JP6739008B2 - Cyclone separator - Google Patents

Cyclone separator Download PDF

Info

Publication number
JP6739008B2
JP6739008B2 JP2018114389A JP2018114389A JP6739008B2 JP 6739008 B2 JP6739008 B2 JP 6739008B2 JP 2018114389 A JP2018114389 A JP 2018114389A JP 2018114389 A JP2018114389 A JP 2018114389A JP 6739008 B2 JP6739008 B2 JP 6739008B2
Authority
JP
Japan
Prior art keywords
discharge
housing
discharge port
separation chamber
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018114389A
Other languages
Japanese (ja)
Other versions
JP2019098318A5 (en
JP2019098318A (en
Inventor
健吾 中原
健吾 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to PCT/JP2018/043677 priority Critical patent/WO2019111773A1/en
Publication of JP2019098318A publication Critical patent/JP2019098318A/en
Publication of JP2019098318A5 publication Critical patent/JP2019098318A5/ja
Priority to JP2020104165A priority patent/JP6906150B2/en
Application granted granted Critical
Publication of JP6739008B2 publication Critical patent/JP6739008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Cyclones (AREA)

Description

本発明は、空気中に含まれる異物を、遠心力を用いて分離するサイクロン分離装置に関するものである。 The present invention relates to a cyclone separating device that separates foreign matter contained in air by using centrifugal force.

従来、この種のサイクロン分離装置は、住宅において外気を室内に取り込む際に、外気と一緒に吸込んでしまう虫や塵埃(以下、異物)を分離するために、住宅外壁の給気口部分に取り付けて使用されている。 Conventionally, this type of cyclone separator is attached to the air supply port on the outer wall of the house to separate insects and dust (hereinafter, foreign matter) that are sucked in with the outside air when the outside air is taken into the room in the house. Is used.

例えば、特許文献1には、給気と排気を行う換気装置を備えた住宅において、屋外の空気を取り込む給気口部分にサイクロン分離装置を設けている。これにより、空気中に含まれる異物をサイクロン分離装置で分離し、その内部に設けた分離室に、分離した異物を貯留し、換気装置内への異物の侵入を防止している。 For example, in Patent Document 1, in a house provided with a ventilation device for supplying and exhausting air, a cyclone separating device is provided at a supply port portion for taking in outdoor air. As a result, the foreign matter contained in the air is separated by the cyclone separating device, and the separated foreign matter is stored in the separation chamber provided inside the cyclone separating device to prevent the foreign matter from entering the ventilation device.

また、特許文献2には、同じく給気と排気を行う換気装置を備えた住宅において、屋外の空気を取り込む給気口部分にサイクロン分離装置を設けている。そして同じく分離した異物を貯留する分離室を備える。分離室には、風力を利用して、蓋が開く構造になっており、自然界で発生した風(以下、自然風)によって蓋が開いたときに、分離した異物が屋外へ排出されるようになっている。 Further, in Patent Document 2, a cyclone separating device is provided at a supply port portion for taking in outdoor air in a house also provided with a ventilation device for supplying and discharging air. A separation chamber for storing the separated foreign matter is also provided. The separation chamber has a structure that uses wind force to open the lid, so that when the lid is opened by the wind generated in nature (hereinafter, natural wind), the separated foreign matter is discharged to the outside. Has become.

その構成は、風圧の力を受ける受風板を設け、受風板はある程度の強い風によって、振り子のように動くよう上部に支点をおいた構成とし、受風板が振り子のように動くことで、分離室に設けた2ヶ所の蓋が交互に開く構成となっている。 The structure is such that a wind receiving plate that receives the force of wind pressure is provided, and the wind receiving plate has a fulcrum at the top so that it moves like a pendulum by a certain amount of strong wind, and the wind receiving plate moves like a pendulum. Then, the two lids provided in the separation chamber are alternately opened.

特開2007−98208号公報JP, 2007-98208, A 特開2008−36579号公報JP, 2008-36579, A

このような従来のサイクロン分離装置においては、特許文献1のように分離室に異物を貯留すると、定期的に貯留物を取り除くというメンテナンスを行う必要があった。また、特許文献2のように受風板を設けてある程度の強い風によって振り子のように動く構成とすると、装置が大型化するのと、稼動部分があるため、定期的なメンテナンスが必要であった。 In such a conventional cyclone separation device, it is necessary to perform maintenance such as periodical removal of the stored material when foreign matter is stored in the separation chamber as in Patent Document 1. Further, if a structure is provided in which a baffle plate is provided and moves like a pendulum due to a certain amount of strong wind as in Patent Document 2, the device becomes large and there are operating parts, so periodic maintenance is required. It was

そこで本発明は、上記従来の課題を解決するものであり、定期的なメンテナンスを必要とせず、サイクロンで分離された異物を効率よく排出できる排出構造を備えたサイクロン分離装置を提供することを目的とする。 Therefore, the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a cyclone separation device provided with a discharge structure capable of efficiently discharging foreign matter separated by a cyclone without requiring regular maintenance. And

そして、この目的を達成するために、本発明に係るサイクロン分離装置は、筐体に空気を流入させ、旋回気流を発生させることができる流入口と、前記筐体の背面に設けて空気を前記筐体の外へ流出させる流出口と、前記筐体の正面側に面を形成し、前記筐体の内部を該筐体の側面に近い外周側と該筐体の中心部を含む内周側とに仕切る空間分割板によってそれぞれに区切られた分離室と旋回室と、前記空間分割板に備え、前記分離室と旋回室を連通させる連通孔と、前記分離室内部と前記筐体外とを連通させる排出口とを備え、内部を負圧にして使用するサイクロン分離装置において、前記排出口は前記分離室に対して重力方向の下方となる位置に配置でき、前記筐体の側面の下部に筐体の内外において傾斜を有する排出促進部を備え、前記排出促進部の先端部に前記排出口を配置し、前記排出口の長辺2辺を含む面と前記排出促進面とによりなす角度を排出促進面の角度Dと定義し、前記長辺2辺を含む面と接する箇所において前記排出促進面の角度をD=30〜80度の範囲内としたものであり、これにより所期の目的を達成するものである。 In order to achieve this object, the cyclone separation device according to the present invention has an inlet that allows air to flow into a housing and generate a swirling airflow, and the air is provided on the back surface of the housing to provide the air. An outlet for flowing out of the housing and a surface formed on the front side of the housing, and the inside of the housing includes an outer peripheral side near the side surface of the housing and an inner peripheral side including a central portion of the housing. A separation chamber and a swirl chamber, each of which is partitioned by a space partition plate, and a communication hole that is provided in the space partition plate and that connects the separation chamber and the swirl chamber, and the inside of the separation chamber and the outside of the housing. In a cyclone separation device having a discharge port for allowing a negative pressure to be used inside , the discharge port can be arranged at a position below the separation chamber in the direction of gravity, and a casing is provided at a lower portion of a side surface of the casing. A discharge promoting portion having an inclination inside and outside the body is provided, the discharge outlet is arranged at a tip end portion of the discharge promoting portion, and an angle formed by a surface including two long sides of the discharge outlet and the discharge promoting surface is discharged. It is defined as the angle D of the promotion surface, and the angle of the discharge promotion surface is set within the range of D=30 to 80 degrees at the position in contact with the surface including the two long sides , thereby achieving the intended purpose. To achieve.

本発明によれば、排出口を分離室に対して重力方向の下方となる位置に配置することで、空気中に含まれる異物を、旋回気流によって分離室側へ移動させ、さらに筐体の内側において重力により傾斜に沿って下方へ移動させ速やかに異物を排出口近傍に集めることができる。特に、筐体の側面の下部に筐体の内外において傾斜を有する排出促進部の先端部に前記排出口を配置したことにより、筐体の外側において傾斜に自然風が衝突することで、排出口外側の風が強まり分離室内側の圧力に比べて外側の静圧が低くなり分離室内の異物を装置の外へ排出する性能を高めることができる。 According to the present invention, the foreign matter contained in the air is moved to the separation chamber side by the swirling airflow by arranging the discharge port at a position below the separation chamber in the gravity direction, and further, inside the housing. At, the foreign matter can be quickly gathered near the discharge port by moving downward along the slope by gravity. In particular, by arranging the discharge port at the tip of the discharge promoting portion that has an inclination inside and outside the case at the lower part of the side surface of the case, the natural wind collides with the slope on the outside of the case. The wind on the outside strengthens and the static pressure on the outside becomes lower than the pressure on the inside of the separation chamber, and the performance of discharging foreign matter in the separation chamber to the outside of the apparatus can be improved.

本発明の実施の形態1のサイクロン分離装置の斜め下正面側から見た斜視図The perspective view seen from the diagonally lower front side of the cyclone separation device of Embodiment 1 of the present invention. 同側面断面図Same side sectional view 同平面断面図Cross section of the same plane 同実施の形態1のサイクロン分離装置の排出促進面の角度を説明する図The figure explaining the angle of the discharge promotion surface of the cyclone separation apparatus of the same Embodiment 1. 同実施の形態1の実施例の試験結果を表すグラフThe graph showing the test result of the Example of the same Embodiment 1. 本発明の実施の形態2のサイクロン分離装置斜め下正面側から見た斜視図The cyclone separation device of Embodiment 2 of this invention The perspective view seen from the diagonally lower front side. 同排出促進部の断面拡大図Enlarged cross-sectional view of the emission promotion section 同実施例の試験結果を表すグラフGraph showing the test results of the same Example 本発明の実施の形態3のサイクロン分離装置斜め下正面側から見た斜視図3 is a perspective view of a cyclone separating device according to a third embodiment of the present invention as seen from a diagonally lower front side. 同側面断面図Same side sectional view

本発明の請求項1に係るサイクロン分離装置は、筐体に空気を流入させ、旋回気流を発生させることができる流入口と、前記筐体の背面に設けて空気を前記筐体の外へ流出させる流出口と、前記筐体の正面側に面を形成し、前記筐体の内部を該筐体の側面に近い外周側と該筐体の中心部を含む内周側とに仕切る空間分割板によってそれぞれに区切られた分離室と旋回室と、前記空間分割板に備え、前記分離室と旋回室を連通させる連通孔と、前記分離室内部と前記筐体外とを連通させる排出口とを備え、内部を負圧にして使用するサイクロン分離装置において、前記排出口は前記分離室に対して重力方向の下方となる位置に配置でき、前記筐体の側面の下部に筐体の内外において傾斜を有する排出促進部を備え、前記排出促進部の先端部に前記排出口を配置し、前記排出口の長辺2辺を含む面と前記排出促進面とによりなす角度を排出促進面の角度Dと定義し、前記長辺2辺を含む面と接する箇所において前記排出促進面の角度をD=30〜80度の範囲内としたThe cyclone separation device according to claim 1 of the present invention is an inflow port capable of causing air to flow into a housing to generate a swirling air flow, and an air outlet provided on the back surface of the housing to let air out of the housing. And a space dividing plate that forms a surface on the front side of the housing and partitions the inside of the housing into an outer peripheral side near the side surface of the housing and an inner peripheral side including the central portion of the housing. A separation chamber and a swirl chamber, each of which is divided by a space , a communication hole that is provided in the space division plate and that communicates the separation chamber and the swirl chamber, and a discharge port that communicates the inside of the separation chamber with the outside of the housing. In a cyclone separator that uses a negative pressure inside, the discharge port can be arranged at a position below the separation chamber in the direction of gravity, and a slope is formed at the bottom of the side surface of the housing inside and outside the housing. The discharge promoting portion having the discharge promoting portion is provided, the discharge outlet is arranged at a tip portion of the discharge promoting portion, and an angle formed by a surface including the two long sides of the discharge outlet and the discharge promoting surface is an angle D of the discharge promoting surface. The angle of the discharge promoting surface is defined to be within the range of D=30 to 80 degrees at a portion in contact with the surface including the long sides .

これにより、分離室内で分離された異物は、筐体の内側において、傾斜に沿って滑り落ち、先端部の排出口に集まりやすくなる。加えて、筐体の外側において、屋外で吹いている風が排出促進部に衝突し傾斜に沿う気流が発生する。排出促進部の先端部では、自然風に加えて排出促進部に衝突して傾斜に沿って流れる気流が合流するため、風速が早くなる。排出口の外側では全圧に変化はないので、排出口の外側で風速が早くなると、動圧が増加して、静圧が低下する(なぜなら、ベルヌーイの定理によると全圧が一定の場合、動圧が増加した分、静圧が低下するからである)。つまり排出口において、筐体内側の静圧よりも、筐体外側の静圧が下回ると、分離室内の異物は筐体外へ引き寄せられ、サイクロン分離装置外へ排出される。 As a result, the foreign matter separated in the separation chamber easily slides down along the slope inside the housing and tends to collect at the discharge port at the tip. In addition, on the outside of the housing, the wind blowing outdoors collides with the discharge promoting portion to generate an airflow along the slope. At the tip of the discharge promoting portion, the wind speed is increased because the airflows colliding with the discharge promoting portion and flowing along the slope in addition to the natural wind. Since there is no change in the total pressure outside the exhaust port, when the wind speed becomes faster outside the exhaust port, the dynamic pressure increases and the static pressure decreases (because Bernoulli's theorem shows that if the total pressure is constant, This is because the static pressure decreases as the dynamic pressure increases. That is, when the static pressure on the outside of the housing becomes lower than the static pressure on the inside of the housing at the discharge port, the foreign matter in the separation chamber is drawn to the outside of the housing and discharged to the outside of the cyclone separator.

以上のように、排出促進部の先端部に排出口を備えることで、排出促進部に衝突した自然風を傾斜に沿わせて排出口の外側に集中させて流すことができ、排出口の外側での自然風を周囲の自然風よりも強くすることができるため、排出口外側の静圧を低下させる効果と、強くなった自然風により排出口の内側の異物の排出を促進させて、効率よく排出することができる。 As described above, by providing the outlet at the tip of the discharge promoting portion, it is possible to flow a natural wind colliding with the discharge promoting portion is concentrated on the outside of the discharge port along a slope, the outer discharge port Since the natural wind at the outlet can be made stronger than the natural wind around it, the effect of lowering the static pressure on the outside of the outlet and the enhanced natural wind can accelerate the discharge of foreign matter inside the outlet, improving efficiency. Can be discharged well.

本発明の請求項2に係るサイクロン分離装置は、前記排出口は前記筐体の正面から背面方向へ向けた細長のスリット形状であり、前記排出促進部の外側の傾斜をなす排出促進面は前記排出口の長辺側の2辺を挟んで左右対称に備えた構成にしてもよい。 In the cyclone separation device according to claim 2 of the present invention, the discharge port has an elongated slit shape from the front surface to the rear direction of the housing, and the discharge promotion surface forming an inclination on the outside of the discharge promotion portion is the above-mentioned. You may make it the structure provided symmetrically on both sides of the long side of the discharge port.

これにより、排出口の右側と左側どちらから自然風が吹いたとしても、分離室内の分離された異物を排出するための、排出促進部での効果は同じように作用させることができる。 With this, regardless of whether the natural wind blows from the right side or the left side of the discharge port, the same effect can be exerted in the discharge promoting unit for discharging the separated foreign matter in the separation chamber.

本発明の請求項3に係るサイクロン分離装置は、前記排出促進面は、傾斜角度の異なる複数の面または、連続して傾斜角度が変化する曲面としており、前記排出促進面の角度Dが前記筐体側面から遠ざかるにつれて大きくなる形状とした構成にしてもよい。 In the cyclone separator according to claim 3 of the present invention, the discharge promoting surface is a plurality of surfaces having different inclination angles or a curved surface having a continuously changing inclination angle , and the angle D of the discharge promoting surface is A configuration may be adopted in which the shape increases as the distance from the side surface of the housing increases .

これにより、排出促進面に衝突した自然風の向きを徐々に変えることができるため、風のエネルギーを軽減させることなく方向を変えて、排出口に向かわせることができる。風のエネルギーが弱まらないため排出口の外側の静圧を低下させて排出口から異物の排出が効率よく行える。 As a result, the direction of the natural wind that has collided with the discharge promotion surface can be gradually changed, so that the direction of the natural wind can be changed to the discharge port without reducing the energy of the wind. Since the energy of the wind does not weaken, the static pressure on the outside of the discharge port is reduced, and foreign matter can be efficiently discharged from the discharge port.

本発明の請求項に係るサイクロン分離装置は、前記流入口には複数の羽根板を有し、前記羽根板は一つの軸の周りに回転対称に配置する構成にしてもよい。 The cyclone separator according to claim 4 of the present invention may have a configuration in which the inlet has a plurality of vanes, and the vanes are arranged rotationally symmetrically about one axis.

これにより、本装置内に旋回気流が発生させることが可能となり、異物が旋回し遠心力を与えることができ、異物を外周側へ移動させることができ、異物を分離室へ分離することができる。 As a result, a swirling airflow can be generated in the device, the foreign matter can swirl and a centrifugal force can be applied, the foreign matter can be moved to the outer peripheral side, and the foreign matter can be separated into the separation chamber. ..

本発明の請求項に係るサイクロン分離装置は、前記分離室は、前記旋回室を囲む環状であり、前記正面側に構成される分離室底面と、前記旋回室において前記正面側に構成される旋回室底面との関係が、前記分離室底面と前記旋回室底面は略同一面上に位置する構成とし、前記分離室と旋回室は該空間分割板に設けた貫通孔によって互いに連通した構成にしてもよい。 In the cyclone separation device according to claim 5 of the present invention, the separation chamber is an annular shape surrounding the swirl chamber, and the bottom of the separation chamber is formed on the front side and the front side of the swirl chamber. As for the relationship with the bottom of the swirl chamber, the bottom of the separation chamber and the bottom of the swirl chamber are located on substantially the same plane, and the separation chamber and the swirl chamber are in communication with each other through a through hole provided in the space dividing plate. May be.

これにより、分離室内にも旋回室と同じように旋回気流が発生する。排出口から流入した異物は、旋回気流によって分離室内で旋回するため、分離室内において外周側へ移動することになり、貫通孔から旋回室へ流入するのを抑制することができる。また、旋回室と分離室の底面を略同一面とすることで、本装置の厚み(筐体の正面と背面の厚み)を抑えることができ、装置を小型化することができる。 As a result, a swirling airflow is generated in the separation chamber as in the swirling chamber. The foreign matter that has flowed in from the discharge port swirls in the separation chamber due to the swirling air flow, and therefore moves to the outer peripheral side in the separation chamber, and it is possible to prevent the foreign matter from flowing into the swirl chamber from the through hole. Further, by making the bottom surfaces of the swirl chamber and the separation chamber substantially flush with each other, the thickness of the present apparatus (the thickness of the front surface and the back surface of the housing) can be suppressed and the apparatus can be downsized.

本発明の請求項に係るサイクロン分離装置は、前記流入口は前記筐体の側面において前記流出口を設けた前記背面側に備え、前記空間分割板は前記正面側に備え、前記流出口は前記旋回室内へ突出した内筒管と連通し、前記内筒管の端部は側面視で前記空間分割板内部まで延設した構成にしてもよい。 In the cyclone separator according to claim 6 of the present invention, the inflow port is provided on the back surface side provided with the outflow port on the side surface of the housing, the space dividing plate is provided on the front surface side, and the outflow port is It may be configured such that it communicates with the inner cylindrical tube protruding into the swirl chamber, and an end portion of the inner cylindrical tube extends to the inside of the space dividing plate in a side view.

これにより、旋回気流の進行方向は流入直後は筐体の正面側へ向かい、旋回室内で進行方向が180度逆転し、内筒管を通って流出口へ向かう流れとなる。このことで、流入口から流入した異物を旋回気流により外周方向へ移動しながら、正面側へ速やかに移動させることができるため、流出口へ異物が流れ込むことを抑制することができ、本装置の分離性能を向上させることができる。 As a result, the advancing direction of the swirling airflow is directed to the front side of the housing immediately after the inflow, the advancing direction is reversed by 180 degrees in the swirling chamber, and flows toward the outlet through the inner cylindrical pipe. As a result, the foreign matter that has flowed in from the inlet can be swiftly moved to the front side while moving in the outer peripheral direction by the swirling airflow, so that the foreign matter can be suppressed from flowing into the outlet, and Separation performance can be improved.

以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1から3に本実施の形態のサイクロン分離装置の使用例を示す。
換気口フード1は、屋外の空気を住宅に取り込む際に、住宅外壁の空気の取り入れ口である給気口に取り付けるものである。住宅内への屋外の空気を取り入れる装置では、住宅内には送風機(図示せず)を設置し、換気ダクト(図示せず)を用いて送風機と換気口フード1とを接続し、換気口フード1を通過した空気を室内へ導入する。
(Embodiment 1)
1 to 3 show examples of use of the cyclone separator according to the present embodiment.
The ventilation port hood 1 is attached to an air intake port which is an intake port of air on the outer wall of the house when the outdoor air is taken into the house. In a device that takes in outdoor air into a house, a blower (not shown) is installed in the house, and a ventilation duct (not shown) is used to connect the blower and the ventilation hood 1 to form a ventilation hood. The air passing through 1 is introduced into the room.

換気口フード1は、流出管2を用いて換気ダクトと接続し、住宅外壁から突出して設置される。 The ventilation hood 1 is connected to the ventilation duct using the outflow pipe 2 and is installed so as to project from the outer wall of the house.

次に、換気口フード1の筐体22の外観構成について説明する。 Next, the external configuration of the housing 22 of the ventilation hood 1 will be described.

換気口フード1の筐体22は、図1に示す正面側のカバー3と、背面側のベース板4とで構成されている。換気口フード1の主要部であるカバー3は、中心軸6の周りを回転させてできる回転体形状であり、正面側を塞いだ円筒形状である。すなわち、カバー3は、換気口フード1の側面を含む形状を有している。なお、図1の正面側の面の形状は平面状であるが、中心部が正面側に突出したドーム形状であってもよい。 The housing 22 of the ventilation port hood 1 includes a front cover 3 and a rear base plate 4 shown in FIG. The cover 3 which is a main part of the ventilation port hood 1 has a rotating body shape formed by rotating around the central axis 6, and has a cylindrical shape with the front side closed. That is, the cover 3 has a shape including the side surface of the ventilation port hood 1. In addition, although the shape of the surface on the front side in FIG. 1 is a plane shape, it may be a dome shape in which the central portion projects toward the front side.

カバー3の側面は、図1の姿勢において、上部と下部を背面側へ突出させ、さらにカバー3の側面の曲面形状に沿って湾曲させた突出板5を備えている。 The side surface of the cover 3 is provided with a projecting plate 5 having an upper portion and a lower portion which project toward the back side in the posture of FIG. 1 and further curved along the curved shape of the side surface of the cover 3.

カバー3とベース板4は、突出板5を介して接続されている。これにより、カバー3の側面でもある本体側面に設けられた隙間が空気を筐体22内へ流入させる流入口7となる。流入口7は、換気口フード1の側面で360度に渡ってベース板4に接するように構成することができる。ただし、本実施の形態では、突出板5部分では空気の流入はしない構成としている。 The cover 3 and the base plate 4 are connected via a protruding plate 5. As a result, the gap provided on the side surface of the main body, which is also the side surface of the cover 3, serves as the inflow port 7 for allowing air to flow into the housing 22. The inflow port 7 can be configured to contact the base plate 4 over the side surface of the ventilation port hood 1 over 360 degrees. However, in the present embodiment, air does not flow into the protruding plate 5 portion.

そして流入口7には、流入空気が旋回するように、中心軸6に向けて斜めに配置した固定羽根8を複数設けている。固定羽根8は、中心軸6を基準として回転対称に均等間隔で配置されている。なお、突出板5部分は空気が流入しないので、固定羽根8は配置していない。また装置内に大きな虫や鳥類が侵入しないよう、流入口7(固定羽根8の外周部)に網を備えても良い。 The inflow port 7 is provided with a plurality of fixed blades 8 arranged obliquely toward the central axis 6 so that the inflow air swirls. The fixed blades 8 are arranged rotationally symmetrically with respect to the central axis 6 at equal intervals. Since the air does not flow into the protruding plate 5 portion, the fixed blade 8 is not arranged. A net may be provided at the inflow port 7 (outer peripheral portion of the fixed blade 8) to prevent large insects and birds from entering the device.

ベース板4は中央部に円形の開口を備え、該開口には流出管2が接続され、流出管2の一端の流出口9からカバー3内部の空気が流出する構成である。 The base plate 4 is provided with a circular opening at the center thereof, the outflow pipe 2 is connected to the opening, and the air inside the cover 3 flows out from the outflow port 9 at one end of the outflow pipe 2.

カバー3の下部には、排出促進部11を備えている。排出促進部11は内外において傾斜を備えている。傾斜は、カバー3の外側では側面から突出した排出促進面10を成している。また、カバー3の内側では案内面23を成している。 A discharge promoting unit 11 is provided below the cover 3. The discharge promoting portion 11 has an inclination inside and outside. The slope forms a discharge promoting surface 10 protruding from the side surface outside the cover 3. A guide surface 23 is formed inside the cover 3.

排出促進面10は対称に配置した2面を有し、さらに別の2面と接続され、最下部に位置する先端部24から排出促進部11を構成している。排出促進部11は下部に向かって断面積が小さくなる方向に排出促進面10を傾斜させ、その先端部24に分離室15の内外を連通させるように開口させた排出口12を備えている。なお、本実施の形態では、カバー3は、中心軸6の周りを回転させてできる回転体形状として、カバー3の側面から排出促進部11が突出した構造となっているが、例えばカバー3を菱形形状として下部側面が傾斜を有している場合は、カバー3側面をそのまま排出促進面10として利用することができる。 The discharge promoting surface 10 has two symmetrically arranged surfaces, is connected to another two surfaces, and constitutes the discharge promoting portion 11 from the tip portion 24 located at the lowermost portion. The discharge promoting portion 11 is provided with a discharge outlet 12 which is inclined so that the cross-sectional area decreases toward the lower part, and the tip 24 of which is opened so that the inside and outside of the separation chamber 15 communicate with each other. In the present embodiment, the cover 3 has a rotating body shape formed by rotating around the central axis 6 and has a structure in which the discharge promoting portion 11 projects from the side surface of the cover 3. When the lower side surface is inclined as a diamond shape, the side surface of the cover 3 can be used as it is as the discharge promoting surface 10.

次に、図2を用いて、本装置の内部構成について説明する。 Next, the internal configuration of the present device will be described with reference to FIG.

図2に示すようにカバー3の内部空間には、ベース板4から中心軸6の方向に流入口7と内筒管19と空間分割板13を備えている。 As shown in FIG. 2, the inner space of the cover 3 is provided with an inflow port 7, an inner tube 19 and a space dividing plate 13 in the direction from the base plate 4 to the central axis 6.

図2に示すように、空間分割板13は、カバー3の内部空間を旋回室14と分離室15に区切っている。空間分割板13は、カバー3内でベース板4側に向かって断面積が広がるように傾斜しており、円錐台形状である。なお、断面積が変わらない円筒形状であってもよい。 As shown in FIG. 2, the space dividing plate 13 divides the inner space of the cover 3 into a swirl chamber 14 and a separation chamber 15. The space dividing plate 13 is inclined in the cover 3 so that the cross-sectional area increases toward the base plate 4 side, and has a truncated cone shape. It should be noted that it may be a cylindrical shape whose cross-sectional area does not change.

カバー3の中心部を含む内周側(空間分割板13より内側)は旋回室14であり、カバー3の内部で筐体22の側面に近い外周側(空間分割板13とカバー3で囲まれた空間)は分離室15である。空間分割板13には貫通孔16を設け、貫通孔16を介して旋回室14と分離室15が連通している。 The inner peripheral side including the central portion of the cover 3 (inner side of the space dividing plate 13) is the swirl chamber 14, and the outer peripheral side near the side surface of the housing 22 inside the cover 3 (enclosed by the space dividing plate 13 and the cover 3). The space) is the separation chamber 15. A through hole 16 is provided in the space dividing plate 13, and the swirl chamber 14 and the separation chamber 15 communicate with each other through the through hole 16.

空間分割板13はカバー3内で換気口フード1の正面側には面を形成し旋回室底面17とし、空間分割板13と旋回室底面17は連続的に構成されている。なお、空間分割板13をカバー3の内面まで延設し、カバー3の内面を旋回室底面17としてもよい。 The space division plate 13 forms a surface on the front side of the ventilation hood 1 in the cover 3 to form a swirl chamber bottom surface 17. The space division plate 13 and the swirl chamber bottom surface 17 are continuously formed. The space dividing plate 13 may be extended to the inner surface of the cover 3, and the inner surface of the cover 3 may be the bottom 17 of the swirling chamber.

空間分割板13の外側であってカバー3に囲まれた空間は分離室15であり、旋回室底面17がカバー3とほぼ密接しているので、分離室15は円環状の空間となっている。なお、分離室15は、円環状の空間ではなく、例えば、カバー3が四角形状となった空間でもよい。なお、空間分割板は、カバー3の形状にはよらず、常に回転体形状である。 The space outside the space dividing plate 13 and surrounded by the cover 3 is a separation chamber 15, and the bottom 17 of the swirling chamber is in close contact with the cover 3, so the separation chamber 15 is an annular space. .. The separation chamber 15 may be, for example, a space in which the cover 3 has a quadrangular shape, instead of the annular space. It should be noted that the space dividing plate is always in the shape of a rotating body regardless of the shape of the cover 3.

そして、分離室15も図1に示すカバー3の正面側に面が形成され、分離室底面18としている。なお、旋回室底面17とカバー3の密接の程度は、組立精度の関係上、旋回室底面17とカバー3の正面側の内面とは僅かな隙間が生じるよう設計されている。 The separation chamber 15 also has a surface formed on the front side of the cover 3 shown in FIG. Note that the degree of close contact between the swirl chamber bottom surface 17 and the cover 3 is designed so that a slight gap is generated between the swirl chamber bottom surface 17 and the front inner surface of the cover 3 in terms of assembly accuracy.

このようにして、分離室底面18と旋回室底面17を略同一面上に形成することができるので、中心軸6方向の本サイクロン分離装置、すなわち換気口フード1の厚みを最小限に抑えることができる。 In this way, since the separation chamber bottom surface 18 and the swirl chamber bottom surface 17 can be formed on substantially the same plane, the thickness of the cyclone separation device in the central axis 6 direction, that is, the ventilation port hood 1 can be minimized. You can

また、内筒管19は、ベース板4の中央部からカバー3の内部へ、すなわち換気口フード1の正面側に向けて突出させて備え、流出口9と同軸上に配置されている。なお、本実施の形態では、ベース板4部分において、内筒管19の内径は流出管2の内径と異なっており、流出管2の内径よりも内筒管19の内径の方が小さくなっているが、同じ大きさであってもよい。ベース板4部分で、流出管2側に急拡大が生じるため、気流の乱れが予想される場合、徐々に広がるような形状にしてもよい。 The inner tube 19 is provided so as to project from the central portion of the base plate 4 to the inside of the cover 3, that is, toward the front side of the ventilation hood 1, and is arranged coaxially with the outlet 9. In the present embodiment, in the base plate 4 portion, the inner tube 19 has an inner diameter different from the inner diameter of the outflow tube 2, and the inner tube 19 has an inner diameter smaller than that of the outflow tube 2. However, they may have the same size. Since a sudden expansion occurs on the outflow pipe 2 side in the base plate 4 portion, the shape may be gradually expanded when turbulence of the air flow is expected.

上記構成において、気流の流れと分離機構について説明する。 The flow of the airflow and the separation mechanism in the above configuration will be described.

まず、異物を含んだ屋外空気は、図1に示す流入口7より換気口フード1内に流入し、固定羽根8により旋回気流となり、旋回室14内で換気口フード1の正面側へ向かいながら旋回する。ここで、異物は遠心力により空間分割板13側に移動し、貫通孔16付近を通過する際に分離室15内へ移動する。異物を分離した空気は、内筒管19に流入し、流出管2を通って流出口9より装置外へ流出する。 First, the outdoor air containing foreign matter flows into the ventilation hood 1 from the inflow port 7 shown in FIG. 1, and becomes a swirling airflow by the fixed blades 8 while heading to the front side of the ventilation hood 1 in the swirling chamber 14. Turn. Here, the foreign matter moves to the space dividing plate 13 side by centrifugal force, and moves into the separation chamber 15 when passing through the vicinity of the through hole 16. The air from which the foreign matter has been separated flows into the inner cylindrical pipe 19, passes through the outflow pipe 2, and flows out of the device through the outflow port 9.

分離室15に移動した異物は、一旦、分離室15内に貯留される。送風機により換気口フード1内は負圧となっているため、排出口12から分離室15内にも空気が流入する。その流入した空気は、図2に示す貫通孔16を通り、旋回室14内へ流入し、旋回室14内の旋回気流と合流する。 The foreign matter that has moved to the separation chamber 15 is temporarily stored in the separation chamber 15. Since the ventilation hood 1 has a negative pressure due to the blower, air also flows into the separation chamber 15 from the discharge port 12. The inflowing air flows into the swirl chamber 14 through the through hole 16 shown in FIG. 2, and joins with the swirl airflow in the swirl chamber 14.

次に、分離室15内の異物の排出機構について説明する。 Next, a mechanism for discharging foreign matter in the separation chamber 15 will be described.

図3は、図1に示すカバー3の背面側から見た断面図である(排出促進部11を含む)。図3の白抜きの矢印は気流の流れを表している。図3に示すように分離室15内部の空気は、旋回室14内部の旋回気流の影響により、全体的には旋回室14内部と同方向の旋回気流となっている(全ての気流が同方向とは限らない)。そのため、分離室15内の異物もその流れの影響で移動する。 FIG. 3 is a cross-sectional view of the cover 3 shown in FIG. 1 as viewed from the back side (including the discharge promoting portion 11). The white arrows in FIG. 3 represent the flow of air flow. As shown in FIG. 3, the air inside the separation chamber 15 is generally a swirling airflow in the same direction as that inside the swirling chamber 14 due to the influence of the swirling airflow inside the swirling chamber 14 (all airflows are in the same direction). Not necessarily). Therefore, the foreign matter in the separation chamber 15 also moves under the influence of the flow.

図3に示すように、排出促進部11の上部は下部に対して左右方向に広がっている。内側においても同様に案内面23が上部は下部に対して左右方向に広がっている。 As shown in FIG. 3, the upper portion of the discharge promoting portion 11 is wider in the left-right direction than the lower portion. Similarly, on the inside, the guide surface 23 is widened in the left-right direction from the upper part to the lower part.

旋回気流によって運ばれた異物は排出促進部11に流入しやすくなっている。また、中心軸6方向にも幅を持たせることで、分離室15内を流れる旋回気流が排出促進部11を横断することとなり、異物が移動してきた際に、排出促進部11に流入しやすくなっている。なお、中心軸6方向の長さは、分離室15の中心軸6方向の長さと同じまで広げても良い。 The foreign matter carried by the swirling airflow easily flows into the discharge promoting unit 11. Further, by providing the width in the direction of the central axis 6 as well, the swirling airflow flowing in the separation chamber 15 crosses the discharge promoting portion 11, and when foreign matter moves, it easily flows into the discharge promoting portion 11. Has become. The length in the central axis 6 direction may be extended to the same length as the length of the separation chamber 15 in the central axis 6 direction.

排出口12は、排出促進部11の下部で、中心軸6方向に長い長方形状である。 The discharge port 12 is a lower part of the discharge promotion portion 11 and has a rectangular shape elongated in the direction of the central axis 6.

細長い形状としたのは、体の大きい虫や鳥類などが侵入させずに、排出しやすいよう面積をかせぐためである。さらに、排出口12を中心軸6方向に長くしたのは、自然風による排出効果を高めるためで、詳細は後述する。 The elongated shape is used to increase the area of the body so that large insects and birds can easily discharge it without invading. Further, the reason why the discharge port 12 is elongated in the direction of the central axis 6 is to enhance the discharge effect by the natural wind, and the details will be described later.

カバー3内は負圧であるため、排出口12からも気流が流入する。なお、流入した気流が旋回気流と同方向に流れるようガイド部材20を設けることが好ましい。排出口12から異物が重さにより落下しようとしても、流入気流により押し戻されるため、通常は異物が排出口12から筐体22外へ出て行くことはほとんどない。 Since the pressure inside the cover 3 is negative, the airflow also flows in from the outlet 12. The guide member 20 is preferably provided so that the inflowing airflow flows in the same direction as the swirling airflow. Even if the foreign matter tries to fall from the discharge port 12 due to its weight, it is pushed back by the inflow air flow, and therefore the foreign matter rarely exits from the discharge port 12 to the outside of the housing 22.

ところが、排出口12外側では全圧に変化はないので、自然風(横風)が吹くと、筐体22の外側、すなわち排出口の外側で風速が早くなると、動圧が増加して、静圧が低下する(なぜなら、ベルヌーイの定理によると全圧が一定の場合、動圧が増加した分、静圧が低下するからである)。つまり静圧が低下すると、排出口12から流入する気流が弱まるので、異物の重さによる下方への力が勝ること、排出口12外側の静圧の減少による誘引効果によって排出口12から下方へ飛び出すことにより、排出口12の内側の異物が排出される。 However, since there is no change in the total pressure outside the discharge port 12, when natural wind (cross wind) blows, the dynamic pressure increases when the wind speed increases outside the housing 22, that is, outside the discharge port, and the static pressure increases. (Because, according to Bernoulli's theorem, if the total pressure is constant, the static pressure decreases as the dynamic pressure increases). In other words, when the static pressure decreases, the airflow flowing from the discharge port 12 weakens, so that the downward force due to the weight of the foreign matter is overcome, and the static pressure on the outside of the discharge port 12 decreases by the attractive effect. By jumping out, the foreign matter inside the discharge port 12 is discharged.

本実施の形態のサイクロン分離装置は、換気口フード1として、住宅外壁に設置されるので、装置の背面側には壁面が存在する。そのため、自然風は中心軸6方向には流れにくく、住宅外壁に沿って流れやすくなる。すなわち、図3の正面視で左右方向に流れることが多い。 Since the cyclone separation device of the present embodiment is installed on the outer wall of the house as the ventilation port hood 1, there is a wall surface on the back side of the device. Therefore, the natural wind is unlikely to flow in the direction of the central axis 6 and easily flows along the outer wall of the house. That is, it often flows in the left-right direction in the front view of FIG.

排出口12の外側を通る風の通過時間が短くなるように(排出口12で横風が装置内に吸引されようとする時間を短くして、吸引を抑制して、排出効果を高めるため)、排出口12の幅は左右方向には狭くしている。そのため、排出口12形状は中心軸6方向に長い長方形状となっている。 In order to shorten the passage time of the wind passing through the outside of the discharge port 12 (in order to shorten the time when the cross wind is sucked into the device at the discharge port 12 to suppress the suction and enhance the discharge effect), The width of the discharge port 12 is narrowed in the left-right direction. Therefore, the shape of the discharge port 12 is a rectangular shape that is long in the direction of the central axis 6.

排出を促進するには、排出口12の外側を通る風の風速が速いほうが良い。本実施の形態のように、排出促進部11を本体側面より突出させ、排出口12の長いほうの2辺を挟むように対称に傾斜を持たせた排出促進面10を設けたことで、排出促進部11の先端部24(排出口12の外側)では、自然風に加えて排出促進部11に衝突して排出促進面10に沿って流れる気流が合流するため、風速が早くなる(図3の黒矢印で横風のイメージを表している)。 In order to promote the discharge, it is better that the wind speed of the wind passing through the outside of the discharge port 12 is high. As in the present embodiment, the discharge promoting portion 11 is protruded from the side surface of the main body, and the discharge promoting surface 10 is provided so as to be symmetrically inclined so as to sandwich the longer two sides of the discharge port 12, and thus the discharge promoting surface 10 is provided. At the tip end portion 24 (outside of the discharge port 12) of the promotion portion 11, the wind speed becomes faster because the airflows that collide with the discharge promotion portion 11 and flow along the discharge promotion surface 10 in addition to the natural wind (FIG. 3). Represents the image of the crosswind).

排出口12の外側で風速が早くなると、排出口12外の静圧をより低下させることができるので排出口12内の異物が外側へ排出される。 When the wind speed becomes faster outside the outlet 12, the static pressure outside the outlet 12 can be further reduced, so that the foreign matter inside the outlet 12 is discharged to the outside.

また、空気には粘性があるため、風の流れがあると周囲の空気も影響を受けて空気が動く。この誘引効果により、排出口12の外側で風速が早くなることで、排出口12内の空気も外側の風速の早い気流に影響されて引っ張り出す効果がでる。外側に誘引される気流に乗って異物が外側へ排出される。 In addition, since air is viscous, if there is a wind flow, the surrounding air will be affected and the air will move. Due to this attracting effect, the wind speed becomes higher outside the discharge port 12, so that the air inside the discharge port 12 is also affected by the high-speed airflow outside and pulled out. The foreign matter is discharged to the outside by riding on the airflow attracted to the outside.

ただ単に本体側面下部に排出口12を設けた場合と比較すると、本実施の形態は、これらの作用により、格段に排出性能が高まり、自然風が弱い場合であっても、分離室15内の異物をより多く排出することが可能となる。 Compared with the case where the discharge port 12 is simply provided in the lower portion of the side surface of the main body, in the present embodiment, due to these actions, the discharge performance is significantly improved, and even when the natural wind is weak, the inside of the separation chamber 15 It becomes possible to discharge more foreign matter.

排出促進面10は排出口12の両側に2面あり、それらは対称構造となっている。これは左右どちらから自然風が吹いても同様の排出促進効果を得るためである。なお、左右両側に傾斜を持った排出促進面10が必要だが、厳密に対称構造でなくてもよく、多少角度が違っていたりしても構わない。 There are two discharge promoting surfaces 10 on both sides of the discharge port 12, and they have a symmetrical structure. This is to obtain the same emission promotion effect regardless of whether the natural wind blows from either side. It is to be noted that the discharge promoting surfaces 10 having slopes on the left and right sides are required, but the discharge promoting surfaces 10 do not have to have a strictly symmetrical structure, and the angles may be slightly different.

排出促進面10の角度を表すために、図4に示すように、排出口12の長辺2辺を含む面25を基準にした角度Dで表すこととする。この角度Dには適切な角度が存在する。排出口12を含む面とほぼ直角(D=90度)であると自然風が衝突し勢いを失ってしまい、またD=0度であれば意味がない。 In order to express the angle of the discharge promoting surface 10, as shown in FIG. 4, it is expressed by the angle D based on the surface 25 including the two long sides of the discharge port 12. There is an appropriate angle for this angle D. If it is almost at right angles (D=90 degrees) to the surface including the discharge port 12, the natural wind collides and loses momentum, and if D=0 degrees, it is meaningless.

なお、排出口12の長辺2辺を含む面25と接している排出促進面10の端部は、排出促進面10を形成する板の厚みにより、その端部には角を丸くするフィレットや角を落とす面取りを行うことがある。この時、排出促進面10は、フィレット等の開始位置までを表す。つまり、排出促進面10の角度Dは、カバー3の側面側から徐々に増加していくが、角度Dが減少するポイントがフィレット等の開始位置であり、そこまでが排出促進面10である。 The end portion of the discharge promoting surface 10 that is in contact with the surface 25 including the two long sides of the discharge port 12 has a fillet with rounded corners at the end due to the thickness of the plate forming the discharge promoting surface 10. May chamfer to drop corners. At this time, the discharge promoting surface 10 represents the start position of the fillet or the like. That is, the angle D of the discharge promoting surface 10 gradually increases from the side surface side of the cover 3, but the point at which the angle D decreases is the start position of the fillet or the like, and the discharge promoting surface 10 extends to that point.

本実施の形態では、カバー3が円筒形状であるため、カバー3の側面に衝突した自然風が円筒面に沿って排出促進面10に到達するため、より多くの気流を排出口12に集めることができ、排出口12部分はさらに風速が高まるので、排出性能はさらに高まる。 In this embodiment, since the cover 3 has a cylindrical shape, the natural wind that has collided with the side surface of the cover 3 reaches the discharge promoting surface 10 along the cylindrical surface, so that more airflow is collected at the discharge port 12. Since the wind speed is further increased at the discharge port 12 portion, the discharge performance is further improved.

このように、分離された異物が自然風により効率的に排出されるので、異物の除去という定期的なメンテナンスが不要となる。 In this way, the separated foreign matter is efficiently discharged by the natural wind, so that periodical maintenance of removing the foreign matter is unnecessary.

[実施例]
<排出促進面の角度の比較試験(カバー形状:円筒形状)>
排出促進面10の角度Dの排出性能の関係を確認するために以下の試験を行った。
[Example]
<Comparison test of angles of discharge promoting surface (cover shape: cylindrical shape)>
The following test was conducted in order to confirm the relationship of the discharge performance of the angle D of the discharge promoting surface 10.

分離された異物がどれだけ排出されたかを示す、10分間排出率を定義し、排出促進部11の効果を見るため以下の比較試験を実施した。すなわち、10分間排出率[%]=E/M×100とする(ただし、10分間で排出口12から排出された量E[g]、分離室15に投入した異物の規定量M[g])。 A 10-minute discharge rate, which shows how much the separated foreign matter was discharged, was defined, and the following comparative test was performed in order to see the effect of the discharge promoting unit 11. That is, the discharge rate [%] for 10 minutes=E/M×100 (however, the amount E[g] discharged from the discharge port 12 in 10 minutes, the specified amount M[g] of the foreign matter put into the separation chamber 15) ).

10分間排出率の試験方法は、予め分離室15に規定量M[g]の異物(本試験においては、φ1mmの発泡ビーズを使用)を投入し、本実施の形態のサイクロン分離装置に規定の風量を流した上で、本実施の形態のサイクロン分離装置に横から一定の風速となるように横風を与え、10分間で排出口12から排出された量E[g]を計測する。そして10分間で排出口12から排出された量E[g]から上述の式で算出したものである。 The test method for the 10-minute discharge rate is that a specified amount M (g) of a foreign substance (foamed beads of φ1 mm is used in this test) is previously charged into the separation chamber 15 and the cyclone separation device according to the present embodiment is specified. After flowing the air volume, a lateral air flow is applied to the cyclone separation device of the present embodiment from the side so that the wind speed is constant, and the amount E [g] discharged from the discharge port 12 in 10 minutes is measured. Then, it is calculated by the above formula from the amount E [g] discharged from the discharge port 12 in 10 minutes.

比較試験は以下の3パターンで実施した。排出促進面10の角度はいずれも前述のように排出口12の面に対する角度である。 The comparative test was carried out in the following three patterns. The angles of the discharge promoting surface 10 are all angles with respect to the surface of the discharge port 12 as described above.

排出口12促進部以外の構成は3例とも同じ構成である。試験条件は、本装置の風量300[m3/h]、M=1.0[g]とした。 The configurations other than the discharge port 12 promoting unit are the same in all three examples. The test conditions were an air flow rate of 300 [m 3 / h] and M=1.0 [g] of this device.

(実施例1)
排出促進部11を設け、排出促進面10の角度はD=49度とした。
(Example 1)
The discharge promoting portion 11 was provided, and the angle of the discharge promoting surface 10 was D=49 degrees.

(実施例2)
排出促進部11を設け、排出促進面10の角度はD=30度とした。
(Example 2)
The discharge promoting portion 11 was provided, and the angle of the discharge promoting surface 10 was D=30 degrees.

(比較例1)
排出促進部11を設けず、本体側面下部に排出口12を設けたものである(D=0度)。
(Comparative Example 1)
The discharge promoting portion 11 is not provided, and the discharge port 12 is provided in the lower portion of the side surface of the main body (D=0 degree).

<比較結果>
結果を図5に示す。グラフの横軸は横風の風速を表しており、どれも風速が早くなると、10分間排出率が上昇しているが、比較例1は1.5[m/s]以下は0[%]、2.0[m/s]で0.1[%]、2.5[m/s]で0.5[%]に対し、本発明品の方が比較例と比べて低風速でもしっかりと排出することが出来ている。
<Comparison result>
Results are shown in FIG. The horizontal axis of the graph represents the wind velocity of the cross wind, and when the wind velocity becomes fast, the emission rate increases for 10 minutes, but in Comparative Example 1, 1.5 [m/s] or less is 0 [%], Compared to the comparative example, the product of the present invention is more stable at a low wind speed compared with 0.1 [%] at 2.0 [m/s] and 0.5 [%] at 2.5 [m/s]. It can be discharged.

さらに、実施例1と実施例2では、実施例1の方が排出率は高いため性能が良い。この結果から、排出促進面10の角度Dは、ある程度大きいほうが良いということが言える。実使用状は、D=30〜80度、より望ましくは50度前後が望ましいといえる。 Further, in Example 1 and Example 2, the performance of Example 1 is better because the discharge rate is higher. From this result, it can be said that the angle D of the discharge promoting surface 10 should be large to some extent. It can be said that the actual usage condition is D=30 to 80 degrees, more preferably around 50 degrees.

なお、排出促進面10の高さ方向(排出口12の面と垂直方向)の長さは、長い方が望ましいが、最低限、排出口12の短辺の長さの2倍あるとよい。本実施例では、2.5倍となっている。 The length of the discharge promoting surface 10 in the height direction (direction perpendicular to the surface of the discharge port 12) is preferably longer, but at least twice the length of the short side of the discharge port 12 is preferable. In this embodiment, it is 2.5 times.

(実施の形態2)
実施の形態1と構成・作用が同じ部分については説明を省略する。
(Embodiment 2)
Descriptions of portions having the same configurations and operations as those of the first embodiment will be omitted.

図6に示すように、本実施の形態は、カバー3の形状が直方体形状となったものである。カバー3を固定するため、ベース板4も四角形状としベース板4とカバー3は、実施の形態1の突出板5に替えて、ベース板4のコーナ部において4本のL型柱21で固定している。そのほかの構成は実施の形態1と同様である。 As shown in FIG. 6, in the present embodiment, the cover 3 has a rectangular parallelepiped shape. In order to fix the cover 3, the base plate 4 also has a quadrangular shape, and the base plate 4 and the cover 3 are fixed by four L-shaped columns 21 at the corners of the base plate 4 instead of the protruding plate 5 of the first embodiment. doing. Other configurations are the same as those in the first embodiment.

2本のL型柱21の間には流入口7が開口している。装置内に大きな虫や鳥類が侵入しないよう、固定羽根8の外周部または流入口7の少なくとも一方には網を設けてもよい。 An inflow port 7 is opened between the two L-shaped columns 21. A net may be provided on at least one of the outer peripheral portion of the fixed blade 8 and the inflow port 7 to prevent large insects and birds from entering the device.

本実施の形態においても、排出口12は排出促進部11の下部に位置し、排出促進面10の2面で挟まれた構成である。カバー3の側面の4面のうち1面が下部にくるように配置し、その側面の中央付近に排出口12を設けた。なお、排出口12の位置は中央付近に限らず、左右どちらか一方にずらしてもよい。 Also in the present embodiment, the discharge port 12 is located below the discharge promoting portion 11 and is sandwiched between the two discharge promoting surfaces 10. The cover 3 was arranged so that one of the four side surfaces was at the bottom, and the discharge port 12 was provided near the center of the side surface. The position of the discharge port 12 is not limited to the vicinity of the center, and may be shifted to the left or right.

図7には本実施の形態における排出促進部11の断面図である。本実施の形態において、排出促進面10は連続して傾斜角度を変化させたものである。排出促進面10の角度はD=20〜80度の範囲で変化させるのが好ましく、本実施の形態では、D=30〜75度の範囲で変化させている。カバー3の側面と接する側の傾斜面がD=30度であり、排出口12と接する側の傾斜面がD=75度である。 FIG. 7 is a cross-sectional view of the discharge promotion part 11 in the present embodiment. In the present embodiment, the discharge promoting surface 10 has a continuously changing inclination angle. The angle of the discharge promoting surface 10 is preferably changed in the range of D=20 to 80 degrees, and in the present embodiment, it is changed in the range of D=30 to 75 degrees. The inclined surface on the side in contact with the side surface of the cover 3 is D=30 degrees, and the inclined surface on the side in contact with the discharge port 12 is D=75 degrees.

排出機構は、自然風が排出促進面10に衝突し、傾斜面に沿って排出口12へ向かい、排出口12付近で、元々の自然風と排出促進面10の傾斜に沿って流れる気流とが合流し、排出口12付近では周囲の自然風の風速よりも早い風速となることで、排出口12の外側で静圧が低下し、異物の排出が促進される。 In the discharge mechanism, the natural wind collides with the discharge promoting surface 10 toward the discharge port 12 along the inclined surface, and in the vicinity of the discharge port 12, the original natural wind and the airflow flowing along the slope of the discharge promoting surface 10 are generated. The merging is performed and the wind speed near the discharge port 12 becomes higher than the wind speed of the surrounding natural wind, so that the static pressure decreases outside the discharge port 12 and the discharge of the foreign matter is promoted.

本実施の形態では、排出促進面10の角度Dが側面から遠ざかるにつれて徐々に大きくなる形状となっているため、自然風がスムーズに向きを変えることができる。すなわち、自然風の勢いを弱めずに、排出口12の外側で斜め下方向へ指向性を持った気流へと変化させることができる。これにより、排出口12の外側での気流がより強くなるので、異物の排出性能をさらに高めることができる。なお、排出促進面10を複数の角度の異なる面の組合せとしてもよい。その際は、カバー3の側面から排出口12に向かって排出促進面10の角度Dを徐々に大きくすればよい。例えば、角度の異なる3つの面を用いて排出促進面を構成するとし、カバー3と接する面はD=30度、中間の面はD=50度、排出口12と接する面はD=75度と構成すると、上述と同じように、排出性能を高めることができる。 In the present embodiment, since the angle D of the discharge promoting surface 10 is gradually increased with increasing distance from the side surface, the natural wind can smoothly change its direction. That is, the flow of air can be changed obliquely downward to the outside of the discharge port 12 without weakening the force of the natural wind. As a result, the air flow outside the discharge port 12 becomes stronger, so that the performance of discharging foreign matter can be further enhanced. The discharge promoting surface 10 may be a combination of a plurality of surfaces having different angles. In that case, the angle D of the discharge promoting surface 10 may be gradually increased from the side surface of the cover 3 toward the discharge port 12. For example, suppose that the discharge promoting surface is configured by using three surfaces having different angles, the surface in contact with the cover 3 is D=30 degrees, the intermediate surface is D=50 degrees, and the surface in contact with the outlet 12 is D=75 degrees. With such a configuration, the discharge performance can be improved in the same manner as described above.

もし、本実施の形態において、排出促進部11を設けず、カバー3の側面の4面のうち最下部の1面に排出口12となる穴だけを開けた場合、自然風がカバー3の左右の側面に衝突し、左右の側面は横風に対して垂直にたっているため、この側面に衝突した自然風は勢いを失ってしまう。つまり排出口12の外側では下面に沿って流れる自然風しか異物の排出に寄与しないため、自然風自体がかなり強く吹かないと異物の排出が始まらない。 If, in the present embodiment, the discharge promoting portion 11 is not provided and only the hole serving as the discharge port 12 is opened on one of the lowermost four surfaces of the side surface of the cover 3, the natural wind is left and right on the cover 3. Since the left and right side walls hit the side surface of the car, and the left and right side surfaces are perpendicular to the side wind, the natural wind that hits this side surface loses momentum. That is, since only the natural wind flowing along the lower surface contributes to the discharge of the foreign matter outside the discharge port 12, the discharge of the foreign matter does not start unless the natural wind itself blows considerably.

しかし、本発明のように排出促進部11を設けると、排出口12の外側では部分的に風速を速めることができ、静圧を低下させられることで自然風を活用して排出促進部11内部の異物を排出口12から誘引することができるので、筐体22内部で分離した異物が排出されやすくなる。 However, when the discharge promoting unit 11 is provided as in the present invention, the wind speed can be partially increased outside the discharge port 12, and the static pressure can be reduced to utilize the natural wind to discharge the discharge promoting unit 11 inside. Since the foreign matter can be attracted from the discharge port 12, the foreign matter separated inside the housing 22 is easily discharged.

なお、正面側から排出促進部11が見えないように、排出促進部11を覆う化粧板を本体正面に設けても良い。その際、排出促進部11を構成する正面側の面は化粧板の面と兼ねても良い。 A decorative plate that covers the discharge promoting portion 11 may be provided on the front surface of the main body so that the discharge promoting portion 11 cannot be seen from the front side. At this time, the front surface of the discharge promoting portion 11 may also serve as the surface of the decorative plate.

また角度を変化させた排出促進面10は、本実施の形態のようにカバー3が四角形状であっても実施の形態1のように丸型形状であっても、その効果は発揮される。 Further, the effect of the discharge promoting surface 10 whose angle is changed is exhibited whether the cover 3 has a quadrangular shape as in the present embodiment or the round shape as in the first embodiment.

[実施例]
<排出促進面の角度の比較試験(カバー形状:角型形状)>
カバー3の形状が四角い角型形状において、角度Dを変化させた場合の排出性能の比較を実施した。排出性能の試験方法は、実施の形態1の実施例で示した10分間排出率を用いた。
[Example]
<Comparison test of angles of discharge promoting surface (cover shape: square shape)>
With respect to the cover 3 having a square shape, the discharge performance was compared when the angle D was changed. As the discharge performance test method, the 10-minute discharge rate shown in the example of the first embodiment was used.

排出促進面の角度は変化させず、1つの角度のみとし、以下の4パターンで実施した。 The angle of the discharge promoting surface was not changed, and only one angle was used, and the following four patterns were used.

排出口12促進部以外の構成は4例とも同じ構成である。試験条件は実施の形態1の実施例と同じく、本装置の風量300[m3/h]、M=1.0[g]とした。 The configurations other than the discharge port 12 promoting unit are the same in all four examples. As in the example of the first embodiment, the test conditions were an air volume of 300 [m 3 / h] and M=1.0 [g] of this device.

(比較例1)
排出促進面10の角度はD=30度とした。
(Comparative Example 1)
The angle of the discharge promoting surface 10 was D=30 degrees.

(比較例2)
排出促進面10の角度はD=45度とした。
(Comparative example 2)
The angle of the discharge promoting surface 10 was D=45 degrees.

(比較例3)
排出促進面10の角度はD=60度とした。
(Comparative example 3)
The angle of the discharge promoting surface 10 was D=60 degrees.

(比較例4)
排出促進面10の角度はD=75度とした。
(Comparative Example 4)
The angle of the discharge promoting surface 10 was D=75 degrees.

<比較結果>
結果を図8に示す。グラフの横軸は横風の風速を表しており、比較例1のD=30度において、風速1.0〜2.0[m/s]の範囲内で他の比較例よりも10分間排出率が低い値となった。
<Comparison result>
The results are shown in Fig. 8. The horizontal axis of the graph represents the wind speed of the crosswind, and at D=30 degrees in Comparative Example 1, the discharge rate was 10 minutes in the range of the wind speed of 1.0 to 2.0 [m/s] compared to other Comparative Examples. Was a low value.

風速1.0〜1.5[m/s]の範囲内では、排出促進面10の角度Dが大きくなるほど、10分間排出率が良くなる傾向となった。 In the range of the wind speed of 1.0 to 1.5 [m/s], the larger the angle D of the discharge promoting surface 10, the better the discharge rate for 10 minutes.

風速2.0[m/s]においては、比較例2、3のD=45、60度が最も良く、比較例4のD=75度と大きくなると、低下傾向となった。 At a wind speed of 2.0 [m/s], D=45 and 60 degrees in Comparative Examples 2 and 3 were the best, and when D=75 degrees in Comparative Example 4, the value tended to decrease.

このことから、風速が低い(1.0〜1.5[m/s])時は角度Dが大きくても気流の乱れが少なく、排出口近傍での風速を早められ、10分間排出率が高い値になったと思われる。風速が大きく(2.0[m/s])、かつ角度Dが大きい場合、気流が乱れ排出口近傍で風速が十分に早まらなかったため、10分間排出率が低下したと思われる。 From this, when the wind speed is low (1.0 to 1.5 [m/s]), the turbulence of the air flow is small even if the angle D is large, the wind speed near the discharge port can be increased, and the discharge rate for 10 minutes can be improved. It seems to have become a high value. When the wind speed is high (2.0 [m/s]) and the angle D is large, the airflow was disturbed and the wind speed did not increase sufficiently near the discharge port, so it is considered that the discharge rate decreased for 10 minutes.

(実施例3)
このような考察から、風速が弱くても強くても10分間排出率が高くなるように、実施の形態2で示したような、徐々に角度Dを大きくする構成とした。以下にその実施例3を示す。
(Example 3)
From such a consideration, the angle D is gradually increased as shown in the second embodiment so that the discharge rate increases for 10 minutes regardless of whether the wind speed is low or high. Example 3 is shown below.

排出促進面10を角度Dの異なる3つの面により構成し、カバー3と接する側の面をD=30度、中間の面をD=45度、排出口12と接する側の面をD=75度として、上記比較試験と同様の方法で試験を行った。結果を図8に示す。 The discharge promoting surface 10 is composed of three surfaces having different angles D, the surface in contact with the cover 3 is D=30 degrees, the intermediate surface is D=45 degrees, and the surface in contact with the discharge port 12 is D=75. As a degree, the test was performed by the same method as the comparative test. The results are shown in Fig. 8.

本実施の形態の実施例は、風速1.0〜2.0[m/s]の全ての範囲で、上記4パターンの比較例よりも10分間排出率が高くなった(優れた結果となった)。このことから、横風が小さい時でも大きい時でも、排出口12近傍で気流の乱れを作らず、十分に風速を早められたため、全ての範囲で10分間排出率が向上したと考えられる。 In the example of the present embodiment, the discharge rate was higher for 10 minutes than the comparative example of the above four patterns in the entire range of the wind speed of 1.0 to 2.0 [m/s] (excellent result). ). From this fact, it is considered that the turbulence of the air flow was not generated in the vicinity of the discharge port 12 and the wind speed was sufficiently increased irrespective of whether the cross wind was small or large, so that the discharge rate was improved for 10 minutes in all ranges.

(実施の形態3)
実施の形態1、2の換気口フード1を例としたサイクロン分離装置は、旋回流の進行方向が逆転する反転型のものである。本実施の形態は、旋回流の進行方向が変わらない軸流型のサイクロン分離装置の一例について説明する。
(Embodiment 3)
The cyclone separating device that uses the ventilation hood 1 of the first and second embodiments as an example is a reversing type in which the advancing direction of the swirling flow is reversed. In the present embodiment, an example of an axial flow type cyclone separating device in which the advancing direction of a swirling flow does not change will be described.

図9に外観図を示す。サイクロン分離装置26の本体は円筒形状のカバー3で覆われており、正面側の底面の中央に開口を設け、ここが流入口7となる。本体側面の下部には、排出促進部11を設けその下部には異物を装置外へ排出する排出口12を備えている。 FIG. 9 shows an external view. The main body of the cyclone separating device 26 is covered with a cylindrical cover 3, and an opening is provided at the center of the bottom surface on the front side, and this is the inflow port 7. A discharge promoting portion 11 is provided in the lower portion of the side surface of the main body, and a discharge port 12 for discharging foreign matter to the outside of the apparatus is provided in the lower portion thereof.

背面側の円筒形状の底面には、流出管2を備える。 The outflow pipe 2 is provided on the cylindrical bottom surface on the back side.

図11は本実施の形態の断面図である。流入口7近傍には、固定羽根8を複数円形状に配置し、各固定羽根8は傾斜しており、固定羽根8を通過した気流は旋回気流となる。 FIG. 11 is a sectional view of this embodiment. A plurality of fixed blades 8 are arranged in a circular shape near the inflow port 7, each fixed blade 8 is inclined, and the airflow passing through the fixed blades 8 becomes a swirl airflow.

固定羽根8の外周部には空間分割板13を本体の側面と平行に、かつ間隔を開けて設け、空間分割板13と固定羽根8に挟まれた空間は旋回室14、カバー3内の残りの空間は分離室15となる。 A space dividing plate 13 is provided on the outer peripheral portion of the fixed blade 8 in parallel with the side surface of the main body and at a distance, and the space sandwiched between the space dividing plate 13 and the fixed blade 8 remains in the swirl chamber 14 and the cover 3. The space becomes a separation chamber 15.

なお、図10の断面図において、空間分割板13をさらに背面側に向けて延長し、さらに流出管2を本体内部に延長させ、その端部を空間分割板13内部まで延長させても良い。これにより外周側に移動している異物が流出管2へ流れづらくなり、分離性能が向上する。 In the sectional view of FIG. 10, the space dividing plate 13 may be further extended toward the back side, the outflow pipe 2 may be further extended inside the main body, and the end portion thereof may be extended to the inside of the space dividing plate 13. As a result, it becomes difficult for the foreign matter moving to the outer peripheral side to flow into the outflow pipe 2, and the separation performance is improved.

流入口7より流入した空気は、固定羽根8によって旋回気流となり、旋回室14を通過する。その後、分離室15を通過し、流出管2を通り、流出口9から装置外へ流れ出る。 The air flowing in through the inflow port 7 becomes a swirling airflow by the fixed blades 8 and passes through the swirling chamber 14. After that, it passes through the separation chamber 15, passes through the outflow pipe 2, and flows out of the apparatus from the outflow port 9.

空気と共に流入した異物は、遠心力により空間分割板13側に移動し、空間分割板13が途切れた後は、分離室15内の外周側、つまりカバー3側に移動し、旋回を続ける。
排出促進部11は、実施の形態1、2と同様に、図6に示すカバー3の正面側から背面側に向けて細長いスリット形状であり、排出口12の長辺側の2辺を挟むように左右対称に排出促進面10を設け、排出促進面10は本体内に向かって広がるように傾斜している。排出促進部11は排出口12を含む面と、排出促進面10の2面と残り2面で構成されるが、残り2面は図10に示すように傾斜していても図11とは異なり垂直であってもよい。
The foreign matter that has flown in along with the air moves to the space dividing plate 13 side by the centrifugal force, and after the space dividing plate 13 is interrupted, moves to the outer peripheral side in the separation chamber 15, that is, the cover 3 side, and continues to swirl.
Similar to the first and second embodiments, the discharge promoting portion 11 has an elongated slit shape from the front side to the back side of the cover 3 shown in FIG. 6, and sandwiches two long sides of the discharge port 12 therebetween. The discharge promoting surface 10 is provided symmetrically on the left and right sides, and the discharge promoting surface 10 is inclined so as to expand toward the inside of the main body. The discharge promoting portion 11 is composed of a surface including the discharge port 12, two surfaces of the discharge promoting surface 10 and the remaining two surfaces. Even if the remaining two surfaces are inclined as shown in FIG. 10, they are different from FIG. It may be vertical.

排出促進部11は排出口12よりも幅広の開口を備えるので、分離室15内を移動する異物は、幅広い開口により、排出促進部11に集まりやすくなっている。排出促進部11にある異物は、実施の形態1で説明した排出口12の外側を流れる気流の作用により、スムーズに排出される。 Since the discharge promoting unit 11 has an opening wider than the discharge port 12, foreign matter moving in the separation chamber 15 is likely to collect in the discharge promoting unit 11 due to the wide opening. The foreign matter in the discharge promoting portion 11 is smoothly discharged by the action of the airflow flowing outside the discharge port 12 described in the first embodiment.

本発明に係るサイクロン分離装置は、速やかに異物を排出口近傍に集めることができ、筐体側面から突出した傾斜面に自然風が衝突することで、分離室内の異物を装置外へ排出する効果を高めることができものであるので、住宅内の換気で屋外の空気を取り込む住宅外壁の給気口部分に使用される換気口フード等として有用である。 The cyclone separation device according to the present invention can quickly collect foreign matter in the vicinity of the discharge port, and the natural wind collides with the inclined surface protruding from the side surface of the housing to discharge the foreign matter in the separation chamber to the outside of the device. Therefore, it is useful as a ventilation hood or the like used in the air supply port of the outer wall of the house that takes in outdoor air by ventilation inside the house.

1 換気口フード
2 流出管
3 カバー
4 ベース板
5 突出板
6 中心軸
7 流入口
8 固定羽根
9 流出口
10 排出促進面
11 排出促進部
12 排出口
13 空間分割板
14 旋回室
15 分離室
16 貫通孔
17 旋回室底面
18 分離室底面
19 内筒管
20 ガイド部材
21 L型柱
22 筐体
23 案内面
24 先端部
25 長辺2辺を含む面
26 サイクロン分離装置
1 Ventilation Port Hood 2 Outflow Pipe 3 Cover 4 Base Plate 5 Projection Plate 6 Center Axis 7 Inlet 8 Fixed Blade 9 Outlet 10 Discharge Promoting Surface 11 Discharge Promoting Part 12 Discharge Port 13 Space Dividing Plate 14 Swirling Chamber 15 Separation Chamber 16 Penetration Hole 17 Swirling chamber bottom 18 Separation chamber bottom 19 Inner tube 20 Guide member 21 L-shaped column 22 Housing 23 Guide surface 24 Tip portion 25 Surface including two long sides 26 Cyclone separation device

Claims (6)

筐体に空気を流入させ、旋回気流を発生させることができる流入口と、
前記筐体の背面に設けて空気を前記筐体の外へ流出させる流出口と、
前記筐体の正面側に面を形成し、
前記筐体の内部を該筐体の側面に近い外周側と該筐体の中心部を含む内周側とに仕切る空間分割板によってそれぞれに区切られた分離室と旋回室と、
前記空間分割板に備え、前記分離室と旋回室を連通させる連通孔と、
前記分離室内部と前記筐体外とを連通させる排出口とを備え、内部を負圧にして使用するサイクロン分離装置において、
前記排出口は前記分離室に対して重力方向の下方となる位置に配置でき、前記筐体の側面の下部に筐体の内外において傾斜を有する排出促進部を備え、
前記排出促進部の先端部に前記排出口を配置し、
前記排出口の長辺2辺を含む面と前記排出促進面とによりなす角度を排出促進面の角度Dと定義し、前記長辺2辺を含む面と接する箇所において前記排出促進面の角度をD=30〜80度の範囲内としたサイクロン分離装置。
An inlet that allows air to flow into the housing and generate a swirling airflow,
An outlet provided on the back surface of the housing to let air flow out of the housing,
Forming a surface on the front side of the housing,
A separation chamber and a swirl chamber, each of which is partitioned by a space dividing plate that partitions the inside of the housing into an outer peripheral side near the side surface of the housing and an inner peripheral side including a central portion of the housing,
Provided to the space division plate, a communication hole for communicating the separation chamber and the swirl chamber,
In a cyclone separation device that includes a discharge port that communicates the inside of the separation chamber with the outside of the housing, and uses the inside with a negative pressure ,
The discharge port can be arranged at a position lower in the direction of gravity with respect to the separation chamber, and a discharge promoting portion having a slope inside and outside the housing is provided at a lower portion of a side surface of the housing,
The discharge port is arranged at the tip of the discharge promotion unit ,
The angle formed by the surface including the two long sides of the discharge port and the discharge promoting surface is defined as the angle D of the discharge promoting surface, and the angle of the discharge promoting surface is defined at a position in contact with the surface including the two long sides. Cyclone separator with D=30-80 degrees .
前記排出口は前記筐体の正面から背面方向へ向けた細長のスリット形状であり、前記排出促進部の外側の傾斜である排出促進面は前記排出口の長辺側の2辺を挟んで左右対称に備えた請求項1記載のサイクロン分離装置。 The discharge port has an elongated slit shape extending from the front to the back of the housing, and the discharge promotion surface, which is an outer slope of the discharge promotion unit, is left and right across two long sides of the discharge process. The cyclone separation device according to claim 1, which is provided symmetrically. 前記排出促進面は、傾斜角度の異なる複数の面または、連続して傾斜角度が変化する曲面としており、前記排出促進面の角度Dが前記筐体側面から遠ざかるにつれて大きくなる形状とした請求項1または2記載のサイクロン分離装置。 The discharge promoting surface is a plurality of surfaces having different inclination angles or a curved surface having a continuously changing inclination angle , and the discharge promoting surface has a shape in which the angle D of the discharge promoting surface increases as the distance D from the side surface of the housing increases. Item 1. The cyclone separator according to Item 1 or 2. 前記流入口には複数の羽根板を有し、前記羽根板は一つの軸の周りに回転対称に配置した請求項1からいずれか一つに記載のサイクロン分離装置。 The cyclone separator according to any one of claims 1 to 3 , wherein the inlet has a plurality of vanes, and the vanes are arranged rotationally symmetrically about one axis. 前記分離室は、前記旋回室を囲む環状であり、前記正面側に構成される分離室底面と、前記旋回室において前記正面側に構成される旋回室底面との関係が、前記分離室底面と前記旋回室底面は略同一面上に位置する構成とし、前記分離室と旋回室は該空間分割板に設けた貫通孔によって互いに連通した請求項1からのいずれか一つに記載のサイクロン分離装置。 The separation chamber is an annular shape surrounding the swirl chamber, and the relationship between the separation chamber bottom surface formed on the front side and the swirl chamber bottom surface formed on the front side in the swirl chamber is the separation chamber bottom surface. The cyclone separation device according to any one of claims 1 to 4 , wherein the bottom surface of the swirl chamber is located substantially on the same plane, and the separation chamber and the swirl chamber communicate with each other through a through hole provided in the space dividing plate. apparatus. 前記流入口は前記筐体の側面において前記流出口を設けた前記背面側に備え、前記空間分割板は前記正面側に備え、前記流出口は前記旋回室内へ突出した内筒管と連通し、前記内筒管の端部は側面視で前記空間分割板内部まで延設した請求項1からのいずれか一つに記載のサイクロン分離装置。 The inlet is provided on the side of the housing on the back side where the outlet is provided, the space dividing plate is provided on the front side, and the outlet communicates with an inner cylindrical tube protruding into the swirl chamber. The cyclone separation device according to any one of claims 1 to 5 , wherein an end portion of the inner tubular pipe extends to the inside of the space dividing plate in a side view.
JP2018114389A 2017-12-05 2018-06-15 Cyclone separator Active JP6739008B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/043677 WO2019111773A1 (en) 2017-12-05 2018-11-28 Cyclone separation device
JP2020104165A JP6906150B2 (en) 2017-12-05 2020-06-17 Cyclone separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017232996 2017-12-05
JP2017232996 2017-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020104165A Division JP6906150B2 (en) 2017-12-05 2020-06-17 Cyclone separator

Publications (3)

Publication Number Publication Date
JP2019098318A JP2019098318A (en) 2019-06-24
JP2019098318A5 JP2019098318A5 (en) 2019-07-25
JP6739008B2 true JP6739008B2 (en) 2020-08-12

Family

ID=66975035

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018114389A Active JP6739008B2 (en) 2017-12-05 2018-06-15 Cyclone separator
JP2020104165A Active JP6906150B2 (en) 2017-12-05 2020-06-17 Cyclone separator
JP2021090765A Pending JP2021142523A (en) 2017-12-05 2021-05-31 Ventilation port hood

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020104165A Active JP6906150B2 (en) 2017-12-05 2020-06-17 Cyclone separator
JP2021090765A Pending JP2021142523A (en) 2017-12-05 2021-05-31 Ventilation port hood

Country Status (1)

Country Link
JP (3) JP6739008B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739008B2 (en) * 2017-12-05 2020-08-12 パナソニックIpマネジメント株式会社 Cyclone separator
JP7407344B2 (en) * 2019-09-30 2024-01-04 パナソニックIpマネジメント株式会社 ventilation system
SI25978A (en) * 2020-03-05 2021-09-30 HYLA, Proizvodnja, razvoj in trgovina d.o.o Separator for a vacuum cleaner
CN112326297B (en) * 2020-10-30 2023-12-22 河南省中医院(河南中医药大学第二附属医院) Lymph node screening device for tumor examination
KR102339302B1 (en) * 2021-02-03 2021-12-16 한국과학기술원 A negative pressure mobile device using cyclone

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1248076A (en) * 1959-10-29 1960-12-09 Lautrette Et Cie Improvements to devices for removing dust from gases by centrifugation
JPS4726065U (en) * 1971-04-08 1972-11-24
JPS49111147U (en) * 1973-01-22 1974-09-24
JPS49133263U (en) * 1973-03-12 1974-11-15
US3969096A (en) * 1974-10-16 1976-07-13 E. I. Du Pont De Nemours And Company Cyclone separator having multiple-vaned gas inlets
JPS5644854U (en) * 1979-09-17 1981-04-22
JPS6115017U (en) * 1984-07-03 1986-01-28 東京濾器株式会社 Precleaner
JPS62185867U (en) * 1986-05-19 1987-11-26
JPH0312349Y2 (en) * 1987-05-12 1991-03-25
JP3070063B2 (en) * 1990-04-12 2000-07-24 株式会社デンソー Cyclone air cleaner
JP3154004B2 (en) * 1991-09-24 2001-04-09 ヤマハ発動機株式会社 Breather device for internal combustion engine
JP3690567B2 (en) * 1998-09-04 2005-08-31 シャープ株式会社 Swivel gas-liquid separator
JP2001073890A (en) * 1999-08-31 2001-03-21 Tokyo Roki Co Ltd Precleaner
JP3901474B2 (en) * 2001-06-29 2007-04-04 日野自動車株式会社 Intake pre-cleaner structure
CN101020164B (en) * 2006-02-16 2010-11-10 苏州宝时得电动工具有限公司 Electrically driven cyclone dust collector
JP4734570B2 (en) * 2006-08-09 2011-07-27 国立大学法人北見工業大学 Cyclone separation device and residential air supply hood using the same
JP2010207745A (en) * 2009-03-11 2010-09-24 Panasonic Corp Dust collector
JP4978875B2 (en) * 2010-12-21 2012-07-18 有限会社吉工 Cyclone
JP5917099B2 (en) * 2011-11-14 2016-05-11 日本化学産業株式会社 Ventilation hood
JP2014124573A (en) * 2012-12-26 2014-07-07 Daikin Ind Ltd Gas-liquid separator
US9259675B2 (en) * 2013-11-11 2016-02-16 Andover Protection Systems, Llc Centripetal separation system for cleaning particulate-pervaded air or gas
JP6499009B2 (en) * 2015-05-20 2019-04-10 日本化学産業株式会社 Ventilation hood
JP6721362B2 (en) * 2016-03-04 2020-07-15 国立大学法人北見工業大学 Cyclone separator and air supply hood for house ventilation
JP6387535B2 (en) * 2016-08-30 2018-09-12 パナソニックIpマネジメント株式会社 Cyclone separator
JP6739000B2 (en) * 2016-09-30 2020-08-12 パナソニックIpマネジメント株式会社 Cyclone separator
JP6739008B2 (en) * 2017-12-05 2020-08-12 パナソニックIpマネジメント株式会社 Cyclone separator

Also Published As

Publication number Publication date
JP2020157296A (en) 2020-10-01
JP6906150B2 (en) 2021-07-21
JP2021142523A (en) 2021-09-24
JP2019098318A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6739008B2 (en) Cyclone separator
JP2019098318A5 (en)
JP6739000B2 (en) Cyclone separator
JP2011078757A (en) Improved cyclonic chamber for air filtration device
JP6387535B2 (en) Cyclone separator
JP2023052954A (en) Cyclone separation device
JP6721362B2 (en) Cyclone separator and air supply hood for house ventilation
JP2009262027A (en) Gas-liquid separator
US9167943B2 (en) Cyclonic separator
JP2014198328A (en) Dust collecting device and air purifying apparatus using the same
JP6814933B2 (en) Ventilation port hood
JP4978875B2 (en) Cyclone
WO2019111773A1 (en) Cyclone separation device
JP7349597B2 (en) cyclone separator
JP2018128145A5 (en)
WO2014141614A1 (en) Dust-catching device and air cleaning device using same
WO2018143326A1 (en) Ventilation port hood
JP6928794B2 (en) Cyclone separator
JP6286666B2 (en) Dust collector
KR102014405B1 (en) Cyclone type mist extractor
JP6906135B2 (en) Cyclone separator
JP6653414B2 (en) Dust collector
JP2015058400A (en) Dust collection device
CN107178513B (en) Ventilation device module with cyclone fan
JP2024063284A (en) Cyclone Separator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6739008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151