement method and seismic reinforcement member - Google Patents

Building reinforcement method and seismic reinforcement member Download PDF

Info

Publication number
JP6744829B2
JP6744829B2 JP2017026220A JP2017026220A JP6744829B2 JP 6744829 B2 JP6744829 B2 JP 6744829B2 JP 2017026220 A JP2017026220 A JP 2017026220A JP 2017026220 A JP2017026220 A JP 2017026220A JP 6744829 B2 JP6744829 B2 JP 6744829B2
Authority
JP
Japan
Prior art keywords
foundation
building
existing
reinforcement member
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017026220A
Other languages
Japanese (ja)
Other versions
JP2018131812A (en
Inventor
田 裕 恒 池
田 裕 恒 池
Original Assignee
池田 裕恒
池田 裕恒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 池田 裕恒, 池田 裕恒 filed Critical 池田 裕恒
Priority to JP2017026220A priority Critical patent/JP6744829B2/en
Publication of JP2018131812A publication Critical patent/JP2018131812A/en
Application granted granted Critical
Publication of JP6744829B2 publication Critical patent/JP6744829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Foundations (AREA)

Description

本発明は耐震補強工事、及び装置に関するものである。地震による建物への破壊力が最も集中する部分が建物出隅、土台から立ち上げられた柱の根元、ホゾ部分である。この立ち上げ部分を強固に補強することにより耐震力を高めるものである。詳しくは従来より行われている建物内部の補強工事ではなく、外部出隅部分を金属製アングル(図2図3、以下CPという)にて地中独立基礎(図4)より立ち上げ出隅柱部分をコーチスクリューまたは
ボルト、ナット等で取付る耐震補強工事に関するものである。
The present invention relates to seismic reinforcement work and a device. The part where the destructive force on the building due to the earthquake is most concentrated is the projecting corner of the building, the base of the pillar that is erected from the base, and the hoso part. Seismic strength is enhanced by firmly reinforcing this rising part. For details, instead of the conventional reinforcement work inside the building, the external corners are raised from the underground independent foundation (Fig. 4) with metal angles (Fig. 2, Fig. 3, hereinafter referred to as CP). This is related to seismic strengthening work where parts are attached with coach screws or bolts, nuts, etc.

既存木造建築物、工作物の耐震化補強工事に於いて通常行われている方法は建物内部の内装材を剥がし,構造部分を露出させて該当部分を補強することが一般的である。 The method that is usually used for seismic retrofitting of existing wooden buildings and structures is to peel off the interior materials inside the building and expose the structural parts to reinforce the corresponding parts.

特開2004−197340号公報JP 2004-197340 A

既存木造建築物、工作物の耐震化補強工事において通常行われている方法は建物内部の内装材を剥がし,構造部分を露出させて該当部分を露出することが一般的である。
この場合障壁となる部屋の中の家財、備品を移動させて壁を剥がし,場合によっては天井を剥がし,さらには床を剥がして室内埃だらけの大掛かりな工事になる等問題が多い。
通常耐震補強工事を必要とする建物は建築基準法の改正により昭和56年6月以前に建て
られた旧耐震の古い建物で有り、本件申請時点での経過年数でも既に築後35年以上経過したこの古い「建築物」に対して、これだけの大掛かりな負担をかけた工事をする必要性があるのかどうか費用対効果の面で疑問が数多く存在する。
The conventional method for seismic retrofitting of existing wooden structures and structures is to peel off the interior materials inside the building and expose the structural parts to expose the relevant parts.
In this case, there are many problems such as moving household goods and equipment in the room that is a barrier to peel off the wall, peel off the ceiling in some cases, and even peel off the floor, resulting in large-scale construction covered with indoor dust.
Buildings that normally require seismic retrofitting are old seismic-resistant buildings that were built before June 1981 due to the revision of the Building Standards Act, and the number of years elapsed at the time of this application was already 35 years or more after construction. There are many doubts in terms of cost-effectiveness whether or not it is necessary to carry out such a heavy burden on this old "building".

しかし突然襲ってくる巨大地震に対しての対策上、急務であることは間違いない。
現在一部の地方公共団体の助成や公的金融機関等の優遇金利措置、租税優遇措置、保険料優遇措置等賑やかに改修工事が奨励されているが、上記改修工事の検討過程で強度不足の点から適合しない建物、または高額費用に二の足を踏んで実行できない残された建物の処遇を考えると単に優遇措置だけで施主側にとって負荷の重いこの問題を解決することはできない。
さらに詳しく述べると,以下に示すような課題がある。
However, there is no doubt that there is an urgent need to take measures against the sudden big earthquake.
Currently, renovation work is actively encouraged such as subsidization of some local governments, preferential interest rate measures for public financial institutions, tax incentives, insurance preferential treatments, etc. Considering the treatment of buildings that do not fit in terms of points, or the remaining buildings that cannot be implemented at a high cost, simple incentives cannot solve this problem, which is heavy for the owner.
More specifically, there are the following problems.

1.耐震改修に踏み切る為の各居住者自身の障壁
居住者自身が負担しなければならない金銭以外の精神的肉体的負担
1−1
作業をする部屋の家財を移動しなければならない。
通常の増改築であれば作業をしない部屋を工事完了まで控えの部屋として家財の保管、居住スペースとすることができるが,耐震改修では工事箇所が一部屋に留まらない。場合によっては一部屋ずつの工事になることも考えられ、その都度家財の移動、清掃に追われることになる。
1−2
当該工事を施工する前提として基礎に亀裂等の損傷がないことが必要で有り、基礎に損傷が生じている建物は,その基礎をも改良、改修しなければならない大掛かりな工事に発展することを睨みながら断念せざるを得なくなることもある。
1−3
複数の部屋の工事に伴う窮屈で落ち着けない居住環境の中で居住者のプライバシーは制限され,作業をする職人への気遣いや接待も必要になる。
1−4
これは居住者においても経済面に留まらない多大の負担で有るし、その後復旧のための内装仕上げ工事も、補強工事箇所に留まらず施工後の色あわせのためにその部屋全体に及ぶことになる。
1. Barriers of each resident to make a seismic retrofit Resident himself must bear the mental and physical burden other than money 1-1
You have to move the household goods in the room where you work.
A room that is not used for normal extension and renovation can be used as a waiting room until the completion of construction to store household goods and as a living space, but with seismic retrofitting, the construction site is not limited to one room. In some cases, it may be necessary to construct one room at a time, and each time it is necessary to move and clean household items.
1-2
As a precondition for the construction work, it is necessary for the foundation to be free of damage such as cracks, and for buildings with damaged foundation, it is necessary to improve and repair the foundation as well. Sometimes you have to give up while staring at it.
1-3
In a cramped and uncomfortable living environment associated with the construction of multiple rooms, the privacy of residents is limited, and care and entertainment for craftsmen who work are also required.
1-4
This is a huge burden not only for the resident but also for economic reasons, and the interior finishing work for restoration after that will not be limited to the reinforcement work site but will cover the entire room for color matching after construction. ..

・ 費用対効果の経済的問題。
2−1
建築後35年以上経過した古く劣化した建物に多額の工事費をかけて,耐用年数をどれだけ延ばすことができるのか
2−2
新築に比べた場合の作業量の多さ。新築の場合は何もないところに資材を導入して構築すれば済むが,既存建物の場合、構造本体部分を傷つけずに解体撤去、廃棄処分が行われる,ここまでで作業工程の半分以上が既に費やされる。つまり作業量が倍以上になる。
2−3
予定通り耐用年数を伸ばせるとは限らない。それは見えない部分の経年劣化、経年腐朽等により耐震補強工事そのものが無意味となる場合が間々あることである。
-Cost-effective economic issues.
2-1
How long can the service life be extended by spending a large amount of money on a building that is 35 years old and has deteriorated?
A lot of work compared to new construction. In the case of a new construction, it is sufficient to introduce materials into the place where there is nothing, and in the case of an existing building, it is dismantled and removed without disposing of the structural body part, and more than half of the work process up to this point. Already spent. That is, the amount of work is more than doubled.
2-3
The service life cannot always be extended as planned. It is often the case that seismic retrofitting work itself becomes meaningless due to aging deterioration and aging of invisible parts.

・ 既存建物の経年変化、保存状態、維持管理状態が不明である。
3−1 建築当時の施工精度が不明である。
3−2 現存する構造部分の内、基礎部分の材質、経年変化、経年劣化、経年損傷等耐久力が不明である。
3−3 基礎上に敷設された土台の経年腐朽、害虫損傷、基礎との定着程度が不明である。
3−4 土台上に立ち上げられた柱の経年腐朽、害虫損傷,横架材接合状態等が不明である。
3−5 上記のような数多の不明の中で既存部分に依存しながら不足部分を耐震補強することに不安がある。
3−6 既存構造部分に瑕疵が存在した場合、耐震計算上OKでも実体力はNGとなる。
・The secular change, preservation status, and maintenance status of the existing building are unknown.
3-1 The construction accuracy at the time of construction is unknown.
3-2 Of the existing structural parts, the material strength, aging deterioration, aging deterioration, aging damage, etc. of the foundation part are unknown.
3-3 It is unclear how the foundation laid on the foundation deteriorates over time, damage pests, and establishes with the foundation.
3-4 It is unknown how the pillars erected on the foundation deteriorate over time, damage pests, and join horizontal materials.
3-5 There are concerns about seismic retrofitting of the lacking part while relying on the existing part among the many unknowns mentioned above.
3-6 If there is a flaw in the existing structure, the actual strength will be NG even if it is OK in the seismic calculation.

・ 公共性、社会福祉の観点から
4−1 最初からNGとなった場合に,その問題建物は手付かずに放置されることがある。4−2 巨大地震による建物倒壊を防止することは,居住建物内の人命保護と共に倒壊防止による歩行者等近隣への被害防止、避難路確保、緊急通行路確保も含めることにより初めて社会福祉の大義名分が成立するのではないかと思われる。
-From the viewpoint of public nature and social welfare, 4-1 If the building becomes NG from the beginning, the problem building may be left untouched. 4-2 Preventing buildings from collapsing due to a huge earthquake is the first reason for social welfare by not only protecting human lives in residential buildings but also preventing damage to nearby areas such as pedestrians by securing collapses, securing evacuation routes, and securing emergency passageways. It seems that the title will be established.

通常、地震動による外力は、例として南側から最初の揺れが来れば南側の各出隅根元部分に圧縮負荷が集中し対応する北側で引っ張り負荷が集中する。次に揺り戻しで南側の各出隅根元部分に引っ張り負荷が集中すれば北側に圧縮負荷が集中する。この相互の揺れが繰り返され限界に達したところで建物が崩壊に至る。本申請は建物の最も負荷が集中する出隅柱、通し柱根元部分を中心に次のような形で補強し、建物の靱性を高める事を目的としている。
建物各出隅部分(図1)に自立した簡易補強構造体を築造する。新築または耐震改修する既存建物の各出隅部分に金属製アングル(以下コーナープロテクター=CPという図2・3)を独立させた基礎上に立ち上げ(図14)柱にボルト・ナット、コーチスクリュー等で、又基礎にはケミカルアンカー、打ち込み式アンカーで抱き合わせるように緊結固定し、断面一次モーメント(図7)から仮想断面二次モーメント(図8・9)へ構造補強する。
Normally, as for the external force due to the earthquake motion, if the first sway comes from the south side, for example, the compressive load concentrates on the roots of the projected corners on the south side, and the tensile load concentrates on the corresponding north side. Next, if the pulling load concentrates on each of the bases of the projected corners on the south side by swinging back, the compressive load concentrates on the north side. This mutual shaking is repeated and when the limit is reached, the building collapses. The purpose of this application is to enhance the toughness of the building by reinforcing it in the following forms centering on the corner of the projecting column where the load is most concentrated and the base of the through column.
A self-supporting simple reinforcing structure is built in each corner of the building (Fig. 1). A metal angle (hereinafter referred to as corner protector = CP, Fig. 2 and 3) is set up on each foundation corner of a new building or an existing building to be retrofitted for earthquake resistance. (Fig. 14) Pillars such as bolts, nuts, coach screws, etc. Also, chemical anchors and hammer anchors are tightly fixed to the foundation so as to tie them together, and the structural moment is reinforced from the moment of inertia of the section (Fig. 7) to the imaginary moment of inertia (Figs. 8 and 9).

第1の発明は、建物出隅部分を補強するため外壁下地を露出させ、建物出隅部分の基礎下を掘り下げ,アングル状のL字型耐震補強部材をコンクリートで埋設し,既存土台からの立ち上げ部分を建物出隅部柱に固定し、地中独立基礎より既存基礎、既存土台、建物出隅部柱までを鋼材CPにより一体化させる建物の補強方法である。
第2の発明は、第1の発明において、建物出隅部分を補強するため外壁下地を露出させ、建物出隅部分の基礎下を掘り下げ,アングル状の鋼材CPをコンクリートで埋設し,既存土台からの立ち上げ部分を建物出隅部柱に固定し、地中独立基礎より既存基礎、既存土台、建物出隅部柱までを鋼材CPにより一体化させ仮想断面二次モーメントを構成させる建物の補強方法である。
第3の発明は、新築時における一体基礎より立ち上げた鋼材CPの地上部分を、基礎に密着させ、埋め込み済アンカー又は後付打ち込みアンカー、又はケミカルアンカーで既存基礎に固定する建物の補強方法である。
第4の発明は、第1〜第3の何れかの発明において、鋼材CPと基礎との間にゴムプレート又は金属板を配する請求項1から3のいずれかに記載の建物の補強方法である。
第5の発明は、第1〜第4の何れかの発明において、鋼材CPの埋設独立基礎又は新築時における一体基礎部分には抜け出し防止のための異形鉄筋を差し込み、固定する建物の補強方法である。
第6の発明は、第1〜第5の何れかの発明において、CP先端部分より柱への破断圧力を解放させ、CPの取付先端部分を柔軟に柱に繋げ破断力を分散する目的で鋼材CP上部先端部にスリットを設けた建物の補強方法である。
第7の発明は、第1〜第6の何れかの発明において、コーチスクリューの引き抜き防止ため鋼材CPと柱との取付に際し、単一方向への引き抜き圧力を直交する二方向からコーチスクリューを螺子込みブロックする建物補強方法である。
第8の発明は、第1〜第7の何れかの発明において、鋼材PCが厚さ3〜8mm程度、幅50以上、既存土台から立ち上げ部分の長さが300mm以上であり、立ち上げ部分を隅部柱にコーチスクリュー又はボルトナットで取付直結補強する建物の補強方法である。
第9の発明は、第1〜第8の何れかの発明において、取付直後から応力を期待できる型枠袋利用による既存地山の耐力密着利用方法を用いる建物補強方法である。
第10の発明は、上部に切り込、および、熱処理をした部分を有するL型鋼よりなる耐震補強部材である。
The first aspect of the present invention is to expose the outer wall foundation to reinforce the corner of the building, dig under the foundation of the corner of the building, bury an angled L-shaped seismic reinforcement member with concrete, and stand from the existing foundation. This is a method of reinforcing a building in which the raised part is fixed to the building corner column and the underground foundation, the existing foundation, the existing foundation, and the building corner column are integrated with the steel material CP.
2nd invention is the 1st invention, in order to reinforce the building exterior corner part, the outer wall foundation is exposed, the foundation of the building exterior corner part is dug down, the angle-shaped steel material CP is buried in concrete, and the existing foundation Reinforcement method of the building where the rising part of the building is fixed to the corner column of the building, and the underground foundation, the existing foundation, the existing foundation, and the building corner column are integrated by the steel material CP to form the second moment of imaginary section. Is.
The third invention is a method of reinforcing a building, in which the above-ground portion of the steel material CP that has been launched from the integrated foundation at the time of new construction is closely attached to the foundation and fixed to the existing foundation with embedded anchors or post-attached anchors or chemical anchors. is there.
The fourth invention is the method for reinforcing a building according to any one of claims 1 to 3, wherein in any one of the first to third inventions, a rubber plate or a metal plate is arranged between the steel material CP and the foundation. is there.
5th invention is the reinforcing method of the building in any one of the 1st-4th invention, inserting the deformed bar for prevention of slipping out and fixing in the embedded independent foundation of steel material CP or the integral foundation part at the time of new construction. is there.
A sixth aspect of the invention is the steel material according to any one of the first to fifth aspects of the invention, for the purpose of releasing the breaking pressure from the CP tip portion to the column, flexibly connecting the CP attachment tip portion to the column, and dispersing the breaking force. This is a building reinforcement method in which a slit is provided at the top end of the CP.
In a seventh aspect of the present invention, in any one of the first to sixth aspects of the invention, when the steel material CP and the column are attached to prevent the coach screw from being pulled out, the coach screw is screwed from two directions orthogonal to the pulling pressure in a single direction. It is a building reinforcement method that blocks.
An eighth aspect of the present invention is the steel material PC according to any one of the first to seventh aspects, wherein the thickness of the steel material PC is about 3 to 8 mm, the width is 50 or more, and the length of the rising portion from the existing base is 300 mm or more. This is a building reinforcement method in which the corner columns are attached to the corner columns with coach screws or bolts and nuts for direct connection.
A ninth invention is the building reinforcement method according to any one of the first to eighth inventions, which uses a method for closely adhering the yield strength of the existing ground by using a form bag that can expect stress immediately after mounting.
A tenth aspect of the present invention is an earthquake-proof reinforcing member made of L-shaped steel having a cut portion and a heat-treated portion in the upper portion.

柱の土台からの抜け出し防止補強方法であり、ホールダウン金物は新築時土台敷設の際にのみ取り付け可能であるが、埋設独立基礎から柱へのCP取付により、ホールダウン金物の代用効果が期待できる。建物の部位別応力差異による偏心から起こる柱の抜けだしよる建物倒壊を防止するホールダウン金物代替補強方法である This is a reinforcement method to prevent the pillars from slipping out of the base, and the hole-down hardware can be installed only when the base is laid at the time of new construction, but the CP mounting from the buried independent foundation to the pillars can be expected to be a substitute effect for the hole-down hardware. .. This is a hole down hardware alternative reinforcement method to prevent the collapse of the building due to the column coming off due to the eccentricity due to the difference in stress between the parts of the building.

5−1 独立補強:本件施工は自ら地面に埋め込まれ建物本体の主に横方向の揺れを支えるもので,主体的には既存部分を支えるが既存部分に大きく依存しない。補助的に既存部分の応力を有効利用するが主体部分は地面から独立して建物を抱き抱えるように支える。5−2 既存基礎、既存土台部分の横揺れに対する応力を有効に利用する。今までは土台、基礎部分が鉛直荷重のみで、上部建物の揺れを抑える構造になっておらず上部建物への耐震の働きがほとんど無かった。
5−3 曲げモーメント:従来、地震力から生じる土台上での断面一次モーメントを「柱、土台、基礎を一体化させることにより仮想断面二次モーメントを構成して応力を拡大させる。
5−4 既存基礎を保護する。構造クラックの入った基礎に対してもコーナー側で圧縮応力としてサポートするため激震崩壊からの保護作用がある。
5−5 耐力壁、筋交壁の偏在等からの保護作用。建物の形状や部材(部分的材質の違い)による偏心から来る地震時の柱の抜けだしを外角出隅において効果的に防ぐ。ホールダウン金物と同様の効果が期待できる。
5−6 型枠袋の利用:短期間にて効果を発揮できるように掘削切り土を最小限にして下部懐を広く、切り土面を荒らさず型枠袋を挿入して隙間無く充填するように生コンを流し込む。この作業により施工の際に掘り起こして埋め戻した土が再度閉まるまでの時間を必要としない。
5−7 最も簡易な施工を標準とするため既存基礎部分と建物下地ラス板との段差、隙間は金属板又はゴムプレートのスペーサーで埋める。基礎部分と補強アングルの隙間部分が生じた場合、その隙間に応じたゴムプレート又は金属板をスペーサーとして貼り付ける。これにより多少の構造クラックでも地震時における基礎の横ずれ破壊を圧縮側でサポートすることができる。構造クラックの断面は凸凹状態で有り端部をサポートすることによりクラックのズレを防止し崩壊を軽減できる。
5−8 修復化粧を簡易に一般的に,汎用に用いられているサイディングのコーナー部材を既存外壁色と同色で又はアクセントとしてタイル調やレンガ調、石材調の化粧材を選定利用し取付、隙間をコーキングして仕上げる。
5−9 補強工事は主に建物外部で行うため、居住者の肉体的、精神的労力を軽減させ耐震補強工事を実施しやすくする。
5-1 Independent reinforcement: This construction is embedded in the ground by itself and mainly supports the lateral sway of the building body. It mainly supports the existing part, but does not largely depend on the existing part. Although the stress of the existing part is effectively used as a supplement, the main part is supported so as to hold the building independently from the ground. 5-2 Effectively utilize the stress against rolling of the existing foundation and existing base. Up until now, the base and foundation were only vertically loaded, and the structure of the upper building was not controlled so that the upper building had almost no seismic resistance.
5-3 Bending moment: Conventionally, the first moment of area on the foundation caused by the seismic force is defined as “a second moment of inertia of the virtual section is formed by integrating the pillar, the foundation, and the foundation to increase the stress.
5-4 Protect the existing foundation. Even foundations with structural cracks will be supported as compressive stress on the corner side, so there will be a protective action against severe earthquake collapse.
5-5 Protective effect from uneven distribution of load bearing walls and muscular walls. Effectively prevent columns from coming out at the corners of the outside corner due to an eccentricity caused by eccentricity due to building shapes and members (differences in partial materials). You can expect the same effect as hole down hardware.
5-6 Use of formwork bag: Minimize excavated cutting soil to widen the lower pocket so that the effect can be exhibited in a short period of time, insert the formwork bag without roughening the cut soil surface and fill it without gaps. Pour the raw concrete into. This work does not require time until the soil dug up and backfilled during construction is closed again.
5-7 To make the simplest construction standard, fill the gaps and gaps between the existing foundation and the building base lath plate with metal or rubber plate spacers. If there is a gap between the foundation and the reinforcing angle, attach a rubber plate or metal plate as a spacer according to the gap. As a result, even if some structural cracks occur, it is possible to support the lateral slip failure of the foundation during an earthquake on the compression side. The cross section of the structural cracks is uneven, and by supporting the ends, the cracks can be prevented from shifting and collapse can be reduced.
5-8 Restoration Makeup easy and generally, siding corner members that are used for general purposes are the same color as the existing outer wall color or used as an accent to select tile-like, brick-like, or stone-like makeup materials for installation and clearance. Finish by caulking.
5-9 Since the reinforcement work is mainly performed outside the building, it will reduce the physical and mental labor of the residents and facilitate the seismic reinforcement work.

建物補強工事の作業部分を示す。The work part of building reinforcement work is shown. 主体となるコーナープロテクター(CPという)の外面形状、形態を示す。2-1破断力解放のためのスリット。2-2熱処理部分。2-3破断力分散ゾーン。2-4柱取り付け用穴。2-5土台から上に位置する部分。2-6地中埋設部分。2-7GLから露出し既存基礎に密着取り付け部分。隙間が生じて密着できなかった場合はゴムプレート又は金属板を貼り付け調整する。The external shape and shape of the corner protector (CP), which is the main body, are shown. 2-1 Slit for releasing breaking force. 2-2 Heat treatment part. 2-3 Breaking force dispersion zone. 2-4 Pillar mounting holes. 2-5 The part located above the base. 2-6 Underground part. The part exposed from 2-7GL and attached closely to the existing foundation. If there is a gap and it is not possible to make a close contact, attach a rubber plate or metal plate for adjustment. 主体となるコーナープロテクター(CPという)の内面形状、形態を示す。3-1破断力解放のためのスリット。3-2熱処理部分。3-3破断力分散ゾーン。3-4管柱取り付け用穴。3-5土台から上に位置する部分。3-6地中埋設部分。3-7GLから露出し既存基礎に密着取り付け部分。隙間が生じて密着できなかった場合はゴムプレート又は金属板を貼り付け調整する。The inner surface shape and form of the corner protector (CP), which is the main body, are shown. 3-1 Slit for releasing breaking force. 3-2 Heat treatment part. 3-3 Breaking force dispersion zone. 3-4 Tube post mounting holes. 3-5 The part located above the base. 3-6 Underground buried part. The part exposed from 3-7GL and attached closely to the existing foundation. If there is a gap and it is not possible to make a close contact, attach a rubber plate or metal plate for adjustment. 補強工事の概要を示す。4-1建物各出隅にCPを取り付け。4-2地中独立基礎を築造するThe outline of the reinforcement work is shown below. 4-1 A CP is attached to each corner of the building. 4-2 Build an underground independent foundation 地震時に及ぼす歪み、管柱の崩壊への過程を示す。The process of strain and the collapse of the column is shown. 崩壊過程の中で最も作用,影響の大きい1階部分の状態を示す。6-1既存基礎部分。6-2一階部分の状態。6-3二階部分の状態。Shows the state of the first-floor part that has the greatest effect and influence in the collapse process. 6-1 Existing basic part. 6-2 The condition of the first floor. 6-3 The state of the second floor. 倒壊時にポイントとなる土台からの立ち上がり部分における曲げモーメントを示す。Aに曲げモーメントがかかりBで崩壊する。既存建物はこの部分が脆弱であり、崩壊しやすい。The bending moment at the rising part from the base, which is the point when collapsed, is shown. A bending moment is applied to A and it collapses at B. This part of the existing building is fragile and easily collapses. 補強後の圧縮方向仮想断面二次モーメントを示す。 7図の一次モーメントに比べ既存土台から下、独立基礎までの大きいスパンで応力が働く状態を示す。8-1断面二次モーメント図。8-2既存土台。 8-3既存管柱。8-4新設CP取り付け部分。8-5既存基礎部分。8-6新設地中独立基礎The second moment of inertia in the compression direction after reinforcement is shown. Compared to the first moment in Fig. 7, the stress acts in a large span from the existing foundation to the independent foundation. 8-1 Second moment of area diagram. 8-2 Existing base. 8-3 Existing tube column. 8-4 New CP installation part. 8-5 Existing basic part. 8-6 New Underground Foundation 補強後の引っ張り方向仮想断面二次モーメントを示す。8図と逆方向に外力が作用した場合に働く応力を示す。9-1断面二次モーメント図。9-2既存土台。9-3既存管柱。9-4新設CP取り付け部分。9-5既存基礎部分。9-6新設地中独立基礎。The tangential moment of inertia in the tensile direction after reinforcement is shown. Fig. 8 shows the stress that acts when an external force is applied in the opposite direction. 9-1 Second moment of area diagram. 9-2 Existing base. 9-3 Existing tube column. 9-4 New CP installation part. 9-5 Existing basic part. 9-6 Independent ground foundation. CP補強後に最も影響が集中するCP上部先端部分に掛かる管柱への破断圧力をスリット構造により解放させた場合の効果を示す。10-1破断力が分散した状態を示す。10-2破断力が分散せずに管柱が破断した状態を示す。The effect obtained when the slit structure releases the rupture pressure applied to the top end portion of the CP where the influence is most concentrated after CP reinforcement is released by the slit structure is shown. 10-1 Shows a state in which the breaking force is dispersed. 10-2 Shows the state where the pipe column is broken without the breaking force dispersed. コーチスクリュー直交による引き抜き防止断面図。A方向に引き抜き作用が生じた場合はB方向のコーチスクリューがブロックし、B方法に引き抜き作用が生じた場合はA方向のコーチスクリューがブロックする。FIG. 3 is a cross-sectional view of prevention of pulling out by a coach screw orthogonal. When the pulling action occurs in the A direction, the coach screw in the B direction blocks, and when the pulling action occurs in the B method, the coach screw in the A direction blocks. 施工手順 下準備概略図 12-1モルタル部分のうち12-2に示すとおり建物出隅部分をカッターで取り去り下地を露出させる。12-4は掘削部分Construction procedure Schematic of preparation 12-1 As shown in 12-2 of the mortar part, the corner of the building is removed with a cutter to expose the groundwork. 12-4 is the excavated part 施工手順 下準備断面図 13-3既存下地と13-5既存基礎の外面がそろわなかった場合はゴムプレート又は金属板でレベル調整して隙間を埋める。13-7は既存基礎出隅底盤をカットして取り去る部分Construction procedure Preparation cross-section 13-3 If the existing foundation and 13-5 outer surface of the existing foundation are not aligned, adjust the level with a rubber plate or metal plate to fill the gap. 13-7 is a part where the existing foundation corner base is cut and removed 施工手順 施工概略図 14-1新設CP。14-2既存基礎。14-3異形鉄筋。 14-4コーチスクリュー、ボルトナット取り付け穴。14-5 CPスリット 14-101 CP内側にゴムプレート又は金属板を取り付け隙間を埋める。 14-102 生コンを流す。Construction procedure Construction schematic 14-1 New CP. 14-2 Existing foundation. 14-3 Deformed bar. 14-4 Coach screw, bolt nut mounting holes. 14-5 CP slit 14-101 Install a rubber plate or metal plate inside the CP to fill the gap. 14-102 Run raw concrete. 施工手順 施工断面図 15-1既存管柱。15-2 既存土台。15-3 新設CPアングル。15-4 既存基礎。15-5 GL。15-6 異形鉄筋。15-7 コーチスクリュー取り付け穴。15-101 CP内側にゴムプレート又は金属板を取り付け隙間を埋める。15-102 新設コンクリート独立基礎。下方部分の膨らみによって独立基礎の定着が容易になる。Construction procedure Construction cross section 15-1 Existing pipe column. 15-2 Existing base. 15-3 New CP angle. 15-4 Existing foundation. 15-5 GL. 15-6 Deformed bar. 15-7 Coach screw mounting holes. 15-101 Install a rubber plate or metal plate inside the CP to fill the gap. 15-102 New concrete independent foundation. The bulge in the lower part facilitates the anchoring of the independent foundation. 耐震補強工事図(化粧仕上げ図 積層タイル調)Seismic retrofit construction drawing (decorative finish, laminated tile) 耐震補強工事図(化粧仕上げ図 外壁同色調)Seismic strengthening construction drawing (decorative finish drawing same color as outer wall) 耐震補強工事図(化粧仕上げ図 タイル調)Seismic retrofit construction drawing (makeup drawing tile style)

現在の木造建築物において,基礎部分と土台から上の部分で構造が分かれている。つまり構造、組成そのものが各々違う。従って倒壊、破壊、崩壊時の壊れ方も各々異なる。
構造を分けている理由は色々あるが,本件耐震補強の理念としては基礎と基礎から上の建物部分を上下一体化させて耐震性を高める事を目的としている。
In the current wooden building, the structure is divided into the foundation part and the part above the foundation. In other words, the structure and composition themselves are different. Therefore, how to collapse, destroy, and break when collapsed is also different.
There are various reasons for dividing the structure, but the purpose of this seismic retrofit is to increase the seismic resistance by vertically integrating the foundation and the building above the foundation.

図1は補強工事の場所を示す。Aは工事部分である。図2は主体となる鋼材CP(コーナー
プロテクター)2の外面形状、形態を示す。鋼材PC2は厚さ3〜8mm程度、幅50mm
以上である。2-1は鋼材CP2上部に入れた切り込みである。2-2は鋼材上部の熱処理をした部分である。2-3は破壊力分散ゾーンである。2-4は管柱取り付け用穴。2-5土台から上
の部分、2-6は地中埋設部分である。2-7は取付施工時に隙間が生じた際ゴムプレート又は金属板で調整する部分である。2-8は独立基礎築造時に鋼材CP2が抜け出さないように
異形鉄筋を差し込む穴である。
Figure 1 shows the location of the reinforcement work. A is the construction part. FIG. 2 shows the outer surface shape and form of the steel material CP (corner protector) 2, which is the main component. Steel material PC2 has a thickness of 3 to 8 mm and a width of 50 mm
That is all. 2-1 is a notch formed in the upper part of the steel material CP2. 2-2 is the heat-treated part of the steel material. 2-3 is the destructive power dispersion zone. 2-4 is a hole for mounting a pipe pillar. 2-5 is the part above the base and 2-6 is the part buried underground. 2-7 is a part to be adjusted with a rubber plate or a metal plate when a gap is created during installation. Numeral 2-8 is a hole for inserting the deformed rebar so that the steel material CP2 does not come out when the independent foundation is built.

図3に主体となる鋼材CP2の内面形状、形態を示す。図2を内側から表記した鋼材CP
2である。3-1は鋼材CP2上部に入れた切り込みである。3-2は鋼材上部の熱処理をした部分である。3-3は破壊力分散ゾーンである。3-4は柱取り付け用穴。3-6土台から上の部
分、3-7は地中埋設部分である。3-5は取付施工時に隙間が生じた際ゴムプレート又は金属板で調整する部分である。3-8は独立基礎築造時に鋼材CP2が抜け出さないように異形
鉄筋を差し込む穴である。
FIG. 3 shows the shape and form of the inner surface of the main steel material CP2. Steel material CP shown in Fig. 2 from the inside
It is 2. 3-1 is a notch formed in the upper part of the steel material CP2. 3-2 is the heat-treated part of the steel material. 3-3 is a destructive power dispersion zone. 3-4 is a hole for mounting a pillar. 3-6 is the part above the base, and 3-7 is the part buried underground. 3-5 is a part to be adjusted with a rubber plate or a metal plate when a gap is created during installation. Numeral 3-8 is a hole for inserting the deformed rebar so that the steel material CP2 does not come out when the independent foundation is built.

図4に補強工事の概要を示す。4-1は鋼材CP2取り付け部分。4-2は地中独立基礎を示す。図の通り建物各出隅部を補強することにより建物靱性を高める。
図5に地震時に及ぼす歪み、崩壊への過程を示す。建物1階の柱が最も負荷を受けやすく
図5のような状態になる。
図6に崩壊過程の中で最も作用,影響の大きい1階部分の状態を示す。1階、2階がそれぞ
れ同程度の筋交いや壁量で築造されている場合、1階部分6-2が最初に倒壊して図6のよう
な倒れ方になる。
Figure 4 shows the outline of the reinforcement work. 4-1 is the steel CP2 attachment part. 4-2 shows the underground independence foundation. As shown in the figure, building toughness is enhanced by reinforcing each corner of the building.
Figure 5 shows the process of strain and collapse caused by an earthquake. The pillars on the 1st floor of the building are most susceptible to the load, as shown in Fig. 5.
Figure 6 shows the state of the first-floor part, which has the greatest effect and influence during the collapse process. When the first floor and the second floor are built with the same amount of braces and the same amount of walls, the first floor part 6-2 collapses first, resulting in the manner shown in Figure 6.

図7は倒壊時にポイントとなる土台からの立ち上がり部分を示した図である。図5及び図
6に記載したとおり建物が倒壊する根幹部分である柱の土台から立ち上がる根元に掛かる負荷を曲げモーメント7-1を示している。7-2は土台を示す。7-3柱を示す。7-4は地震作用方向の矢印を示す。7-5は既存基礎を示す。7-6は柱取り付け部分のホゾを示す。図8に仮想断面二次モーメントの作用を示す。8-1は補強後の仮想断面二次モーメント、8-2は土台を示す。8-3は柱を示す。8-4は鋼材CPを示す。8-5は基礎を示す。8-6は地中独立基礎を示す。8-7は地震作用方向を示す。図7に記載のホゾ7-6に集中する曲げモーメント7-1が図のように「既存基礎、既存土台、既存柱を鋼材CP2により一体化」した部分に作用するため、十分な応力を得られる。
FIG. 7 is a diagram showing a rising portion from the base, which is a point at the time of collapse. As shown in Fig. 5 and Fig. 6, the bending moment 7-1 indicates the load applied to the root rising from the base of the pillar, which is the root part of the building that collapses. 7-2 shows the base. Shows 7-3 pillars. 7-4 indicates an arrow in the direction of the seismic action. 7-5 shows the existing foundation. Reference numeral 7-6 shows a tenon at a column mounting portion. FIG. 8 shows the action of the second moment of imaginary area. 8-1 is the second moment of inertia of the reinforced virtual section, and 8-2 is the base. 8-3 shows a pillar. 8-4 shows steel material CP. 8-5 shows the basis. 8-6 shows underground foundation. 8-7 shows the direction of seismic action. Bending moment 7-1 concentrated in hoso 7-6 shown in Fig. 7 acts on the part where "existing foundation, existing foundation, and existing column are integrated by steel material CP2" as shown in the figure, so sufficient stress is obtained. To be

図9に補強後の仮想断面二次モーメントを示す他の図である。図7に記載の7-6に集中する曲げモーメントが図のように「既存基礎、既存土台、既存管柱通し柱を鋼材CPにより一体化」した部分に作用するため、十分な応力を得られる。図10は耐震作用説明図である。Aはスリットのない場合、Bはスリットをつけた場合に生じる柱の状態である。10-1はス
リットをつけた場合に鋼材CP先端部分の破断力を分散する状態を示している。鋼材CP2補強後に最も影響が集中する鋼材CP上部先端部分に掛かる管柱への破断圧力をスリット構造により解放させた場合の効果を示す。10-2はスリットがない場合にCP先端部分に破断力が集中して破断する状態を示す。
FIG. 9 is another diagram showing the virtual moment of inertia after reinforcement. Since the bending moment concentrated on 7-6 described in FIG. 7 acts on the part where “the existing foundation, the existing foundation, and the existing tubular column through column are integrated by the steel material CP” as shown in the figure, sufficient stress can be obtained. Fig. 10 is an illustration of seismic resistance. A is a state of a pillar without a slit, and B is a state of a column generated with a slit. 10-1 shows a state in which the breaking force at the tip of the steel material CP is dispersed when a slit is provided. The effect in the case of releasing the breaking pressure to the pipe column applied to the upper end portion of the steel material CP where the influence is most concentrated after reinforcing the steel material CP2 by the slit structure is shown. No. 10-2 shows a state in which the breaking force is concentrated at the tip of the CP when there is no slit and the breaking occurs.

図11はコーチスクリュー11-1に引き抜き防止機構の断面図を示す。従来の金具取付は一方向のみであったため、取付方向の引き抜き耐力を常に考慮する必要があったが当該 鋼材CP2の取付は二方向であるため、引き抜き耐力は直交する側のコーチスクリュー11-1がブロックするため引き抜き耐力を考慮せずに済む。11-2は鋼材CPを示す。11-3はラス板を示す。11-4は柱を示す。
図12は下準備概略図である。出隅部既存外壁12-1を取り除き、既存ラス下地材12-2を露出させる。掘削部分12-5に基礎底盤が現れた場合は13-7に示すようにカッター等で鋼材CP取付該当部分をカットする。
FIG. 11 shows a cross-sectional view of the pull-out prevention mechanism on the coach screw 11-1. Conventional metal fittings were installed in only one direction, so it was necessary to always consider the pull-out strength in the mounting direction. However, since the steel material CP2 was mounted in two directions, the pull-out strength was orthogonal to the coach screw 11-1. Since it blocks, there is no need to consider the pulling resistance. 11-2 shows the steel material CP. 11-3 indicates a lath plate. 11-4 indicates a pillar.
FIG. 12 is a schematic diagram of preparation. The existing outer wall 12-1 at the projected corner is removed to expose the existing lath base material 12-2. If the foundation floor appears in the excavated part 12-5, cut the part corresponding to the steel material CP attachment with a cutter as shown in 13-7.

図13は下準備断面図である。13-1既存柱を示す。13-2は既存土台を示す。13-3は既存ラス板を示す。13-4は既存基礎を示す。13-5は既存モルタルを示す。13-6はGLをしめす。13-7は基礎底盤の内カッターで取り去る部分を示す。13-101は既存モルタルを剥がした断
面の状態を示す。13-102は掘削した穴の状態を示す。
既存ラス板13-3と基礎化粧モルタル13-5のレベルに差異が生じた場合はその隙間をゴムプ
レート又は金属板にて埋める。図14は施工概略図を示す。14-1は鋼材CPを示す。14-2は既存基礎を示す。14-3は異形鉄筋を示す。14-4はコーチスクリューで取り付ける穴である。14-5は鋼材CPスリット部分、14-101は内側にゴムプレート又は金属板を取り付け隙間を埋める部分、14-102は生コンを流す部分である。掘削既存土と生コンクリートが混在しないように型枠袋を掘削穴いっぱいに広げコンクリートを流す。
FIG. 13 is a preparation cross-sectional view. 13-1 Shows existing pillars. 13-2 shows the existing foundation. 13-3 shows an existing lath plate. 13-4 shows the existing foundation. 13-5 shows existing mortar. 13-6 shows GL. 13-7 shows the part to be removed by the inner cutter of the foundation bottom plate. No. 13-101 shows the state of the cut surface after peeling off the existing mortar. 13-102 shows the state of the excavated hole.
If there is a difference in level between the existing lath plate 13-3 and the basic makeup mortar 13-5, fill the gap with a rubber plate or a metal plate. Figure 14 shows a schematic diagram of the construction. 14-1 shows steel material CP. 14-2 shows the existing foundation. 14-3 shows deformed rebar. 14-4 is a hole for attaching with a coach screw. Reference numeral 14-5 is a steel CP slit portion, 14-101 is a portion where a rubber plate or a metal plate is attached to the inside to fill the gap, and 14-102 is a portion for flowing fresh concrete. Excavation The formwork bag is filled into the excavation hole so that concrete does not mix with the existing soil and ready-mixed concrete.

図15は施工断面図である。15-1は既存柱。15-2は既存土台。15-3は鋼材CP、15-4は既存基礎。15-5はGL。15-6は異形鉄筋。15-7はコーチスクリューの取り付け穴。15-101は内側にゴムプレート又は金属板を取り付け隙間を埋める。15-102は新設コンクリート基礎。下方部分の膨らみによって独立基礎の定着が容易になる。コンクリートを流して水が退いたら土を埋め戻して、基礎部の工事を完了させる。化粧材としてコーナー部にサイディング材を取付、既存モルタルとの隙間をコーキングして外壁隅部化粧工事を完了させる。 FIG. 15 is a construction sectional view. 15-1 is an existing pillar. 15-2 is the existing base. 15-3 is a steel material CP, and 15-4 is an existing foundation. 15-5 is GL. 15-6 is a deformed bar. 15-7 is a coach screw mounting hole. For 15-101, attach a rubber plate or metal plate inside to fill the gap. 15-102 is a new concrete foundation. The bulge in the lower part facilitates the anchoring of the independent foundation. When the concrete is poured and the water drains, the soil is backfilled, and the foundation work is completed. As a decorative material, siding materials are attached to the corners, and the gap with the existing mortar is caulked to complete the exterior wall corner makeup work.

図16は耐震補強工事図(化粧仕上げ図 積層タイル調)完成図である。仕上げを早く簡易に
するための図である。一般に普及しているサイディングコーナー部材を利用して完了させる。左官屋を入れて補修するよりも、費用、見栄えの点で作業工程が少なくて済む。完璧を期すためには既存外壁と同じ材料で仕上げるのも良い。耐震効果は同じである。
図17も耐震補強工事図(化粧仕上げ図 外壁同色調)である。補強を目立たなくした例。
図18も耐震補強工事図(化粧仕上げ図 タイル調)である。補強部分にアクセントの化粧を施した図である。
Fig. 16 is a completed drawing of the seismic reinforcement work (decorative finish, laminated tile). It is a figure for finishing quickly and simply. Complete using a siding corner member that is widely used. It requires less work process in terms of cost and appearance than repairing with plastering. For perfection, it is good to finish with the same material as the existing outer wall. Seismic resistance is the same.
Figure 17 is also a seismic strengthening construction drawing (decorative finish drawing same color as the outer wall). An example of inconspicuous reinforcement.
Figure 18 is also a seismic retrofit construction drawing (decorative finish tile-like). It is the figure which gave the makeup of the accent to the reinforcement part.

実際の振動試験の動画やシミュレーション等を見てみると(図5)基礎から上の土台上の
柱が倒壊していることが分かる。また土台から柱が抜け出して倒壊する,基礎の破壊等により土台がずれて倒壊に至るケースも考えられる。
しかし破壊に至る作用は(図6記載)のように概ね(1)「基礎と土台」(2)「土台か
ら上の建物本体1階部分」そして(3)において破壊に至るメカニズムがそれぞれ違う。
これを上記3つの部分に分けて検討する。
If you look at the video and simulation of the actual vibration test (Fig. 5), you can see that the pillar on the base above the foundation has collapsed. It is also possible that the columns fall out of the base and collapse, or the base shifts due to the destruction of the foundation, causing collapse.
However, as for the action leading to destruction, the mechanism leading to destruction differs in (1) "Foundation and foundation" (2) "1st floor of the main body of the building above the foundation" and (3) as shown in Fig. 6.
This will be examined in the above three parts.

耐震補強の考え方
従来の耐震補強工事は,どの施工方法をとっても大掛かりで手間と費用と時間を過大にかけるものとなっていた。本請求では最小の費用と最小の手間、及び短時間にて耐震補強を実現する最も簡易な方法はどのようなものかを検討した。
前記したように,倒壊する状況(図6-1)では地盤に問題があった場合。基礎が脆弱であ
った場合、材質に問題があった場合、施工精度に問題があった場合に割れが生じて破壊に至る。
(図6-2)では6-1の破壊に至らなくても筋交い、壁量、同各部の接合不良や材質の劣化等により倒壊に至る。(図6-3)では6-1と6-2の影響を大きく受けてドミノ状態で崩壊する
。仮に6-3に何の問題もなかったとしても6-1/6-2の影響によって,ほぼ大きな損傷もなく崩れ落ちることになる。従って6-1と6-2が充足していれば6-3が倒壊に至る可能性は低減
する。
Concept of seismic retrofitting Conventional seismic retrofitting work requires a large amount of work, cost, and time, whichever method is used. In this request, we examined what is the simplest method to realize the seismic retrofit in the minimum cost, the minimum labor and the short time.
As mentioned above, when there is a problem with the ground in the collapsed condition (Fig. 6-1). If the foundation is fragile, if there is a problem with the material, or if there is a problem with the construction accuracy, cracking will occur, leading to destruction.
In (Fig. 6-2), even if 6-1 is not destroyed, it will collapse due to brace, wall volume, joint failure of each part, deterioration of material, etc. In (Fig. 6-3), it is greatly affected by 6-1 and 6-2 and collapses in the domino state. Even if 6-3 had no problem, it would collapse due to the effects of 6-1/6-2 with almost no damage. Therefore, if 6-1 and 6-2 are satisfied, the possibility that 6-3 will collapse will be reduced.

ここで6-1における施工上及び構造上の問題を判断する方法を考察すると,外見上の構造
クラックの有無程度で有り、モルタルに隠れたコンクリートの質や劣化の程度、施工精度までは評価できない。GL下,地中の状態は当時の図面で判断する。つまり大概にOKなのかNGなのかを判断するしかない。
同じように6-2においても筋交いの状況は主に施工当時の建築図面等で判断する事も有り
、仮に天井裏より確認したとしても,施工精度や材質の劣化、腐朽の程度の状況までは判定できない。ここにおいても大概にOKなのかNGなのかを判断する事になる。
大概にOKならば信頼度も大概程度と見る外ない。
この判定信頼度大概程度の既存建築物に100%完璧な耐震補強計画を立てたところで,どれほどの意義があるのか心許ない砂上の楼閣である。
Considering the method for judging construction and structural problems in 6-1 here, it is only about the presence or absence of structural cracks in appearance, and the quality of concrete hidden in mortar, the degree of deterioration, and the construction accuracy cannot be evaluated. .. Under the GL, the underground condition is judged by the drawings at that time. In other words, there is almost no choice but to judge whether it is OK or NG.
Similarly, even in 6-2, the situation of bracing may be judged mainly from the architectural drawings at the time of construction, and even if it is confirmed from the back of the ceiling, the accuracy of construction and deterioration of material, the degree of decay I can't judge. Even here, it is almost decided whether it is OK or NG.
If it is generally OK, the degree of reliability cannot be overlooked.
It is a sand tower that can not be considered what it means when a 100% perfect seismic strengthening plan is made for existing buildings with this degree of reliability.

この工事、装置により
6−1 負荷を分散させる。
既存構造の土台から立ち上がる管柱(図7-1参照)に地震時にかかる曲げモーメン
トはとても大きい。従来の木造建物の地震時における負荷は土台とその根元の柱のホゾ部分に集中しており、この部分に大きな曲げモーメントが掛かり倒壊に至るパターンが多い。この曲げモーメントの支点そのものを分散して広げ支点軸を大きく取ることによって負荷に対応させ(図8及び図9参照)土台から地中埋設部まで広げた拡張支点軸を仮想断面
二次モーメントとして構築する。
6−2 破断力を分散する
補強部は建物部分への依存を最小限にし、単独で独立した補強方法を実現する。ここで補強したCP上部先端に柱の破断圧力が集中する。(図10参照)事になるためCP上部はスリット部を設け破断圧力を解放させる。熱処理により弾力を強化させ復元応力を持たせることが望ましい。
6-1 Load will be distributed by this work and equipment.
The bending moment applied to a pipe column (see Figure 7-1) rising from the foundation of the existing structure during an earthquake is very large. The load of a conventional wooden building at the time of an earthquake is concentrated on the base and the root of the pillar at the base, and there are many patterns in which a large bending moment is applied to this part and it collapses. This bending moment fulcrum itself is dispersed and expanded to take a large fulcrum axis to accommodate the load (see Figures 8 and 9). An expanded fulcrum axis expanded from the foundation to the underground buried portion is constructed as a virtual moment of inertia. To do.
6-2 Dispersing breaking force The reinforcement part minimizes the dependence on the building part and realizes the independent reinforcement method independently. The rupture pressure of the column concentrates at the top of the CP reinforced here. (See Fig. 10) As a matter of fact, a slit is provided on the upper part of the CP to release the breaking pressure. It is desirable that the heat treatment enhances elasticity and gives a restoring stress.

解 説
地震時横方向に掛かる倒壊圧力は土台から上の「柱根元に集中する」が土台や基礎が従来持っている応力は鉛直荷重に対してのみであり上部建物の横揺れに対応するモーメント荷重はまったく機能せずに生かされていない。この横方向の応力を、たとえ経年劣化や経年変形、損傷があったと仮定しても残存応力を有効に生かすことにより靱性を高めることができる。アンカーボルトの多寡を考慮しなくても,「僅少のアンカーボルト」及び「基礎と土台の横方向摩擦抵抗力」を期待値とするだけで十分な横揺れに対する応力が生じる。曲げモーメントの仮想断面二次を大きくする。 地震時に掛かる従来の曲げモーメントは図7に示す通り小さいものだったがこれを図8及び図9の通り土台から基礎までのスパンで支点軸を大きく広げる。
Explanation: The collapse pressure applied in the lateral direction during an earthquake "is concentrated at the base of the column" above the foundation, but the stress that the foundation and foundation conventionally have is only for vertical loads, and the moment corresponding to the rolling of the upper building. The load does not work at all because it does not work. The toughness can be increased by effectively utilizing the residual stress even if it is assumed that the lateral stress is aged, deformed, or damaged. Even if the number of anchor bolts is not taken into consideration, sufficient stress for rolling is generated only by setting "a small amount of anchor bolts" and "lateral friction resistance between foundation and base" as expected values. Increase the quadratic cross section of the bending moment. The conventional bending moment applied during an earthquake was small as shown in Fig. 7, but as shown in Figs. 8 and 9, the fulcrum axis is widened by the span from the foundation to the foundation.

本発明に係る補強工事は建物内部での工事ではなく図4に記載したとおり建物外側、外
壁出隅部分を土中より直接補強する方法である。
本発明では既存建物部分の体力を不明のまま、大概な状態つまり「多少」程度の依存に留めて,建物の靱性を高めることを目的とする。元来不確定要素の多い計算上の耐震補強ではなく、つまり経済合理性をも考慮して「耐震性を増強させる」ものである。従って既存柱と補強材の定着(固定)は直接合ではなくともOKとする。取付はコーチスクリューを標準とする。
これはラス板等を撤去して直接合、ボルトの反対側をナットで取り付けする場合に拡大する工事費を抑え,低い費用での効果を期待するためのものである。なお、新築の場合も含めてボルトの反対側をナットで取り付け可能であれば最良である。
The reinforcement work according to the present invention is not a construction work inside the building, but a method of directly reinforcing the outside of the building and the corner of the outer wall from the soil as shown in FIG.
An object of the present invention is to increase the toughness of a building by keeping the physical strength of the existing building part unknown, keeping it in a general state, that is, in a “some” degree of dependence. It is not a seismic retrofit for calculation, which has many uncertainties, but it is "to increase seismic resistance" in consideration of economic rationality. Therefore, the fixing (fixing) of existing pillars and reinforcements is OK even if they are not directly attached. The standard attachment is a coach screw.
This is to reduce the construction cost when installing the opposite side of the bolt with the nut by removing the lath plate directly and to expect the effect at low cost. It is best if the opposite side of the bolt can be attached with a nut, including the case of a new construction.

施 工 手 順
建物外壁に当時(かつて)最も多く使われていたラス板下地モルタル塗りの場合を例に作業手順を記載すると次のようになる。
7−1 ダイヤモンドカッター等で図12のとおりモルタル部分を切り取りラス板を露出させる。
7−2 出隅部分基礎下を掘り出し掘削切り土面を荒らさず、底部にグリを敷転圧する。(図13-7)既存基礎の底盤が型枠で構築されている場合は一部カッターを利用し既存基礎本体への損傷を最小限に留める。
7−3 CPと基礎の隙間をゴムスペーサーで埋めCPをコーチスクリューで二方向から取付、汎用のサイディングコーナー部材を用いて取り付ける。
7−4 既存基礎部分は、後施工用打ち込み式アンカー、ケミカルアンカー等でCPを固定する
7−5 型枠袋を装着して生コンを流し込み切り土と一体化させる。
7−6 サイディング材と既存モルタル部の隙間をコーキングする。
7−7 生コンを流して水が退いたあと、速やかに独立基礎上部を埋め戻す。
施工後直ぐに地耐力を効果的に生かせるように基礎下を若干掘り下げ(図12-4参照)掘削面を荒らさず,型枠用袋に生コンを流し込む。ここで重要なことは基礎下に十分生コンが行き渡るように隙間を作らず上部基礎及び掘削面を密着させ、支えられるようにする。初期硬化後埋め戻す。(図16・17・18完成図)
Construction procedure The following is a description of the work procedure, using the case of mortar coating on the lath board as the base, which was used most often (once) at the time on the outer wall of the building.
7-1 Cut the mortar part with a diamond cutter etc. as shown in Fig. 12 to expose the lath plate.
7-2 Excavate under the foundation of the projecting corner part, excavate, and do not roughen the soil surface. (Fig. 13-7) If the bottom of the existing foundation is constructed with a formwork, use some cutters to minimize damage to the existing foundation body.
7-3 Fill the gap between the CP and the foundation with a rubber spacer and attach the CP from the two directions with a coach screw, and attach it using a general-purpose siding corner member.
7-4 For the existing foundation, attach a 7-5 formwork bag that fixes the CP with post-installation type anchors, chemical anchors, etc., and pour in fresh concrete to integrate it with the cut soil.
7-6 Caulk the gap between the siding material and the existing mortar.
7-7 Immediately fill the upper part of the independent foundation after pouring ready-mixed concrete to drain the water.
Immediately after construction, the bottom of the foundation is dug down slightly so that the bearing capacity can be effectively utilized (see Fig. 12-4). The raw concrete is poured into the formwork bag without roughening the excavated surface. What is important here is that the upper foundation and the excavated surface should be in close contact with each other without making a gap so that ready-mixed concrete can be spread under the foundation. Backfill after initial curing. (Completion drawing of Figure 16, 17, 18)

図1_耐震補強工事図 Aの部分

図2_耐震補強部材外面
2-1 切り込みを入れる(切り込み)
2-2 熱処理をするのが望ましい(熱処理ゾーン)
2-3 破断力分散ゾーン
2-4 柱取り付け用穴(管柱取り付け用穴)
2-5 土台から上の部分
2-6 地中埋設部分
2-7 GLから露出基礎部分 ゴムプレート又は金属板を裏側に貼付適宜現場に応じて厚さを調節する
2-8 異形鉄筋挿入部

図3_耐震補強部材内面
3-1 切り込みを入れる
3-2 熱処理をするのが望ましい
3-3 破断力分散ゾーン
3-4 柱取り付け用穴
3-5 GLから露出 基礎部分 ゴムプレート又は金属板を貼付、適宜現場に応じて厚さを調節する
3-6 土台から上の部分
3-7 地中埋設部分
3-8 異形鉄筋挿入部

図4_耐震補強概要図
4-1 鋼材CP
4-2 地中独立基礎

図5_倒壊時における柱の状況

図6_土台上部の
倒壊する三層状況
6-1 基礎と土台
6-2 土台から上 建物本体1階部分が主に崩壊する
6-3 二階部分


図7_曲げモーメントの作用図
7-1 曲げモーメントの作用図
7-2 既存土台
7-3 既存柱
7-4 地震作用方向
7-5 既存基礎
7-6 管柱根元ホゾ


図8_仮想断層2次モーメントの圧縮作用図
8-1 仮想断面2次モーメントの作用図
8-2 既存土台
8-3 既存管柱
8-4 CP
8-5 既存基礎
8-6 独立基礎
8-7 地震作用方向

図9仮想断面2次モーメントの引っ張り作用図
9-1 仮想断面2次モーメントの作用図
9-2 既存土台
9-3 既存管柱
9-4 CP
9-5 既存基礎
9-6 独立基礎
9-7 地震作用方向
図10_耐震作用説明図
A スリッド無し
B スリッド有り
10-1 CP取り付け先端部分の破断力を分散
10-2 スリットがない場合にCP先端部分に破断力が集中して破断

図11 コーチスクリュー引き抜き防止説明図
11-1 コーチスクリュー
11-2 CP
11-3 ラス板
11-4 柱

図12_下準備概略図
12-1 既存モルタル
12-2 既存ラス板
12-3 既存土台
12-4 既存基礎
12-5 掘削

図13_下準備断面図
13-1 既存柱
13-2 既存土台
13-3 既存ラス板
13-4 既存基礎
13-5 既存モルタル
13-6 GL
13-7 基礎底盤の内カッターで取り去る部分
13-101 既存モルタルを剥がしたカットの断面を示す
13-102 下方部分を若干広げ膨らませ、定着力に即効性を持たせる

図14_施工概略図
14-1 新設CP(アングル)
14-2 既存基礎
14-3 異形鉄筋
14-4 コーチスクリュー等で取付穴
14-5 スリット部分
14-6 既存土台
14-101 内側にゴムプレート又は金属板を取り付け隙間を埋める部分
14-102 生コンを流す部分

図15_施工断面図
15-1 既存柱
15-2 既存土台
15-3 鋼材CP(アングル)
15-4 既存基礎
15-5 GL
15-6 異形鉄筋
15-7 コーチスクリュー等で取付穴
15-101 内側にゴムプレート又は金属板を取り付け隙間を埋める
15-102 新設コンクリート独立基礎
Figure 1_Seismic retrofit construction part A

Figure 2_ Seismic reinforcement member outer surface
2-1 Make a cut (cut)
2-2 Heat treatment is desirable (heat treatment zone)
2-3 Breaking force dispersion zone
2-4 Pillar mounting holes (tube column mounting holes)
2-5 Above the base
2-6 Underground buried part
2-7 GL exposed basic part Rubber plate or metal plate is attached on the back side and the thickness is adjusted according to the site.
2-8 Deformed bar insertion section

Figure 3_ Inside surface of seismic reinforcement member
3-1 Make a notch
3-2 Heat treatment is desirable
3-3 Breaking force dispersion zone
3-4 Pillar mounting holes
3-5 Exposed from GL Foundation part Rubber plate or metal plate is attached, and the thickness is adjusted according to the site.
3-6 Above the base
3-7 Underground part
3-8 Deformed bar insertion section

Figure 4_ Schematic diagram of seismic reinforcement
4-1 Steel CP
4-2 Underground foundation

Figure 5_The situation of the pillar at the time of collapse

Figure 6_ Three layers of collapsed upper base
6-1 Foundation and foundation
6-2 From the base to the top The building's first floor mainly collapses
6-3 Second floor


Figure 7_Bending moment action diagram
7-1 Bending moment action diagram
7-2 Existing base
7-3 Existing Pillar
7-4 Earthquake action direction
7-5 Existing Foundation
7-6 Tube post root


Figure 8_ Compressive action diagram of virtual moment of inertia
8-1 Action diagram of virtual moment of inertia
8-2 Existing base
8-3 Existing tube column
8-4 CP
8-5 Existing Foundation
8-6 Independent foundation
8-7 Earthquake action direction

Fig. 9 Pulling action diagram of virtual moment of inertia
9-1 Action diagram of virtual moment of inertia
9-2 Existing base
9-3 Existing tube column
9-4 CP
9-5 Existing Foundation
9-6 Independence foundation
9-7 Seismic action direction diagram 10_ Seismic action explanation diagram
A without slit
With B-slid
10-1 Dispersing the breaking force at the CP mounting tip
10-2 When there is no slit, the breaking force concentrates on the CP tip and breaks.

Fig. 11 Explanatory drawing of coach screw pull-out prevention
11-1 Coach screw
11-2 CP
11-3 Lath plate
11-4 Pillar

Figure 12_ Schematic diagram of preparation
12-1 Existing mortar
12-2 Existing lath plate
12-3 Existing base
12-4 Existing Foundation
12-5 excavation

Figure 13_ sectional view under preparation
13-1 Existing Pillar
13-2 Existing base
13-3 Existing Lath Plate
13-4 Existing Foundation
13-5 Existing Mortar
13-6 GL
13-7 The part of the base plate that is removed by the cutter
13-101 Shows the cross section of the cut with the existing mortar removed
13-102 Expand the lower part slightly and inflate it to give immediate effect on fixing power

Figure 14_ Construction schematic
14-1 New CP (angle)
14-2 Existing foundation
14-3 Deformed bar
14-4 Mounting hole with coach screw etc.
14-5 Slit part
14-6 Existing base
14-101 A part that attaches a rubber plate or metal plate to the inside to fill the gap
14-102 Portion of fresh concrete

Figure 15_ Construction section
15-1 Existing Pillar
15-2 Existing base
15-3 Steel CP (angle)
15-4 Existing Foundation
15-5 GL
15-6 Deformed bar
15-7 Mounting hole with coach screw etc.
15-101 Install a rubber plate or metal plate inside to fill the gap
15-102 New concrete independent foundation

Claims (9)

建物出隅部分を補強するため外壁下地を露出させ、建物出隅部の既存基礎の下を掘り下げ,アングル状のL型鋼材よりなる耐震補強部材を前記建物出隅部にあてがい、その下部をコンクリートで固めて地中に埋設し,前記耐震補強部材で既存土台からの立ち上げ部分を前記建物出隅部柱に固定し、前記コンクリートからなる新設地中独立基礎より既存基礎、既存土台、建物出隅部柱までを前記耐震補強部材により一体化させて補強し、耐震補強部材先端部分より柱への破断圧力を解放させ、耐震補強部材の取付先端部分を柔軟に柱に繋げ破断力を分散する目的で耐震補強部材の上部先端部にスリットを設けてなる建物の補強方法。In order to reinforce the projecting corners of the building, the outer wall base is exposed, the existing foundation of the projecting corners is dug down, a seismic reinforcing member made of angled L-shaped steel is applied to the building projecting corners, and the lower part is made of concrete. After burying it in the ground, fix the rising part from the existing foundation to the pillar at the corner of the building with the seismic strengthening member, and from the new underground independent foundation made of concrete, existing foundation, existing foundation, building up external corner portion pillar reinforce be integrated by the earthquake-proof reinforcement member, to release the breaking pressure of the column from the earthquake-proof reinforcement member tip portion, dispersing breaking force lead to flexibly pillar mounting tip portion of the earthquake-proof reinforcement member A method of reinforcing a building by providing a slit at the top end of the seismic reinforcement member for the purpose of 前記耐震補強部材の前記既存出隅部柱から既存土台、新設地中独立基礎部分までの長さにより一体化された複合断面二次モーメントが構成されることを特徴とする請求項1に記載の建物の補強方法。 The integrated second moment of inertia of the cross section is configured by the length from the existing projecting corner column of the seismic reinforcement member to the existing foundation and the new underground independent foundation portion. Building reinforcement method. 新築時にアングル状のL型鋼よりなる耐震補強部材の下部をコンクリートにより固めてコンクリートからなる独立基礎を地中に埋設し、この独立基礎から立ち上げた前記耐震補強部材の地上部分を、築造基礎に密着させ、埋込みアンカー又はケミカルアンカーで築造される基礎に固定し、耐震補強部材先端部分より柱への破断圧力を解放させ、耐震補強部材の取り付け先端部分を柔軟に柱に繋げ破断力を分散する目的で耐震補強部材の上部先端部にスリットを設けてなる建物の補強方法。At the time of new construction, the lower part of the angle-shaped seismic reinforcement member made of L-shaped steel is solidified with concrete and an independent foundation made of concrete is buried in the ground, and the above-ground portion of the seismic reinforcement member that is launched from this independent foundation is used as a construction foundation. It is closely attached and fixed to the foundation built with embedded anchors or chemical anchors to release the breaking pressure from the tip of the seismic reinforcement member to the column, and flexibly connect the tip of the seismic reinforcement member to the column to disperse the breaking force. A method of reinforcing a building by providing a slit at the top end of the seismic reinforcement member for the purpose . 耐震補強部材と基礎との間にゴムプレート又は金属板を配する請求項1から3のいずれかに記載の建物の補強方法。 The method for reinforcing a building according to claim 1, wherein a rubber plate or a metal plate is arranged between the earthquake-proof reinforcing member and the foundation. 耐震補強部材の埋設独立基礎又は新築時における一体基礎部分には抜け出し防止のための異形鉄筋を差し込み、固定する請求項1から4のいずれかに記載の建物の補強方法。 The reinforcing method for a building according to any one of claims 1 to 4, wherein deformed reinforcing bars for preventing slip-out are inserted into and fixed to an embedded independent foundation of the earthquake-proof reinforcement member or an integral foundation portion at the time of new construction. コーチスクリューの引き抜き防止ため耐震補強部材と柱との取付に際し、単一方向への引き抜き圧力を直交する二方向からのコーチスクリューを螺子込みブロックする請求項1からのいずれかに記載の建物の補強方法。The building according to any one of claims 1 to 5 , wherein when the seismic reinforcement member and the column are mounted to prevent the coach screw from being pulled out, the pulling pressure in a single direction is blocked by screwing in the coach screws from two directions orthogonal to each other. Reinforcement method. 耐震補強部材が厚さ3〜8mm程度、幅50mm以上、既存土台から立ち上げ部分の長さが300mm以上であり、立ち上げ部分を隅部柱にコーチスクリュー又はボルトナットで取付直結補強する請求項1からに記載の建物の補強方法。The earthquake-proof reinforcing member has a thickness of about 3 to 8 mm, a width of 50 mm or more, and a length of a rising portion from the existing base is 300 mm or more, and the rising portion is directly connected and reinforced by a corner screw with a coach screw or a bolt nut. The method for reinforcing a building according to any one of 1 to 6 . 取付直後から応力を期待できる型枠袋利用による既存地山の耐力密着利用方法を用いる請求項1からのいずれかに記載の建物の補強方法。The method for reinforcing a building according to any one of claims 1 to 7 , which uses a method for closely adhering to the bearing capacity of an existing ground by using a form bag that can expect stress immediately after mounting. 耐震補強部材は上部に切り込み、および、熱処理をした部分を有するL型鋼よりなる請求項1からに記載の建物の補強方法。Seismic reinforcement member cuts the top, and a method for building reinforced according to claim 1 to 8 consisting of L-section steel having a portion in which the heat treatment.
JP2017026220A 2017-02-15 2017-02-15 Building reinforcement method and seismic reinforcement member Active JP6744829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017026220A JP6744829B2 (en) 2017-02-15 2017-02-15 Building reinforcement method and seismic reinforcement member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017026220A JP6744829B2 (en) 2017-02-15 2017-02-15 Building reinforcement method and seismic reinforcement member

Publications (2)

Publication Number Publication Date
JP2018131812A JP2018131812A (en) 2018-08-23
JP6744829B2 true JP6744829B2 (en) 2020-08-19

Family

ID=63248246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017026220A Active JP6744829B2 (en) 2017-02-15 2017-02-15 Building reinforcement method and seismic reinforcement member

Country Status (1)

Country Link
JP (1) JP6744829B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110805306B (en) * 2019-11-12 2021-04-30 山东建筑大学 Building displacement rectification method
CN110820540B (en) * 2019-12-12 2024-04-26 中南大学 Energy-consuming roller vibration reduction and isolation device
JP7530057B2 (en) 2021-07-29 2024-08-07 株式会社高橋監理 Hold-down hardware for 4-story building
CN115541156B (en) * 2022-09-02 2023-07-25 防灾科技学院 Building structure fracture resistance test simulation device and method under cross fault effect

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111917A (en) * 1987-10-22 1989-04-28 Asahi Chem Ind Co Ltd Injection of setting fluid into cloth bag buried in ground
JPH1162263A (en) * 1997-08-07 1999-03-05 Showa Mirai:Kk Reinforcement plate for building
JP2001200642A (en) * 2000-01-20 2001-07-27 Yukio Ishiyama Earthquake resistant structure of secondhand wooden house
JP2005336742A (en) * 2004-05-24 2005-12-08 Nippon Gijutsu Hanbai Kk Earthquake resisting device of building
JP2008057257A (en) * 2006-08-31 2008-03-13 Sumitomo Forestry Co Ltd Pillar fastener, decorative cover covering the same and pillar fastening structure using these
US9976315B2 (en) * 2013-08-08 2018-05-22 University Of Utah Research Foundation Elongate member reinforcement

Also Published As

Publication number Publication date
JP2018131812A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6744829B2 (en) Building reinforcement method and seismic reinforcement member
JP2016515173A (en) Precast concrete retaining wall
US20160326769A1 (en) Lightweight concrete or masonry fence system without concrete footings
US10221558B1 (en) Foundation connection device for use during construction of concrete wall panels
JP6166560B2 (en) Extension structure of seismic isolation building
WO2012072971A1 (en) A multi- storey apartment building and method of constructing such building
JP2009144494A (en) Base-isolating work method for existing buildings
CN106760851A (en) The construction method of the newly-increased Seismic Isolation of Isolation Layer of existing brick mix structure
KR101467147B1 (en) Subway platform construction method using semi-rigid connection
KR20090044195A (en) Core and construction method thereof for extension of elevator operation floor and elevation of seismic resistant performance in remodeling of structure
US6282850B1 (en) Method and apparatus for seismically retrofitting a household chimney
JP5638446B2 (en) Seismic structure and its construction method
JP2005105531A (en) Foundation structure of building and its construction method
JP3603130B2 (en) Root-wound reinforcement structure for column bases such as steel columns
JP4976938B2 (en) Seismic reinforcement structure
JP4228308B2 (en) Reinforcement method for existing floors and seismic isolation method for existing buildings
Bansal Structural retrofitting in historic buildings–the case of Hearst Greek theatre, California
JP3641227B2 (en) Construction method of underground structure
JP5527644B2 (en) Forming method of outer underground beam, inner underground beam and post in pressure-resistant plate post foundation
JP6099261B2 (en) Building construction method and structure
JP2004060310A (en) Wooden earthquake-proof construction using earthquake-proof core
JP2009013696A (en) Seismic strengthening method for existing apartment house
AU2016202540B2 (en) A base block for supporting a panel
JP3597183B2 (en) Barrier-free construction method of staircase type apartment house by building outer frame
Kamal et al. Analysis of Seismic Retrofitting in Heritage Buildings: Techniques and Conservation Interventions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181030

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6744829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250