JP6744141B2 - 超音波診断装置及び画像処理装置 - Google Patents

超音波診断装置及び画像処理装置 Download PDF

Info

Publication number
JP6744141B2
JP6744141B2 JP2016117270A JP2016117270A JP6744141B2 JP 6744141 B2 JP6744141 B2 JP 6744141B2 JP 2016117270 A JP2016117270 A JP 2016117270A JP 2016117270 A JP2016117270 A JP 2016117270A JP 6744141 B2 JP6744141 B2 JP 6744141B2
Authority
JP
Japan
Prior art keywords
cross
image data
volume data
section
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016117270A
Other languages
English (en)
Other versions
JP2017006655A (ja
Inventor
悠 五十嵐
悠 五十嵐
和哉 赤木
和哉 赤木
佐藤 俊介
俊介 佐藤
田中 豪
豪 田中
衣津紀 久我
衣津紀 久我
隆之 郡司
隆之 郡司
正毅 渡辺
正毅 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Publication of JP2017006655A publication Critical patent/JP2017006655A/ja
Application granted granted Critical
Publication of JP6744141B2 publication Critical patent/JP6744141B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • A61B8/5253Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode combining overlapping images, e.g. spatial compounding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • A61B8/145Echo-tomography characterised by scanning multiple planes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Hematology (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Gynecology & Obstetrics (AREA)

Description

本発明の実施形態は、超音波診断装置及び画像処理装置に関する。
超音波診断装置は、超音波プローブに設けられた圧電振動子から発生する超音波パルスを被検体内に放射し、被検体組織の音響インピーダンスの差異によって生ずる超音波の反射波を圧電振動子により受信して生体情報を収集する装置である。超音波診断装置は、超音波プローブを体表に接触させるだけの簡単な操作で画像データの略リアルタイム表示が可能となるため、各種臓器の形態診断や機能診断に広く用いられている。
被検体内における関心領域(構造物)が超音波プローブの走査領域より広範囲に及ぶ場合、複数箇所で収集した超音波の画像データを繋ぎ合わせることで、広範囲な画像データを生成する技術がある。この場合、例えば、超音波診断装置は、超音波プローブを体表面に沿って少しずつ移動させる操作者の手技により、複数フレーム分の画像データを収集し、各フレームを繋ぎ合わせることで、広範囲な画像データ(パノラマ画像データ)を生成する。
特開2011−72656号公報 特開2007−330764号公報
本発明が解決しようとする課題は、簡易な操作で広範囲な画像データを生成することができる超音波診断装置及び画像処理装置を提供することである。
実施形態の超音波診断装置は、画像生成部と、抽出部と、連結部とを備える。画像生成部は、超音波プローブが被検体の第1の位置にあるときに実行された超音波の送受信の結果に基づいて第1のボリュームデータを生成し、前記超音波プローブが前記第1の位置とは異なる第2の位置にあるときに実行された超音波の送受信の結果に基づいて第2のボリュームデータを生成する。抽出部は、前記被検体内の構造物を含み、前記構造物の延在方向に沿った第1の断面画像データを、断面の向きに関する第1の制約に従って、前記第1のボリュームデータから抽出し、前記構造物を含み、前記構造物の延在方向に沿った第2の断面画像データを、断面の向きに関する第2の制約に従って、前記第2のボリュームデータから抽出する。連結部は、前記第1の断面画像データの少なくとも一部と前記第2の断面画像データの少なくとも一部が連結された連結画像データを生成する。
図1は、第1の実施形態に係る超音波診断装置の構成例を示すブロック図である。 図2は、第1の実施形態に係る超音波診断装置の処理を説明するためのフローチャートである。 図3は、第1の実施形態に係る初期断面の決定について説明するための図である。 図4Aは、第1の実施形態に係る初期断面の決定について説明するための図である。 図4Bは、第1の実施形態に係る初期断面の決定について説明するための図である。 図5は、実施形態に係る送受信制御部の処理を説明するための図である。 図6Aは、第1の実施形態に係る抽出部の処理を説明するための図である。 図6Bは、第1の実施形態に係る抽出部の処理を説明するための図である。 図6Cは、第1の実施形態に係る抽出部の処理を説明するための図である。 図7Aは、第1の実施形態に係る連結部の処理を説明するための図である。 図7Bは、第1の実施形態に係る連結部の処理を説明するための図である。 図7Cは、第1の実施形態に係る連結部の処理を説明するための図である。 図8は、第1の実施形態に係る表示制御部の処理を説明するための図である。 図9は、第2の実施形態に係る超音波診断装置の処理を説明するためのフローチャートである。 図10は、第2の実施形態に係る連結部の処理を説明するための図である。 図11は、その他の実施形態に係る超音波診断装置の構成例を示すブロック図である。 図12は、その他の実施形態に係る画像処理装置の構成例を示すブロック図である。
以下、図面を参照して、実施形態に係る超音波診断装置及び画像処理装置を説明する。
(第1の実施形態)
図1は、第1の実施形態に係る超音波診断装置10の構成例を示すブロック図である。図1に示すように、第1の実施形態に係る超音波診断装置10は、超音波プローブ11と、入力装置12と、モニタ13と、装置本体100とを備える。
超音波プローブ11は、被検体Pの体表面に接触され、超音波の送受信を行う。例えば、超音波プローブ11は、複数の圧電振動子を有する。これら複数の圧電振動子は、後述する装置本体100が有する送受信部110から供給される駆動信号に基づいて、超音波を発生させる。発生した超音波は、被検体Pの体内組織において反射され、反射波信号として複数の圧電振動子にて受信される。超音波プローブ11は、複数の圧電振動子にて受信した反射波信号を、送受信部110へ送る。
第1の実施形態に係る超音波プローブ11は、3次元領域に対する超音波の送受信(走査)を、所定のボリュームレート(フレームレート)で実行する。例えば、超音波プローブ11は、複数の圧電振動子が格子状に2次元で配置された2Dアレイプローブである。超音波プローブ11は、2次元で配置された複数の圧電振動子を用いて3次元の領域に対して超音波を送信し、反射波信号を受信する。なお、これに限らず、超音波プローブ11は、例えば、1次元で配列された複数の圧電振動子が機械的に揺動することで、3次元領域を走査するメカニカル4Dプローブであってもよい。
入力装置12は、マウス、キーボード、ボタン、パネルスイッチ、タッチコマンドスクリーン、フットスイッチ、トラックボール、ジョイスティック等を有し、超音波診断装置1の操作者からの各種設定要求を受け付け、装置本体100に対して受け付けた各種設定要求を転送する。なお、入力装置12は、入力部の一例である。
モニタ13は、超音波診断装置10の操作者が入力装置12を用いて各種設定要求を入力するためのGUI(Graphical User Interface)を表示したり、装置本体100において生成された超音波画像データ等を表示したりする。
装置本体100は、超音波プローブ11が受信した反射波信号に基づいて、超音波画像データを生成する装置である。図1に示すように、装置本体100は、例えば、送受信部110と、信号処理部120と、処理部130と、画像メモリ140と、内部記憶部150と、制御部160とを有する。送受信部110、信号処理部120、処理部130、画像メモリ140、内部記憶部150、及び制御部160は、通信可能に互いに接続される。
送受信部110は、超音波プローブ11による超音波の送受信を制御する。例えば、送受信部110は、後述する制御部160の指示に基づいて、超音波プローブ11が行う超音波送受信を制御する。送受信部110は、超音波プローブ11に駆動信号(駆動パルス)を印加することで、超音波がビーム状に集束された超音波ビームを送信させる。また、送受信部110は、超音波プローブ11が受信した反射波信号に所定の遅延時間を与えて加算処理を行うことで、反射波信号の受信指向性に応じた方向から反射成分が強調された反射波データを生成する。
信号処理部120は、送受信部110が反射波信号から生成した反射波データに対して各種の信号処理を行う。信号処理部120は、送受信部110から受信した反射波データに対して、対数増幅、包絡線検波処理等を行って、サンプル点(観測点)ごとの信号強度が輝度の明るさで表現されるデータ(Bモードデータ)を生成する。
また、信号処理部120は、送受信部110から受信した反射波データより、移動体のドプラ効果に基づく運動情報を、走査領域内の各サンプル点で抽出したデータ(ドプラデータ)を生成する。具体的には、信号処理部120は、移動体の運動情報として、平均速度、分散値、パワー値等を各サンプル点で抽出したドプラデータを生成する。ここで、移動体とは、例えば、血流や、心壁等の組織、造影剤である。
処理部130は、画像データ(超音波画像データ)の生成処理や、画像データに対する各種の画像処理等を行う。処理部130は、生成した画像データや、各種の画像処理を行った画像データを、画像メモリ140に格納する。
第1の実施形態に係る処理部130は、画像生成部131と、抽出部132と、連結部133とを備える。画像生成部131は、信号処理部120が生成したデータから超音波画像データを生成する。例えば、画像生成部131は、信号処理部120が生成したBモードデータから、反射波の強度を輝度で表したBモード画像データを生成する。また、画像生成部131は、信号処理部120が生成したドプラデータから、移動体情報を表すドプラ画像データを生成する。このドプラ画像データは、速度画像データ、分散画像データ、パワー画像データ、又は、これらを組み合わせた画像データである。なお、ボリュームデータの表示を行う場合、画像生成部131は、ボリュームデータに対して各種のレンダリング処理を行い、表示用の2次元画像データを生成する。なお、抽出部132及び連結部133の各処理については、後述する。
画像メモリ140は、画像処理部131が生成した画像データを記憶するメモリである。また、画像メモリ140は、信号処理部120が生成したデータを記憶することも可能である。画像メモリ140が記憶するBモードデータやドプラデータは、例えば、診断の後に操作者が呼び出すことが可能となっており、画像生成部131を経由して表示用の超音波画像データとなる。
内部記憶部150は、超音波送受信、画像処理及び表示処理を行うための制御プログラムや、診断情報(例えば、患者ID、医師の所見等)や、診断プロトコルや各種ボディーマーク等の各種データを記憶する。また、内部記憶部150は、必要に応じて、画像メモリ140が記憶する画像データの保管等にも使用される。また、内部記憶部150が記憶するデータは、図示しないインタフェース部を介して、外部装置へ転送することができる。
制御部160は、超音波診断装置10の処理全体を制御する。具体的には、制御部160は、入力装置12を介して操作者から入力された各種設定要求や、内部記憶部150から読み込んだ各種制御プログラム及び各種データに基づき、送受信部110、信号処理部120、処理部130等の処理を制御する。また、制御部160は、画像メモリ140が記憶する超音波画像データをモニタ13に表示させる。
第1の実施形態に係る制御部160は、送受信制御部161と、表示制御部162とを備える。送受信制御部161及び表示制御部162の各処理については、後述する。
なお、装置本体100に内蔵される送受信部110及び制御部160等は、プロセッサ(CPU(Central Processing Unit)、MPU(Micro-Processing Unit)、集積回路等)のハードウェアにより構成されることもあるが、ソフトウェア的にモジュール化されたプログラムにより構成される場合もある。
ところで、超音波プローブ11の走査領域より広範囲な画像データを生成する場合、操作者(医師)は、撮影対象の構造物を見失ってしまう場合がある。例えば、慣れていない操作者は、超音波プローブ11を被検体Pの体表面に沿って少しずつ移動させる過程で撮影対象の構造物(血管等)を見失ってしまう。この場合、操作者は、それ以降の撮影を継続できず、広範囲な画像データを生成するには、再度、上記の手技を最初から行うこととなる。
そこで、本実施形態に係る超音波診断装置10は、簡易な操作で広範囲な画像データ(以下、「連結画像データ」、若しくは「パノラマ画像データ」とも表記する)を生成するために、以下の構成を備える。すなわち、超音波診断装置10において、超音波プローブ11は、3次元領域に対する超音波の送受信を、所定のボリュームレートで実行する。抽出部132は、超音波の送受信により3次元領域の画像データであるボリュームデータが得られるごとに、ボリュームデータから被検体の体内の構造物の長軸を含む断面を抽出する。連結部133は、断面の画像データが抽出されるごとに、抽出された断面の画像データと、以前に抽出された断面の画像データとがそれぞれの対応する位置に配置された画像データを生成する。表示制御部162は、画像データに基づく画像を表示する。
以下、図2のフローチャートを用いて、上述した抽出部132、連結部133、送受信制御部161、及び表示制御部162の各処理について説明する。なお、以下では、超音波プローブ11の走査領域より広範囲な撮影対象として、被検体Pの脚部(太もも)の血管を撮影する場合を説明するが、実施形態はこれに限定されるものではない。撮影対象は、例えば、食道等、超音波プローブ11の走査領域より広範囲な構造物であれば如何なる構造物であってもよい。例えば、構造物は、血管や食道等の管状の構造物である。
図2は、第1の実施形態に係る超音波診断装置10の処理を説明するためのフローチャートである。第1の実施形態に係る撮影においては、まず、血管が描出された初期断面の決定が行われ、次に、血管を追跡しながら画像を拡大する処理(自動追跡処理)が行われる。
図2に示すように、撮影が開始されると(ステップS101肯定)、超音波診断装置10は、初期断面を決定する処理を行う。例えば、操作者は、超音波プローブ11を被検体の脚部に当接させ、撮影の開始を指示するためのボタンを押下する。これを契機として、超音波診断装置10は、初期断面を決定する処理を開始する。なお、撮影が開始されない場合(ステップS101否定)、超音波診断装置10は、待機状態である。
図3及び図4A,4Bは、第1の実施形態に係る初期断面の決定について説明するための図である。図3には、超音波プローブ11が被検体Pに当接される場合の様子を例示する。図4Aには、初期断面の決定において表示される表示断面の位置を例示する。図4Bには、初期断面の決定において表示される表示断面を例示する。
図3に示すように、例えば、2Dアレイプローブである超音波プローブ11は、被検体の脚部に当接される。そして、超音波プローブ11は、初期断面を決定するために、所定の断面の走査(スキャン)を行う。ここで、2Dアレイプローブは、例えば、超音波送受信を行う圧電振動子を一列とすることで、2次元(平面)領域の走査を行うこともできる。
ここで、超音波プローブ11は、図4Aに示すように、複数の圧電振動子がアジマス方向及びエレベーション方向に2次元に配列される2Dアレイ面30を有する。ここで、超音波プローブ11は、操作者によりアジマス方向に沿って移動されるものとする。この場合、超音波プローブ11は、エレベーション方向における中央の位置に、アジマス方向に平行な断面(表示断面40)を走査する。これにより、超音波診断装置10は、図4Bに示すように、この表示断面40のBモード画像を生成し、表示する(ステップS102)。
なお、以下の説明においても、超音波プローブ11がアジマス方向に沿って移動される場合を説明するが、実施形態はこれに限定されるものではない。例えば、超音波プローブ11がエレベーション方向に沿って移動される場合には、超音波プローブ11は、エレベーション方向に平行な断面を走査する。
そして、超音波診断装置10において、抽出部132は、血管の認識を行う(ステップS103)。例えば、抽出部132は、Bモード画像の輝度値を用いて、血管を認識する。血管は、周囲の組織(実質部)と比較して黒抜けすることが知られている。このため、抽出部132は、周囲の組織(実質部)と比較して黒抜けしている部分をBモード画像から抽出することで、血管を認識する。そして、表示制御部162は、抽出部132によって認識された血管の位置をBモード画像上に強調表示する(図4B参照)。なお、Bモード画像から血管を認識する処理は、上記の処理に限定されるものではない。例えば、送受信制御部161は、Bモードの走査とともに、ドプラモードの走査を実行させ、これにより生成されたドプラ画像でドプラ情報を有する領域(例えば、パワー値が閾値以上の領域)を血管として認識してもよい。また、操作者が血管を手動で指定してもよい。
ここで、操作者は、血管が認識されたBモード画像を閲覧しながら超音波プローブ11の位置を動かすことで、そのBモード画像に血管(撮影対象)が明瞭に描出される位置を探す。そして、操作者は、Bモード画像に血管が明瞭に描出されたと判断すると、その位置から超音波プローブ11を動かさずに、初期断面を決定するためのボタンを押下する。これにより、送受信制御部161は、初期断面を決定するためのボタンが押下された際に表示されている表示断面40を、初期断面として決定する(ステップS104)。つまり、入力装置12は、断面画像データを抽出するための断面位置の指定を受け付ける。そして、送受信制御部161は、表示中の表示断面40を、1番目(N=1)のフレームの断面として設定する。ここまでの処理により、初期断面の決定が完了する。
図2の説明に戻り、自動追跡処理について説明する。初期断面が決定された後に、操作者により自動追跡処置を開始するためのボタンが押下されると、制御部160の各処理部は、自動追跡処理を開始する(ステップS105肯定)。なお、自動追跡処置を開始するためのボタンが押下されない場合には、自動追跡処理は開始されない(ステップS105否定)。この場合、例えば、ステップS102〜S104の処理を再び実行することで、初期断面の再決定(訂正)が行われてもよい。
自動追跡処理が開始されると(ステップS105肯定)、送受信制御部161は、Nを1インクリメントする(ステップS106)。そして、送受信制御部161は、前のフレーム(N−1フレーム目)の断面から所定の距離に含まれる領域を走査する(ステップS107)。
図5は、実施形態に係る送受信制御部161の処理を説明するための図である。図5には、各フレームにおいて超音波プローブ11により走査される走査領域(探索範囲)50を例示する。図5に示すように、例えば、送受信制御部161は、N−1フレーム目の断面の位置に基づいて、Nフレーム目の走査領域50を決定する。
一例として、2フレーム目(N=2)の走査領域50を決定する場合を説明する。つまり、図5のN−1フレーム目の表示断面40は、初期断面(N=1)に対応する。この場合、送受信制御部161は、初期断面として設定された表示断面40からエレベーション方向に所定距離離れた領域(破線部分に含まれる領域)を、走査領域50として設定する。そして、送受信制御部161は、この初期断面に基づく走査領域50に対して、超音波プローブ11に走査を実行させる。なお、この走査領域50から、次の断面の画像データが抽出される。すなわち、Nフレーム目の断面画像データを抽出するための断面位置は、Nフレーム目の断面画像データを抽出するための断面位置に依存する。
すなわち、2フレーム目の走査を行う場合、送受信制御部161は、1フレーム目の表示断面40(初期断面)に平行な走査領域50を走査させる。そして、3フレーム目の走査を行う場合、送受信制御部161は、2フレーム目の表示断面40に平行な走査領域50を走査させる。
このように、送受信制御部161は、3次元領域のうち、前のボリュームデータにおいて抽出された断面から所定の距離に含まれる走査領域50に対して、超音波プローブ11による超音波の送受信を実行させる。
図2の説明に戻る。超音波プローブ11によってNフレーム目の走査が実行されると、画像生成部131は、Nフレーム目の3次元の反射波データに基づいて、ボリュームデータを生成する(ステップS108)。画像生成部131は、例えば、ボリュームデータを生成するごとに、生成したボリュームデータを画像メモリ140に格納する。すなわち、画像生成部131は、超音波プローブ11によって順次実行される超音波の送受信の結果に基づいて時系列のボリュームデータを生成する。
ここで、操作者は、超音波プローブ11を被検体Pの体表面に沿って少しずつ移動させながら走査を行う。つまり、N−1フレーム目の走査が被検体Pの第1の位置で実行されると、Nフレーム目の走査は第1の位置とは異なる第2の位置で実行される。すなわち、画像生成部131は、超音波プローブ11が被検体Pの第1の位置にあるときに実行された超音波の送受信の結果に基づいて第1のボリュームデータを生成し、超音波プローブ11が第2の位置にあるときに実行された超音波の送受信の結果に基づいて第2のボリュームデータを生成する。なお、第1のボリュームデータ及び前記第2のボリュームデータは、時系列のボリュームデータに含まれる。
そして、抽出部132は、Nフレーム目のボリュームデータから血管を認識する(ステップS109)。例えば、抽出部132は、Nフレーム目のボリュームデータが画像メモリ140に格納されるごとに、そのボリュームデータから血管を認識する。なお、血管を認識する処理については、上述したように、輝度値(黒抜け)を用いた認識であってもよいし、ドプラ情報を用いた認識であってもよい。つまり、抽出部132は、ボリュームデータのうち、周囲の組織(実質部)と比較して黒抜けしている部分を血管として認識してもよいし、ドプラ情報を有するサンプル点の位置を血管として認識してもよい。
そして、抽出部132は、コスト関数を用いて、血管を含む断面の画像データ(断面画像データ)を抽出する(ステップS110)。例えば、抽出部132は、抽出した血管が最も長く、最も太く描出される断面の画像データを抽出する。
図6A〜図6Cは、第1の実施形態に係る抽出部132の処理を説明するための図である。図6A〜図6Cには、あるフレームにおいて、各々血管が描出された表示断面40を例示する。
図6A〜図6Cに示すように、例えば、抽出部132は、Nフレーム目のボリュームデータから、血管を含む断面の画像データを複数生成する。具体的には、抽出部132は、認識した血管を通り、深さ方向(超音波プローブ11による超音波送受信の方向)に平行な断面の画像データを複数生成する。例えば、抽出部132は、図6A〜図6Cに例示したそれぞれの表示断面40の画像データを生成する。
そして、抽出部132は、下記の式(1)に示すコスト関数を用いて、生成した複数の画像データから血管が最も長く、最も太く描出される断面の画像データを抽出する。式(1)のコスト関数は、血管の長軸及び短軸の長さを評価するための関数である。また、length短軸は、短軸の長さであり、length長軸は、長軸の長さである。また、α、βは、それぞれ重み係数である。
Figure 0006744141
すなわち、式(1)は、α、βのそれぞれに、所定の値を入力しておくことで、構造物の長軸及び短軸のそれぞれの長さを所定の重みで評価する関数である。α、βのそれぞれの値は、任意に変更されてよい。例えば、短軸方向の重み係数であるαの値を0に設定することで、長軸方向の長さのみを評価する場合であってもよい。ただし、連結画像データを生成する都合上、長軸方向の重み係数であるβの値は、0より大きい値に設定するのが好ましい。
例えば、抽出部132は、図6A〜図6Cのそれぞれの画像データから、血管の長軸及び短軸の長さを取得する。例えば、抽出部132は、断面の水平方向の長さを長軸の長さとし、垂直方向の長さを短軸の長さとして取得する。
そして、抽出部132は、取得した長軸及び短軸の長さを、上記の式(1)に代入することで、評価値を求める。ここで、図6A〜図6Cのうち、図6Aの血管は、最も太く、長い。また、図6Bの血管は、図6Aよりも短い。また、図6Cの血管は、図6Aより細い。このような場合、抽出部132は、血管が最も長く、最も太く描出される断面の画像データとして、図6Aの画像データを抽出する。
このように、抽出部132は、超音波の送受信によりボリュームデータが得られるごとに、ボリュームデータから被検体Pの体内の構造物の長軸を含む断面の画像データを抽出する。なお、上記のように、抽出部132が構造物の長軸を用いて処理を行うのは、構造物の延在方向に沿った断面画像データを抽出するためである。すなわち、抽出部132は、被検体内の構造物を含み、構造物の延在方向に沿った第1の断面画像データを第1のボリュームデータから抽出し、構造物を含み、構造物の延在方向に沿った第2の断面画像データを第2のボリュームデータから抽出する。具体的には、抽出部132は、第1の断面画像データに含まれる構造物の一部と同一の部位を含む断面の画像データを第2の断面画像データとして抽出する。
なお、図6A〜図6Cでは一例として、血管を通り、深さ方向に平行な断面の画像データを抽出する場合を例示したが、実施形態はこれに限定されるものではない。例えば、ボリュームデータにおける、体表面と超音波プローブ11との接触部分の中心と、血管の芯線を通る断面の画像データを抽出してもよいし、血管の芯線を通り、重力方向に沿った断面の画像データを抽出してもよい。重力方向は、例えば、超音波プローブ11に位置センサを取り付けることにより検出可能である。また、例えば、抽出される断面の画像データは、必ずしも平面でなくてもよい。例えば、抽出部132は、血管(構造物)の延在方向に沿った曲面の画像データを抽出してもよい。これにより、初期断面と連続する曲面の断面画像データを順次抽出することができる。
また、図6A〜図6Cでは一例として、3つの断面から抽出される場合を説明したが、実施形態はこれに限定されるものではなく、例えば、より多くの断面から抽出されてよい。ただし、処理負荷を軽減するために、所定の方向(上記の例では、深さ方向)に平行な断面に絞るのが好ましい。また、例えば、所定の方向に平行な断面に限らず、多少の断面の傾きを許容して、所定の範囲に含まれる断面を抽出してもよい。ここで、所定の範囲に含まれる断面とは、例えば、血管の芯線を通り所定の方向に平行な断面を、血管の芯線を回転軸として所定の角度(例えば、3度)回転させた範囲に含まれる断面である。つまり、抽出部132は、血管の芯線を回転軸とし、所定の回転角度範囲に含まれる断面を抽出してもよい。言い換えると、抽出部132は、構造物の芯線を回転軸とし、所定の回転角度範囲に含まれるという制約に従って、各断面の画像データを抽出してもよい。
また、例えば、上記の所定の角度範囲は、直前のフレームで抽出された断面を基準として設定されてもよい。例えば、抽出部132は、Nフレーム目の断面の画像データを抽出する場合には、N−1フレーム目の断面を血管の芯線を軸として所定の角度(例えば、3度ずつ)回転させた範囲に含まれる断面を抽出してもよい。言い換えると、抽出部132は、構造物の芯線を回転軸とし、N−1フレーム目の断面の向きを基準とする所定の回転角度範囲に含まれるという制約に従って、Nフレーム目の断面の画像データを抽出してもよい。
このように、抽出部132は、断面の向きに関する制約に従って、各フレームのボリュームデータから断面の画像データを抽出する。すなわち、抽出部132は、被検体内の構造物を含み、構造物の延在方向に沿った第1の断面画像データを、断面の向きに関する第1の制約に従って、第1のボリュームデータから抽出し、構造物を含み、構造物の延在方向に沿った第2の断面画像データを、断面の向きに関する第2の制約に従って、第2のボリュームデータから抽出する。
例えば、抽出部132は、超音波プローブ11が第1の位置にあるときの超音波プローブ11の向きに応じた断面画像データを抽出するという制約に従って、第1の断面画像データを抽出する。一例としては、抽出部132は、超音波プローブ11の向きに平行な方向(つまり深さ方向)や、構造物の芯線を回転軸とした所定の回転角度範囲に含まれるという制約に従って、第1の断面画像データを抽出する。
また、例えば、抽出部132は、第1の断面画像データの向きに応じた断面画像データを抽出するという制約に従って、第2の断面画像データを抽出する。一例としては、抽出部132は、構造物の芯線を回転軸とし、N−1フレーム目の断面の向きを基準とする所定の回転角度範囲に含まれるという制約に従って、Nフレーム目の断面の画像データを抽出する。
なお、上述した第1の制約と第2の制約は、同一である。例えば、第1の制約と第2の制約は、同一の回転角度範囲が設定される。しかしながら、必ずしも第1の制約と第2の制約は同一でなくてもよく、例えば、第1の制約における回転角度範囲が3度である一方で、第2の制約における回転角度範囲が2度であってもよい。
また、例えば、構造物の長軸及び短軸の長さを取得する処理は、上記の例に限定されるものではない。例えば、抽出部132は、血管を構成する複数の画素のうち、最も離れた二つの画素によって結ばれる線分を、長軸とし、長軸に直交する線分を短軸として取得してもよい。
図2の説明に戻る。抽出部132によって断面の画像データが抽出されると、連結部133は、複数の断面の画像データを連結させた連結画像データを生成(更新)する(ステップS111)。例えば、連結部133は、Nフレーム目の表示断面40の画像データが抽出されるごとに、Nフレーム目の表示断面40の画像データと、N−1フレーム目の表示断面40の画像データとを連結し、連結画像データを生成する。これにより、連結部133は、N−1フレーム目までに生成済みの連結画像データ70を更新する。
図7A〜図7Cは、第1の実施形態に係る連結部133の処理を説明するための図である。図7Aには、Nフレーム目及びN−1フレーム目における表示断面40の位置関係を例示する。図7Bには、Nフレーム目及びN−1フレーム目における表示断面40の画像データをそれぞれ例示する。図7Cには、連結部133により生成される連結画像データ70を例示する。
図7Aに示すように、超音波プローブ11(つまり、2Dアレイ面30)を体表面に沿って移動させながら走査するので、Nフレーム目及びN−1フレーム目の表示断面40は、近い位置にある。図7Aの例では、アジマス方向で見た場合、N−1フレーム目の表示断面40の右側、及び、Nフレーム目の表示断面40の左側は、近い位置である。このため、図7Bに示すように、N−1フレーム目の表示断面40の右側、及び、Nフレーム目の表示断面40の左側は、互いに類似している。そこで、図7Cに示すように、連結部133は、この互いに類似している範囲を重ね合わせることで、連結画像データ70を生成する。なお、ここで言う「連結」とは、例えば、方位方向における同一位置で双方の画像データを切断し、切断した画像データ同士を繋ぎ合わせてもよいし、一方の画像データのうち類似範囲以外の範囲の画像データを、他方の画像データに対して繋ぎ合わせてもよい。また、双方の画像データが3次元空間の同一平面上に存在する場合には、統計的手法(平均、最大、最小など)によって双方の画像データの重複部分のピクセル値を求めることで、繋ぎ合わせてもよい。
具体的には、連結部133は、Nフレーム目の断面の画像データが抽出されると、Nフレーム目の断面の画像データと、N−1フレーム目の断面の画像データとの間で、双方の画像データに含まれる構造物の特徴点(エッジ、コーナー等)を用いたパターンマッチング(画像認識技術)を行うことで、双方の画像データの位置を合わせる。具体的には、連結部133は、SAD(Sum of Absolute Difference)、SSD(Sum of Squared Difference)、NCC(Normalized Cross-Correlation)等を評価関数とする類似画像決定法を用いて、最も類似する位置を求める。そして、連結部133は、双方の画像データの対応する位置(つまり、最も類似する位置)で、双方の画像データを連結する。ここで、双方の画像データにおいて互いに類似する範囲については、連結部133は、アルファブレンディング(重み付け合成)によって合成する。すなわち、連結部133は、第1の断面画像データにおける構造物の一部と第2の断面画像データにおける構造物の一部とが連続するように、第1の断面画像データの少なくとも一部と前記第2断面画像データの少なくとも一部を連結する。これにより、連結部133は、双方の画像データにおける構造物の輪郭が連続するように、連結画像データ70を生成する。
このように、連結部133は、断面の画像データが抽出されるごとに、抽出された断面の画像データと、以前に抽出された断面の画像データとがそれぞれの対応する位置に配置された連結画像データ70を生成する。例えば、Nフレーム目の表示断面40の画像データが抽出されると、その表示断面40の画像データを、N−1フレーム目までに生成済みの連結画像データ70に連結することで、連結画像データ70を更新する。これにより、連結部133は、被検体Pの体内の構造物(血管)のアジマス方向の長さが忠実に再現された画像データを生成することができる。なお、図7Cに示したように、連結される画像データは、必ずしもその全てが連結されなくてもよい。すなわち、抽出部132は、第1の断面画像データの少なくとも一部と第2の断面画像データの少なくとも一部が連結された連結画像データを生成してもよい。
なお、連結部133の処理は、上記の説明に限定されるものではない。例えば、連結部133は、必ずしも重み付け合成を行わなくてもよい。例えば、図7Aに示したように、双方の表示断面40が交わる場合には、交わった交線の片側をN−1フレーム目の表示断面40から生成し、もう片側をNフレーム目の表示断面40から生成してもよい。
また、例えば、連結部133は、Nフレーム目及びN−1フレーム目の各ボリュームデータにおける共通の領域を用いて、パターンマッチングを行うことで、双方のボリュームデータの位置合わせを行ってもよい。そして、この位置合わせの結果から、連結部133は、Nフレーム目及びN−1フレーム目の各表示断面40の画像データを連結して、連結画像データ70を生成してもよい。
また、血管が大幅に曲がっている場合には、十分な長さの血管が描出されず、アジマス方向の長さが短い血管が描出された画像データが得られる場合がある(例えば、図6B参照)。この場合、連結部133は、表示断面40の画像データの全範囲を利用しなくてもよい。例えば、連結部133は、表示断面40の画像データの左右を削除し、描出される血管の長さに合わせてアジマス方向に短くした画像データを、連結画像データ70の生成に用いてもよい。
図2の説明に戻る。連結部133によって連結画像データ70が生成(更新)されると、表示制御部162は、連結画像データ70に基づく画像を表示させる(ステップS112)。例えば、表示制御部162は、連結部133によって連結画像データ70が更新されるごとに、更新された連結画像データ70をモニタ13に表示させる。
図8は、第1の実施形態に係る表示制御部162の処理を説明するための図である。図8には、表示制御部162によってモニタ13に表示される表示画面の一例を示す。具体的には、図8に示すモニタ13の表示画面には、連結画像データ70に基づく画像と、撮影対象の血管の位置を表示するためのガイド表示80とが表示される。
図8に示すように、表示制御部162は、連結画像データ70に基づいて、表示用の画像を生成し、モニタ13に表示させる。例えば、図8の右方向が超音波プローブ11の移動方向に対応する場合、最新の画像81は、連結画像データ70の右端に位置する。この場合、表示制御部162は、連結画像データ70のうち、右端から所定の距離(長さ)に含まれる画像データから表示用の画像を生成し、表示する。これにより、表示制御部162は、連結画像データ70がどれほど長く延長されたとしても、一定の縮尺で最新の画像81を含む連結画像を表示させることができる。
また、例えば、表示制御部162は、ガイド表示80をモニタ13の表示画面に表示させる。このガイド表示80は、超音波プローブ11により撮影可能な3次元領域に対する表示断面40の位置を示す画像データに対応する。例えば、表示制御部162は、抽出部132によって表示断面40の画像データが抽出されると、2Dアレイ面30に対する表示断面40の位置を示す情報を抽出部132から取得する。そして、表示制御部162は、抽出部132から取得した情報に基づいて、2Dアレイ面30に対する最新(Nフレーム目)の表示断面40の位置を示す画像データを、ガイド表示80として生成し、表示させる。つまり、ガイド表示80の表示断面40の位置は、最新の画像81の位置に対応する。これにより、表示制御部162は、超音波プローブ11により撮影可能な3次元領域に対する最新の表示断面40の位置を表示することができる。言い換えると、操作者は、ガイド表示80を閲覧しながら超音波プローブ11を移動させることで、撮影対象の構造物を見失うリスクを軽減することができる。
このように、表示制御部162は、連結画像データ70に基づく画像を表示させる。なお、表示制御部162の処理は、上記の説明に限定されるものではない。例えば、表示制御部162は、生成された全ての範囲の連結画像データ70をモニタ13に表示させてもよい。また、例えば、表示制御部162は、表示断面40が2Dアレイ面30から外れそうになった場合に、その旨を操作者に報知してもよい。例えば、表示制御部162は、ガイド表示80における表示断面40の長さが所定の閾値(長さ)より短くなった場合に、「血管を見失う可能性があります」というメッセージを表示させたり、ガイド表示80を点滅させたり、ガイド表示80の色を変えたりする。また、表示制御部162は、最新の画像81が操作者にわかるように、強調表示を行ってもよい。
上述してきたように、超音波診断装置10は、撮影が終了されるまで(ステップS113否定)、ステップS106〜ステップS112の処理を繰り返し実行することで、連結画像データ70を拡大する。そして、超音波診断装置10は、撮影が終了されると(ステップS113肯定)、自動追跡処理を終了し、連結画像データ70を拡大する処理を終了する。
なお、超音波診診断装置10における処理手順は、図2に示した処理手順に限定されるものではない。例えば、図2では、初期断面を決定するステップS104と、自動追跡処理を開始するステップS105とが異なる処理として実行される場合を説明したが、実施形態はこれに限定されるものではない。例えば、ステップS104とステップS105とが同一の処理として実行されてもよい。この場合、例えば、初期断面を決定する操作が行われると、これを契機として自動追跡処理が開始される。
上述してきたように、第1の実施形態に係る超音波診診断装置10において、超音波プローブ11は、3次元領域に対する超音波の送受信を、所定のボリュームレートで実行する。抽出部132は、超音波の送受信により3次元領域の画像データであるボリュームデータが得られるごとに、ボリュームデータから被検体の体内の構造物の長軸を含む断面を抽出する。連結部133は、断面の画像データが抽出されるごとに、抽出された断面の画像データと、以前に抽出された断面の画像データとがそれぞれの対応する位置に配置された画像データを生成する。表示制御部162は、画像データに基づく画像を表示する。このため、超音波診診断装置10は、簡易な操作で広範囲な画像データを生成することができる。
例えば、超音波診診断装置10は、撮影対象の構造物が超音波プローブ11により走査される走査領域に含まれていれば、そのボリュームデータから構造物の長軸が描出された断面の画像データを自動的に抽出し、連結画像データ70を生成(更新)する。このため、操作者は、3次元の走査領域に構造物が含まれるように超音波プローブ11を移動させるだけで、構造物が描出された連結画像データ70を容易に生成することができる。つまり、操作者は、自分で走査断面を構造物の位置にあわせることなく、構造物が描出された連結画像データ70を容易に生成することができる。
また、例えば、超音波診診断装置10において、送受信制御部161は、3次元領域のうち、前のボリュームデータにおいて抽出された断面から所定の距離に含まれる走査領域50に対して、超音波プローブ11による超音波の送受信を実行させる。これによれば、送受信制御部161は、超音波プローブ11により走査可能な全ての領域(つまり、2Dアレイ面30の全領域)を走査せず、限られた領域を走査するので、フレームレート(ボリュームレート)を向上させることができる。また、これにより、各フレームのボリュームデータが小さくなるので、例えば、ボリュームデータを処理対象とする抽出部132の処理負荷が軽減される。具体的には、抽出部132は、ボリュームデータから生成する断面の数を減少させることができるので、処理負荷が軽減される。また、断面の数を減少させることができるので、抽出部132は、構造物がよりよく描出された断面を精度よく抽出することができる。
なお、上記の実施形態では、第1及び第2のボリュームデータを含む複数のボリュームデータを、超音波プローブ11を移動させながらボリュームスキャンを順次(例えば所定の時間間隔で)実行することにより生成する場合を説明したが、実施形態はこれに限定されるものではない。例えば、装置本体100又は超音波プローブ11に設けられたスキャン指示用のボタンの押下により、ボリュームスキャンが実行される場合であってもよい。この場合、操作者は、例えば、被検体のある位置に超音波プローブ11を当接させた状態でボタンを押下することにより、第1のボリュームデータを生成し、次に、位置を変えてボタンを押下することにより、第2のボリュームデータを生成する。このように、超音波プローブ11の位置を変更するごとにボタンを押下するという操作を繰り返し行うことで、複数のボリュームデータが生成される。
また、スキャン指示用のボタンに限らず、例えば、超音波プローブ11の動きを検知して、超音波プローブ11が止まったタイミングでボリュームスキャンを実行する場合であってもよい。この場合、操作者は、例えば、被検体の体表面に沿って移動される超音波プローブ11を、所望のタイミング(位置)で止めることより、第1のボリュームデータを生成する。そして、超音波プローブ11の移動を再開した後に、所望のタイミングで再び止めることより、第2のボリュームデータを生成する。このように、超音波プローブ11の移動を所望のタイミングで止めるという操作を繰り返し行うことで、複数のボリュームデータが生成される。
なお、ボリュームスキャンが完了する前に超音波プローブ11の移動が再開された場合には、当該ボリュームスキャンにより生成されるボリュームデータは未完成となる。この場合、例えば、未完成のボリュームデータは上記の処理(断面画像データの抽出や連結)には使用せず、破棄されてよい。つまり、未完成のボリュームデータは未完成の直前に生成されたボリュームデータが、上記の処理に使用される。
また、上記の実施形態では、断面の画像データを抽出するための探索範囲を絞り込むために、N−1フレーム目の断面の位置に基づいて、Nフレーム目のボリュームデータの走査領域を絞り込む場合を説明したが(図5参照)、実施形態はこれに限定されるものではない。例えば、探索範囲が絞り込まれていれば、走査領域は必ずしも絞り込まなくても良い。すなわち、抽出部132は、図5に示した走査領域50を決定する処理と同様の処理によりって探索範囲を決定し、決定した探索範囲から断面の画像データを抽出してもよい。この場合、例えば、送受信制御部161は、全てのフレームにわたって、超音波プローブ11により走査可能な全ての領域(つまり、2Dアレイ面30の全領域)を走査してもよい。
(第2の実施形態)
第1の実施形態では、超音波の送受信方向(深さ方向)に沿って各フレームの画像データを生成し、連結する場合を説明したが、実施形態はこれに限定されるものではない。例えば、超音波診断装置10は、各フレームのボリュームデータを連結し、任意の断面を表示してもよい。
第2の実施形態に係る超音波診断装置10は、図1に例示した超音波診断装置10と同様の構成を備え、連結部133及び表示制御部162の処理の一部が相違する。そこで、第2の実施形態では、第1の実施形態と相違する点を中心に説明することとし、第1の実施形態において説明した構成と同様の機能を有する点については、説明を省略する。
図9のフローチャートを用いて、第2の実施形態に係る超音波診断装置10の処理を説明する。図9は、第2の実施形態に係る超音波診断装置10の処理を説明するためのフローチャートである。なお、図9に示すステップS201〜ステップS210の各処理は、図2に示したステップS101〜ステップS110の各処理と同様であるので、説明を省略する。
図9に示すように、連結部133は、抽出部132によって断面が抽出されると、Nフレーム目のボリュームデータを過去のボリュームデータに合成する(ステップS211)。例えば、連結部133は、Nフレーム目の表示断面40が抽出されるごとに、Nフレーム目のボリュームデータと、N−1フレーム目のボリュームデータとの位置合わせを行い、双方のボリュームデータを連結した連結ボリュームデータを生成する。
図10は、第2の実施形態に係る連結部133の処理を説明するための図である。図10には、Nフレーム目のボリュームデータと、N−1フレーム目のボリュームデータとが連結された連結ボリュームデータの一例を示す。
ここで、図7Aに示したように、超音波プローブ11(つまり、2Dアレイ面30)を体表面に沿って移動させながら走査するので、Nフレーム目及びN−1フレーム目の各走査領域は、共通の領域を有する。このため、Nフレーム目及びN−1フレーム目の各ボリュームデータは、共通の領域を有する。
そこで、連結部133は、図10に示すように、Nフレーム目及びN−1フレーム目の各ボリュームデータにおける共通の領域を用いて、パターンマッチングを行うことで、双方のボリュームデータの位置合わせを行う。そして、連結部133は、双方のボリュームデータの対応する位置を重畳させて連結する。ここで、双方のボリュームデータにおいて互いに共通する領域については、連結部133は、アルファブレンディングによって合成する。これにより、連結部133は、連結ボリュームデータを生成する。
このように、連結部133は、Nフレーム目のボリュームデータを過去のボリュームデータに合成させ、連結ボリュームデータを生成(更新)する。つまり、図10に示す連結ボリュームデータ(及び、血管)は、超音波プローブ11の移動に伴って、その移動方向にアップデートされていく。なお、ボリュームデータの連結においても、第1の実施形態にて説明したように、双方のボリュームデータを切断し、切断したボリュームデータ同士を繋ぎ合わせてもよいし、一方のボリュームデータデータのうち類似範囲以外の範囲のボリュームデータを、他方のボリュームデータに対して繋ぎ合わせてもよい。また、統計的手法によって双方のボリュームデータの重複部分のピクセル値を求めることで、繋ぎ合わせてもよい。
図9の説明に戻る。連結部133は、連結ボリュームデータを生成すると、更に、連結ボリュームデータに対してMPR(Multi Planar Reconstructions)処理を行って、予め指定された方向のMPR画像データを生成し、表示制御部162は、MPR画像データを表示する(ステップS212)。例えば、抽出部132は、血管の芯線を通り重力方向に平行であるという制約に従って、MPR画像データを生成する。
一例として、各フレームで認識された血管の長軸を含み、2Dアレイ面30と平行な断面を表示することが、操作者によって予め指定される場合を説明する。この場合、連結部133は、連結ボリュームデータを更新するごとに、更新した連結ボリュームデータに対してMPR処理を実行し、2Dアレイ面30と平行な断面で血管を切断したMPR画像データを生成する。そして、表示制御部162は、連結部133によって生成されたMPR画像データを、モニタ13の表示画面に表示させる。
このように、超音波診断装置10は、撮影が終了されるまで(ステップS213否定)、ステップS206〜ステップS212の処理を繰り返し実行することで、連結ボリュームデータを生成(更新)する。そして、超音波診断装置10は、撮影が終了されると(ステップS213肯定)、自動追跡処理を終了し、連結ボリュームデータを生成する処理を終了する。
このように、第2の実施形態に係る超音波診断装置10において、連結部133は、第1のボリュームデータと第2のボリュームデータが連結された連結ボリュームデータを生成する。そして、抽出部132は、連結ボリュームデータから、被検体の体内の構造物を含み、構造物の延在方向に沿った断面画像データを、断面の向きに関する制約に従って抽出する。これによれば、超音波診断装置10は、例えば、被検体の血管の様々な方向の断面を提供することができる。このため、操作者は、様々な方向から血管の様子を観察することができるので、例えば、閉塞性動脈硬化症や動脈瘤等の診断に有用となる。例えば、操作者は、ある断面では観察できなかったプラーク部位を、別の断面では観察することが可能となる。
なお、上記のMPR処理により抽出される断面位置は、予め指定される場合のみならず、例えば、MPR断面を表示するタイミングで操作者により指定されてもよい。この場合、例えば、入力装置12は、第1の断面画像データを抽出するための第1の断面位置の指定を受け付ける。具体的には、入力装置12は、MPR断面の位置として、血管の芯線を中心とした回転角度を指定する操作を受け付ける。この場合、例えば、表示制御部162は、回転角度入力用のGUIとして、血管の芯線に直交する断面の画像を表示する。この画像において、血管の芯線は、画像の中心点として描出され、MPR断面の位置は、芯線を通る直線として描出される。この直線は、芯線位置(中心点)を中心として回転可能である。つまり、操作者は、この直線の角度を任意の角度に回転(変更)することにより、芯線に対するMPR断面の角度を指定することができる。言い換えると、抽出部132は、構造物の芯線を回転軸とする回転角度を指定する操作を操作者から受け付けた場合に、当該操作により指定された回転角度の断面画像データを、前記連結ボリュームデータから抽出する。
なお、第1の実施形態にて説明した内容は、連結ボリュームデータを生成し、生成した連結ボリュームデータからMPR画像データを生成すること以外、第2の実施形態においても適用可能である。
(その他の実施形態)
上述した実施形態以外にも、種々の異なる形態にて実施されてもよい。
(初期断面の自動設定)
例えば、上記の実施形態では、操作者の指定(ボタンの押下)により初期断面が決定される場合を説明したが、実施形態はこれに限定されるものではない。例えば、初期断面の決定においても上記の式(1)のコスト関数を用いることで、初期断面を自動的に決定してもよい。
(位置センサの利用)
また、例えば、上記の実施形態では、連結画像データ70(若しくは連結ボリュームデータ)を生成する場合に、パターンマッチングによって位置合わせを行う場合を説明したが、これに限定されるものではない。例えば、この位置合わせに、位置センサからの位置情報を用いてもよい。
図11は、その他の実施形態に係る超音波診断装置10の構成例を示すブロック図である。図11に示すように、その他の実施形態に係る超音波診断装置10は、図1に示した超音波診断装置10と同様の構成を備え、位置センサ14と、トランスミッタ15とを更に備える点と、連結部133の処理の一部が相違する。
位置センサ14及びトランスミッタ15は、超音波プローブ11の位置情報を取得するための装置である。例えば、位置センサ14は、超音波プローブ11に取り付けられる磁気センサである。また、例えば、トランスミッタ15は、任意の位置に配置され、自装置を中心として外側に向かって磁場を形成する装置である。
位置センサ14は、トランスミッタ15によって形成された3次元の磁場を検出する。そして、位置センサ14は、検出した磁場の情報に基づいて、トランスミッタ15を原点とする空間における自装置の位置(座標及び角度)を算出し、算出した位置を制御部160に送信する。ここで、位置センサ14は、各フレームにおける自装置の位置情報、つまり、超音波プローブ11の位置情報を、制御部160に送信する。これにより、連結部133は、各フレームの位置情報を位置センサ14から取得することができる。
そして、連結部133は、位置センサ14から取得した各フレームの位置情報を用いて、各フレームの断面の画像データの位置合わせを行う。例えば、連結部133は、Nフレーム目の断面が抽出されると、Nフレーム目の位置情報と、N−1フレーム目の位置情報とを用いて、Nフレーム目の断面の画像データと、N−1フレーム目の断面の画像データとの位置を合わせる。そして、連結部133は、位置情報を用いて合わせた位置を中心として、双方の画像データのマッチングを行うことで、双方の画像データの位置をより正確に合わせる。そして、連結部133は、双方の画像データの対応する位置(つまり、最も類似する位置)で、双方の画像データを連結する。
このように、連結部133は、位置センサ14から取得した各フレームの位置情報を用いて、各フレームの位置合わせを行う。これにより、連結部133は、位置合わせの精度を向上させつつ、処理速度を高めることができる。なお、連結部133は、ボリュームデータ同士の位置合わせにおいても同様に、位置情報を用いることができる。
なお、図11に示した例では、磁気センサによって超音波プローブ11の位置情報を取得する場合を例示したが、実施形態はこれに限定されるものではない。例えば、磁気センサに代えて、3次元の加速度センサ、3次元ジャイロセンサ、及び3次元のコンパスのうちいずれかの手段によって超音波プローブ11の位置情報を取得してもよいし、上記の手段を適宜組み合わせて超音波プローブ11の位置情報を取得してもよい。
(造影剤)
また、例えば、上記の実施形態においては、造影剤を用いない場合を説明したが、これに限定されるものではない。例えば、超音波診断装置10は、造影剤を用いて上記の処理を行うことで、非造影では検出不可能な血管をも検出し、連結画像データ70を生成することが可能となる。
(画像処理装置)
また、上述した実施形態において説明した処理は、画像処理装置において実行されてもよい。
図12は、その他の実施形態に係る画像処理装置の構成例を示すブロック図である。図12に示すように、画像処理装置200は、入力装置201と、ディスプレイ202と、記憶部210と、制御部220とを備える。
入力装置201は、マウス、キーボード、ボタン、パネルスイッチ、タッチコマンドスクリーン、フットスイッチ、トラックボール、ジョイスティック等を有し、画像処理装置200の操作者からの各種設定要求を受け付け、受け付けた各種設定要求を各処理部へ転送する。
ディスプレイ202は、画像処理装置200の操作者が入力装置201を用いて各種設定要求を入力するためのGUIを表示したり、画像処理装置200において生成された情報等を表示したりする。
記憶部210は、フラッシュメモリ等の半導体メモリ素子や、ハードディスク、光ディスク等の不揮発性の記憶装置である。
また、記憶部210は、第1及び第2の実施形態にて説明した画像生成部131によって生成されたボリュームデータと同様のボリュームデータを記憶する。すなわち、記憶部210は、超音波プローブ11が被検体の第1の位置にあるときに実行された超音波の送受信の結果に基づいて生成された第1のボリュームデータを記憶し、超音波プローブ11が第1の位置とは異なる第2の位置にあるときに実行された超音波の送受信の結果に基づいて生成された第2のボリュームデータを記憶する。
制御部220は、ASICやFPGA等の集積回路や、CPUやMPU等の電子回路であり、画像処理装置200の処理全体を制御する。
また、制御部220は、抽出部221と、連結部222とを備える。抽出部221及び連結部222は、第1及び第2の実施形態にて説明した抽出部132及び連結部133とそれぞれ同様の機能を備える。すなわち、抽出部221は、被検体内の構造物を含み、構造物の延在方向に沿った第1の断面画像データを第1のボリュームデータから抽出し、構造物を含み、構造物の延在方向に沿った第2の断面画像データを第2のボリュームデータから抽出する。また、連結部222は、第1の断面画像データの少なくとも一部と第2の断面画像データの少なくとも一部が連結された連結画像データを生成する。なお、抽出部221及び連結部222の具体的な処理内容は、上述した実施形態と同様であるので、説明を省略する。これにより、画像処理装置200は、簡易な操作で広範囲な画像データを生成することができる。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。更に、各装置にて行なわれる各処理機能は、その全部又は任意の一部が、CPU及び当該CPUにて解析実行されるプログラムにて実現され、或いは、ワイヤードロジックによるハードウェアとして実現され得る。
例えば、上記の実施形態では、超音波診断装置10が処理部130と制御部160とを個別に備えている場合を説明したが、実施形態はこれに限定されるものではない。例えば、超音波診断装置10は、処理部130の機能と制御部160の機能とを、単一の処理回路に備えていてもよい。また、上記の実施形態において説明した各処理のうち、自動的に行なわれるものとして説明した処理の全部又は一部を手動的に行なうこともでき、或いは、手動的に行なわれるものとして説明した処理の全部又は一部を公知の方法で自動的に行なうこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
また、上記の実施形態で説明した画像処理方法は、予め用意された画像処理プログラムをパーソナルコンピュータやワークステーション等のコンピュータで実行することによって実現することができる。この画像処理プログラムは、インターネット等のネットワークを介して配布することができる。また、この画像処理プログラムは、ハードディスク、フレキシブルディスク(FD)、CD−ROM、MO、DVD等のコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。
以上説明した少なくともひとつの実施形態によれば、簡易な操作で広範囲な画像データを生成することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
10 超音波診断装置
11 超音波プローブ
130 処理部
131 画像生成部
132 抽出部
133 連結部

Claims (15)

  1. 超音波プローブが被検体の第1の位置にあるときに実行された超音波の送受信の結果に基づいて第1のボリュームデータを生成し、前記超音波プローブが前記第1の位置とは異なる第2の位置にあるときに実行された超音波の送受信の結果に基づいて第2のボリュームデータを生成する画像生成部と、
    前記被検体内の構造物を含み、前記構造物の延在方向に沿った第1の断面画像データを、構造物の芯線を回転軸とし、深さ方向を基準とする所定の回転角度範囲に含まれるという第1の制約に従って、前記第1のボリュームデータから抽出し、前記構造物を含み、前記構造物の延在方向に沿った第2の断面画像データを、構造物の芯線を回転軸とし、前の時相で抽出された断面の向きを基準とする所定の回転角度範囲に含まれるという第2の制約に従って、前記第2のボリュームデータから抽出する抽出部と、
    前記第1の断面画像データの少なくとも一部と前記第2の断面画像データの少なくとも一部が連結された連結画像データを生成する連結部と、
    を備える、超音波診断装置。
  2. 前記第1の制約における回転角度範囲前記第2の制約における回転角度範囲は同一に設定される
    請求項1に記載の超音波診断装置。
  3. 前記抽出部は、前記第1の断面画像データに含まれる前記構造物の一部と同一の部位を含む断面の画像データを前記第2の断面画像データとして抽出する、
    請求項1に記載の超音波診断装置。
  4. 前記連結部は、前記第1の断面画像データにおける前記構造物の一部と前記第2の断面画像データにおける前記構造物の一部とが連続するように、前記第1の断面画像データの少なくとも一部と前記第2の断面画像データの少なくとも一部を連結する、
    請求項1乃至のうちいずれか一つに記載の超音波診断装置。
  5. 前記画像生成部は、前記超音波プローブによって順次実行される超音波の送受信の結果に基づいて時系列のボリュームデータを生成し、
    前記第1のボリュームデータ及び前記第2のボリュームデータは、前記時系列のボリュームデータに含まれる、
    請求項1乃至のうちいずれか一つに記載の超音波診断装置。
  6. 前記第1の断面画像データを抽出するための第1の断面位置の指定を受け付ける入力部を備え、
    前記第2の断面画像データを抽出するための第2の断面位置は、前記第1の断面位置に依存する、
    請求項1乃至のうちいずれか一つに記載の超音波診断装置。
  7. 前記構造物は、管状の構造物であり、
    前記第1の断面位置の指定は、前記第1のボリュームデータに含まれる前記管状の構造物の芯線を中心とした回転角度の指定操作である、
    請求項に記載の超音波診断装置。
  8. 前記第1の断面画像データから所定の距離に含まれる領域に対して、前記超音波プローブによる超音波の送受信を実行させる送受信制御部を更に備え、
    前記超音波プローブは、前記領域に対する超音波の送受信を実行し、
    前記画像生成部は、前記領域に対して実行された超音波の送受信の結果に基づいて前記第2のボリュームデータを生成する、
    請求項1乃至のうちいずれか一つに記載の超音波診断装置。
  9. 前記抽出部は、前記構造物の延在方向の長さを評価するための関数を用いて、前記第1の断面画像データ及び前記第2の断面画像データの少なくとも一方を抽出する、
    請求項1乃至のうちいずれか一つに記載の超音波診断装置。
  10. 前記連結画像データに基づく画像を表示させる表示制御部を更に備え、
    前記表示制御部は、更に、前記超音波プローブによって走査可能な範囲に対する、前記連結画像データに連結された断面画像データのうち最新の断面画像データに対応する断面の位置を示す断面位置画像データを表示させる、
    請求項1乃至のいずれか一つに記載の超音波診断装置。
  11. 前記抽出部は、前記第1の制約に従って、初期時相である前記第1のボリュームデータから前記第1の断面画像データを抽出する、
    請求項1乃至10のいずれか一つに記載の超音波診断装置。
  12. 超音波プローブが被検体の第1の位置にあるときに実行された超音波の送受信の結果に基づいて第1のボリュームデータを生成し、前記超音波プローブが前記第1の位置とは異なる第2の位置にあるときに実行された超音波の送受信の結果に基づいて第2のボリュームデータを生成する画像生成部と、
    前記第1のボリュームデータと前記第2のボリュームデータが連結された連結ボリュームデータを生成する連結部と、
    前記連結ボリュームデータから、被検体の体内の構造物を含み、前記構造物の延在方向に沿った断面画像データを、構造物の芯線を回転軸とし、前の時相で抽出された断面の向きを基準とする所定の回転角度範囲に含まれるという制約に従って抽出する抽出部と、
    を備える、超音波診断装置。
  13. 前記構造物は、管状の構造物であり、
    前記抽出部は、前記構造物の芯線を回転軸とする回転角度を指定する操作を操作者から受け付けた場合に、当該操作により指定された回転角度に対応する断面画像データを、前記連結ボリュームデータから抽出する、
    請求項12に記載の超音波診断装置。
  14. 超音波プローブが被検体の第1の位置にあるときに実行された超音波の送受信の結果に基づいて生成された第1のボリュームデータを記憶し、前記超音波プローブが前記第1の位置とは異なる第2の位置にあるときに実行された超音波の送受信の結果に基づいて生成された第2のボリュームデータを記憶する記憶部と、
    前記被検体内の構造物を含み、前記構造物の延在方向に沿った第1の断面画像データを、構造物の芯線を回転軸とし、深さ方向を基準とする所定の回転角度範囲に含まれるという第1の制約に従って、前記第1のボリュームデータから抽出し、前記構造物を含み、前記構造物の延在方向に沿った第2の断面画像データを、構造物の芯線を回転軸とし、前の時相で抽出された断面の向きを基準とする所定の回転角度範囲に含まれるという第2の制約に従って、前記第2のボリュームデータから抽出する抽出部と、
    前記第1の断面画像データの少なくとも一部と前記第2の断面画像データの少なくとも一部が連結された連結画像データを生成する連結部と、
    を備える、画像処理装置。
  15. 超音波プローブが被検体の第1の位置にあるときに実行された超音波の送受信の結果に基づいて生成された第1のボリュームデータを記憶し、前記超音波プローブが前記第1の位置とは異なる第2の位置にあるときに実行された超音波の送受信の結果に基づいて生成された第2のボリュームデータを記憶する記憶部と、
    前記第1のボリュームデータと前記第2のボリュームデータが連結された連結ボリュームデータを生成する連結部と、
    前記連結ボリュームデータから、被検体の体内の構造物を含み、前記構造物の延在方向に沿った断面画像データを、構造物の芯線を回転軸とし、前の時相で抽出された断面の向きを基準とする所定の回転角度範囲に含まれるという制約に従って抽出する抽出部と、
    を備える、画像処理装置。
JP2016117270A 2015-06-16 2016-06-13 超音波診断装置及び画像処理装置 Active JP6744141B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015121539 2015-06-16
JP2015121539 2015-06-16

Publications (2)

Publication Number Publication Date
JP2017006655A JP2017006655A (ja) 2017-01-12
JP6744141B2 true JP6744141B2 (ja) 2020-08-19

Family

ID=57586826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117270A Active JP6744141B2 (ja) 2015-06-16 2016-06-13 超音波診断装置及び画像処理装置

Country Status (2)

Country Link
US (1) US20160367221A1 (ja)
JP (1) JP6744141B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110114001B (zh) * 2017-01-18 2022-06-14 古野电气株式会社 超声波拍摄***、超声波拍摄装置、超声波拍摄方法以及图像合成程序
US10299764B2 (en) * 2017-05-10 2019-05-28 General Electric Company Method and system for enhanced visualization of moving structures with cross-plane ultrasound images
CN109171804B (zh) * 2018-07-13 2021-03-09 上海深博医疗器械有限公司 多模式超声图像处理***及方法
JP7190316B2 (ja) * 2018-10-10 2022-12-15 キヤノンメディカルシステムズ株式会社 超音波診断装置、超音波撮像プログラム、及び超音波撮像方法
WO2023021943A1 (ja) * 2021-08-17 2023-02-23 富士フイルム株式会社 超音波診断装置および超音波診断装置の制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3802508B2 (ja) * 2003-04-21 2006-07-26 アロカ株式会社 超音波診断装置
US7033320B2 (en) * 2003-08-05 2006-04-25 Siemens Medical Solutions Usa, Inc. Extended volume ultrasound data acquisition
JP2006000456A (ja) * 2004-06-18 2006-01-05 Shimadzu Corp 超音波診断装置
JP2006081640A (ja) * 2004-09-15 2006-03-30 Ge Medical Systems Global Technology Co Llc 超音波撮像装置、画像処理装置およびプログラム
EP2288934A2 (en) * 2008-06-05 2011-03-02 Koninklijke Philips Electronics N.V. Extended field of view ultrasonic imaging with a two dimensional array probe
JP5936850B2 (ja) * 2011-11-24 2016-06-22 株式会社東芝 超音波診断装置及び画像処理装置
CN103582459B (zh) * 2012-04-11 2015-07-29 株式会社东芝 超声波诊断装置

Also Published As

Publication number Publication date
US20160367221A1 (en) 2016-12-22
JP2017006655A (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6367425B2 (ja) 超音波診断装置
JP6744141B2 (ja) 超音波診断装置及び画像処理装置
JP6238651B2 (ja) 超音波診断装置及び画像処理方法
JP5284123B2 (ja) 超音波診断装置および位置情報取得プログラム
JP6769173B2 (ja) 超音波画像診断装置、超音波画像計測方法及びプログラム
JP6288996B2 (ja) 超音波診断装置及び超音波イメージングプログラム
JP5897674B2 (ja) 超音波診断装置、画像処理装置及び画像処理プログラム
JP2011078625A (ja) 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム
US9990725B2 (en) Medical image processing apparatus and medical image registration method using virtual reference point for registering images
JP2004202132A (ja) 超音波診断装置
JP7321836B2 (ja) 情報処理装置、検査システム及び情報処理方法
KR20180090052A (ko) 초음파 진단 장치 및 그 동작 방법
US20150173721A1 (en) Ultrasound diagnostic apparatus, medical image processing apparatus and image processing method
JP6720001B2 (ja) 超音波診断装置、及び医用画像処理装置
US20160361044A1 (en) Medical observation apparatus, method for operating medical observation apparatus, and computer-readable recording medium
JP2016214393A (ja) 超音波診断装置及び制御プログラム
JP7204424B2 (ja) 医用画像診断装置及び医用画像処理装置
KR102532287B1 (ko) 초음파 장치 및 그 제어방법
US20160228098A1 (en) Ultrasound diagnosis apparatus and operating method thereof
CN102125443B (zh) 超声波诊断装置以及超声波图像处理装置
WO2021192925A1 (ja) 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ
JP2020044266A (ja) 医用情報処理装置、x線診断装置及び医用情報処理プログラム
JP6419413B2 (ja) 超音波診断装置及び位置合わせプログラム
JP6538130B2 (ja) 画像処理装置及びプログラム
JP5337446B2 (ja) 超音波画像診断装置、画像処理装置及び超音波画像診断支援プログラム

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200730

R150 Certificate of patent or registration of utility model

Ref document number: 6744141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150