JP6740092B2 - Fresh cream manufacturing method - Google Patents

Fresh cream manufacturing method Download PDF

Info

Publication number
JP6740092B2
JP6740092B2 JP2016220713A JP2016220713A JP6740092B2 JP 6740092 B2 JP6740092 B2 JP 6740092B2 JP 2016220713 A JP2016220713 A JP 2016220713A JP 2016220713 A JP2016220713 A JP 2016220713A JP 6740092 B2 JP6740092 B2 JP 6740092B2
Authority
JP
Japan
Prior art keywords
fat
milk
cream
mass
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016220713A
Other languages
Japanese (ja)
Other versions
JP2018074980A (en
Inventor
西村 康宏
康宏 西村
啓一 井原
啓一 井原
一宏 羽原
一宏 羽原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morinaga Milk Industry Co Ltd
Original Assignee
Morinaga Milk Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co Ltd filed Critical Morinaga Milk Industry Co Ltd
Priority to JP2016220713A priority Critical patent/JP6740092B2/en
Publication of JP2018074980A publication Critical patent/JP2018074980A/en
Application granted granted Critical
Publication of JP6740092B2 publication Critical patent/JP6740092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dairy Products (AREA)

Description

本発明はフレッシュクリームの製造方法に関する。 The present invention relates to a method for producing fresh cream.

フレッシュクリームとは、成分規格上、乳脂肪含量が18%以上であり、乳等省令(乳及び乳製品の成分規格等に関する省令)において「生乳、牛乳、又は特別牛乳から乳脂肪分以外の成分を除去したもの」と規定されるものである。
なお、乳脂肪分以外の成分(植物性油脂、蛋白質、各種添加剤(乳化剤、安定剤、香料等)等)を含んでおり、「乳または乳製品を主要原料とする食品」と表示されるものは乳主原クリームとも呼ばれ、フレッシュクリームとは区別される。
フレッシュクリームは、乳主原クリームに比べて濃厚感が得られやすいことが一つの特徴である。本明細書におけるフレッシュクリームの濃厚感とは乳脂肪独特の風味を指標として表されるものである。
Fresh cream has a milk fat content of 18% or more according to the component standard, and it is "a component other than milk fat from raw milk, milk, or special milk" in the Ministerial Ordinance for Milk (Ministerial Ordinance on the Component Standards for Milk and Milk Products) Is removed".
In addition, it contains ingredients other than milk fat (vegetable fats and oils, proteins, various additives (emulsifiers, stabilizers, flavors, etc.), etc.) and is labeled as "Food with milk or dairy products as its main ingredients". It is also called dairy cream and is distinct from fresh cream.
One of the characteristics of fresh cream is that it tends to give a thicker feeling than that of dairy cream. The richness of the fresh cream in this specification is expressed by using the flavor peculiar to milk fat as an index.

フレッシュクリームにあっては、定義上、安定性を付与する乳化剤等は添加することができないため、フレッシュクリームをカートンやローリーに充填し、良好な液体の状態を維持したまま長距離を輸送することが難しいという課題がある。
またフレッシュクリームはホイップして製菓用途、調理用途等に用いられることが多く、保形性(ホイップしたものを所望の形状に造形した後にその形状を維持できること。)が良好であることも要求される。
特許文献1では、安定剤を加えずに、フレッシュクリームの乳化安定性(振動耐性)を向上させるために、原料乳をフレッシュクリームと脱脂乳に分離する前に、原料乳を均質化処理する方法が提案されている。
特許文献2では、安定剤を加えずに、フレッシュクリームの乳化安定性(耐振とう性)を向上させるために、加熱殺菌処理後の冷却工程において、5℃/分以上の冷却速度で一旦7〜25℃まで冷却し、その温度で1分〜30分間保持し、その後3〜5℃まで冷却する方法が提案されている。
特許文献3は強いコクを有するフレッシュクリームの製造方法に関するもので、原料乳を膜濃縮した後に遠心分離することにより、通常のフレッシュクリームと脂肪含量が同じでありながら、無脂乳固形分の含有量が高く、風味に優れるフレッシュクリームを製造する方法が記載されている。
With fresh cream, emulsifiers that give stability cannot be added by definition, so fill the carton or lorry with fresh cream and transport it over a long distance while maintaining a good liquid state. Is difficult.
In addition, fresh cream is often whipped and used for confectionery, cooking, etc., and it is also required that the shape retention (the shape of the whipped one can be maintained after being formed into a desired shape) is good. It
In Patent Document 1, in order to improve the emulsion stability (vibration resistance) of a fresh cream without adding a stabilizer, a method of homogenizing the raw milk before separating the raw milk into fresh cream and skim milk. Is proposed.
In Patent Document 2, in order to improve the emulsion stability (vibration resistance) of the fresh cream without adding a stabilizer, in the cooling step after the heat sterilization treatment, the temperature is temporarily reduced to 7 to 7 at a cooling rate of 5°C/min or more. A method has been proposed in which the temperature is cooled to 25° C., the temperature is maintained for 1 to 30 minutes, and then the temperature is cooled to 3 to 5° C.
Patent Document 3 relates to a method for producing a fresh cream having a strong richness, which is obtained by subjecting raw material milk to membrane concentration and then centrifuging to obtain a fat-free milk solid content while having the same fat content as a normal fresh cream. A method for producing a fresh cream having a high amount and an excellent flavor is described.

特許文献4には、フレッシュクリームの脂肪球の平均粒子径(平均脂肪球径)をコントロールするために、遠心分離処理による濃縮と脱脂乳による希釈を交互に行いながら、遠心分離処理を2回以上行う方法が開示されている。
具体的に、特許文献4の実施例1には、まず生乳を遠心分離処理して乳脂肪率を45質量%に高め、これに脱脂乳を混合して乳脂肪率を15質量%に低下させた状態で、再び遠心分離処理して乳脂肪率を53質量%に高め、さらに脱脂乳を混合して乳脂肪率が45質量%であり、平均脂肪球径が4.0μmと大きいフレッシュクリームを製造した例が記載されている。
また特許文献4の実施例2には、まず生乳を遠心分離処理して乳脂肪率を45質量%に高め、これに脱脂乳を混合して乳脂肪率を15質量%に低下させた状態で、遠心分離処理して乳脂肪率が7質量%の画分を得、これを遠心分離処理して乳脂肪率が12質量%の画分を得、これをさらに遠心分離処理して乳脂肪率46質量%の画分を得、これに脱脂乳を混合して乳脂肪率が38質量%であり、平均脂肪球径が2.7μmと小さいフレッシュクリームを製造した例が記載されている。
In Patent Document 4, in order to control the average particle size (average fat globule size) of fat globules of fresh cream, centrifugation is performed twice or more while alternately performing concentration by centrifugation and dilution with skim milk. A method of doing so is disclosed.
Specifically, in Example 1 of Patent Document 4, raw milk is first subjected to centrifugal separation treatment to increase the milk fat percentage to 45% by mass, and skim milk is mixed with this to reduce the milk fat percentage to 15% by mass. In this state, centrifugation is performed again to increase the milk fat percentage to 53% by mass, and skim milk is further mixed to obtain a fresh cream having a milk fat percentage of 45% by mass and an average fat globule diameter of 4.0 μm. The example produced is described.
In Example 2 of Patent Document 4, raw milk is first subjected to centrifugal separation to increase the milk fat percentage to 45% by mass, and skim milk is mixed with this to reduce the milk fat percentage to 15% by mass. Then, centrifugation is performed to obtain a fraction having a milk fat percentage of 7% by mass, and this is subjected to a centrifugation treatment to obtain a fraction having a milk fat percentage of 12% by mass. An example is described in which a fraction of 46% by mass is obtained, and skim milk is mixed therein to produce a fresh cream having a milk fat percentage of 38% by mass and an average fat globule diameter of 2.7 μm.

特開2013−192459号公報JP, 2013-192459, A 特開2006−325426号公報JP, 2006-325426, A 国際公開第2012/176721号International Publication No. 2012/176721 国際公開第2016/129569号International Publication No. 2016/129569

上記したように、フレッシュクリームにあっては、濃厚感、せん断に対する良好な安定性、およびホイップ後の良好な保形性が求められる。
しかしながら、本発明者等の知見によれば、特許文献1に記載の方法で安定性を向上させようとすると濃厚感が低下しやすく、特許文献2、3に記載の方法ではせん断に対する充分な安定性が得られない。
また特許文献4の実施例1の方法で脂肪球の平均粒子径を大きくするとせん断に対する安定性が低下し、実施例2の方法で脂肪球の平均粒子径を小さくすると濃厚感が低下する(特許文献4の表1、2)。
本発明は、濃厚感、せん断に対する良好な安定性、およびホイップ後の良好な保形性を有するフレッシュクリームを提供することを目的とする。
As described above, the fresh cream is required to have a rich feeling, good stability against shearing, and good shape retention after whipped.
However, according to the knowledge of the present inventors, when trying to improve the stability by the method described in Patent Document 1, the rich feeling is apt to decrease, and the methods described in Patent Documents 2 and 3 provide sufficient stability against shearing. I can not get sex.
Further, when the average particle size of fat globules is increased by the method of Example 1 of Patent Document 4, stability against shearing is reduced, and when the average particle size of fat globules is reduced by the method of Example 2, richness is reduced (Patent Tables 1 and 2 of Document 4).
It is an object of the present invention to provide a fresh cream that has a rich feel, good stability against shearing, and good shape retention after whipped.

本発明は以下の態様を有する。
[1] 脂肪含量が3〜4.5質量%であり、無脂乳固形分が8〜10質量%である乳から、脂肪含量が30〜50質量%のフレッシュクリームを製造する方法であって、
前記乳を、第1の遠心分離式脂肪濃縮用セパレータに供給し、3000〜15000Gの遠心加速度で第1の脂肪濃縮画分と第1の脱脂画分とに分離する第1の分離工程と、
前記第1の分離工程で得られた第1の脂肪濃縮画分を、第2の遠心分離式脂肪濃縮用セパレータに供給し、3000〜15000Gの遠心加速度で第2の脂肪濃縮画分と第2の脱脂画分とに分離する第2の分離工程と、
前記第2の分離工程で得られた第2の脂肪濃縮画分を殺菌処理して前記フレッシュクリームを得る殺菌工程とを有し、
前記第1の分離工程における(乳の供給流量)/(第1の脂肪濃縮画分の排出流量)である第1の分配比が1.7〜6.7であり、前記第2の分離工程における(第1の脂肪濃縮画分の供給流量)/(第2の脂肪濃縮画分の排出流量)である第2の分配比が1.5〜6.3であり、かつ前記第1の分配比と前記第2の分配比との積が6.6〜16.7である、フレッシュクリームの製造方法。
[2] 前記第1の脂肪濃縮画分の脂肪含量が8〜20質量%である、[1]のフレッシュクリームの製造方法。
[3] 前記殺菌処理後のフレッシュクリームを均質化処理する均質化工程を有する、[1]または[2]のフレッシュクリームの製造方法。
The present invention has the following aspects.
[1] A method for producing a fresh cream having a fat content of 30 to 50 mass% from milk having a fat content of 3 to 4.5 mass% and a non-fat milk solid content of 8 to 10 mass%. ,
A first separation step of supplying the milk to a first centrifugal separator for fat concentration and separating it into a first fat-concentrated fraction and a first defatted fraction at a centrifugal acceleration of 3000 to 15000G;
The first fat-enriched fraction obtained in the first separation step is supplied to a second centrifugal separator for fat-enrichment, and the second fat-enriched fraction and the second fat-enriched fraction are separated by a centrifugal acceleration of 3000 to 15000G. A second separation step of separating into a defatted fraction of
Sterilizing the second fat-enriched fraction obtained in the second separation step to obtain the fresh cream,
The first distribution ratio of (milk supply flow rate)/(first fat concentrated fraction discharge flow rate) in the first separation step is 1.7 to 6.7, and the second separation step The second distribution ratio of (the supply flow rate of the first fat-enriched fraction)/(the discharge flow rate of the second fat-enriched fraction) is 1.5 to 6.3, and the first distribution The method for producing a fresh cream, wherein the product of the ratio and the second distribution ratio is 6.6 to 16.7.
[2] The method for producing a fresh cream according to [1], wherein the fat content of the first fat-enriched fraction is 8 to 20% by mass.
[3] The method for producing a fresh cream according to [1] or [2], which has a homogenizing step of homogenizing the fresh cream after the sterilization treatment.

本発明によれば、濃厚感、せん断に対する良好な安定性、およびホイップ後の良好な保形性を有するフレッシュクリームが得られる。 According to the present invention, a fresh cream having a thick feeling, good stability against shearing, and good shape retention after whipped can be obtained.

本発明の製造方法は、乳から脂肪画分(乳脂肪)を分離してフレッシュクリームを製造する方法である。乳は、脂肪含量が3〜4.5質量%であり、無脂乳固形分が8〜10質量%であるものを用いる。乳として、「乳及び乳製品の成分規格等に関する省令」に定められる乳を用いることができる。生乳、牛乳、生やぎ乳、生めん羊乳等の動物乳が例示される。乳の蛋白質含量は2.9〜3.5質量%が好ましい。
製造対象は、前記乳等省令で規定されるフレッシュクリーム(以下、単に「クリーム」ともいう。)であり、脂肪含量は30〜50質量%である。脂肪含量が30〜50質量%であると、ホイップして製菓用途、調理用途等に用いるクリームとして好適である。
The production method of the present invention is a method of producing a fresh cream by separating a fat fraction (milk fat) from milk. As the milk, one having a fat content of 3 to 4.5% by mass and a non-fat milk solid content of 8 to 10% by mass is used. As the milk, milk specified in “Ministerial Ordinance Concerning Component Standards of Milk and Milk Products” can be used. Animal milk such as raw milk, milk, raw goat's milk, raw sheep's milk and the like are exemplified. The protein content of milk is preferably 2.9 to 3.5% by mass.
The production target is a fresh cream (hereinafter, also simply referred to as "cream") specified by the Ordinance of the Ministry of Milk and the like, and the fat content is 30 to 50% by mass. When the fat content is 30 to 50% by mass, it is suitable as a cream that is whipped and used for confectionery, cooking, etc.

乳の分離は遠心分離式脂肪濃縮用セパレータ(以下、単にセパレータともいう。)を用いて行う。遠心分離式脂肪濃縮用セパレータとは、遠心力と比重差により乳を脂肪濃縮画分と脱脂画分とに分離する装置である。
一般的に、ディスク型クリームセパレータ等が用いられる。ディスク型クリームセパレータは高速回転する円錐形のセパレータディスクを備え、連続的に供給される乳が、一定間隔で積層配置されたディスク間を通過する際に遠心力により脂肪濃縮画分と脱脂画分とに分けられ、別々の出口から連続的に排出されるようになっている。
The milk is separated using a centrifugal separator for fat concentration (hereinafter, also simply referred to as a separator). The centrifugal separator for fat concentration is a device that separates milk into a fat-concentrated fraction and a defatted fraction by centrifugal force and a difference in specific gravity.
Generally, a disk type cream separator or the like is used. The disk-type cream separator is equipped with a conical separator disk that rotates at high speed, and when the milk that is continuously supplied passes between the disks that are stacked at regular intervals, the fat concentrated fraction and the defatted fraction are centrifugally generated. It is divided into two and is discharged continuously from different outlets.

本発明では、乳の分離を2段階で行う。第1の分離工程では、乳を第1の遠心分離式脂肪濃縮用セパレータに供給して第1の脂肪濃縮画分と第1の脱脂画分とに分離し、第2の分離工程では、第1の分離工程で得られた第1の脂肪濃縮画分を、第2の遠心分離式脂肪濃縮用セパレータに供給し、第2の脂肪濃縮画分と第2の脱脂画分とに分離する。
第1の遠心分離式脂肪濃縮用セパレータと、第2の遠心分離式脂肪濃縮用セパレータは、同じ構造の装置であることが好ましい。
In the present invention, milk is separated in two stages. In the first separation step, milk is supplied to the first centrifugal separator for fat concentration to separate it into a first fat-concentrated fraction and a first defatted fraction, and in the second separation step, The first fat-enriched fraction obtained in the first separation step is supplied to a second centrifugal separation fat-enrichment separator to separate into a second fat-enriched fraction and a second defatted fraction.
It is preferable that the first centrifugal separator for fat concentration and the second separator for centrifugal fat concentration have the same structure.

第1の分離工程および第2の分離工程の各工程において、遠心加速度は3000〜15000Gが好ましく、4000〜13000Gがより好ましく、5000〜10000Gがさらに好ましい。遠心加速度を上記の範囲内とすることにより、濃厚感が良好であり、せん断に対する安定性が良好であり、かつホイップ後の保形性が良好であるクリームを得ることができる。
第1の分離工程における遠心加速度と第2の分離工程における遠心加速度は同じであってもよく、異なっていてもよい。製造面や管理の容易さの点で両工程の遠心加速度は略同じであることが好ましく、具体的には両工程の遠心加速度の差の絶対値が0〜5000Gであることが好ましく、0〜3000Gがより好ましく、0〜1000Gがさらに好ましい。
ディスク型クリームセパレータにおいて、セパレータディスクの半径が一定である場合、遠心加速度は回転数によって調整できる。
In each of the first separation step and the second separation step, the centrifugal acceleration is preferably 3000 to 15000G, more preferably 4000 to 13000G, and further preferably 5000 to 10000G. By setting the centrifugal acceleration within the above range, it is possible to obtain a cream having a good thick feeling, good stability against shearing, and good shape retention after whipped.
The centrifugal acceleration in the first separation step and the centrifugal acceleration in the second separation step may be the same or different. In terms of manufacturing and ease of management, it is preferable that the centrifugal accelerations in both processes are substantially the same, and specifically, the absolute value of the difference between the centrifugal accelerations in both processes is preferably 0 to 5000G, and 0 to 5000G. 3000 G is more preferable, and 0 to 1000 G is further preferable.
In the disk type cream separator, when the radius of the separator disk is constant, the centrifugal acceleration can be adjusted by the rotation speed.

第1の分離工程および第2の分離工程の各工程において、分離温度(処理される乳または第1の脂肪濃縮画分の温度)は10〜65℃が好ましく、40〜65℃がより好ましく、60〜65℃がさらに好ましい。必要に応じて、分離前に乳を分離温度にまで加熱してもよい。加熱手段はプレート式加熱機、バッチ式加熱機等が用いられる。特にプレート式加熱機を用いて連続的に加熱することが好ましい。
分離温度が上記温度範囲の下限値以上であると、脂肪濃縮画分と脱脂画分との良好な分離効率が得られ易く、上限値以下であると、変性した乳蛋白質(例えば乳清蛋白質)の装置への付着が生じ難い。
第1の分離工程における分離温度と第2の分離工程における分離温度は同じであってもよく、異なっていてもよい。製造面や管理の容易さの点で両工程の分離温度は略同じであることが好ましく、具体的には両工程の分離温度の差の絶対値が0〜20℃であることが好ましく、0〜10℃がより好ましく、0〜5℃がさらに好ましい。
In each step of the first separation step and the second separation step, the separation temperature (the temperature of the milk to be treated or the first fat-enriched fraction) is preferably 10 to 65°C, more preferably 40 to 65°C. 60-65 degreeC is more preferable. If desired, the milk may be heated to the separation temperature before separation. A plate type heater, a batch type heater or the like is used as the heating means. Particularly, it is preferable to continuously heat using a plate heater.
When the separation temperature is equal to or higher than the lower limit of the above temperature range, good separation efficiency between the fat-enriched fraction and the defatted fraction is easily obtained, and when the separation temperature is equal to or lower than the upper limit, denatured milk protein (eg, whey protein) Is unlikely to adhere to the device.
The separation temperature in the first separation step and the separation temperature in the second separation step may be the same or different. From the viewpoint of production and ease of management, the separation temperatures in both steps are preferably substantially the same, and specifically, the absolute value of the difference between the separation temperatures in both steps is preferably 0 to 20° C., 0 The temperature is more preferably -10°C, further preferably 0-5°C.

第1の分離工程においては、(乳の供給流量)/(第1の脂肪濃縮画分の排出流量)である第1の分配比を1.7〜6.7とし、第2の分離工程においては、(第1の脂肪濃縮画分の供給流量)/(第2の脂肪濃縮画分の排出流量)である第2の分配比を1.5〜6.3とし、かつ第1の分配比と第2の分配比との積を6.6〜16.7とする。
第1の分配比を変えると第1の脂肪濃縮画分の組成が変化し、第2の分配比を変えると第2の脂肪濃縮画分の組成が変化する。第1の分配比、第2の分配比、および第1の分配比と第2の分配比との積を上記範囲内とすることにより、濃厚感が良好であり、せん断に対する安定性が良好であり、かつホイップ後の保形性が良好であるクリームを得ることができる。
好ましくは、第1の分配比が2.2〜5.8、第2の分配比が2.2〜5.7、かつ第1の分配比と第2の分配比との積が7.7〜15である。
In the first separation step, the first distribution ratio of (milk supply flow rate)/(first fat concentrated fraction discharge flow rate) is set to 1.7 to 6.7, and in the second separation step. Is a second distribution ratio of (the supply flow rate of the first fat-concentrated fraction)/(the discharge flow rate of the second fat-concentrated fraction) is 1.5 to 6.3, and the first distribution ratio is And the second distribution ratio are set to 6.6 to 16.7.
The composition of the first fat-enriched fraction changes when the first distribution ratio is changed, and the composition of the second fat-enriched fraction changes when the second distribution ratio is changed. By setting the first distribution ratio, the second distribution ratio, and the product of the first distribution ratio and the second distribution ratio within the above ranges, the rich feeling and the stability against shearing are good. It is possible to obtain a cream that has a good shape retention after whipped.
Preferably, the first distribution ratio is 2.2 to 5.8, the second distribution ratio is 2.2 to 5.7, and the product of the first distribution ratio and the second distribution ratio is 7.7. ~15.

第1の分配比は、第1の脂肪濃縮画分の脂肪含量が8〜20質量%となるように調整することが好ましい。第1の脂肪濃縮画分の脂肪含量が8質量%以上であると一回目の濃縮時において管理が容易であり、20質量%以下であると二回目の濃縮時において管理が容易である。第1の脂肪濃縮画分の脂肪含量は10〜17質量%がより好ましく、11〜15質量%がさらに好ましい。
第2の分配比は、第2の脂肪濃縮画分の脂肪含量が得ようとするクリームの脂肪含量となるように調整する。
The first distribution ratio is preferably adjusted so that the fat content of the first fat-enriched fraction is 8 to 20% by mass. When the fat content of the first fat-enriched fraction is 8% by mass or more, the control is easy at the first concentration, and when it is 20% by mass or less, the control is easy at the second concentration. The fat content of the first fat-enriched fraction is more preferably 10 to 17% by mass, and even more preferably 11 to 15% by mass.
The second distribution ratio is adjusted so that the fat content of the second fat-enriched fraction is the fat content of the cream to be obtained.

第1の分離工程において、第1の脂肪濃縮画分の排出流量と第1の脱脂画分の排出流量の合計は、乳の供給流量に等しい。乳の供給流量が一定である場合、第1の脂肪濃縮画分の出口の背圧を調節して、第1の脂肪濃縮画分の排出流量を調整することにより、第1の分配比を制御できる。
第2の分離工程において、第2の脂肪濃縮画分の排出流量と第2の脱脂画分の排出流量の合計は、第1の脂肪濃縮画分の供給流量に等しい。第1の脂肪濃縮画分の供給流量が一定である場合、第2の脂肪濃縮画分の出口の背圧を調節して、第2の脂肪濃縮画分の排出流量を調整することにより、第2の分配比を制御できる。
In the first separation step, the total discharge flow rate of the first fat-enriched fraction and the discharge flow rate of the first defatted fraction is equal to the milk supply flow rate. When the milk supply flow rate is constant, the first distribution ratio is controlled by adjusting the back pressure at the outlet of the first fat-concentrated fraction and adjusting the discharge flow rate of the first fat-concentrated fraction. it can.
In the second separation step, the sum of the discharge flow rate of the second fat-concentrated fraction and the discharge flow rate of the second defatted fraction is equal to the supply flow rate of the first fat-concentrated fraction. When the supply flow rate of the first fat-concentrated fraction is constant, the back pressure at the outlet of the second fat-concentrated fraction is adjusted to adjust the discharge flow rate of the second fat-concentrated fraction. A distribution ratio of 2 can be controlled.

第1の分離工程における乳の供給流量は特に限定されず、例えば200〜60,000kg/時間の範囲で、装置の能力に応じて適宜設定できる。
第2の分離工程における第1の脂肪濃縮画分の供給流量も、第1の分離工程における乳の供給流量と同様の範囲で、装置の能力に応じて適宜設定できる。
第1の分離工程における第1の脂肪濃縮画分の排出流量と、第2の分離工程における第1の脂肪濃縮画分の供給流量とを同じにして、第1の工程と第2の工程を連続して行ってもよい。
第1の分離工程および第2の分離工程の各工程において、用いるセパレータの容積は特に限定されない。例えば0.5〜100リットルの範囲で適宜設定できる。
The milk supply flow rate in the first separation step is not particularly limited, and can be set appropriately in the range of, for example, 200 to 60,000 kg/hour according to the capacity of the apparatus.
The supply flow rate of the first fat-enriched fraction in the second separation step can also be appropriately set within the same range as the milk supply flow rate in the first separation step according to the capacity of the apparatus.
The discharge flow rate of the first fat-enriched fraction in the first separation step and the supply flow rate of the first fat-enriched fraction in the second separation step are the same, and the first step and the second step are performed. You may carry out continuously.
The volume of the separator used in each of the first separation step and the second separation step is not particularly limited. For example, it can be appropriately set within the range of 0.5 to 100 liters.

<殺菌処理>
第2の分離工程で得られた第2の脂肪濃縮画分を殺菌処理して目的のクリームを得る。
殺菌処理とは、被処理液に熱を加えることによって、被処理液中の生菌数を低減させることを意味する。殺菌処理は被処理液の昇温および降温を伴う。
殺菌処理は公知の手法を用いて行うことができる。例えば高温短時間殺菌法(HTST)、超高温殺菌法(UHT)等が用いられる。工業的には微生物死滅率による賞味期限の観点からUHT殺菌が好ましい。殺菌機は公知のものを使用できる。連続運転や管理のしやすさの点でプレート式殺菌機が好ましい。
殺菌温度と処理時間とは、高温短時間殺菌法(HTST)の場合は75〜100℃で2〜30秒間が好ましく、超高温殺菌法(UHT)の場合は100〜155℃で2〜30秒間が好ましい。
殺菌処理後のクリームは、10℃以下まで冷却することが好ましい。殺菌処理後の冷却温度は7℃以下がより好ましく、5℃以下がより好ましい。下限は0℃以上が好ましい。
殺菌処理後の冷却は、せん断に対する良好な安定性が得られやすい点で、5℃/分以上の冷却速度で行うことが好ましい。該冷却速度は5〜40℃/分が好ましく、10〜40℃/分がより好ましい。
<Sterilization treatment>
The second fat-enriched fraction obtained in the second separation step is sterilized to obtain the target cream.
The sterilization treatment means reducing the number of viable bacteria in the liquid to be treated by applying heat to the liquid to be treated. The sterilization treatment involves raising and lowering the temperature of the liquid to be treated.
The sterilization treatment can be performed using a known method. For example, a high temperature short time sterilization method (HTST), an ultra high temperature sterilization method (UHT), etc. are used. Industrially, UHT sterilization is preferable from the viewpoint of the expiration date based on the microbial killing rate. A known sterilizer can be used. A plate type sterilizer is preferable in terms of continuous operation and ease of management.
The sterilization temperature and the treatment time are preferably 75 to 100°C for 2 to 30 seconds in the case of high temperature short time sterilization method (HTST), and 100 to 155°C for 2 to 30 seconds in the case of ultra high temperature sterilization method (UHT). Is preferred.
The cream after the sterilization treatment is preferably cooled to 10°C or lower. The cooling temperature after the sterilization treatment is more preferably 7°C or lower, and further preferably 5°C or lower. The lower limit is preferably 0°C or higher.
Cooling after the sterilization treatment is preferably performed at a cooling rate of 5° C./min or more, because good stability against shearing is easily obtained. The cooling rate is preferably 5 to 40°C/minute, more preferably 10 to 40°C/minute.

<エージング>
殺菌処理後に冷却されたクリームをエージングすることが好ましい。エージングとは、クリームを所定の温度に保持することを意味する。エージング中は、脂肪球被膜への物理的ストレスを極力与えないように、緩やかに撹拌して温度を均一にすることが好ましい。撹拌の回転数は3〜10rpm程度が好ましい。エージングを行うことにより、クリーム中の脂肪分等の結晶化が進行し、クリームの品質が安定する。
エージング中のクリームの温度は10℃以下に保持する。好ましくは7℃以下、より好ましくは5℃以下に保持する。保持温度の下限値は0℃以上が好ましい。エージングには、冷蔵庫、エージングタンク等が用いられる。エージングに費やす時間は、好ましくは数時間〜十数時間であり、より好ましくは8〜12時間である。
<Aging>
It is preferable to age the cooled cream after sterilization. Aging means keeping the cream at a predetermined temperature. During aging, it is preferable that the temperature be uniform by stirring gently so as not to give physical stress to the fat globule coating as much as possible. The rotation speed of stirring is preferably about 3 to 10 rpm. By aging, the crystallization of the fat content in the cream progresses and the quality of the cream becomes stable.
The temperature of the cream during aging is kept below 10°C. It is preferably maintained at 7°C or lower, more preferably 5°C or lower. The lower limit of the holding temperature is preferably 0°C or higher. A refrigerator, an aging tank, or the like is used for aging. The time spent for aging is preferably several hours to several tens of hours, more preferably 8 to 12 hours.

<均質化処理>
殺菌処理前及び/又は殺菌処理後、エージング前に、クリームを均質化処理する均質化工程を設けてもよい。均質化とは、脂肪球が微細化されるような力を加えることを意味する。
例えば、均質化は公知の圧力式ホモジナイザーを用いて行われる。圧力式ホモジナイザーは、流体に圧力を加えて非常に狭いオリフィス(隙間)を高速で通過させて乳化分散を行う均質機である。
均質化される際のクリームの温度(均質化温度)は40〜100℃が好ましく、60〜90℃がより好ましく、65〜80℃がさらに好ましい。必要に応じて均質化処理前に、クリームを均質化温度まで加温してもよい。
均質化温度が下限値以上であると良好な均質化効率が得られ易い。また、均質時にリパーゼ反応等が生じにくく、濃厚感が得られやすい。上限値以下であると、加熱臭等の発生が良好に抑えられ、乳本来の風味が生かされる。
均質化圧力は、均質機の種類、被処理液の処理流量やホモバルブの形状、均質化温度等の製造条件によっても異なるが、0MPaを超え、8MPa以下の範囲で設定することが好ましい。8MPa以下(多段均質機の場合は、全圧8MPa以下)であると脂肪球に及ぼす物理的ストレスが比較的に少なく済む。脂肪球への物理的ストレスの点で5MPa以下(多段均質機の場合は、全圧5MPa以下)がより好ましい。
<Homogenization treatment>
Before the sterilization treatment and/or the sterilization treatment and before the aging, a homogenizing step of homogenizing the cream may be provided. Homogenization means applying a force such that fat globules are miniaturized.
For example, homogenization is performed using a known pressure type homogenizer. The pressure type homogenizer is a homogenizer that applies pressure to a fluid to pass through a very narrow orifice (gap) at a high speed to emulsify and disperse.
40-100 degreeC is preferable, as for the temperature (homogenization temperature) of the cream at the time of homogenizing, 60-90 degreeC is more preferable, and 65-80 degreeC is further more preferable. If desired, the cream may be warmed to the homogenization temperature before the homogenization treatment.
When the homogenization temperature is equal to or higher than the lower limit value, good homogenization efficiency is easily obtained. In addition, a lipase reaction or the like is unlikely to occur at the time of homogenization, and a rich feeling is easily obtained. When it is at most the upper limit, generation of heating odor and the like will be suppressed well, and the original flavor of milk will be utilized.
The homogenizing pressure varies depending on manufacturing conditions such as the type of homogenizer, the treatment flow rate of the liquid to be treated, the shape of the homovalve, and the homogenizing temperature, but it is preferably set in the range of more than 0 MPa and 8 MPa or less. When it is 8 MPa or less (in the case of a multi-stage homogenizer, the total pressure is 8 MPa or less), physical stress exerted on fat globules can be relatively small. From the viewpoint of physical stress on fat globules, 5 MPa or less (in the case of a multistage homogenizer, total pressure of 5 MPa or less) is more preferable.

<フレッシュクリーム>
本発明で得られるクリームは、乳から第1の脱脂画分と第2の脱脂画分を除いたものである。クリームの脂肪含量は30〜50質量%であり、35〜45質量%が好ましい。
クリームの無脂乳固形分は4〜6質量%が好ましく、5〜6質量%がより好ましい。
クリームの脂肪球の平均粒子径は1〜5μmが好ましく、2〜4μmがより好ましく、3〜3.5μmがさらに好ましい。
脂肪球の被膜蛋白質密度は0.5〜10mg/mが好ましく、1〜7mg/mがより好ましく、2〜5mg/mがさらに好ましい。脂肪球の被膜蛋白質密度は、脂肪球被膜中の蛋白質量を脂肪球の総表面積で除して得られる値である。測定方法は後述する。
<Fresh cream>
The cream obtained in the present invention is obtained by removing the first defatted fraction and the second defatted fraction from milk. The fat content of the cream is 30 to 50% by mass, preferably 35 to 45% by mass.
The non-fat milk solid content of the cream is preferably 4 to 6% by mass, more preferably 5 to 6% by mass.
The average particle size of fat globules of the cream is preferably 1 to 5 μm, more preferably 2 to 4 μm, and further preferably 3 to 3.5 μm.
Coating protein density of fat globules is preferably 0.5 to 10 mg / m 2, more preferably from 1 to 7 mg / m 2, more preferably 2-5 mg / m 2. The coating protein density of fat globules is a value obtained by dividing the amount of protein in the fat globules by the total surface area of fat globules. The measuring method will be described later.

本発明によれば、第1の分離工程と第2の分離工程の2段階で乳の分離を行うことにより、濃厚感が良好であり、せん断に対する安定性が良好であり、かつホイップ後の保形性が良好であるクリームが得られる。
具体的に、後述の実施例に示されるように、本発明の方法で得られるクリームは、乳の分離を1段階で行った場合と比べて、クリームの脂肪含量および無脂乳固形分の含有量が同等であっても、脂肪球の被膜蛋白質密度が高い。すなわち、脂肪球を取り囲んでいる蛋白質の量が多く、このことが、濃厚感、せん断に対する安定性およびホイップ後の保形性の向上に寄与していると考えられる。
According to the present invention, the milk is separated in two stages of the first separation step and the second separation step, so that the rich feeling is good, the stability against shearing is good, and the preservation after whipped is good. A cream with a good shape is obtained.
Specifically, as shown in Examples described later, the cream obtained by the method of the present invention has a fat content and a non-fat milk solid content of the cream as compared with the case where milk is separated in one step. Even if the amount is the same, the density of capsular protein of fat globules is high. That is, it is considered that the amount of protein surrounding the fat globules is large, and this contributes to enhancement of richness, stability against shearing, and shape retention after whipped.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
測定方法は以下の方法を用いた。
<無脂乳固形分の測定方法>
下記の方法で水分および脂肪分を測定し、無脂乳固形分(単位:質量%)=100−水分(単位:質量%)−脂肪分(単位:質量%)として無脂乳固形分を求める。
[水分の測定方法]
混砂乾燥法を用いて水分を定量する。試料を一定条件で恒量となるまで乾燥し、乾燥物質量を求め算出した乾燥減量を水分量とする。
具体的には、以下の手順で行う。
(1)アルミニウム製秤量管に精製硅砂25gとガラス棒を入れ、乾燥機で恒量になるまで乾燥し、デシケーターに移し30分間室温で放冷し秤量する。
(2)秤量管を傾け、硅砂を一方に寄せ、試料を精秤し、机上に秤量管を写し、温湯5mlを加えガラス棒で試料を硅砂とよく撹拌均一に分散させる。
(3)沸騰した水浴上で撹拌しながら、ほとんどの水分を蒸発させる、サラサラになった所で99±1℃の乾燥機に3時間入れ、デシケーターで30分間放冷し秤量する。
乾燥、冷却、秤量を恒量になるまで繰り返し行い、以下の計算式により水分を算出する。
水分(単位:質量%)=乾燥減量(単位:g)/試料採取量(単位:g)×100
[脂肪の測定方法]
脂肪はレーゼゴットリーブ法を用いて測定する。具体的には、マジョニア管に試料3gを採取し、水7ml、フェノールフタレイン1滴、アンモニア水2mlを加えて軽く振とうする。その後、エタノール10ml、エチルエーテル25ml、石油エーテル25mlを加え、各液を添加する毎に栓をして2、3回振とうする。マジョニア管を遠心分離した後に溶媒層をディッシュに移し、溶媒を揮発させる。この残留物が脂肪であるので、当該残留物を秤量する。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The following method was used as the measuring method.
<Method for measuring non-fat milk solids>
The water content and the fat content are measured by the following method, and the non-fat milk solid content is calculated as non-fat milk solid content (unit: mass %)=100-water content (unit: mass %)-fat content (unit: mass %). ..
[Measurement method of water content]
Moisture is quantified using the mixed sand drying method. The sample is dried under constant conditions until a constant weight is obtained, and the amount of dry matter is calculated and the calculated loss on drying is taken as the water content.
Specifically, the procedure is as follows.
(1) Put 25 g of purified silica sand and a glass rod in an aluminum weighing tube, dry to a constant weight with a drier, transfer to a desiccator and let stand for 30 minutes at room temperature to be weighed.
(2) Tilt the weighing tube, bring the silica to one side, precisely weigh the sample, copy the weighing tube on the desk, add 5 ml of warm water, and stir the sample well with the silica with a glass rod to uniformly disperse the sample.
(3) Evaporate most of the water while stirring on a boiling water bath. When it becomes dry, put it in a dryer at 99±1° C. for 3 hours, allow it to cool in a desiccator for 30 minutes, and weigh it.
Drying, cooling and weighing are repeated until a constant weight is obtained, and the water content is calculated by the following calculation formula.
Moisture content (unit: mass%) = loss on drying (unit: g)/sample amount (unit: g) x 100
[Fat measurement method]
Fat is measured using the Reese-Gottlieb method. Specifically, 3 g of a sample is collected in a majonia tube, 7 ml of water, 1 drop of phenolphthalein, and 2 ml of ammonia water are added, and the mixture is shaken lightly. Then, 10 ml of ethanol, 25 ml of ethyl ether, and 25 ml of petroleum ether are added, and a stopper is added every time each liquid is added, and the mixture is shaken a few times. After centrifuging the majonia tube, the solvent layer is transferred to a dish and the solvent is volatilized. Since this residue is fat, weigh it.

<蛋白質含量の測定方法>
セミ・ミクロケルダール法(第十四改正 日本薬局方解説書 通則 製造総則 一般試験法 2001 B−370〜B374)にて総蛋白質量を測定する。以下に具体的な測定方法を示す。
試料約1g(試料質量は0.1mgの単位まで測定する)を採取し、セミ・ミクロケルダール法にて試料中の窒素量を定量する。
詳細には、試料を分解瓶に入れ、硫酸カリウム:硫酸銅=10:1の配合(質量比)の分解促進剤を1g加え、さらに濃硫酸7mL加え、加熱分解する。加熱分解後、試料を水蒸気蒸留にかけ、得られる蒸留液を20mMの硫酸水溶液20mL中に受ける。蒸留が終了したら、前記蒸留液を受けた硫酸水溶液を、40mMの水酸化ナトリウムにて滴定する。そのときの滴定量をb(単位:mL)とする。試料を含まない対照試料を用いてブランク試験を行い、そのときの滴定量をa(単位:mL)とする。下記の式により試料中の蛋白質量(単位:質量%(またはg/100g))を算出する。
蛋白質量={0.56×(b−a)×6.38}/試料の質量(単位:g)/1000×100
式中の0.56は40mMの水酸化ナトリウム1mLに対する試料の窒素量であり、6.38は窒素量を乳製品の蛋白質に換算する係数である。
<Method of measuring protein content>
The total protein amount is measured by the semi-micro Kjeldahl method (The 14th revised Japanese Pharmacopoeia Manual, General rules, General manufacturing rules, General test method 2001 B-370 to B374). The specific measuring method is shown below.
About 1 g of a sample (sample mass is measured to the unit of 0.1 mg) is sampled, and the amount of nitrogen in the sample is quantified by the semi-micro Kjeldahl method.
Specifically, the sample is placed in a decomposition bottle, 1 g of a decomposition accelerator having a composition (mass ratio) of potassium sulfate:copper sulfate=10:1 is added, and further 7 mL of concentrated sulfuric acid is added for thermal decomposition. After thermal decomposition, the sample is subjected to steam distillation and the resulting distillate is placed in 20 mL of 20 mM aqueous sulfuric acid. When the distillation is completed, the sulfuric acid aqueous solution receiving the distillate is titrated with 40 mM sodium hydroxide. Let the titer amount at that time be b (unit: mL). A blank test is performed using a control sample containing no sample, and the titer at that time is defined as a (unit: mL). The protein mass (unit: mass% (or g/100 g)) in the sample is calculated by the following formula.
Protein mass={0.56×(ba)×6.38}/sample mass (unit: g)/1000×100
In the formula, 0.56 is the nitrogen content of the sample per 1 mL of 40 mM sodium hydroxide, and 6.38 is the coefficient for converting the nitrogen content into the protein of dairy products.

<脂肪球の平均粒子径の測定方法>
以下の測定機器および測定条件にて測定された粒度分布(頻度分布)から求められるメジアン径を、脂肪球の平均粒子径とする。
(1)測定機器:レーザ回折/散乱式粒子径分布測定装置ParticaLA−950V2。
(2)測定条件:
[レーザーダイオード(波長655nm、透過率絶対値90%〜79%)]
・試料設定値:屈折率1.6
・分散媒設定値:屈折率1.33
[LED(波長405nm、透過率絶対値90%〜70%)]
・試料設定値:屈折率1.6
・分散媒設定値:屈折率1.33
(3)試料温度:5℃
(4)分散媒温度:常温(20℃)
<Measurement method of average particle size of fat globule>
The median diameter obtained from the particle size distribution (frequency distribution) measured with the following measuring device and measuring conditions is the average particle size of fat globules.
(1) Measuring instrument: Laser diffraction/scattering particle size distribution measuring device Partica LA-950V2.
(2) Measurement conditions:
[Laser diode (wavelength 655 nm, absolute transmittance 90% to 79%)]
・Sample setting: Refractive index 1.6
・Dispersion medium setting value: Refractive index 1.33
[LED (wavelength 405 nm, absolute transmittance 90% to 70%)]
・Sample setting: Refractive index 1.6
・Dispersion medium setting value: Refractive index 1.33
(3) Sample temperature: 5°C
(4) Dispersion medium temperature: normal temperature (20°C)

<粘度の測定方法>
B型粘度計にて、No.2ローターを使用し、回転数60rpmで測定したときの、測定開始から10秒後の値(単位:mPa・s)を粘度の測定値とする。測定温度は5℃とする。
<Method of measuring viscosity>
With a B type viscometer, A value (unit: mPa·s) after 10 seconds from the start of measurement when measured at a rotation speed of 60 rpm using a 2 rotor is used as the viscosity measurement value. The measurement temperature is 5°C.

<脂肪球の被膜蛋白質密度の測定方法>
下記の方法で、クリーム中の蛋白質量(Pc)、非被膜蛋白質量(Ps)、クリーム脂肪球比表面(S)をそれぞれ求め、下式(1)により脂肪球の被膜蛋白質密度(単位:mg/m)を求める。
被膜蛋白質密度=0.92×10×(Pc−Ps)÷F÷S ・・・(1)
F:クリーム脂肪率(単位:質量%)
0.92:乳脂肪比重
S:クリーム脂肪球比表面積(単位:cm/cm
Pc:クリーム中の蛋白質量(単位:g/100cmクリーム)
Ps:非被膜蛋白質量(単位:g/100cmクリーム)
<Method for measuring the protein density of fat globule>
The amount of protein in the cream (Pc), the amount of non-coated protein (Ps), and the cream fat globule specific surface (S) were determined by the following methods, respectively, and the coating protein density of the fat globule (unit: mg /M 2 ).
Capsule protein density=0.92×10 7 ×(Pc-Ps)÷F÷S (1)
F: Cream fat percentage (unit: mass%)
0.92: Specific gravity of milk fat S: Specific surface area of cream fat globules (unit: cm 2 /cm 3 )
Pc: protein amount in cream (unit: g/100 cm 3 cream)
Ps: uncoated protein mass (unit: g/100 cm 3 cream)

なお、「Pc−Ps」は脂肪球被膜中の蛋白質量を表し、「F÷0.92×S」はクリーム100g中の脂肪球の総表面積を表す。「(Pc−Ps)/(F÷0.92×S)」でクリーム100g中の脂肪球上の蛋白質密度が求められ、上式(1)で脂肪球表面積1m当たりの被膜蛋白質量、すなわち被膜蛋白質密度が求められる。 In addition, "Pc-Ps" represents the amount of protein in the fat globule coating, and "F/0.92 x S" represents the total surface area of fat globule in 100 g of cream. The protein density on fat globules in 100 g of cream was calculated by "(Pc-Ps)/(F÷0.92×S)", and the amount of coating protein per 1 m 2 of fat globules surface area in the above formula (1), that is, The coat protein density is sought.

[クリーム中の蛋白質量(Pc)の測定法]
クリームを試料として上記蛋白質含量の測定方法によりクリーム中の蛋白質量(単位:g/100g)を求める。
該クリーム中の蛋白質量(単位:g/100g)≒「クリーム中の蛋白質量(Pc)(単位:g/100cmクリーム)」とする。
[Method of measuring protein amount (Pc) in cream]
Using the cream as a sample, the amount of protein in the cream (unit: g/100 g) is determined by the above-mentioned method for measuring the protein content.
The protein amount in the cream (unit: g/100 g)≈“protein amount in cream (Pc) (unit: g/100 cm 3 cream)”.

[非被膜蛋白質量(Ps)の測定法]
まず、以下の方法でクリームの脱脂画分を調製し、クリーム中の蛋白質量(Pc)の測定法と同様にして脱脂画分中の蛋白質量(Psf)を測定する。
試料(クリーム)30gを遠心チューブに入れ、5℃、10,000Gの重力加速度で10分間遠心分離を行い、水相部を回収し、脱脂画分を得る。得られた脱脂画分を試料とし、上記の蛋白質測定法で、脱脂画分中の蛋白質濃度(単位:g/100g脱脂画分)を求める。
こうして得られる脱脂画分中の蛋白質量(単位:g/100g)≒「脱脂画分中の蛋白質量(Psf)(単位:g/100cmクリーム)」とする。
さらにクリーム脂肪率をF(単位:質量%)、乳脂肪比重を0.92として、下式により、非被膜蛋白質量(Ps)(単位:g/100cmクリーム)を求める。
Ps=Psf×〔{100−(F÷0.92)}/100〕=Psf×(1−F/92)
[Measurement Method of Non-Coated Protein Mass (Ps)]
First, the defatted fraction of cream is prepared by the following method, and the protein amount (Psf) in the defatted fraction is measured in the same manner as the method for measuring the protein amount (Pc) in cream.
30 g of the sample (cream) is placed in a centrifuge tube and centrifuged at 5° C. and a gravitational acceleration of 10,000 G for 10 minutes to recover the aqueous phase and obtain a defatted fraction. Using the obtained defatted fraction as a sample, the protein concentration in the defatted fraction (unit: g/100 g defatted fraction) is determined by the above-mentioned protein measurement method.
The amount of protein in the defatted fraction thus obtained (unit: g/100 g)≈“protein amount in defatted fraction (Psf) (unit: g/100 cm 3 cream)”.
Further, assuming that the cream fat percentage is F (unit: mass %) and the milk fat specific gravity is 0.92, the uncoated protein mass (Ps) (unit: g/100 cm 3 cream) is determined by the following formula.
Ps=Psf×[{100−(F÷0.92)}/100]=Psf×(1−F/92)

[クリーム脂肪球比表面積(S)の測定法]
レーザー散乱型粒度分布測定機(堀場製作所製、LA−950)にて、試料(クリーム)中の脂肪球の比表面積(S)(単位:cm/cm)を測定する。測定条件は上記「脂肪球の平均粒子径」の測定方法と同じである。
[Method for measuring cream fat globule specific surface area (S)]
The specific surface area (S) (unit: cm 2 /cm 3 ) of the fat globules in the sample (cream) is measured with a laser scattering type particle size distribution analyzer (LA-950, manufactured by Horiba, Ltd.). The measuring conditions are the same as the measuring method for the “average particle size of fat globules”.

<風味(濃厚感)の評価方法>
フレッシュクリームを製造後、5℃で一晩(12時間、以下同様)エージングしたものを試料とする。エージング中の撹拌の回転数は3rpm(以下同様)とした。試料(5℃)を専門パネラー10名が試食し、濃厚感の強さを下記の基準で5段階評価する。数値が高い方が、コクがあり濃厚感が強いことを意味する。10名の平均値を評価結果とする。
5:濃厚感が強い。
4:濃厚感がやや強い。
3:どちらでもない。
2:濃厚感がやや弱い。
1:濃厚感が弱い。
<Evaluation method of flavor (richness)>
A sample is prepared by aging the fresh cream at 5° C. overnight (12 hours, the same applies below). The number of rotations of stirring during aging was 3 rpm (the same applies hereinafter). Ten professional panelists sample the sample (5°C), and the strength of the rich feeling is evaluated on a scale of 5 according to the following criteria. The higher the number, the richer and richer it is. The average value of 10 persons is used as the evaluation result.
5: Strong feeling of richness.
4: The richness is slightly strong.
3: Neither.
2: The richness is slightly weak.
1: The richness is weak.

[安定性の評価]
フレッシュクリームを製造後、5℃で一晩エージングしたものを試料とする。試料を15℃に温度調節し、コーンプレート型粘度計(アントンパール社製、Physica MCR 301)を用い、せん断速度を0.005〜5000(単位:秒−1)の範囲で増大させながら粘度を測定する。試料の粘度が増加し150mPa・sに達したときのせん断速度を測定し評価結果とする。該せん断速度の値が高いほど、安定性に優れる。
[Evaluation of stability]
A sample is prepared by aging the fresh cream at 5° C. overnight. The temperature of the sample was adjusted to 15° C., and the viscosity was increased using a cone-plate type viscometer (Physica MCR 301, manufactured by Anton Paar) while increasing the shear rate in the range of 0.005 to 5000 (unit: sec −1 ). taking measurement. The shear rate when the viscosity of the sample increases and reaches 150 mPa·s is measured and used as the evaluation result. The higher the value of the shear rate, the better the stability.

[保形性の評価]
(ホイップクリームの調製)
フレッシュクリームを製造後、5℃で一晩エージングしたものを試料とする。室温(26℃)下で、試料に1000gにグラニュー糖80gを添加し、これを、ホイッパー(株式会社愛工舎社製、MAJORpremier)を用いてホイップしてホイップクリームとする。ホイップ時の回転速度は180rpmとし、後述するペネトロ硬度が20±1mmに達した時点でホイップを終了する。
ホイップ直後のペネトロ硬度と、ホイップ後5℃で24時間冷蔵した後のペネトロ硬度を測定し、その差の値(△Peと表記する。)を評価結果とする。△Peが小さいほど、保存中の硬さの低下が小さく「保形性」に優れる。
(ペネトロ硬度の測定方法)
ホイップクリームの硬度をペネトロ硬度測定機を用いて測定する。具体的には、先端角40°、重量12gの円錐型コーンを試料表面から、自重で5秒間自由落下させる。その時に試料に突き刺さった深さをmm位で測定し、ペネトロ硬度の値とした。この値は大きくなるほど、深く突き刺さったことになり、柔らかいと評価される。
[Evaluation of shape retention]
(Preparation of whipped cream)
A sample is prepared by aging the fresh cream at 5° C. overnight. At room temperature (26° C.), 80 g of granulated sugar is added to 1000 g of the sample, and this is whipped with a whipper (MAJOR premier manufactured by Aikosha Co., Ltd.) to obtain a whipped cream. The rotation speed at the time of whipping is 180 rpm, and the whipping is terminated when the Penetro hardness described later reaches 20±1 mm.
The Penetro hardness immediately after the whipping and the Penetro hardness after refrigerating at 5° C. for 24 hours after the whipping are measured, and the difference value (denoted as ΔPe) is used as the evaluation result. The smaller the ΔPe, the smaller the decrease in hardness during storage and the more excellent the “shape retention”.
(Penetro hardness measurement method)
The hardness of the whipped cream is measured using a Penetro hardness tester. Specifically, a conical cone having a tip angle of 40° and a weight of 12 g is freely dropped from the sample surface by its own weight for 5 seconds. At that time, the depth at which the sample was pierced was measured at the mm position and used as the value of Penetro hardness. The larger this value is, the deeper the piercing is, and it is evaluated as soft.

(実施例1、2)
遠心分離式脂肪濃縮用セパレータ(第1、第2のセパレータ)として、ディスク型クリームセパレータ(Van den Heuvel Dairy & Food equipment製 Elecrem 315、通液部容積0.5リットル)を用いた。
まず生乳(脂肪含量3.7質量%、蛋白質含量3.2質量%、無脂乳固形分8.6質量%)を、プレート熱交換器(MEC社製)にて60℃まで加熱した後、第1のセパレーターに供給し、5000Gの遠心加速度で第1の脂肪濃縮画分と第1の脱脂画分とに分離した(第1の分離工程)。第1のセパレータへの乳の供給流量は200kg/時間、第1のセパレータ通過時間は9秒とした。この工程における第1の分配比を2.2とし、第1の脂肪濃縮画分の脂肪含量を8質量%とした。第1の脂肪濃縮画分の蛋白質含量は8.3質量%であった。
第1の分離工程で得られた第1の脂肪濃縮画分を、60℃に保持した状態で、第2のセパレータに供給し、5000Gの遠心加速度で第2の脂肪濃縮画分と第2の脱脂画分とに分離した(第2の分離工程)。第2のセパレータへの第1の脂肪濃縮画分の供給流量は200kg/時間、第2のセパレータ通過時間は9秒とした。この工程における第2の分配比を5.6とし、第2の脂肪濃縮画分の脂肪含量を45質量%とした。
得られた第2の脂肪濃縮画分を連続式プレート殺菌機に供給し、120℃15秒の殺菌処理を行った後、20℃/分の冷却速度で冷却し、5℃のフレッシュクリームを得た。
得られたフレッシュクリームの無脂乳固形分、脂肪球の平均粒子径、粘度、および脂肪球の被膜蛋白質密度を測定した。結果を表1に示す。
また、得られたフレッシュクリームをエージングした後、上記の方法で風味(濃厚感)、安定性、および保形性を評価した。結果を表1に示す。
(Examples 1 and 2)
As the centrifugal separator for fat concentration (first and second separators), a disk-type cream separator (Elecrem 315, manufactured by Van den Heuvel Dairy & Food equipment, liquid passing volume 0.5 liter) was used.
First, raw milk (fat content 3.7% by mass, protein content 3.2% by mass, non-fat milk solids content 8.6% by mass) was heated to 60° C. with a plate heat exchanger (MEC), The mixture was supplied to the first separator and separated into a first fat-enriched fraction and a first defatted fraction at a centrifugal acceleration of 5000 G (first separation step). The milk supply flow rate to the first separator was 200 kg/hour, and the first separator passage time was 9 seconds. The first distribution ratio in this step was 2.2, and the fat content of the first fat-enriched fraction was 8% by mass. The protein content of the first fat-enriched fraction was 8.3% by mass.
The first fat-enriched fraction obtained in the first separation step was supplied to the second separator while being kept at 60° C., and the second fat-enriched fraction and the second fat-enriched fraction were separated by the centrifugal acceleration of 5000 G. It was separated into a defatted fraction (second separation step). The supply flow rate of the first fat-enriched fraction to the second separator was 200 kg/hour, and the passage time of the second separator was 9 seconds. The second distribution ratio in this step was 5.6, and the fat content of the second fat-enriched fraction was 45% by mass.
The obtained second fat-enriched fraction was supplied to a continuous plate sterilizer, sterilized at 120°C for 15 seconds, and then cooled at a cooling rate of 20°C/min to obtain a fresh cream at 5°C. It was
The non-fat milk solid content of the obtained fresh cream, the average particle size of fat globules, the viscosity, and the coating protein density of fat globules were measured. The results are shown in Table 1.
Further, after aging the obtained fresh cream, the flavor (thickness), stability, and shape retention were evaluated by the above methods. The results are shown in Table 1.

(比較例1〜4)
実施例1において、製造条件を表1に示す通りに変更してフレッシュクリームを製造した。実施例1と同様の評価を行った。結果を表1に示す。
比較例1〜4のいずれも、第1の分配比を表1に示すとおりに変更し、第2の分離工程を行わずに脂肪含量が45質量%のフレッシュクリームを製造した例である。
比較例2が比較例1と異なるのは、第1の分離工程の前に均質化処理を行った点である。均質化温度は65℃、均質化圧力は2MPaとした。
比較例3が比較例1と異なるのは、殺菌処理を行った後、緩慢冷却した点である。具体的には20℃/分の冷却速度で11℃まで冷却し、11℃に30分間保持し、その後20℃/分の冷却速度で5℃まで冷却した。
比較例4では、比較例1と同様にしてフレッシュクリームを製造した後、無脂乳固形分が9.5質量%となるように脱脂濃縮乳を添加した。
(Comparative Examples 1 to 4)
In Example 1, the production conditions were changed as shown in Table 1 to produce a fresh cream. The same evaluation as in Example 1 was performed. The results are shown in Table 1.
In each of Comparative Examples 1 to 4, the first distribution ratio was changed as shown in Table 1 and a fresh cream having a fat content of 45% by mass was produced without performing the second separation step.
Comparative Example 2 is different from Comparative Example 1 in that the homogenization treatment was performed before the first separation step. The homogenization temperature was 65° C. and the homogenization pressure was 2 MPa.
Comparative Example 3 is different from Comparative Example 1 in that after the sterilization treatment, the cooling is performed slowly. Specifically, it was cooled to 11° C. at a cooling rate of 20° C./minute, held at 11° C. for 30 minutes, and then cooled to 5° C. at a cooling rate of 20° C./minute.
In Comparative Example 4, after producing a fresh cream in the same manner as in Comparative Example 1, skim concentrated milk was added so that the non-fat milk solid content was 9.5 mass %.

Figure 0006740092
Figure 0006740092

表1に示されるように、分離を1段階で行った比較例1に比べて、分離を2段階で行った実施例1、2は、クリームの脂肪球の平均粒子径および無脂乳固形分は同等であったが、脂肪球の被膜蛋白質密度は高かった。実施例1、2は、クリームの濃厚感、せん断に対する安定性、およびホイップ後の保形性が比較例1より向上した。
比較例2は、分離の前に均質化を行い、分離を1段落で行った例である。クリームの脂肪球の平均粒子径が比較例1より小さく、脂肪球の被膜蛋白質密度が比較例1より高かった。せん断に対する安定性およびホイップ後の保形性は比較例1より向上したが、濃厚感が劣っていた。
比較例3は、分離を1段落で行い、殺菌後の冷却工程を、5℃/分以上の冷却速度で一旦11℃まで冷却し、その温度で30分間保持した後5℃まで冷却する方法で行った例である。クリームの脂肪球の平均粒子径および無脂乳固形分は比較例1と同等であり、脂肪球の被膜蛋白質密度はやや低かった。ホイップ後の保形性は比較例1より向上し、濃厚感は比較例1と同等であったが、せん断に対する安定性が比較例1より劣っていた。
比較例4は、分離を1段落で行い、殺菌前に脱脂濃縮乳を加えて無脂乳固形分を増加させた例である。クリームの脂肪球の平均粒子径は比較例1と同等であり、脂肪球の被膜蛋白質密度はやや高かった。濃厚感およびホイップ後の保形性において比較例1よりは向上したが、せん断に対する安定性は未だ不充分であった。
実施例1、2、比較例1、3、4において、脂肪球の被膜蛋白質密度とせん断速度(安定性)との間には相関が認められる。
As shown in Table 1, as compared with Comparative Example 1 in which the separation was performed in one step, Examples 1 and 2 in which the separation was performed in two steps were different in average particle size of fat globules of cream and non-fat milk solid content. Were similar, but the capsular protein density of fat globules was high. In Examples 1 and 2, the cream rich feeling, stability against shearing, and shape retention after whipped were improved as compared with Comparative Example 1.
Comparative Example 2 is an example in which homogenization was performed before the separation and the separation was performed in one paragraph. The average particle size of fat globules of the cream was smaller than that of Comparative Example 1, and the coating protein density of fat globules was higher than that of Comparative Example 1. The stability against shearing and the shape retention after whipped were improved as compared with Comparative Example 1, but the richness was poor.
Comparative Example 3 is a method in which the separation is performed in one paragraph, and the cooling step after sterilization is once cooled to 11° C. at a cooling rate of 5° C./minute or more, held at that temperature for 30 minutes, and then cooled to 5° C. Here is an example. The average particle size of fat globules and the non-fat milk solid content of the cream were the same as in Comparative Example 1, and the coating protein density of fat globules was slightly low. The shape retention property after whipping was improved as compared with Comparative Example 1, and the richness was equivalent to that of Comparative Example 1, but the stability against shearing was inferior to that of Comparative Example 1.
Comparative Example 4 is an example in which separation was performed in one paragraph and nonfat milk solid content was increased by adding skim concentrated milk before sterilization. The average particle size of fat globules of the cream was the same as that of Comparative Example 1, and the coating protein density of fat globules was rather high. The richness and shape retention after whipped were improved as compared with Comparative Example 1, but the stability against shearing was still insufficient.
In Examples 1 and 2 and Comparative Examples 1, 3 and 4, there is a correlation between the protein density of fat globules and the shear rate (stability).

(実施例3)
実施例1において、第2の分配比を表2に示すとおりに変更したほかは実施例1と同様にして、脂肪含量が40質量%のフレッシュクリームを製造した。
得られたフレッシュクリームの無脂乳固形分、脂肪球の平均粒子径、および粘度を測定した。結果を表2に示す。
また、上記の方法で風味(濃厚感)、安定性、および保形性を評価した。結果を表2に示す。
(Example 3)
A fresh cream having a fat content of 40% by mass was produced in the same manner as in Example 1 except that the second distribution ratio was changed as shown in Table 2.
The non-fat milk solid content of the obtained fresh cream, the average particle size of fat globules, and the viscosity were measured. The results are shown in Table 2.
In addition, the flavor (thickness), stability, and shape retention were evaluated by the above methods. The results are shown in Table 2.

(比較例5)
実施例1において、第1の分配比を表2に示すとおりに変更し、第2の分離工程を行わずに脂肪含量が40質量%のフレッシュクリームを製造した。
実施例3と同様の測定および評価を行い、結果を表2に示す。
(Comparative example 5)
In Example 1, the first distribution ratio was changed as shown in Table 2, and a fresh cream having a fat content of 40% by mass was produced without performing the second separation step.
The same measurement and evaluation as in Example 3 were performed, and the results are shown in Table 2.

Figure 0006740092
Figure 0006740092

表2に示されるように、クリームの脂肪含量が40質量%である場合にも、分離を1段階で行った比較例5に比べて、分離を2段階で行った実施例3は、脂肪球の平均粒子径および無脂乳固形分は同等であったが、濃厚感、せん断に対する安定性およびホイップ後の保形性が向上した。 As shown in Table 2, even when the fat content of the cream is 40% by mass, in comparison with Comparative Example 5 in which the separation is performed in one step, Example 3 in which the separation is performed in two steps is fat globule. The average particle size and the non-fat milk solid content were the same, but the richness, stability against shearing and shape retention after whipped were improved.

(実施例4)
実施例1において、第2の分配比を表3に示すとおりに変更したほかは実施例1と同様にして、脂肪含量が35質量%のフレッシュクリームを製造した。
実施例3と同様の測定および評価を行い、結果を表3に示す。
(Example 4)
A fresh cream having a fat content of 35% by mass was produced in the same manner as in Example 1 except that the second distribution ratio was changed as shown in Table 3.
The same measurements and evaluations as in Example 3 were performed, and the results are shown in Table 3.

(比較例6)
実施例1において、第1の分配比を表3に示すとおりに変更し、第2の分離工程を行わずに脂肪含量が35質量%のフレッシュクリームを製造した。
実施例3と同様の測定および評価を行い、結果を表3に示す。
(Comparative example 6)
In Example 1, the first distribution ratio was changed as shown in Table 3, and a fresh cream having a fat content of 35% by mass was produced without performing the second separation step.
The same measurements and evaluations as in Example 3 were performed, and the results are shown in Table 3.

Figure 0006740092
Figure 0006740092

表3に示されるように、クリームの脂肪含量が35質量%である場合にも、分離を1段階で行った比較例6に比べて、分離を2段階で行った実施例4は、脂肪球の平均粒子径および無脂乳固形分は同等であったが、濃厚感、せん断に対する安定性およびホイップ後の保形性が向上した。 As shown in Table 3, even when the fat content of the cream was 35% by mass, Example 4 in which the separation was performed in two steps was compared with Comparative Example 6 in which the separation was performed in one step The average particle size and the non-fat milk solid content were the same, but the richness, stability against shearing and shape retention after whipped were improved.

(実施例5)
実施例1において、第1の分配比および第2の分配比を表4に示すとおりに変更したほかは実施例1と同様にして殺菌処理および冷却まで行い、その後均質化処理を行って、脂肪含量が45質量%のフレッシュクリームを製造した。均質化温度は65℃、均質化圧力は2.5MPaとした。
実施例3と同様の測定および評価を行い、結果を表4に示す。
(Example 5)
In Example 1, the sterilization treatment and the cooling were performed in the same manner as in Example 1 except that the first distribution ratio and the second distribution ratio were changed as shown in Table 4, and then the homogenization treatment was performed to obtain the fat. A fresh cream with a content of 45% by weight was produced. The homogenization temperature was 65° C. and the homogenization pressure was 2.5 MPa.
The same measurement and evaluation as in Example 3 were performed, and the results are shown in Table 4.

(比較例7)
実施例1において、第1の分配比を表4に示すとおりに変更し、第2の分離工程を行わずに、そのほかは実施例1と同様にして殺菌処理および冷却まで行った。その後、実施例5と同様に均質化処理を行って、脂肪含量が45質量%のフレッシュクリームを製造した。
実施例3と同様の測定および評価を行い、結果を表4に示す。
なお、比較例7は比較例1の工程に加えて、殺菌処理後に均質化処理を行った例に該当する。表4には比較例1の結果も合わせて示す。
(Comparative Example 7)
In Example 1, the first distribution ratio was changed as shown in Table 4, the second separation step was not performed, and otherwise the sterilization process and cooling were performed in the same manner as in Example 1. Then, homogenization treatment was performed in the same manner as in Example 5 to produce a fresh cream having a fat content of 45% by mass.
The same measurement and evaluation as in Example 3 were performed, and the results are shown in Table 4.
In addition, Comparative Example 7 corresponds to an example in which, in addition to the steps of Comparative Example 1, homogenization treatment is performed after sterilization treatment. Table 4 also shows the results of Comparative Example 1.

Figure 0006740092
Figure 0006740092

表4に示されるように、殺菌後に均質化処理を行った比較例7は、比較例1と比べてクリームの脂肪球の平均粒子径は小さくなり、せん断に対する安定性およびホイップ後の保形性は向上したが、濃厚感が劣っていた。
殺菌後に均質化処理を行った比較例7と実施例5とを比べると、分離を1段階で行った比較例7と、分離を2段階で行った実施例5とで、脂肪球の平均粒子径および無脂乳固形分は同等であった。せん断に対する安定性は同等であったが、濃厚感およびホイップ後の保形性において実施例5は比較例7より向上した。
また比較例7と比較例1とを比較すると、分離を1段階で行う方法において、殺菌後に均質化処理を行うと、せん断に対する安定性およびホイップ後の保形性は向上できるが、濃厚感が低下したことがわかる。これに対して、比較例7と実施例5とを比較すると、殺菌後に均質化処理を行い、かつ分離を2段階で行うことによって、濃厚感の低下を抑えつつ、せん断に対する安定性およびホイップ後の保形性を向上できたことがわかる。
As shown in Table 4, in Comparative Example 7 in which homogenization treatment was performed after sterilization, the average particle size of fat globules of the cream was smaller than that in Comparative Example 1, stability against shearing and shape retention after whipped. Was improved, but the richness was inferior.
Comparing Comparative Example 7 in which homogenization treatment was performed after sterilization and Example 5, the average particle of fat globules was found in Comparative Example 7 in which the separation was performed in one step and Example 5 in which the separation was performed in two steps. The diameter and the solid content of non-fat milk were the same. Although the stability against shearing was the same, Example 5 was improved over Comparative Example 7 in terms of richness and shape retention after whipped.
Further, comparing Comparative Example 7 and Comparative Example 1, in the method of performing the separation in one step, when homogenization treatment is performed after sterilization, stability against shearing and shape retention after whipped can be improved, but a rich feeling is obtained. You can see that it has dropped. On the other hand, when comparing Comparative Example 7 and Example 5, stability is against shearing and after whipped while suppressing a decrease in richness by performing homogenization treatment after sterilization and performing separation in two stages. It can be seen that the shape retention property of was improved.

Claims (3)

脂肪含量が3〜4.5質量%であり、無脂乳固形分が8〜10質量%である乳から、脂肪含量が30〜50質量%のフレッシュクリームを製造する方法であって、
前記乳を、第1の遠心分離式脂肪濃縮用セパレータに供給し、3000〜15000Gの遠心加速度で第1の脂肪濃縮画分と第1の脱脂画分とに分離する第1の分離工程と、
前記第1の分離工程で得られた第1の脂肪濃縮画分を、第2の遠心分離式脂肪濃縮用セパレータに供給し、3000〜15000Gの遠心加速度で第2の脂肪濃縮画分と第2の脱脂画分とに分離する第2の分離工程と、
前記第2の分離工程で得られた第2の脂肪濃縮画分を殺菌処理して前記フレッシュクリームを得る殺菌工程とを有し、
前記第1の分離工程における(乳の供給流量)/(第1の脂肪濃縮画分の排出流量)である第1の分配比が1.7〜6.7であり、前記第2の分離工程における(第1の脂肪濃縮画分の供給流量)/(第2の脂肪濃縮画分の排出流量)である第2の分配比が1.5〜6.3であり、かつ前記第1の分配比と前記第2の分配比との積が6.6〜16.7である、フレッシュクリームの製造方法。
A method for producing a fresh cream having a fat content of 30 to 50 mass% from milk having a fat content of 3 to 4.5 mass% and a non-fat milk solid content of 8 to 10 mass%,
A first separation step of supplying the milk to a first centrifugal separator for fat concentration and separating it into a first fat-concentrated fraction and a first defatted fraction at a centrifugal acceleration of 3000 to 15000G;
The first fat-enriched fraction obtained in the first separation step is supplied to a second centrifugal separator for fat-enrichment, and the second fat-enriched fraction and the second fat-enriched fraction are separated by a centrifugal acceleration of 3000 to 15000G. A second separation step of separating into a defatted fraction of
Sterilizing the second fat-enriched fraction obtained in the second separation step to obtain the fresh cream,
The first distribution ratio of (milk supply flow rate)/(first fat concentrated fraction discharge flow rate) in the first separation step is 1.7 to 6.7, and the second separation step The second distribution ratio of (the supply flow rate of the first fat-enriched fraction)/(the discharge flow rate of the second fat-enriched fraction) is 1.5 to 6.3, and the first distribution The method for producing a fresh cream, wherein the product of the ratio and the second distribution ratio is 6.6 to 16.7.
前記第1の脂肪濃縮画分の脂肪含量が8〜20質量%である、請求項1に記載のフレッシュクリームの製造方法。 The method for producing a fresh cream according to claim 1, wherein the fat content of the first fat-enriched fraction is 8 to 20% by mass. 前記殺菌処理後のフレッシュクリームを均質化処理する均質化工程を有する、請求項1または2に記載のフレッシュクリームの製造方法。 The method for producing a fresh cream according to claim 1, further comprising a homogenizing step of homogenizing the fresh cream after the sterilization treatment.
JP2016220713A 2016-11-11 2016-11-11 Fresh cream manufacturing method Active JP6740092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016220713A JP6740092B2 (en) 2016-11-11 2016-11-11 Fresh cream manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016220713A JP6740092B2 (en) 2016-11-11 2016-11-11 Fresh cream manufacturing method

Publications (2)

Publication Number Publication Date
JP2018074980A JP2018074980A (en) 2018-05-17
JP6740092B2 true JP6740092B2 (en) 2020-08-12

Family

ID=62149818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220713A Active JP6740092B2 (en) 2016-11-11 2016-11-11 Fresh cream manufacturing method

Country Status (1)

Country Link
JP (1) JP6740092B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654648A (en) * 1992-08-06 1994-03-01 Takanashi Nyugyo Kk Low-fat cream and its preparation
JP2001149006A (en) * 1999-11-30 2001-06-05 Snow Brand Milk Prod Co Ltd Milk component and method for producing the same
JP3910593B2 (en) * 2004-02-17 2007-04-25 森永乳業株式会社 Liquid sterilization apparatus and milk sterilization method
JP4079440B2 (en) * 2004-11-19 2008-04-23 明治乳業株式会社 Creams with excellent flavor and physical properties and methods for producing the same.
CN104284593A (en) * 2011-06-24 2015-01-14 株式会社明治 Fresh cream having rich body taste and method for producing same
TWI644619B (en) * 2014-03-31 2018-12-21 日商森永乳業股份有限公司 Method for producing creams
TW201628502A (en) * 2015-02-09 2016-08-16 明治股份有限公司 Method for manufacturing fresh cream, and method for adjusting average diameter of fat globules of fresh cream

Also Published As

Publication number Publication date
JP2018074980A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6709729B2 (en) Cream manufacturing method
CN108260703A (en) Frozen and preparation method thereof
SE433559C (en) Process for producing low fat whip cream
JP6761353B2 (en) A method for producing fresh cream and a method for adjusting the average sphere diameter of fat globules in the fresh cream.
JP6740092B2 (en) Fresh cream manufacturing method
JP5301373B2 (en) Foamable oil-in-water emulsified oil composition
JP4382053B2 (en) Fresh cream manufacturing method
CA2115879C (en) Oil extraction of cholesterol from milk products
TW201540189A (en) Whipped compound cream
TW201616972A (en) Cream and method for manufacturing same
JP2017051142A (en) Method for masking bitterness of fermented milk, fermented milk, and method for producing the same
JP7131939B2 (en) Fresh cream and its manufacturing method
JP2015500654A (en) Liquid creamer and method for producing the same
JP2013192459A (en) Milk fat cream and method for manufacturing the same
JP6614894B2 (en) Method for producing fermented milk
Pascual Effects of different types of milk fat globule membrane materials on the physical and rheological characteristics of set yoghurts
JP6539034B2 (en) Novel whipped cream
JP6022174B2 (en) Milk fat cream and method for producing the same
JP6846112B2 (en) Oil-in-water emulsion
JP4783803B2 (en) Edible cream
WO2008047513A1 (en) Milk product and process for producing the same
Mishra et al. Evaluation of whey protein concentrate as a functional ingredient on quality of goat milk rasogolla-an Indian dessert
JP2014068605A (en) Manufacturing method of whip cream
JP2022031425A (en) Milk protein concentrate and milk product
JP2022031424A (en) Milk protein concentrate and milk product

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200722

R150 Certificate of patent or registration of utility model

Ref document number: 6740092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350