JP6743685B2 - Chemical heat storage material and manufacturing method thereof - Google Patents

Chemical heat storage material and manufacturing method thereof Download PDF

Info

Publication number
JP6743685B2
JP6743685B2 JP2016250308A JP2016250308A JP6743685B2 JP 6743685 B2 JP6743685 B2 JP 6743685B2 JP 2016250308 A JP2016250308 A JP 2016250308A JP 2016250308 A JP2016250308 A JP 2016250308A JP 6743685 B2 JP6743685 B2 JP 6743685B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
chemical heat
temperature
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016250308A
Other languages
Japanese (ja)
Other versions
JP2018104512A (en
Inventor
陽介 水谷
陽介 水谷
青木 正和
正和 青木
山内 崇史
崇史 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016250308A priority Critical patent/JP6743685B2/en
Publication of JP2018104512A publication Critical patent/JP2018104512A/en
Application granted granted Critical
Publication of JP6743685B2 publication Critical patent/JP6743685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、複金属酸化物(または複金属水酸化物)からなる化学蓄熱材等に関する。 The present invention relates to a chemical heat storage material or the like made of a double metal oxide (or a double metal hydroxide).

環境意識の高揚に伴い、省エネルギー化やエネルギー効率の向上を図る研究開発が盛んになされている。その一つに、蓄熱密度が大きく、保温しなくても長期間の蓄熱が可能な化学蓄熱材を用いた化学蓄熱システムが着目されている。化学蓄熱システムは、化学蓄熱材に対して熱媒(水等)の吸蔵または放出をさせて、放熱(発熱)と蓄熱(吸熱)を行う。化学蓄熱システムを利用すると、各種の機器やプラント等から生じる比較的低温な廃熱(または排熱)等も有効に活用可能となる。 As environmental awareness rises, research and development aimed at energy saving and energy efficiency improvement are being actively conducted. As one of them, attention has been paid to a chemical heat storage system using a chemical heat storage material having a large heat storage density and capable of storing heat for a long period of time without heat retention. The chemical heat storage system causes a chemical heat storage material to occlude or release a heat medium (water or the like) to perform heat dissipation (heat generation) and heat storage (heat absorption). By using the chemical heat storage system, it is possible to effectively use the relatively low temperature waste heat (or waste heat) generated from various devices and plants.

J. Ryu et al., Jounal of Chemical Engineering of Japan, 40 (2007) 1281J. Ryu et al., Jounal of Chemical Engineering of Japan, 40 (2007) 1281

もっとも、化学蓄熱システムで廃熱を有効に活用するためには、廃熱の温度と化学蓄熱材の作動温度(再生温度)との整合が重要となる。例えば、水(水蒸気)を熱媒とする化学蓄熱材として周知な酸化カルシウム(生石灰/CaO)の場合、Ca(OH)がCaOとなる再生温度は373℃である。このため、CaOを化学蓄熱材として用いる場合は、その再生温度以上の廃熱を用意しなければ、CaOを化学蓄熱材として作動させることができない。 However, in order to effectively utilize the waste heat in the chemical heat storage system, it is important to match the temperature of the waste heat with the operating temperature (regeneration temperature) of the chemical heat storage material. For example, in the case of calcium oxide (quicklime/CaO) known as a chemical heat storage material using water (steam) as a heat medium, the regeneration temperature at which Ca(OH) 2 becomes CaO is 373°C. Therefore, when CaO is used as a chemical heat storage material, it is necessary to prepare waste heat at a temperature equal to or higher than the regeneration temperature of CaO to operate CaO as a chemical heat storage material.

また、再生温度よりも高温な廃熱を用いてCa(OH)をCaOへ再生させても、CaOをCa(OH)へ変化させたときに取り出せる熱の温度は再生温度付近となる。つまり、再生に利用した廃熱よりも取り出せる熱が低温化し、いわゆる熱の品位が低下してしまう。 Further, even if Ca(OH) 2 is regenerated to CaO using waste heat having a temperature higher than the regeneration temperature, the temperature of heat that can be extracted when CaO is changed to Ca(OH) 2 is near the regeneration temperature. That is, the heat that can be taken out is lower than the waste heat used for regeneration, and the so-called heat quality is degraded.

ちなみに、Ca(OH)に次いで再生温度が低い金属水酸化物はMg(OH)であり、その再生温度は177℃である。しかし、Ca(OH)とMg(OH)の再生温度差は約200℃もある。このため、例えば、その中間温度である300℃付近の廃熱がある場合、従来の化学蓄熱材(CaOやMgO)では、その廃熱を十分に有効活用できなかった。 By the way, the metal hydroxide having the lowest regeneration temperature next to Ca(OH) 2 is Mg(OH) 2 and its regeneration temperature is 177° C. However, the regeneration temperature difference between Ca(OH) 2 and Mg(OH) 2 is about 200°C. For this reason, for example, when there is waste heat near the intermediate temperature of 300° C., the waste heat cannot be effectively utilized with the conventional chemical heat storage materials (CaO and MgO).

なお、非特許文献1には、Mg(OH)中のMgの一部をCoまたはNiで置換して、再生温度を低温化させた複金属水酸化物に関する記載がある。しかし、その複金属水酸化物では、当然、再生温度が177℃未満であり、高温で熱量の大きい300℃付近の廃熱を有効活用できない。 Non-Patent Document 1 describes a double metal hydroxide obtained by substituting a part of Mg in Mg(OH) 2 with Co or Ni to lower the regeneration temperature. However, the double metal hydroxide naturally has a regeneration temperature of less than 177° C., and cannot effectively utilize waste heat near 300° C., which has a large amount of heat at high temperature.

本発明はこのような事情に鑑みて為されたものであり、従来の化学蓄熱材とは異なる温度で作動する新たな化学蓄熱材等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a new chemical heat storage material that operates at a temperature different from that of the conventional chemical heat storage material.

本発明者はこの課題を解決すべく鋭意研究した結果、Ca(OH)の再生温度とMg(OH)の再生温度との中間にある300℃前後で作動(再生)させ得る新たな化学蓄熱材の合成に成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of earnest studies to solve this problem, the present inventor has developed a new chemistry that can be operated (regenerated) at about 300° C. which is between the regeneration temperature of Ca(OH) 2 and the regeneration temperature of Mg(OH) 2. Succeeded in synthesizing the heat storage material. By developing this result, the present invention described below has been completed.

《化学蓄熱材》
(1)本発明の化学蓄熱材は、熱媒の吸蔵または放出により発熱または吸熱する化学蓄熱材であって、該熱媒の吸蔵前に、Ca(1-x)O(0<x<1、M=MnまたはCd)で表される複金属酸化物からなる。
《Chemical heat storage material》
(1) The chemical heat storage material of the present invention is a chemical heat storage material that generates heat or absorbs heat by occluding or releasing a heat medium, and before storage of the heat medium, Ca x M (1-x) O(0<x <1, M=Mn or Cd).

(2)本発明の化学蓄熱材は、金属酸化物(CaOとMO)の単なる混合物ではなく、原子レベルで複合化された複金属酸化物からなる。例えば、熱媒が水である場合、本発明の複金属酸化物は、水(水蒸気)を吸蔵することにより、複金属水酸化物(Ca(1-x)(OH))となる。逆に、複金属水酸化物から水が放出されることにより、複金属酸化物となる。このような作動(再生)は、Ca(OH)の再生温度よりも遙かに低温側で生じ得る。従って、本発明の化学蓄熱材を用いれば、従来のCaO等では利用できなかった廃熱も有効に活用できるようになる。なお、具体的な作動温度は、CaとMの割合を変更することにより調整可能である。ちなみに、Mは金属元素であり、Mnおよび/またはCdである。本明細書では、M=Mnの場合について主に説明するが、後述するようにM=Cdでも、さらにはM=Mn+Cdまで本発明は成立し得る。 (2) The chemical heat storage material of the present invention is not a mere mixture of metal oxides (CaO and MO) but a double metal oxide compounded at the atomic level. For example, when the heat medium is water, the double metal oxide of the present invention becomes double metal hydroxide (Ca x M (1-x) (OH) 2 ) by occluding water (steam). .. On the contrary, the release of water from the double metal hydroxide results in a double metal oxide. Such operation (regeneration) can occur at a temperature much lower than the regeneration temperature of Ca(OH) 2 . Therefore, by using the chemical heat storage material of the present invention, it is possible to effectively utilize the waste heat that could not be utilized by the conventional CaO or the like. The specific operating temperature can be adjusted by changing the ratio of Ca and M. By the way, M is a metal element and is Mn and/or Cd. In the present specification, the case where M=Mn is mainly described, but the present invention can be realized even when M=Cd or M=Mn+Cd as described later.

《化学蓄熱材の製造方法》
上述した本発明の化学蓄熱材は、例えば、次のような本発明の製造方法により得られる。すなわち、上述した化学蓄熱材は、CaOまたはCa(OH)と、MOまたはM(OH)(M=MnまたはCd)とを混合した混合原料を焼成する焼成工程を備える製造方法により得ることが可能である。
<<Chemical heat storage material manufacturing method>>
The chemical heat storage material of the present invention described above is obtained, for example, by the following production method of the present invention. That is, the chemical heat storage material described above is obtained by a manufacturing method including a firing step of firing a mixed raw material in which CaO or Ca(OH) 2 and MO or M(OH) 2 (M=Mn or Cd) are mixed. Is possible.

なお、得られた焼成体をそのまま化学蓄熱材として用いても良いし、それを解砕、粉砕したものを化学蓄熱材として用いてもよい。また、混合原料の複金属酸化物への合成率を高めるために、焼成工程は複数回なされてもよい。 The obtained fired body may be used as it is as a chemical heat storage material, or it may be crushed and crushed and used as a chemical heat storage material. Further, the firing step may be performed multiple times in order to increase the rate of synthesis of the mixed raw material into the double metal oxide.

《その他》
(1)本明細書でいう「熱媒」は、水に限らず、二酸化炭素等でもよい。また、本発明の化学蓄熱材は、熱媒の吸蔵前(または放出後)に複金属酸化物であればよい。熱媒の吸蔵後の化学蓄熱材は、複金属水酸化物、複金属水酸化物の錯体等となる。便宜上、本明細書では、特に断らない限り、熱媒を水とした場合について説明する。
《Others》
(1) The "heat medium" used in the present specification is not limited to water, and may be carbon dioxide or the like. Further, the chemical heat storage material of the present invention may be a double metal oxide before (or after) releasing the heat medium. The chemical heat storage material after the storage of the heat medium becomes a complex of a double metal hydroxide, a double metal hydroxide, or the like. For convenience, in the present specification, unless otherwise specified, the case where the heat medium is water will be described.

(2)特に断らない限り本明細書でいう「x〜y」は下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a〜b」のような範囲を新設し得る。 (2) Unless otherwise specified, “x to y” in the present specification includes a lower limit value x and an upper limit value y. A range such as “a to b” may be newly established by setting any numerical value included in various numerical values or numerical ranges described in the present specification as a new lower limit or upper limit.

試料1に係るX線回折パターンである。3 is an X-ray diffraction pattern of Sample 1. 試料2に係るX線回折パターンである。6 is an X-ray diffraction pattern of Sample 2. 試料1に係る熱重量分析を示すグラフである。5 is a graph showing thermogravimetric analysis of Sample 1. 試料2に係る熱重量分析を示すグラフである。5 is a graph showing thermogravimetric analysis of Sample 2.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、化学蓄熱材のみならず、その製造方法等にも適宜該当し得る。方法的な構成要素であっても物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more constituent elements arbitrarily selected from the specification may be added to the constituent elements of the present invention described above. The contents described in this specification can be appropriately applied not only to the chemical heat storage material but also to its manufacturing method and the like. Even a method component can be a component related to an object. Which of the embodiments is the best depends on the target, the required performance and the like.

《再生温度》
再生温度は、化学蓄熱材の再生反応が平衡状態となるときの温度として定義される。本発明の化学蓄熱材が水(蒸気)と反応する場合であれば、その平衡状態は次式により表される。
Ca(1-x)(OH) ⇔ Ca(1-x)O+HO (式1)
《Regeneration temperature》
The regeneration temperature is defined as the temperature at which the regeneration reaction of the chemical heat storage material reaches an equilibrium state. If the chemical heat storage material of the present invention reacts with water (steam), its equilibrium state is represented by the following equation.
Ca x M (1-x) (OH) 2 ⇔ Ca x M (1-x) O+H 2 O (Formula 1)

このときの再生温度は、ギブスエネルギー変化(ΔG)を示す次式から求めることができる。
ΔG=ΔG+RTln(P/P) (式2)
ここで、ΔG :標準ギブスエネルギー変化
R :気体定数
T :再生温度
P :水蒸気圧力
:標準状態の圧力
The regeneration temperature at this time can be obtained from the following equation indicating the Gibbs energy change (ΔG).
ΔG=ΔG 0 +RTln(P/P 0 ) (Equation 2)
Where ΔG 0 : standard Gibbs energy change
R: gas constant
T: Regeneration temperature
P: Water vapor pressure
P 0 : Standard pressure

ΔG=0を解くことにより、再生反応が平衡状態にあるときの再生温度(T)を求められる。ここで、化学蓄熱材を大気雰囲気で作動させる場合、水蒸気圧は25℃における飽和水蒸気圧(3.2kPa)とするとよい。本明細書では、特に断らない限り、その飽和水蒸気圧下における再生温度を示す。なお、化学蓄熱材を大気雰囲気で作動させると、大気の熱を有効に利用でき、エネルギーを追加的に消費することなく化学蓄熱システムの稼働が可能となる。 By solving ΔG=0, the regeneration temperature (T) when the regeneration reaction is in equilibrium can be obtained. Here, when the chemical heat storage material is operated in the atmosphere, the water vapor pressure may be a saturated water vapor pressure (3.2 kPa) at 25°C. In the present specification, unless otherwise specified, the regeneration temperature under the saturated steam pressure is shown. When the chemical heat storage material is operated in the atmosphere, the heat of the atmosphere can be effectively used, and the chemical heat storage system can be operated without additionally consuming energy.

《複金属酸化物》
本発明に係る複金属酸化物を構成するMは、MnまたはCdである。CdOはCaOおよびMnOと同じ岩塩型の結晶構造をしており、CdはCaとカチオン半径が近い。具体的にいうと、1酸化物中における各イオン半径は、Ca:1.00Å、Cd:0.95Å、Mn:0.83Åである(参考文献: R. D. Shannon, Acta Crystallographica Section A 32 (1976) 751.)。従って、CdはMnと同様に、Caに対して全率固溶し得る。これにより、CaCd(1-x)Oは、CaMn(1-x)Oと同様な挙動を示すといえる。ちなみに、それら各単体の再生温度は、Mn(OH):114℃、Cd(OH):63℃である。
《Double metal oxide》
M constituting the double metal oxide according to the present invention is Mn or Cd. CdO has the same rock salt type crystal structure as CaO and MnO, and Cd has a cation radius close to that of Ca. Specifically, each ionic radius in one oxide is Ca: 1.00Å, Cd: 0.95Å, Mn: 0.83Å (Reference: RD Shannon, Acta Crystallographica Section A 32 (1976). 751.). Therefore, Cd, like Mn, can form a solid solution with respect to Ca. Therefore, it can be said that Ca x Cd (1-x) O behaves similarly to Ca x Mn (1-x) O. Incidentally, the regeneration temperature of each of these simple substances is Mn(OH) 2 : 114° C. and Cd(OH) 2 : 63° C.

なお、本発明者は、再生温度がCa(OH)よりも低い金属水酸化物を構成する他の金属元素(Fe、Co、Ni、Cu、Zn、Sn、Pb等)についても、Ca(1-x)Oのような複金属酸化物が合成され得る可能性を、擬2元系状態図等に基づいて検討した。しかし、上述したMnとCd以外に、Caと合成され得る金属元素は見当たらなかった。 The inventor of the present invention also uses Ca x for other metal elements (Fe, Co, Ni, Cu, Zn, Sn, Pb, etc.) that compose a metal hydroxide having a reproduction temperature lower than that of Ca(OH) 2. The possibility of synthesizing a double metal oxide such as M (1-x) O was examined based on the pseudo binary system phase diagram. However, other than Mn and Cd described above, no metal element that can be synthesized with Ca was found.

Caと合成されるM(Mn、Cd)の原子割合(x)は、0<x<1の範囲内で、化学蓄熱材(再生温度)の仕様に応じて調整され得る。xが小さくなる程、低温側で再生される複金属水酸化物の割合が増加する傾向を示す。もっとも、0.6≦x≦0.9さらには0.7≦x≦0.9であると、化学蓄熱システムの効率的な稼働が可能となって好ましい。 The atomic ratio (x) of M (Mn, Cd) synthesized with Ca can be adjusted according to the specifications of the chemical heat storage material (regeneration temperature) within the range of 0<x<1. As x decreases, the proportion of double metal hydroxide regenerated on the low temperature side tends to increase. However, it is preferable that 0.6≦x≦0.9 and further 0.7≦x≦0.9 because the chemical heat storage system can operate efficiently.

《化学蓄熱材の製造方法》
(1)原料
原料には、本発明の複金属酸化物または複金属錯体(複金属水酸化物を含む)が生成される種々のものを用いることができる。例えば、CaMn(1-x)Oを生成する場合であれば、CaOとMnOを原料とし、CaCd(1-x)Oを生成する場合であれば、CaOとCdOを原料とすればよい。
<<Chemical heat storage material manufacturing method>>
(1) Raw Material As the raw material, various materials capable of producing the double metal oxide or the double metal complex (including the double metal hydroxide) of the present invention can be used. For example, when Ca x Mn (1-x) O is produced, CaO and MnO are used as raw materials, and when Ca x Cd (1-x) O is produced, CaO and CdO are used as raw materials. Good.

(2)焼成工程
焼成工程は、原料を加熱して、CaとMn、Cdとを原子レベルで複合化させる工程である。CaOと、MnOまたはCdOの少なくとも一方とを混合した原料(混合原料)を焼成する場合であれば、焼成温度は1000〜1400℃、1100〜1300℃さらには1150〜1250℃とすると好ましい。焼成温度が過小では複合化が不十分となり、焼成温度が過大では生産性が低下し得る。
(2) Firing Step The firing step is a step of heating the raw material to combine Ca, Mn, and Cd at the atomic level. When firing a raw material (mixed raw material) in which CaO and at least one of MnO and CdO are mixed, the firing temperature is preferably 1000 to 1400°C, 1100 to 1300°C, and more preferably 1150 to 1250°C. If the firing temperature is too low, the compounding will be insufficient, and if the firing temperature is too high, the productivity will decrease.

焼成工程は、真空雰囲気中に限らず、不活性ガス雰囲気中でなされてもよい。 The firing process is not limited to the vacuum atmosphere, but may be performed in an inert gas atmosphere.

原料を均一的に複合化した複金属酸化物を得るために、焼成工程は複数回なされてもよい。その際、各回の焼成工程は同じ条件下でなされても、異なる条件下でなされてもよい。また、各焼成工程前に、粉砕、混合、ペレット化等がなされることが好ましい。 The firing step may be performed multiple times in order to obtain a double metal oxide in which the raw materials are uniformly compounded. In that case, each firing process may be performed under the same condition or different conditions. In addition, it is preferable that pulverization, mixing, pelletization and the like be performed before each firing step.

なお、焼成工程等により得られた複金属酸化物等の粉末を、加圧成形した成形体を得る成形工程を任意に行ってもよい。所望形状の化学蓄熱材とすることにより、取扱性、反応器への収容性等の向上が図られる。 The powder of the double metal oxide or the like obtained by the firing step or the like may be optionally subjected to a molding step for obtaining a molded body. By using the chemical heat storage material having a desired shape, the handling property and the accommodation property in the reactor can be improved.

《化学蓄熱システム》
化学蓄熱材は、熱媒と吸収反応または放出反応して、放熱作用または吸熱作用をする。化学蓄熱システムは、その化学蓄熱材を収容した反応器に対して、熱媒の供給または回収を行うことにより、上記のような反応および作用をさせる。
《Chemical heat storage system》
The chemical heat storage material performs an absorption reaction or a release reaction with the heat medium to perform a heat radiation function or a heat absorption function. The chemical heat storage system causes the reaction and action as described above by supplying or recovering the heat medium to the reactor containing the chemical heat storage material.

熱媒が水の場合であれば、化学蓄熱システムは、例えば、化学蓄熱材を収容した反応器と、蓄熱(再生)時に反応器から発生した水蒸気を凝縮して水(液体)にすると共に放熱時にその水を蒸発させた水蒸気を反応器へ供給する凝縮器と、それらをつなぐ配管とを備える。 If the heat medium is water, the chemical heat storage system may, for example, condense the water vapor generated from the reactor during heat storage (regeneration) into water (liquid) and dissipate heat. A condenser is sometimes provided to supply water vapor obtained by evaporating the water to the reactor, and a pipe connecting them.

複数の試料(複金属酸化物)を製造し、それらの構造と特性を評価した。これらに基づいて、本発明をより具体的に詳述する。 A plurality of samples (double metal oxides) were manufactured and their structures and properties were evaluated. The present invention will be described more specifically based on these.

《試料の製造》
(1)混合工程
原料として、金属酸化物である酸化カルシウム(CaO)の粉末(和光純薬工業株式会社製)と、酸化マンガン(MnO)の粉末(株式会社高純度化学研究所製)とを用意した。これら粉末を所定の比率(混合比)に秤量したものを、均一的に混合した。なお、本実施例に係る混合比は、CaO:MnO=8:2(試料1)と、CaO:MnO=7:3(試料2)とした。この混合比は、物質量比(モル比)である。
<<Manufacture of sample>>
(1) Mixing step As raw materials, powder of calcium oxide (CaO) which is a metal oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and manganese oxide (MnO) powder (manufactured by Kojundo Chemical Laboratory Co., Ltd.) are used. I prepared. The powders were weighed in a predetermined ratio (mixing ratio) and uniformly mixed. The mixing ratios according to this example were CaO:MnO=8:2 (Sample 1) and CaO:MnO=7:3 (Sample 2). This mixing ratio is a substance amount ratio (molar ratio).

(2)第1焼成工程
得られた混合粉末を355MPaで加圧してペレット(15×15mm)にした。このペレットをアルゴン雰囲気中で1200℃×12時間加熱した。
(2) First firing step The obtained mixed powder was pressed at 355 MPa to form pellets (15 x 15 mm). The pellet was heated at 1200° C. for 12 hours in an argon atmosphere.

(3)第2焼成工程
その焼成後のペレットを大気中で解砕・粉砕して得られた粉末を再度、混合、ペレット化して、第1焼成工程と同様に加熱(1200℃×12時間加熱)した。こうして得られたペレットをさらに大気中で粉砕した粉末を試料とした。
(3) Second firing step The powder obtained by crushing and crushing the pellets after firing in the air is mixed and pelletized again, and heated in the same manner as in the first firing step (heating at 1200°C for 12 hours). )did. The pellets thus obtained were further crushed in the air to obtain a powder.

(4)各試料の粉末をそれぞれ入れた蓋のない容器と、水を入れた別な蓋の無い容器とをオートクレーブ内に配置して、両者を80℃で加熱した。こうして各試料の粉末に80℃の飽和水蒸気を接触させた。 (4) A container without a lid containing the powder of each sample and another container without a lid containing water were placed in an autoclave, and both were heated at 80°C. Thus, the powder of each sample was brought into contact with saturated steam at 80°C.

《観察》
水蒸気に接触させた各試料の粉末粒子を、X線回折(XRD/Cu-Kα: λ= 1.5418 A))により構造分析した。こうして得られた各XRDパターンを、図1Aと図1B(両者を併せて単に「図1」という。)に示した。各図には、Ca(OH)とMn(OH)の各レファレンスピーク位置も併せて示した。
<Observation>
The powder particles of each sample brought into contact with water vapor were subjected to structural analysis by X-ray diffraction (XRD/Cu-Kα: λ=1.5418 A). The XRD patterns thus obtained are shown in FIGS. 1A and 1B (both are simply referred to as “FIG. 1”). The reference peak positions of Ca(OH) 2 and Mn(OH) 2 are also shown in each figure.

《測定》
水蒸気に接触させた各試料の粉末について、熱重量分析(TG)を行った。この測定は、試料室内を予め排気した後、3kPa(25℃)の水蒸気雰囲気としてから、5℃/分で昇温させて行った。こうして得られた各試料の分析結果を図2Aと図2B(両者を併せて単に「図2」という。)に示した。なお、各図には、別途用意した市販のCa(OH)に係る同様な分析結果も併せて示した。
<<Measurement>>
Thermogravimetric analysis (TG) was performed on the powder of each sample that was contacted with water vapor. This measurement was performed by evacuating the inside of the sample chamber in advance and then raising the temperature to 5° C./min after setting the atmosphere of water vapor at 3 kPa (25° C.). The analysis results of each sample thus obtained are shown in FIGS. 2A and 2B (both are collectively referred to as “FIG. 2”). In addition, in each figure, the similar analysis result regarding separately prepared commercially available Ca(OH) 2 is also shown.

《評価》
(1)構造
図1から明らかなように、試料1と試料2に係るピークはそれぞれ、Ca(OH)のレファレンスピーク位置を基準にして、Ca(OH)とMn(OH)のレファレンスピーク位置間を、ほぼ混合比で内分した位置(試料1:約2:8、試料2:約3:7)付近に観察された。これらから、Ca(OH)やMn(OH)とは異なる新たな結晶構造を有するCaMn(1-x)(OH)(0<x<1)が生成きれたことが確認できた。
<<Evaluation>>
(1) As a structure diagram 1 is apparent, each peak of the sample 1 and sample 2, based on the reference peak position of the Ca (OH) 2, Ca (OH) 2 and Mn (OH) 2 of Reference It was observed in the vicinity of a position where the peak positions were internally divided by the mixing ratio (Sample 1: about 2:8, Sample 2: about 3:7). From these, it can be confirmed that Ca x Mn (1-x) (OH) 2 (0<x<1) having a new crystal structure different from Ca(OH) 2 and Mn(OH) 2 was completely produced. It was

(2)作動(再生)
図2から明らかなように、先ず、Ca(OH)は400℃付近で急激に脱水(再生)されて、ほぼCaOになることがわかる。
(2) Operation (reproduction)
As is clear from FIG. 2, first, it is understood that Ca(OH) 2 is rapidly dehydrated (regenerated) at around 400° C. to become almost CaO.

一方、各試料に係るCaMn(1-x)(OH)は、室温から400℃付近へ昇温するにつれて、徐々に脱水し、400℃付近で脱水がある程度まで急激に進んだ後、さらに、400℃付近から600℃へ昇温するにつれて、さらに脱水が徐々に進行した。このように各試料の複金属水酸化物は、再生温度域が広範囲となるため、様々な温度の廃熱を有効に利用することが可能となる。 On the other hand, Ca x Mn (1-x) (OH) 2 according to each sample is gradually dehydrated as the temperature rises from room temperature to around 400° C., and after the dehydration rapidly proceeds to around 400° C., Further, as the temperature was raised from around 400° C. to 600° C., dehydration further proceeded gradually. As described above, the double metal hydroxide of each sample has a wide regeneration temperature range, so that waste heat at various temperatures can be effectively used.

例えば、400℃よりもかなり低い300℃の廃熱でも、CaMn(1-x)(OH)なら、少なくともその1/3程度を脱水(再生)させることが可能となる。逆にいうと、脱水が起こる再生温度と水蒸気を吸収するときの発熱温度とは、既述した式(2)のΔG=0のときとして求まるため、脱水時と同じ圧力の水蒸気を吸収させれば、脱水時と同じ温度で発熱させることができる。従って、300℃の廃熱で再生した後、逆に水蒸気を導入すれば、300℃程度の発熱を取り出すことが可能となる。 For example, even with waste heat at 300° C., which is considerably lower than 400° C., Ca x Mn (1-x) (OH) 2 makes it possible to dehydrate (regenerate) at least about 1/3 of that. Conversely, since the regeneration temperature at which dehydration occurs and the heat generation temperature when absorbing water vapor can be obtained when ΔG=0 in the above-mentioned formula (2), water vapor at the same pressure as during dehydration can be absorbed. For example, heat can be generated at the same temperature as during dehydration. Therefore, by regenerating with waste heat of 300° C. and then introducing steam in reverse, heat generation of about 300° C. can be taken out.

以上から、従来の化学蓄熱材(Ca(OH))とは全く異なる脱水挙動を示す新規な物質からなる化学蓄熱材(CaMn(1-x)(OH))が得られたことが明らかとなった。ちなみに、図2に示した重量減少値は理論値と僅かに異なっているが、これは不純物または昇温前に行った減圧過程の影響に過ぎないと考えられる。 From the above, completely different dewatering behavior consists novel materials exhibiting chemical heat storage material (Ca x Mn (1-x ) (OH) 2) that is obtained with the conventional chemical heat storage material (Ca (OH) 2) Became clear. By the way, the weight reduction value shown in FIG. 2 is slightly different from the theoretical value, but it is considered that this is only an effect of impurities or the depressurization process performed before temperature increase.

Claims (4)

熱媒の吸蔵または放出により発熱または吸熱する化学蓄熱材であって、
該熱媒の吸蔵前に、
Ca(1-x)O(0<x<1、M=MnまたはCd)
で表される複金属酸化物からなる化学蓄熱材。
A chemical heat storage material that generates or absorbs heat by occluding or releasing a heat medium,
Before storing the heat medium,
Ca x M (1-x) O (0<x<1, M=Mn or Cd)
A chemical heat storage material consisting of a double metal oxide represented by.
前記xは、0.6≦x≦0.9を満たす請求項1に記載の化学蓄熱材。 The chemical heat storage material according to claim 1, wherein the x satisfies 0.6≦x≦0.9. 請求項1または2に記載の化学蓄熱材を得る製造方法であって、
CaOまたはCa(OH)と、MOまたはM(OH)(M=MnまたはCd)とを混合した混合原料を焼成する焼成工程を備える化学蓄熱材の製造方法。
A manufacturing method for obtaining the chemical heat storage material according to claim 1 or 2,
A method for producing a chemical heat storage material, comprising a firing step of firing a mixed raw material in which CaO or Ca(OH) 2 and MO or M(OH) 2 (M=Mn or Cd) are mixed.
前記焼成工程は、焼成温度が1000〜1400℃である請求項3に記載の化学蓄熱材の製造方法。 The method for producing a chemical heat storage material according to claim 3, wherein in the firing step, a firing temperature is 1000 to 1400°C.
JP2016250308A 2016-12-26 2016-12-26 Chemical heat storage material and manufacturing method thereof Expired - Fee Related JP6743685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016250308A JP6743685B2 (en) 2016-12-26 2016-12-26 Chemical heat storage material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016250308A JP6743685B2 (en) 2016-12-26 2016-12-26 Chemical heat storage material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018104512A JP2018104512A (en) 2018-07-05
JP6743685B2 true JP6743685B2 (en) 2020-08-19

Family

ID=62786610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016250308A Expired - Fee Related JP6743685B2 (en) 2016-12-26 2016-12-26 Chemical heat storage material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6743685B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777373B (en) * 2019-03-06 2021-01-26 北京理工大学 Intermediate-temperature seasonal heat storage material
CN115926758B (en) * 2022-11-16 2023-09-29 南京航空航天大学 Calcium-based heat storage particles and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215724A (en) * 1984-04-11 1985-10-29 Matsushita Electric Ind Co Ltd Hydrogen occluding material
JP4765072B2 (en) * 2006-05-17 2011-09-07 国立大学法人東京工業大学 Chemical heat pump
JP5177386B2 (en) * 2008-02-07 2013-04-03 国立大学法人東京工業大学 Chemical heat pump

Also Published As

Publication number Publication date
JP2018104512A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
Iwan et al. High temperature sequestration of CO2 using lithium zirconates
US9114359B2 (en) Method for producing sorbents for CO2 capture under high temperatures
JP5177386B2 (en) Chemical heat pump
Shkatulov et al. Adapting the MgO-CO2 working pair for thermochemical energy storage by doping with salts
US9550147B2 (en) Particulate, heterogeneous solid CO2 absorbent composition, method for its preparation and use thereof
Blanco et al. Low temperature solid state synthesis of Li5FeO4 and CO2 capture mechanism via real time in situ synchrotron X-ray diffraction
Feng et al. Effect of microwave irradiation on the preparation of iron oxide/arenaceous clay sorbent for hot coal gas desulfurization
JP6679000B2 (en) Strontium ion adsorbent and method for producing the same
Sun et al. Evaluation of thermochemical energy storage performance of Fe-/Mn-doped, Zr-stabilized, CaO-based composites under different thermal energy storage modes
JP6743685B2 (en) Chemical heat storage material and manufacturing method thereof
JP2011162746A (en) Molded article of chemical heat storage material and method for producing the same
KR20220112802A (en) Sodium ferrite particle powder and its manufacturing method
Lei et al. An in-depth investigation of BaO2/BaO redox oxides for reversible solar thermochemical energy storage
Wang et al. Synthesis of LiF-containing Li4SiO4 as highly efficient CO2 sorbents
Karami et al. Study of Al2O3 addition to synthetic Ca‐based sorbents for CO2 sorption capacity and stability in cyclic operations
EP2749624B1 (en) Chemical heat storage structure comprising a chemical heat storage material
WO2014183169A1 (en) Method for producing hollow structures
WO2018109823A1 (en) Strontium ion adsorbent and production method therefor
JP6036730B2 (en) Method for producing composite metal halide and chemical heat storage material
Zhang et al. Thermodynamic and kinetic studies of effective adsorption of 2, 4, 6-trichlorophenol onto calcine Mg/Al-CO 3 layered double hydroxide
Zaki et al. Investigation of Ca12Al14O33 Mayenite for hydration/dehydration thermochemical energy storage
JP2009057239A (en) Activated carbon preparation method
Yu et al. Development of a Scalable Method for Manufacturing High‐Temperature CO2 Capture Sorbents
JP6647676B2 (en) Strontium ion adsorbent and method for producing the same
JP7083235B2 (en) Silver oxide and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6743685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees