JP6740177B2 - 画像処理装置、画像処理方法及びプログラム - Google Patents

画像処理装置、画像処理方法及びプログラム Download PDF

Info

Publication number
JP6740177B2
JP6740177B2 JP2017116757A JP2017116757A JP6740177B2 JP 6740177 B2 JP6740177 B2 JP 6740177B2 JP 2017116757 A JP2017116757 A JP 2017116757A JP 2017116757 A JP2017116757 A JP 2017116757A JP 6740177 B2 JP6740177 B2 JP 6740177B2
Authority
JP
Japan
Prior art keywords
tomographic
value
noise
data
tomographic data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017116757A
Other languages
English (en)
Other versions
JP2019000294A (ja
JP2019000294A5 (ja
Inventor
佐藤 眞
眞 佐藤
好彦 岩瀬
好彦 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017116757A priority Critical patent/JP6740177B2/ja
Priority to EP18177278.1A priority patent/EP3415077A1/en
Priority to US16/007,267 priority patent/US10755451B2/en
Publication of JP2019000294A publication Critical patent/JP2019000294A/ja
Publication of JP2019000294A5 publication Critical patent/JP2019000294A5/ja
Application granted granted Critical
Publication of JP6740177B2 publication Critical patent/JP6740177B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Ophthalmology & Optometry (AREA)
  • Pulmonology (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Eye Examination Apparatus (AREA)

Description

本発明は画像処理装置、画像処理方法及びプログラムに関する。
近年、画像診断分野において非侵襲で眼底及び前眼部の断層を観察/計測できる光干渉断層撮像法(Optical Coherence Tomography:OCT)を用いた撮影装置(OCT装置)が普及している。OCT装置は、特に眼科診断分野において研究から臨床まで広く使われている。
OCTで取得される被検眼の断層画像には、撮影装置の検出系に起因するランダムノイズと被写体に起因するスペックルノイズが含まれる。これらのノイズを低減するための手法として、同一箇所で断層画像を複数枚撮影し、それらの断層画像を平均化することで、単一の断層画像が有するノイズを抑制し、より精細な断層画像を生成する方法が従来から広く用いられている。
OCTにより眼底を撮影する場合、通常その撮影範囲は深度方向(眼の奥行方向)に対して硝子体から強膜に至るが、近年のOCTの性能向上に伴って網膜のみならず硝子体の構造も観察が可能になってきた。硝子体の構造は加齢で変化するが、これによって黄斑円孔等網膜に障害を与えることが知られており、網膜と硝子体の状態を詳細に観察することが望まれている。
特許第6046250号
Chan AC, Kurokawa K, Makita S, Miura M, Yasuno Y., 「Maximum a posteriori estimator for high−contrast image composition of optical coherence tomography」, Opt Lett., 2016;41(2):321., doi:10.1364/OL.41.000321.
網膜層の構造を中心に観察してきた従来においては、主に網膜層が観察しやすくなるように断層画像のコントラストを調整してきた。しかしながら、OCTにより撮影された断層画像において硝子体から得られる信号強度は、網膜から得られる信号強度と比較して非常に小さい。そのため、網膜層のコントラストを最適化すると、硝子体のコントラストは、大きく低下するか、又は断層画像上において画素値がゼロ又は最大値にマッピングされ全く描出されなくなる。これは前述した平均処理によっても解決できない。
従来、画像のコントラストを全体的に改善する手法として、ヒストグラム等化が知られている。しかしながら、ヒストグラム等化処理では、OCTの断層画像に含まれるランダムなノイズ成分も同時に強調され粒状性の高い画像となるため、硝子体の微小な構造の観察には不向きであった。
そのため、特許文献1によれば、眼底をその層構造に基づいて網膜層の領域と硝子体の領域に領域分割し、領域毎に表示条件を設定することで各々のコントラストを最適化する方法が提案されている。しかしながら、この方法では領域分割が正確であることが前提となるため、層構造の形態変化が大きく、正確な領域分割が困難な疾病眼に対しては適切に適用できない場合がある。
一方、非特許文献1によれば、OCTの信号強度を複数の測定データにより最大事後確率推定(MAP推定)する手法が提案されている。提案されている手法では、従来の平均化処理で過大評価されていたノイズ成分と被写体の信号の差を広げてダイナミックレンジを拡張し、ノイズ成分と硝子体を含む被写体の信号とを分離し易くすることが可能である。しかしながら、依然として網膜層と硝子体の信号レベルの差は存在するため、いずれか一方のコントラストを最適化すると他方のコントラストが得られない。また、MAP推定の処理は一般的に勾配法等を用いた数値計算となるため、計算時間が長くワークフローが重視される臨床現場で用いるには困難な場合もある。
そこで、本発明では、被写体のOCT断層画像において、信号の強度差が大きい構造物の各々のコントラストを同時に改善することができる画像処理装置、画像処理方法及びプログラムを提供する。
本発明の一実施態様による画像処理装置は、測定光を用いて被検査物を複数回光干渉断層撮像することで得られた、複数の断層データを取得するデータ取得部と、前記断層データのノイズ特性を取得するノイズ取得部と、前記複数の断層データから生成される複数の断層画像における互いに対応する複数の画素のうち、画素値前記ノイズ特性よりも大きい画素の数に関する情報に基づいて、前記断層データから生成される断層画像の各画素位置における重み係数を決定する係数決定部と、前記断層データの値及び前記重み係数を用いた演算を行うことによって、画素位置における前記断層データの値を変更する変更部と、前記値が変更された前記断層データに基づいて、前記断層画像を生成する画像生成部とを備える。
本発明の他の実施態様による画像処理方法は、測定光を用いて被検査物を複数回光干渉断層撮像することで得られた、複数の断層データを取得することと、前記断層データのノイズ特性を取得することと、前記複数の断層データから生成される複数の断層画像における互いに対応する複数の画素のうち、画素値前記ノイズ特性よりも大きい画素の数に関する情報に基づいて、前記断層データから生成される断層画像の各画素位置における重み係数を決定することと、前記断層データの値及び前記重み係数を用いた演算を行うことによって、画素位置における前記断層データの値を変更することと、前記値が変更された前記断層データに基づいて、前記断層画像を生成することとを含む。
本発明によれば、被写体のOCT断層画像において、信号の強度差が大きい構造物の各々のコントラストを同時に改善することができる。
実施例1によるOCT装置の構成を概略的に示す。 実施例1による画像処理装置の動作を示すフローチャートである。 断層画像取得についての説明図である。 ノイズ特性取得についての説明図である。 重み係数の分布とOCTデータの確率密度分布についての説明図である。 重み係数のヒストグラムである。 画素値変更部の動作についての説明図である。 階調処理部の動作についての説明図である。 実施例1に係る画像処理された断層画像についての説明図である。 実施例2に係る重み係数決定方法についての説明図である。 実施例2に係るノイズ特性取得についての説明図である。
以下、本発明を実施するための例示的な実施例を、図面を参照して詳細に説明する。ただし、以下の実施例で説明する寸法、材料、形状、及び構成要素の相対的な位置等は任意であり、本発明が適用される装置の構成又は様々な条件に応じて変更できる。また、図面において、同一であるか又は機能的に類似している要素を示すために図面間で同じ参照符号を用いる。
[実施例1]
以下、図1乃至9(b)を参照して、本発明の実施例1による画像処理装置を備えたOCT装置について説明する。図1は、本実施例に係るOCT装置の構成を概略的に示す。なお、以下において、人眼(被検眼)を被検査物として説明する。
OCT装置100には、OCT部200、画像処理装置300、及び表示部400が設けられている。OCT部200は、不図示の光源からの光を測定光と参照光に分割して測定光を被検眼に走査し、その戻り光と参照光との干渉信号を画像処理装置300に出力する。OCTの方式としては、干渉光を分光して断層信号を得るスペクトルドメイン方式(SD−OCT)や、光源の波長を掃引する波長掃引方式(SS−OCT)等が存在する。OCT部200としては、いずれの方式のOCTを用いたものであっても適用が可能である。なお、これらのOCTを用いたOCT部200の構成や機能は公知であるため説明を省略する。
画像処理装置300は、OCT部200から入力された干渉信号に基づいて断層画像を生成し、後述する各種処理を適用して高画質化した後に表示部400に出力する。画像処理装置300には、断層画像取得部301(データ取得部)、ノイズ特性取得部302(ノイズ取得部)、係数決定部303、画素値変更部304(変更部)、合成部305、及び階調処理部306(画像生成部)が設けられている。これら構成要素の詳細については後述する。
本実施例において画像処理装置300は、OCT部200に接続されたコンピュータによって構成される。また、画像処理装置300の各構成要素はコンピュータ上で動作するソフトウェアモジュールから構成される。しかしながら、画像処理装置300の構成はこの構成に限定されるものではない。画像処理装置300の各機能の全て又は一部を特定の機能を有するASIC等のハードウェアによって構成してもよいし、一部の処理を高速化するためにGPU(Graphics Processing Unit)を利用してもよい。また、画像処理装置300は、汎用のコンピュータを用いて構成されてもよいし、OCT装置100専用のコンピュータとして構成されてもよい。
表示部400は、画像処理装置300から出力された断層画像を表示する。表示部400は、画像処理装置300に接続された液晶モニタ等の表示デバイスと、それを駆動制御する不図示の制御部から構成される。なお、本実施例においては、OCT部200、画像処理装置300及び表示部400は、それぞれ別個に構成されているが、これらの一部又は全部を一体的に構成してもよい。
次に、図2を参照しながらOCT装置100における各部の機能動作について説明する。図2は、画像処理装置300の動作を示すフローチャートである。なお、本実施例において以下に説明する各処理工程は、画像処理装置300の中央処理ユニット(CPU)が、画像処理装置300の不図示の記憶装置に記憶されたプログラムに従い動作し、各部を制御することによって機能を実現しているものとする。
<ステップS201>
まず、画像処理装置300による動作が開始されると、ステップS201において、画像処理装置300の断層画像取得部301が、OCT部200を制御して断層画像を取得する。ステップS201において、OCT部200は、被検眼に対して測定光を照射し、眼底からの戻り光と参照光の干渉光を検出し、デジタル干渉信号として出力する。
図3(a)は、OCT部200による測定光の走査位置Sを眼底Erの正面画像上に破線で表したものである。同図に示すように走査位置Sは視神経乳頭Dと黄斑Maを横切るように設定されている。走査位置Sは、OCT部200や他の撮像装置から得られる眼底画像等に基づいて、検者がOCT装置100を操作することによって設定される。ここで、図3(a)に示す眼底Erの正面画像は、OCT部200が取得した干渉信号を図3(b)に示すz方向に積算することで生成してもよいし、OCT部200とは別に設けられた不図示の眼底像撮像装置によって生成してもよい。また、眼底Erの正面画像は、OCT部200に眼底像撮像用の光学系を設けて、当該光学系の出力に基づいて生成されてもよい。
走査位置Sの設定操作は、例えば、画像処理装置300を撮影制御装置として機能させることでも行うことができる。この場合には、検者は、表示部400に表示されるユーザインタフェースを用いて走査位置Sを設定することができる。走査位置Sを設定するためのユーザインタフェースには、図3(a)に示すように眼底Erの画像上に走査位置Sが重畳表示され、検者は画像処理装置300に接続された不図示のキーボードやマウスを用いて走査位置Sを眼底Er上の所望の位置に設定する。なお、走査位置Sは画像処理装置300や他の撮影制御装置が、眼底画像及び被検眼の測定部位等に基づいて自動的に設定してもよい。
本実施例において、OCT部200は、眼底Er上の走査位置SでN回の走査を行い、検出した干渉信号を断層画像取得部301に出力する。断層画像取得部301は、入力された干渉信号を処理して図3(b)に示すように、被検眼の断層を表す複数枚の断層画像Iを生成する。なお、本実施例においては、1枚の断層画像のx方向(走査方向)の画素数をWとし、z方向(深さ方向)の画素数をHとする。
走査回数Nの値は、検者が上述したユーザインタフェースで適宜設定してもよいし、撮影装置固有のパラメータとして画像処理装置300に予め記憶させておいてもよい。走査回数Nの大きさは例えば100が選択されるが、これに限定されるものではなく任意の値とすることができる。ただし、後述する処理において測定データの統計的な性質を利用することから、Nの値は少なくとも10程度とすることができる。なお、以降の説明において、複数枚の断層画像Iに含まれる1枚の断層画像をB−scan画像と呼び、複数枚の断層画像Iを単に断層画像Iと呼ぶ。ここで、B−scanとは、測定光を眼底の所定の横断方向に走査することをいう。
干渉信号に基づく断層画像生成は、バックグラウンドデータの除去、SD−OCTの場合に必要となる波長波数変換、及びフーリエ変換等により行われる。なお、断層画像の生成方法に関しては、公知の任意の方法を用いることが可能であるため詳細な説明は省略する。
このように同一位置で複数回の走査を行う場合、固視微動等によって被検眼が動くため、断層画像IのB−scan画像間で位置ずれが発生する。このため、断層画像取得部301はこの位置ずれを各B−scan画像の画素値に基づいて補正する。例えば、断層画像取得部301は各B−scan画像に関心領域を設定し、関心領域同士でマッチングを行うことで位置ずれを検出することができる。この位置ずれの検出及び位置補正に関しては、公知の任意の技術を用いることが可能であるため詳細な説明は省略する。以降の説明において、B−scan画像を構成する各画素は異なるB−scan画像に対して空間的な位置ずれが補正され、各B−scan画像は被写体の同一位置に対応しているものとして説明する。断層画像取得部301は、生成した位置補正済の断層画像Iを、係数決定部303及び画素値変更部304に出力する。
<ステップS202>
ステップS202では、ノイズ特性取得部302が、OCT部200により被写体からの戻り光が存在しない状態で取得した干渉信号に基づいて断層画像取得部301が生成したノイズ画像Iから、OCT部200が有するノイズの特性を取得する。このノイズ画像I(ノイズデータ)は被検眼の撮影に先立って、被検眼への測定光を遮断するか、被写体を置かずに撮影を行って生成した断層画像として得ることができる。なお、ノイズ画像Iを取得するための撮影は被検眼の撮影ごとに行う必要はない。そのため、例えばOCT部200の調整時等に予めノイズ画像Iのための撮影を行い、ノイズ画像I又は後述するノイズ画像Iに基づくノイズ特性を画像処理装置300のハードディスク等の記憶装置に記憶してもよい。
図4(a)はノイズ画像Iを模式的に表したものである。ノイズ画像Iは、図3(b)に示される断層画像Iと同様に、測定光のM回の走査を行って得られた干渉信号に基づいて生成された複数のB−scan画像から構成される。ただし、被写体からの戻り光がない状態で撮影されていることから、ノイズ画像IはOCT部200においてOCTの信号検出の過程で発生するノイズ成分のみを含むものとなる。また、走査回数Mは、被検眼を撮影する際の走査回数Nと同じでも異なっていてもよいが、ノイズの特性をより正確に算出する上では多い方がよく、例えば100以上の値とすることができる。なお、本実施例では1枚のノイズ画像のx方向(走査方向)の画素数を、断層画像のx方向の画素数Wと同じ値としている。しかしながら、ノイズ画像のx方向の画素数は、必ずしも断層画像のx方向の画素数と同じである必要はなく、異なる数であってもよい。
次にノイズ特性取得部302は、ノイズ画像Iから、z軸に沿った平均ノイズレベルに対応するノイズ特性NF(z)を計算する。具体的には、ノイズ特性取得部302は、式1により、ノイズ画像Iの各B−scan画像の画素値を各画素位置で走査回数分平均し、平均化されたB−scan画像の画素値を水平方向(走査方向)に平均したデータe(z)を求める。その後、ノイズ特性取得部302は、データe(z)に対して2次の多項式フィッティング等のフィッティング処理を行い、ノイズ特性NF(z)を計算する。
Figure 0006740177
図4(b)は、ノイズ特性NF(z)を例示したものであり、z方向に沿ったノイズの平均的なレベルを表す。なお、このノイズ特性NF(z)の計算も被検眼の撮影ごとに行う必要はなく、ノイズ画像Iの取得時に行って画像処理装置300のハードディスク等の記憶装置に記憶しておけばよい。この場合には、ノイズ画像Iを保存しておく必要はない。ノイズ特性取得部302は計算したノイズ特性NF(z)を係数決定部303に出力する。
<ステップS203>
ステップS203では、係数決定部303が、断層画像取得部301から入力された被検眼の信号を含む断層画像Iと、ノイズ特性取得部302から出力されたノイズ特性NF(z)とに基づいて重み係数wを計算する。より具体的には、係数決定部303は、断層画像Iとノイズ特性NF(z)とに基づいて、式2により断層画像の各画素位置(x、z)における重み係数w(x、z)を計算する。
Figure 0006740177
ここで、本実施例による重み係数w(x、z)は、断層画像Iの各B−scan画像の各画素の画素値が当該画素位置でのノイズ特性NF(z)より大きくなる個数の割合として計算される。図5(a)は、重み係数w(x、z)を画像として例示したものであり、重み係数w(x、z)の値が大きいほど白い領域として表現されている。
図5(a)において、領域501は視神経線維層等、網膜内層の信号強度が高い層、領域502は硝子体の構造物又は強膜、領域503は網膜内層の外顆粒層、領域504は被写体からの信号が殆ど無い領域に対応している。このような重み係数wの値と断層の領域との対応関係について、図5(b)を用いて定性的に説明する。図5(b)は、OCTデータの確率密度分布を示す。図5(b)において、分布506は被写体の信号が無い場合の分布を示し、分布507は被写体の信号振幅がa1の場合の分布を示し、分布508は被写体の信号振幅がa1よりも高いa2の場合の分布を示す。
OCTの信号振幅はライス分布となることが知られており、その分布は定常的な信号(被写体の信号)の振幅とノイズの振幅の比によって変化する。図5(b)に示すように、被写体の信号が全くない状態で計算したノイズレベルNFに対し、断層画像のある位置の画素値がノイズレベルNFより大きくなる割合は、被写体からの信号振幅が例えばa1の場合には、その分布全体に対する斜線部分の割合となる。この割合は、被写体からの信号の振幅が大きくなるに従って大きくなり、OCT部200で検出した干渉信号に含まれる被写体の信号強度に対応していると考えられる。
すなわち、各画素の画素値が当該画素位置でのノイズ特性NF(z)より大きくなる個数の割合である重み係数wの値は、被検眼の眼底からの信号振幅の大きさに相関する。そのため、重み係数wは、視神経線維層のように測定光に対する反射率が大きく、そこからの反射光がノイズレベルNFを下回ることが殆ど無い場合にはほぼ1.0近傍に分布し、逆に被写体の信号が無い場合には概ね0.5を中心として分布する。一方、硝子体のように信号振幅が微弱な構造の場合には、重み係数wは概ね0.5から0.8程度の値に分布する。
図6は、重み係数wのヒストグラムの一例を示す。図6に示すヒストグラムにおいて、重み係数wが0.5近傍に現れているピークは主としてノイズ成分と硝子体等の微弱な信号が混在したものに対応し、1.0近傍に現れているピークは視神経線維層等の強い信号に対応している。
なお、係数決定部303は重み係数wに対して非線形な変換処理を行って、重み係数wの分布を広げてもよい。例えば、重み係数wにパラメータが1.0以上のγ変換を施すことでノイズ成分に対応する信号振幅を0に近づけることができる。γの値は、生成される断層画像等に基づいて予め主観評価で決めることができ、例えば2.0程度とすることができる。
係数決定部303は、このようにして計算した重み係数wを画素値変更部304に出力する。
<ステップS204>
ステップS204において、画素値変更部304は、断層画像取得部301から入力された断層画像Iの画素値を、係数決定部303から入力された重み係数wに基づいて、式3により変更する。
Figure 0006740177
また、画素値変更部304は、さらに重み係数wの分布に基づいて、微弱な信号の画素に対し、以下に説明するように、微弱な信号を強調するための強調パラメータであるオフセット項を加算又は乗算してもよい。
画素値変更部304は、図6に示す重み係数wのヒストグラムを計算し、その頻度から重み係数wの値の範囲に対して、図7(a)に示すL,Uのような2つの境界を求める。ここで、図7(a)は、重み係数wのヒストグラムをフィッティングした関数を示すグラフである。まず、画素値変更部304は、重み係数wのヒストグラムの頻度を多項式補間や平滑化スプライン等でフィッティングし、次にフィッティングした頻度を解析し、w=0.5近傍のピーク、及びw=0.7〜0.8近傍のバレーを検出する。画素値変更部304は、w=0.5近傍のピークを境界Lとして、w=0.7〜0.8近傍のバレーを境界Uとして求める。ここで、境界Lであるw=0.5近傍のピークは、ノイズ成分に対応する極値に対応する。
次に、画素値変更部304は、図7(b)に示されるように、オフセット値の分布b(w)を、平均が(L+U)/2で、標準偏差σがUからLの範囲に対し±Rσとなるガウス分布として計算する。図7(b)は、ガウス分布として計算されたオフセット値の分布b(w)を示す。画素値変更部304は、オフセット値の分布b(w)を計算したら、式4によって断層画像Iの各画素値を変更する。
Figure 0006740177
式4の右辺の第1項は前述の重み係数wによりノイズ成分を相対的に減弱し、第2項(オフセット項)は硝子体等の微弱な信号振幅を増幅して網膜層の信号レベルに近づける効果がある。ここで、gは増幅の度合いを調整するパラメータであり、事前に決定しておけばよい。本実施例では、gは0.5〜2.0程度とすることができる。またRの値は、結果として得られる画像の主観的な評価等に基づいて、事前に決めておけばよい。Rの値は、例えば1.5程度とすることができるが、値が小さいほど画素値変更の度合いが小さくなり、大きすぎるとコントラストが低くなる。
また、分布b(w)は上述したガウス分布に限定されるものではなく、LからUの範囲で単峰性の形状を有するものであればよい。これは、重み係数wがほぼ0.5を中心に振幅が分布するノイズの成分と0.8以上の元々信号強度が大きい網膜領域に相当する画素に対しての強調を抑制するためである。
また、分布b(w)が対称の分布である必要はなく、0の方向に歪んだ非対称の分布を用いることもできる。このような分布として、例えば対数正規分布やレイリー分布を用いることができる。その場合、分布b(w)の平均が図7(a)に示すMiのようにLとUの間(例えば、分布の勾配が最も急峻な重みに対応するMi)になるように、パラメータを設定すればよい。図7(c)は、対数正規分布として計算された分布b(w)を示し、示される分布b(w)では、Miを境に重み係数wの負の方向には急峻に減衰する一方、正の方向には緩やかに減衰する。このような形状の分布を用いることで、ノイズ成分に対しては急峻に減衰させ、被写体の信号に対してはより広い範囲に強調を行うことができる。また、分布b(w)は、複数の分布を組み合わせることで生成してもよい。このようにすることで、オフセット量をより柔軟に設定することができる。
画素値変更部304は、式3又は式4によって断層画像Iの各画素値を変更した断層画像Iを合成部305に出力する。
<ステップS205>
ステップS205において、合成部305は、入力された画素値変更済の断層画像Iを、式5に基づいて平均化して平均断層画像Iavを生成する。合成部305は、生成した平均断層画像Iavを階調処理部306に出力する。
Figure 0006740177
<ステップS206>
ステップS206において、階調処理部306は、入力された平均断層画像Iavの階調を、表示部400の表示可能な範囲に収まるように変換する。図8(a)及び(b)は、それぞれ平均断層画像の頻度のヒストグラムと階調曲線801の一例を示す。図8(a)は式3又は式4による画素値変更を行わなかった場合、図8(b)は式4により変更を行った場合の平均断層画像Iavの頻度のヒストグラムと階調曲線801の例を示す。なお、図8(a)及び(b)において、横軸はヒストグラムに関する画素値及び階調曲線に関する入力画素値を示し、縦軸はヒストグラムに関する頻度及び階調曲線に関する出力画素値を示す。
図8(a)及び(b)に示すように、画素値の変更を行わなかった場合の断層画像におけるノイズレベルから最高輝度レベルの範囲Dに対し、変更を行った場合の断層画像における同範囲Dは広くなっていることが分かる。これは、式4によって、データの分布に対してノイズの可能性が高い画素の画素値を減弱することで、全体のダイナミックレンジが広がるためである。
また、前述したように、式4によれば、硝子体に相当する微弱な信号が含まれる画素の画素値に対してオフセットを加算しているため、その構造が強調され、より視認しやすくなる。階調処理部306は、図8(b)に示すような階調曲線801により出力断層画像を生成し、表示部400に出力する。
<ステップS207>
ステップS207において、表示部400は、階調処理部306から入力された出力断層画像を液晶モニタ等の表示デバイスに表示する。図9(a)及び(b)は、表示される画像の一例を示す。図9(a)は式3又は式4の処理によらず単に断層画像を平均した場合の平均断層画像の一例を示し、図9(b)は本実施例による画素値変換処理を適用した場合の平均断層画像の一例を示す。
図9(b)に示されるように、本実施例による画素値変換処理を適用することにより、硝子体Vや脈絡膜Cに係る微弱な信号を強調し、これらの構造の視認性を向上させることができる。また、重み係数wに基づいて硝子体の信号に対し、層境界を抽出することなく強調できるため、疾病による網膜層の変形の影響を受けずに安定した画質の向上を行うことができる。なお、式3により画素値を変更した場合であっても、図9(a)に示すような単に断層画像を平均した場合の平均断層画像に比べ、ノイズ成分が減弱され、硝子体などの構造が相対的に強調されることができ、同様の効果を奏することができる。
上記のように、本実施例による画像処理装置300は、測定光を用いて被検眼を複数回光干渉断層撮像することで得られた、複数の断層画像を取得する断層画像取得部301と、断層画像のノイズ特性を取得するノイズ特性取得部302とを備える。また、画像処理装置300は、複数の断層画像とノイズ特性に基づいて、断層画像の各画素位置に対応する重み係数を決定する係数決定部303と、重み係数に基づいて、断層画像の画素値を変更する画素値変更部304とを備える。さらに、画像処理装置300は、変更された画素値に基づいて、出力断層画像を生成する階調処理部306を備える。また、画像処理装置300は、変更された画素値に基づいて、平均断層画像を生成する合成部305を備え、階調処理部306は、平均断層画像に基づいて出力断層画像を生成することができる。
より具体的には、ノイズ特性取得部302は、被検眼からの測定光の戻り光が無い状態で得られたノイズデータから断層画像の各画素位置における平均ノイズ強度をノイズ特性として取得する。その後、係数決定部303は、同一の画素位置における断層画像の画素値が、該同一の画素位置における平均ノイズ強度を超える割合に基づいて重み係数を決定する。画素値変更部304は、重み係数を断層画像の画素値に乗算することで断層画像の画素値を変更する。
また、画素値変更部304は、重み係数の分布に基づいて各画素位置における強調パラメータを生成し、重み係数及び強調パラメータに基づいて、断層画像の画素値を変更することもできる。この場合、画素値変更部304は、重み係数の分布における極値、例えばノイズ成分に対応する極値に基づいて強調パラメータを生成することができる。また、画素値変更部304は、断層画像の画素値に重み係数を乗算し、乗算結果に強調パラメータを加算する、又は断層画像の画素値に重み係数及び強調パラメータを乗算することで、断層画像の画素値を変更することができる。
本実施例によれば、ノイズの平均的なレベル(ノイズ特性)と撮影により得られた測定データの分布から画素毎に重みを計算し、これを測定データに基づく画素値に乗算することで、ノイズを減弱し、硝子体等の微弱な信号を相対的に強調することができる。また、ノイズが減弱されるため、網膜等の構造に対応する強度の高い信号とノイズ領域とのコントラストも改善されることができる。このため、硝子体と網膜等の信号の強度レベル差が大きい構造物のコントラストを同時に改善することができる。従って、画像のコントラストを全体として効率的に最適化し、断層信号の強度レベル差が大きい構造物同士を同時に観察して診断することを容易にすることができる。
また、画素値の変更時に強調パラメータを適用することで、ノイズを抑制する一方で微弱な信号を選択的に強調することが可能である。このため、硝子体のように網膜の他の構造から大きく異なる信号レベルを有する構造体を選択的に強調して、信号の強度レベル差が大きい構造物のコントラストを同時に、より改善することができる。
なお、上述したMAP推定では分布の中心を信号振幅として微弱な信号を推定する。これに対して、本実施例によれば、予めノイズレベルNFを計算し、断層画像の各位置でノイズレベルNFを超える画素の割合を重み係数として計算すればよい。そのため、本実施例に係る処理は、MAP推定処理に比べて、はるかに計算負荷が少ない一方で、微弱な信号を描出する点において実質的に同様の効果を奏することができる。
なお、本実施例では、重み係数wの頻度の境界L,Uを求める際に、w=0.5近傍のピーク及びw=0.7〜0.8近傍のバレーを求めたが、当該wの値は例示に過ぎない。境界L,Uは、重み係数wの分布の形状に基づいて求められればよい。
例えば、画素値変更部304は、重み係数wの頻度のヒストグラムの形状に基づいて、ノイズ成分に対応するピークと網膜信号に対応するピークとを検出し、それらピークの間で頻度が最小となるバレーを検出する。そして、画素値変更部304は、ノイズ成分に対応するピークを境界Lとして、ノイズ成分に対応するピークと網膜信号に対応するピークとの間のバレーを境界Uとして求めてもよい。なお、単にノイズ成分に対応するピークより重み係数wが高い範囲において頻度が最小となるバレーを検出し、境界Uとしてもよい。
また、画素値変更部304は、境界Uを求めずに、オフセット値の分布の平均であるMiを求めてもよい。例えば、画素値変更部304は、ノイズ成分に対応するピークと網膜信号に対応するピークとを検出し、さらにそれらピークの間で分布b(w)の勾配が最大となる部分をMiとして求めることができる。
さらに、画素値変更部304は、ノイズ成分に対応するピークを検出して境界Lとし、境界Lに対して所定値だけ高い値をオフセット値の分布の平均であるMiとして求めてもよい。また、画素値変更部304は、ノイズ成分に対応するピークと網膜信号に対応するピークとの間のバレーとなる境界Uを求め、境界Uに対して所定値だけ低い値をMiとして求めてもよい。また、境界U,Lは、ピークやバレーに厳密に一致している必要はなく、実質的にピークやバレーに相当する、ピークやバレーの前後の値として求められてもよい。
また、階調処理は上記の方法に限定されず、他の方法により階調変換を行ってもよい。例えば、局所的なヒストグラム等化処理であるCLAHE(Contrast Limited Adaptive Histogram Equalization)を用いてもよい。
CLAHEは画像を複数の矩形領域に分割し、ノイズを増幅しすぎないようにコントラスト制限をかけてヒストグラム均等化を行うが、OCTの断層画像では網膜と他の領域間の画素値の分布が大きく異なる。このため、OCTの断層画像に対してCLAHEを用いる場合には、一般的に、矩形領域内に含まれる被検眼の構造によって結果として得られるコントラストが変化し、断層画像全体として見たときに領域の境界がアーチファクトとして観察されることがある。
しかしながら、本実施例によれば、画素値変更部304が、描出したい微弱な信号を網膜層の信号に近いレベルに変換するため、CLAHEを適用した場合であっても領域の境界がアーチファクト化することを防止することができる。
また、本実施例による処理は、断層画像Iがフーリエ変換後に対数変換したものでも、そうでなくリニアの状態のものであっても適用することができる。なお、対数変換前の断層画像に本実施例による処理を適用する場合は、式4のオフセット項に対応するgb(w)は加算するよりも乗算する方が望ましい。
さらに、本実施例では、階調処理部306は、合成部305によって生成された平均断層画像Iavに対して階調処理を行った。しかしながら、階調処理部306は、画素値が変更された断層画像のうちの一枚のB−scan画像に対して階調処理を行い、出力断層画像としてもよい。この場合、合成部305は省略されてよい。これに関連し、階調処理部306は出力断層画像を生成する画像生成部として機能することができる。
なお、本実施例による処理は、断層画像Iに適用される構成に限られない。本実施例による処理は、OCT部200で取得された干渉信号、干渉信号にフーリエ変換を施した信号、該信号に任意の処理を施した信号、及びこれらに基づく断層画像等を含む断層データに対して適用されてよい。これらの場合も、上記構成と同様の効果を奏することができる。なお、この場合にも、複数枚の断層画像に対応する複数組の断層データに基づく平均断層データに対して出力断層画像が生成されてもよいし、1枚の断層画像に対応する1組の断層データに対して出力断層画像が生成されてもよい。
[実施例2]
実施例1では、予め計算したノイズレベルNFを用いて重み係数wを決定したが、実施例2では、データの分布同士の比較に基づいて重み係数wを決定する。以下、本実施例による処理について、図10(a)乃至図11(b)を参照して説明する。なお、本実施例によるOCT装置は、実施例1によるOCT装置100と同様の構成を有するため、同じ参照符号を用いて説明を省略する。また、本実施例による処理では、ノイズ特性取得部302及び係数決定部303の処理が実施例1による処理と異なり、他は同様であるので、ステップS202及びS203についてのみ説明し、他は省略する。
<ステップS202>
本実施例に係るステップS202において、ノイズ特性取得部302は、実施例1と同様に被写体が存在しない状態で生成したノイズ画像IからOCT部200が有するノイズの特性を取得する。ただし、本実施例では、ノイズの平均的な振幅レベルではなく、分布の形状をノイズの特性とする。
図10(a)は、図5(b)と同様に、OCTの測定を繰り返した際のデータの分布を、いくつかの異なる信号強度の大きさ別に表したものである。分布1001は被写体の信号が無い場合の分布を示し、分布1002は被写体の信号振幅がa1の場合の分布を示し、分布1003は被写体の信号振幅がa1よりも高いa2の場合の分布を示す。図10(b)は、これらの分布の累積確率分布を示す。実施例1で説明したように、信号強度の違いによりデータの分布形状は異なるため、その累積確率分布の形状も図10(b)で示すように異なる。具体的には、信号振幅が高いほど、累積確率分布の立ち上がりが緩やかになる。
本実施例において、ノイズ特性取得部302は、被写体がない状態で取得したデータ(ノイズデータ)から、ノイズ成分の累積確率分布のヒストグラムである、基準累積ヒストグラムNCを生成し、ノイズの特性として記憶する。ここで、基準累積ヒストグラムNCは、ノイズデータの頻度のヒストグラムから計算した累積ヒストグラムに対応する。なお、ノイズ特性取得部302は、基準累積ヒストグラムNCを多項式補間あるいは平滑化スプライン等によってフィッティングしてから記憶してもよい。
ここで、ノイズ特性取得部302は、図11(a)の線分で示すように、OCTのM回の繰り返し測定においてx及びz座標毎に累積ヒストグラムを計算することができる。また、ノイズ特性取得部302は、図11(b)の斜線部分で示すように、x方向全てのデータを一つの集合としz座標毎の累積ヒストグラムを計算することもできる。本実施例では、ノイズ特性取得部302は、図11(b)に示すように、x方向全てのデータを一つの集合としてz座標毎の累積ヒストグラムを計算する。なお、図11(a)及び(b)では、説明のため、mを一つの方向軸として示しているが、上述のように、mは走査回数Mに対応するものであり、OCTによる測定は同じ位置において行われる。
<ステップS203>
ステップS203において、まず係数決定部303は、断層画像取得部301から入力された被検眼の信号を含む断層画像Iの各画素位置(x、z)における、累積確率分布のヒストグラムである累積ヒストグラムIC(x、z)を求める。ここで、累積ヒストグラムIC(x、z)は、位置合せ後のB−scan画像の画素位置(x、z)に対応するM個のデータの頻度のヒストグラムから計算した累積ヒストグラムに対応する。なお、累積ヒストグラムIC(x、z)は断層画像取得部301が求め、係数決定部303に出力してもよい。
その後、断層画像取得部301は、断層画像Iの各画素位置における累積ヒストグラムIC(x、z)とノイズ特性を表す基準累積ヒストグラムNC(z)に基づいて、式6及び式7により断層画像の各画素位置における重み係数w(x、z)を計算する。
Figure 0006740177
Figure 0006740177
ただし、式7のReはB−scan画像の領域全体である。基準累積ヒストグラムNCを図11(a)に示すようにx及びz座標毎に生成・記憶した場合は、式6のNC(z)はNC(x、z)となる。
係数決定部303は、計算した重み係数wを画素値変更部304に出力する。以降の処理については実施例1と同様であるため説明を省略する。
なお、分布形状の比較方法は、式6に基づく方法に限定されない。分布形状の比較については、2つの波形を比較する方法であれば任意の方法を用いることができる。例えば、断層画像取得部301は、2つの累積ヒストグラム同士の相関係数を重み係数wとしてもよい。
上記のように、本実施例では、ノイズ特性取得部302は、ノイズデータから各画素位置におけるノイズの累積ヒストグラムをノイズ特性として取得する。その後、係数決定部303は、同一の画素位置における複数の断層画像の画素値の累積ヒストグラム及びノイズの累積ヒストグラムに基づいて重み係数を決定する。
本実施例によれば、OCTの測定データの分布形状の比較に基づいて信号の振幅に応じた重み付けを行うことができる。そのため、ノイズ成分を抑制し、硝子体等の微弱な信号を相対的に強調して描出することができる。
なお、本実施例による処理も、断層画像Iに適用される構成に限られず、上述の断層データに対して適用されてよい。この場合も、上記構成と同様の効果を奏することができる。
上記実施例では、断層画像取得部301は、OCT部200で取得された干渉信号を取得し、断層画像を生成して取得した。しかしながら、断層画像取得部301が干渉信号や断層画像等を取得する構成はこれに限られない。例えば、断層画像取得部301は、画像処理装置300とLAN、WAN、又はインターネット等を介して接続されるサーバや撮像装置から干渉信号や断層画像を含む断層データを取得してもよい。
また、上記実施例では、被検査物として被検眼について述べた。しかしながら、被検査物は被検眼に限られず、例えば、皮膚や消化器の臓器等であってもよい。このとき、本発明は、眼科装置以外に、内視鏡等の医療機器に適用することができる。
(その他の実施例)
本発明は、上述の実施例の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
以上、実施例を参照して本発明について説明したが、本発明は上記実施例に限定されるものではない。本発明の趣旨に反しない範囲で変更された発明、及び本発明と均等な発明も本発明に含まれる。また、上述の各実施例及び変形例は、本発明の趣旨に反しない範囲で適宜組み合わせることができる。
300:画像処理装置、301:断層画像取得部(データ取得部)、302:ノイズ特性取得部(ノイズ取得部)、303:係数決定部、304:画素値変更部(変更部)、306:階調処理部(画像生成部)

Claims (22)

  1. 測定光を用いて被検査物を複数回光干渉断層撮像することで得られた、複数の断層データを取得するデータ取得部と、
    前記断層データのノイズ特性を取得するノイズ取得部と、
    前記複数の断層データから生成される複数の断層画像における互いに対応する複数の画素のうち、画素値前記ノイズ特性よりも大きい画素の数に関する情報に基づいて、前記断層データから生成される断層画像の各画素位置における重み係数を決定する係数決定部と、
    前記断層データの値及び前記重み係数を用いた演算を行うことによって、画素位置における前記断層データの値を変更する変更部と、
    前記値が変更された前記断層データに基づいて、前記断層画像を生成する画像生成部と、
    を備える、画像処理装置。
  2. 前記ノイズ取得部は、前記被検査物からの前記測定光の戻り光が無い状態で得られたノイズデータに基づいて前記ノイズ特性を取得する、請求項1に記載の画像処理装置。
  3. 測定光を用いて被検査物を複数回光干渉断層撮像することで得られた、複数の断層データを取得するデータ取得部と、
    前記被検査物からの前記測定光の戻り光が無い状態で得られたノイズデータに基づいて、前記断層データのノイズ特性を取得するノイズ取得部と、
    前記複数の断層データから生成される複数の断層画像における互いに対応する複数の画素の画素値と前記ノイズ特性との対比に基づいて、前記断層データから生成される断層画像の各画素位置における重み係数を決定する係数決定部と、
    前記断層データの値及び前記重み係数を用いた演算を行うことによって、画素位置における前記断層データの値を変更する変更部と、
    前記値が変更された前記断層データに基づいて、前記断層画像を生成する画像生成部と、
    を備える、画像処理装置。
  4. 前記ノイズ取得部は、前記ノイズデータから少なくとも一つの方向に沿った各画素位置における平均ノイズ強度を前記ノイズ特性として取得し、
    前記係数決定部は、前記複数の断層画像における互いに対応する複数の画素のうち、同一の画素位置における前記平均ノイズ強度を超える画素値を持つ画素の割合に関する情報に基づいて前記重み係数を決定する、請求項2又は3に記載の画像処理装置。
  5. 前記ノイズ取得部は、前記ノイズデータから少なくとも一つの方向に沿った画素位置におけるノイズの累積ヒストグラムを前記ノイズ特性として取得する、請求項2又は3に記載の画像処理装置。
  6. 前記係数決定部は、同一の画素位置における前記複数の断層データの累積ヒストグラム及び前記ノイズの累積ヒストグラムの対比に基づいて前記重み係数を決定する、請求項5に記載の画像処理装置。
  7. 前記変更部は、前記重み係数を前記断層データの値に乗算することで前記断層データの値を変更する、請求項1乃至6のいずれか一項に記載の画像処理装置。
  8. 前記変更部は、前記重み係数の分布に基づいて前記各画素位置における強調パラメータを生成し、前記重み係数及び前記強調パラメータに基づいて、前記断層データの値を変更する、請求項1乃至7のいずれか一項に記載の画像処理装置。
  9. 測定光を用いて被検査物を複数回光干渉断層撮像することで得られた、複数の断層データを取得するデータ取得部と、
    前記断層データのノイズ特性を取得するノイズ取得部と、
    前記複数の断層データから生成される複数の断層画像における互いに対応する複数の画素の画素値と前記ノイズ特性との対比に基づいて、前記断層データから生成される断層画像の各画素位置における重み係数を決定する係数決定部と、
    前記重み係数の分布に基づいて前記各画素位置における強調パラメータを生成し、前記重み係数及び前記強調パラメータに基づいて、画素位置における前記断層データの値を変更する変更部と、
    前記値が変更された前記断層データに基づいて、前記断層画像を生成する画像生成部と、
    を備える、画像処理装置。
  10. 前記変更部は、前記重み係数の分布における極値に基づいて前記強調パラメータを生成する、請求項8又は9に記載の画像処理装置。
  11. 前記変更部は、前記重み係数の分布におけるノイズ成分に対応する前記極値に基づいて前記強調パラメータを生成する、請求項10に記載の画像処理装置。
  12. 前記変更部は、前記断層データの値に前記重み係数を乗算し、乗算結果に前記強調パラメータを加算することで、前記断層データの値を変更する、請求項8乃至11のいずれか一項に記載の画像処理装置。
  13. 前記変更部は、前記断層データの値に前記重み係数及び前記強調パラメータを乗算することで、前記断層データの値を変更する、請求項8乃至11のいずれか一項に記載の画像処理装置。
  14. 前記値が変更された前記複数の断層データに基づいて、平均断層データを生成する合成部を更に備え、
    前記画像生成部は、前記平均断層データに基づいて前記断層画像を生成する、請求項1乃至13のいずれか一項に記載の画像処理装置。
  15. 前記被検査物は少なくとも硝子体領域及び網膜領域を含む、請求項1乃至14のいずれか一項に記載の画像処理装置。
  16. 測定光を用いて少なくとも硝子体領域及び網膜領域を含む被検査物を複数回光干渉断層撮像することで得られた、複数の断層データを取得するデータ取得部と、
    前記断層データのノイズ特性を取得するノイズ取得部と、
    前記複数の断層データから生成される複数の断層画像における互いに対応する複数の画素の画素値と前記ノイズ特性との対比に基づいて、前記断層データから生成される断層画像の各画素位置における重み係数を決定する係数決定部と、
    前記断層データの値及び前記重み係数を用いた演算を行うことによって、画素位置における前記断層データの値を変更する変更部と、
    前記値が変更された前記断層データに基づいて、前記断層画像を生成する画像生成部と、
    を備える、画像処理装置。
  17. 請求項1乃至16のいずれか一項に記載の画像処理装置と、
    前記被検査物に対して前記測定光を走査する走査手段を含む、前記光干渉断層撮像を実行するための光干渉断層撮像装置と、
    を備える、システム。
  18. 測定光を用いて被検査物を複数回光干渉断層撮像することで得られた、複数の断層データを取得することと、
    前記断層データのノイズ特性を取得することと、
    前記複数の断層データから生成される複数の断層画像における互いに対応する複数の画素のうち、画素値前記ノイズ特性より大きい画素の数に関する情報に基づいて、前記断層データから生成される断層画像の各画素位置における重み係数を決定することと、
    前記断層データの値及び前記重み係数を用いた演算を行うことによって、画素位置における前記断層データの値を変更することと、
    前記値が変更された前記断層データに基づいて、前記断層画像を生成することと、
    を含む、画像処理方法。
  19. 測定光を用いて被検査物を複数回光干渉断層撮像することで得られた、複数の断層データを取得することと、
    前記被検査物からの前記測定光の戻り光が無い状態で得られたノイズデータに基づいて、前記断層データのノイズ特性を取得することと、
    前記複数の断層データから生成される複数の断層画像における互いに対応する複数の画素の画素値と前記ノイズ特性との対比に基づいて、前記断層データから生成される断層画像の各画素位置における重み係数を決定することと、
    前記断層データの値及び前記重み係数を用いた演算を行うことによって、画素位置における前記断層データの値を変更することと、
    前記値が変更された前記断層データに基づいて、前記断層画像を生成することと、
    を含む、画像処理方法。
  20. 測定光を用いて被検査物を複数回光干渉断層撮像することで得られた、複数の断層データを取得することと、
    前記断層データのノイズ特性を取得することと、
    前記複数の断層データから生成される複数の断層画像における互いに対応する複数の画素の画素値と前記ノイズ特性との対比に基づいて、前記断層データから生成される断層画像の各画素位置における重み係数を決定することと、
    前記重み係数の分布に基づいて前記各画素位置における強調パラメータを生成し、前記重み係数及び前記強調パラメータに基づいて、画素位置における前記断層データの値を変更することと、
    前記値が変更された前記断層データに基づいて、前記断層画像を生成することと、
    を含む、画像処理方法。
  21. 測定光を用いて少なくとも硝子体領域及び網膜領域を含む被検査物を複数回光干渉断層撮像することで得られた、複数の断層データを取得することと、
    前記断層データのノイズ特性を取得することと、
    前記複数の断層データから生成される複数の断層画像における互いに対応する複数の画素の画素値と前記ノイズ特性との対比に基づいて、前記断層データから生成される断層画像の各画素位置における重み係数を決定することと、
    前記断層データの値及び前記重み係数を用いた演算を行うことによって、画素位置における前記断層データの値を変更することと、
    前記値が変更された前記断層データに基づいて、前記断層画像を生成することと、
    を含む、画像処理方法。
  22. プロセッサーによって実行されると、該プロセッサーに請求項18乃至21のいずれか一項に記載の画像処理方法の各工程を実行させる、プログラム。
JP2017116757A 2017-06-14 2017-06-14 画像処理装置、画像処理方法及びプログラム Expired - Fee Related JP6740177B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017116757A JP6740177B2 (ja) 2017-06-14 2017-06-14 画像処理装置、画像処理方法及びプログラム
EP18177278.1A EP3415077A1 (en) 2017-06-14 2018-06-12 Image processing apparatus, image processing method, and program
US16/007,267 US10755451B2 (en) 2017-06-14 2018-06-13 Image processing apparatus, image processing method, computer-readable storage medium, and system using optical coherence tomography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116757A JP6740177B2 (ja) 2017-06-14 2017-06-14 画像処理装置、画像処理方法及びプログラム

Publications (3)

Publication Number Publication Date
JP2019000294A JP2019000294A (ja) 2019-01-10
JP2019000294A5 JP2019000294A5 (ja) 2020-04-09
JP6740177B2 true JP6740177B2 (ja) 2020-08-12

Family

ID=62620750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116757A Expired - Fee Related JP6740177B2 (ja) 2017-06-14 2017-06-14 画像処理装置、画像処理方法及びプログラム

Country Status (3)

Country Link
US (1) US10755451B2 (ja)
EP (1) EP3415077A1 (ja)
JP (1) JP6740177B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889889A1 (en) * 2020-03-30 2021-10-06 Optos PLC Ocular image data processing
CN114066889B (zh) * 2022-01-12 2022-04-29 广州永士达医疗科技有限责任公司 一种oct主机的成像质量检测方法及装置
CN116309194B (zh) * 2023-05-24 2023-08-08 广东麦特维逊医学研究发展有限公司 Oct图像畸变校正方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046250B2 (ja) 1981-06-22 1985-10-15 株式会社日立製作所 タ−ボチヤ−ジヤ
JP2846601B2 (ja) * 1995-06-06 1999-01-13 アロカ株式会社 超音波画像処理方法及び装置
JP2000329514A (ja) * 1999-05-18 2000-11-30 Mitsutoyo Corp 干渉縞画像の補正方法
JP5340636B2 (ja) * 2008-05-19 2013-11-13 株式会社トプコン 眼底観察装置
EP3884844A1 (en) * 2008-07-18 2021-09-29 Doheny Eye Institute Optical coherence tomography-based ophthalmic testing methods, devices and systems
KR20120072757A (ko) * 2010-12-24 2012-07-04 광주과학기술원 광섬유 다발 기반의 내시경 타입 스펙트럼 영역 광학단층영상 시스템
JP5611259B2 (ja) * 2011-03-31 2014-10-22 キヤノン株式会社 光断層撮像装置及びその制御方法
EP2702351A4 (en) * 2011-04-29 2014-11-05 Optovue Inc IMPROVED REAL-TIME IMPROVED IMAGING USING OPTICAL COHERENCE TOMOGRAPHY (OCT)
JP5358620B2 (ja) * 2011-06-15 2013-12-04 富士フイルム株式会社 放射線撮影装置
WO2013105381A1 (ja) * 2012-01-10 2013-07-18 コニカミノルタ株式会社 画像処理方法、画像処理装置および画像処理プログラム
JP6021384B2 (ja) * 2012-03-30 2016-11-09 キヤノン株式会社 光干渉断層撮影装置及び制御方法
WO2014203901A1 (ja) 2013-06-19 2014-12-24 株式会社トプコン 眼科撮影装置および眼科画像表示装置
CN103632352B (zh) * 2013-11-01 2017-04-26 华为技术有限公司 一种噪声图像的时域降噪方法和相关装置
JP2016075585A (ja) * 2014-10-07 2016-05-12 キヤノン株式会社 撮像装置、断層画像のノイズ低減方法、及びプログラム
JP6584126B2 (ja) * 2015-05-01 2019-10-02 キヤノン株式会社 画像生成装置、画像生成方法およびプログラム

Also Published As

Publication number Publication date
JP2019000294A (ja) 2019-01-10
US10755451B2 (en) 2020-08-25
EP3415077A1 (en) 2018-12-19
US20180365868A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
US9418423B2 (en) Motion correction and normalization of features in optical coherence tomography
JP6598502B2 (ja) 画像生成装置、画像生成方法およびプログラム
JP6761272B2 (ja) 最適な信号処理によるoct血管造影法
JP6185612B2 (ja) 地図状萎縮の同定および測定
JP6598503B2 (ja) 画像生成装置、画像生成方法及びプログラム
JP5913392B2 (ja) 神経障害解析装置
Yousefi et al. Segmentation and quantification of blood vessels for OCT-based micro-angiograms using hybrid shape/intensity compounding
US20120194783A1 (en) Computer-aided diagnosis of retinal pathologies using frontal en-face views of optical coherence tomography
CN109155058B (zh) 补偿光学相干断层成像术扫描
US10102621B2 (en) Apparatus, method, and program for processing image
JP6740177B2 (ja) 画像処理装置、画像処理方法及びプログラム
Cheng et al. Robust three-dimensional registration on optical coherence tomography angiography for speckle reduction and visualization
WO2016144854A1 (en) Methods and systems for enhancing microangiography image quality
JP7195745B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2017140302A (ja) 画像処理装置、画像処理方法及びプログラム
JP6431559B2 (ja) 光干渉断層撮影におけるモーションアーチファクトの除去のための方法およびシステム
JP7106304B2 (ja) 画像処理装置、画像処理方法及びプログラム
EP3449809A1 (en) Image processing apparatus, optical coherence tomography apparatus, image processing method, and program
Li et al. Segmentation of 830-and 1310-nm LASIK corneal optical coherence tomography images
JP7130989B2 (ja) 眼科画像処理装置、および眼科画像処理プログラム
JP7246862B2 (ja) 画像処理装置、画像処理装置の制御方法及びプログラム
Ghafaryasl et al. Noise-adaptive attenuation coefficient estimation in spectral domain optical coherence tomography data
JP6992030B2 (ja) 画像生成装置、画像生成方法およびプログラム
EP3288445A1 (en) A signal compensation optical coherence tomography system and method
Huyen et al. Disease Generating Model for 3D Display of the Effect of Treatment on 3D Optical Coherence Tomography Images

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200722

R151 Written notification of patent or utility model registration

Ref document number: 6740177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees