JP6737161B2 - Airflow transportation method and steelmaking refining method - Google Patents

Airflow transportation method and steelmaking refining method Download PDF

Info

Publication number
JP6737161B2
JP6737161B2 JP2016239987A JP2016239987A JP6737161B2 JP 6737161 B2 JP6737161 B2 JP 6737161B2 JP 2016239987 A JP2016239987 A JP 2016239987A JP 2016239987 A JP2016239987 A JP 2016239987A JP 6737161 B2 JP6737161 B2 JP 6737161B2
Authority
JP
Japan
Prior art keywords
powder
mixed
powders
air flow
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016239987A
Other languages
Japanese (ja)
Other versions
JP2018095902A (en
Inventor
克己 天田
克己 天田
雅史 ▲榊▼原
雅史 ▲榊▼原
郁巳 大方
郁巳 大方
太田 光彦
光彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016239987A priority Critical patent/JP6737161B2/en
Publication of JP2018095902A publication Critical patent/JP2018095902A/en
Application granted granted Critical
Publication of JP6737161B2 publication Critical patent/JP6737161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、気流搬送方法及び製鋼の精錬方法に関するものである。 The present invention relates to an air flow carrying method and a steelmaking refining method.

従来から、製鋼の予備処理に使用される炉では、精錬冶金効果を高めるために、窒素をキャリアーガスとして底吹き羽口から粉体の精錬剤を吹き込んでいる。しかしながら、ある頻度で搬送配管内に粉体が詰まり、操業中断に至ることがある。このようなつまりの抑制に関し、特許文献1では、精錬剤に対しシリコンオイルの混合量を0.1〜0.5質量%として粉体輸送する技術の記載があり、一定の効果を挙げている。 2. Description of the Related Art Conventionally, in a furnace used for pretreatment of steelmaking, in order to enhance refining metallurgical effect, a powder refining agent is blown from bottom blowing tuyere as nitrogen as a carrier gas. However, powder may be clogged in the transfer pipe at a certain frequency, resulting in interruption of operation. Regarding suppression of such clogging, Patent Document 1 describes a technique of powder transport with a mixing amount of silicon oil of 0.1 to 0.5% by mass with respect to a refining agent, and gives a certain effect. ..

国際公開第2010/119987号International Publication No. 2010/119987

しかしながら、精錬粉体として用いる粉体が2種類以上ある場合に、シリコンオイルを添加しながらこれらを混合すると、やはり配管詰まりが発生する場合があった。そこで、本発明者らは配管詰まりについて、更なる研究をした。すると、平均粒径の異なる複数の粉体とシリコンオイルを混合するにあたり、単に一定量のシリコンオイルを混合するのではなく、その混合の仕方によって配管詰まりに変化があることを知見した。即ち、混合粉体を気流搬送する場合に、平均粒径が最も大きな粉体以外の粉体とシリコンオイルを混合した後、言い換えれば混合粉体の流動性を支配する小粒径の粉体に流動性を改善できるシリコンオイルを優先的に付着させ、その後残りの平均粒径の大きい粉体を混合することで混合粉体の流動性が向上し、配管詰まりに大きな改善があることを見出した。 However, when there are two or more kinds of powders used as the refined powders, when these are mixed while adding silicon oil, pipe clogging may still occur. Therefore, the present inventors have conducted further research on pipe clogging. Then, it was found that when mixing a plurality of powders having different average particle diameters with silicone oil, not only a fixed amount of silicone oil was mixed, but also the clogging of the pipe changed depending on the mixing method. That is, when the mixed powder is conveyed by air, after mixing powders other than the powder having the largest average particle size and silicon oil, in other words, to a powder having a small particle size that controls the fluidity of the mixed powder. It was found that the fluidity of the mixed powder is improved and the pipe clogging is greatly improved by preferentially depositing silicone oil that can improve the fluidity and then mixing the remaining powder with a large average particle size. ..

本発明は、このような経緯でなされた発明であり、混合された複数の粉体を気流搬送する場合における詰まりの発生を抑制することである。 The present invention has been made in this manner, and it is an object of the present invention to suppress the occurrence of clogging when carrying a plurality of mixed powders by air flow.

上記課題を解決するためになされた本発明は次の手段を採用する。先ず、第一の手段は、平均粒径が異なる2種以上の粉体とシリコンオイルを混合して配管にて気流搬送する場合において、最大平均粒径以外の粉体にシリコンオイルを混合した後に他の粉体を混合して気流搬送することを特徴とする粉体の配管による気流搬送方法である。 The present invention made to solve the above problems employs the following means. First, the first means is to mix two or more kinds of powders having different average particle diameters with silicone oil and to convey by air in a pipe, after mixing the silicone oil with the powders other than the maximum average particle diameter. This is an air flow carrying method using a pipe for powder, which is characterized in that another powder is mixed and air flow is carried.

第二の手段は、平均粒径が異なる2種以上の粉体とシリコンオイルを混合して配管にて気流搬送する場合において、平均粒径が最も小さい粉体にシリコンオイルを混合した後に他の粉体を混合して気流搬送することを特徴とする粉体の配管による気流搬送方法である。 The second means is to mix two or more kinds of powders having different average particle diameters with silicone oil and to convey by air in a pipe, after mixing the silicone oil with the powder having the smallest average particle diameter. It is a method for conveying air by a pipe for powder, characterized in that the powder is mixed and conveyed by air.

第三の手段は、複数の脱りん用粉体を用いた製鋼の精錬方法であって、最大平均粒径以外の脱りん用粉体にシリコンオイルを混合した後に他の脱りん用粉体を混合し、配管にて気流搬送することを特徴とする製鋼の精錬方法である。 The third means is a steelmaking refining method using a plurality of dephosphorization powders. After mixing silicon oil with a dephosphorization powder having a particle size other than the maximum average particle size, other dephosphorization powders are mixed. It is a steel refining method characterized by mixing and carrying by air flow in a pipe.

第四の手段は、複数の脱りん用粉体を用いた製鋼の精錬方法であって、平均粒径が最も小さい脱りん用粉体にシリコンオイルを混合した後に他の脱りん用粉体を混合し、配管にて気流搬送することを特徴とする製鋼の精錬方法である。 The fourth means is a method for refining steel making using a plurality of dephosphorization powders, in which silicon powder is mixed with the dephosphorization powder having the smallest average particle size, and then other dephosphorization powders are mixed. It is a steel refining method characterized by mixing and carrying by air flow in a pipe.

第五の手段は、複数の脱硫用粉体を用いた製鋼の精錬方法であって、最大平均粒径以外の脱硫用粉体にシリコンオイルを混合した後に他の脱硫用粉体を混合し、配管にて気流搬送することを特徴とする製鋼の精錬方法である。 A fifth means is a method for refining steel using a plurality of desulfurization powders, and mixing other desulfurization powders after mixing silicon oil with desulfurization powders other than the maximum average particle size, This is a steelmaking refining method characterized by carrying an air flow through a pipe.

第六の手段は、複数の脱硫用粉体を用いた製鋼の精錬方法であって、平均粒径が最も小さい脱硫用粉体にシリコンオイルを混合した後に他の脱硫用粉体を混合し、配管にて気流搬送することを特徴とする製鋼の精錬方法である。 A sixth means is a refining method for steel making using a plurality of desulfurization powders, in which a desulfurization powder having the smallest average particle diameter is mixed with silicon oil, and then another desulfurization powder is mixed, A steelmaking refining method characterized by carrying an air flow through a pipe.

第一乃至第六の手段を用いると、混合された複数の粉体を気流搬送する場合における詰まりの発生を抑制することができる。 By using the first to sixth means, it is possible to suppress the occurrence of clogging when carrying a plurality of mixed powders by air flow.

脱りん材の粒径データを示した図である。It is the figure which showed the particle size data of a phosphorus removal material. ダストの粒径データを示した図である。It is the figure which showed the particle size data of dust. 安息角の測定器具などを示した図である。It is the figure which showed the measuring instrument etc. of a repose angle. 圧縮度の測定器具などを示した図である。It is the figure which showed the measuring instrument of compression degree, etc. スパチュラ角の測定器具などを示した図である。It is the figure which showed the measuring instrument of a spatula angle, etc. 脱りんにおける、シリコンオイルの添加時期と添加量比率と流動性指数との関係を表したグラフである。3 is a graph showing the relationship between the addition timing of silicon oil, the addition amount ratio, and the fluidity index in dephosphorization. 脱硫材の粒径データを示した図である。It is the figure which showed the particle size data of a desulfurization material. 脱硫における、シリコンオイルの添加時期と添加量比率と流動性指数との関係を表したグラフである。It is a graph showing the relationship between the fluidity index and the addition timing of silicone oil in desulfurization. 従来技術における、脱りん時にシリコンオイルを添加するタイミングを示した図である。It is the figure which showed the timing which adds silicon oil at the time of dephosphorization in a prior art. 従来技術における、脱硫時にシリコンオイルを添加するタイミングを示した図である。It is the figure which showed the timing which adds silicone oil at the time of desulfurization in a prior art.

以下では、発明の実施形態について説明する。本実施形態においては、平均粒径が異なる2種以上の粉体とシリコンオイルを混合して配管にて気流搬送する場合において、最大平均粒径以外の粉体にシリコンオイルを混合した後に他の粉体を混合して気流搬送することにより、粉体の配管による気流搬送において、詰まりの発生を抑制するものである。これは、流動性に支配的でないと考えられる最大平均粒径の粉体に対してシリコンオイルが付着することを回避しやすくなり、より流動性に支配的であると考えられる低粒径の粉体に対してシリコンオイルが付着しやすくなるからであると考えられる。また、平均粒径が最も小さい粉体にシリコンオイルを混合した後に他の粉体を混合して気流搬送することで、流動性に支配的な最も粒径が小さい粉体に対してシリコンオイルが付着しやすくなり、より効果的に配管の詰まりを抑制するものである。次に、脱りんを行う場合と、脱硫を行う場合を代表例として順に説明する。 Embodiments of the invention will be described below. In the present embodiment, in the case where two or more kinds of powders having different average particle diameters and silicon oil are mixed and conveyed by air flow in a pipe, after mixing the silicon oil with the powder other than the maximum average particle diameter, By mixing the powders and carrying them by air flow, it is possible to suppress the occurrence of clogging during the air flow transfer of the powders through the piping. This is because it becomes easier to avoid silicon oil from adhering to the powder having the maximum average particle size that is considered not to be dominant in the fluidity, and the powder having the smaller particle size that is considered to be more dominant in the fluidity. It is considered that this is because the silicone oil easily adheres to the body. In addition, by mixing the silicon oil with the powder with the smallest average particle size and then mixing the other powders and carrying them by air flow, the silicone oil is mixed with the powder with the smallest particle size that is dominant in fluidity. It is easy to adhere and more effectively suppresses the clogging of the pipe. Next, a case where dephosphorization is performed and a case where desulfurization is performed will be sequentially described as a representative example.

図9に示す従来のように、脱りんを行うため、脱りん材であるCaOとCaCOの混合粉体と、吹練中に発生したダストを混合したものを製鋼の予備処理に使用される炉に吹き込んでいる。図9に示す例においては、脱りん材とシリコンオイルとダストを混ぜ合わせた粉体をホッパで一旦貯留し、必要に応じて、窒素をキャリアーガスとして底吹き羽口から吹き込んでいる。 In order to perform dephosphorization as in the conventional case shown in FIG. 9, a mixture of CaO and CaCO 3 which is a dephosphorization material and dust generated during blowing is used for pretreatment of steelmaking. It is blowing into the furnace. In the example shown in FIG. 9, the powder obtained by mixing the dephosphorizing material, the silicon oil and the dust is temporarily stored in the hopper, and nitrogen is blown from the bottom blowing tuyere as a carrier gas as needed.

本実施形態においては、粒径の異なる粉体と液体状のシリコンオイルを備えた精錬剤を形成するに当たり、シリコンオイルと各粉体の混合手順と、粉体の流動性との関係を確認するため、CaOとCaCOの混合粉体からなる脱りん材、シリコンオイル及びダストに関し、表1に示すような手順で混合を実施した。ここで図1にCaOとCaCOの混合粉体の粒径データを示す。また、図2にダストの粒径データを示す。尚、図中のMVは体積で重み付けされた体積平均粒径である。シリコンオイルは、デカメチルシクロペンタシロキサンを使用した。図9に示すように、CaOとCaCOとダストの重量比は46:18:36としている。 In this embodiment, when forming a refining agent comprising powders having different particle sizes and liquid silicone oil, the relationship between the mixing procedure of the silicone oil and each powder and the fluidity of the powder is confirmed. Therefore, the dephosphorizing material, the silicon oil, and the dust made of a mixed powder of CaO and CaCO 3 were mixed according to the procedure shown in Table 1. Here, FIG. 1 shows particle diameter data of a mixed powder of CaO and CaCO 3 . Further, FIG. 2 shows the particle size data of dust. MV in the figure is a volume average particle size weighted by volume. As the silicone oil, decamethylcyclopentasiloxane was used. As shown in FIG. 9, the weight ratio of CaO, CaCO 3, and dust is 46:18:36.

表1中のAは従来の添加順である。シリコンオイルの添加量を変化させてA、B、Cの流動指数の変化をみた。流動指数として、Carrの流動性指数を適用した。Carrの流動性指数の求め方は、概略として粉体の安息角、圧縮度、スパチュラ角、均一度を決められた方法で実際に測定し、それぞれの測定値を指数化して合計値として求めるものである。ここで、安息角などの測定方法を説明する。 A in Table 1 is the conventional addition order. The flow indexes of A, B and C were changed by changing the amount of silicone oil added. As the flow index, Carr's flowability index was applied. Carr's fluidity index can be obtained by roughly measuring the repose angle, compaction degree, spatula angle, and homogeneity of the powder by a determined method, and indexing each measured value to obtain the total value. Is. Here, a method of measuring the angle of repose will be described.

安息角の測定は、図3に示す器具でなされたものであり、測定は、次の手順により行った。1)ロートに試料を入れる。2)ロートに振動を与えて、試料を落下させる。3)落下してできた試料の山の角度を測定する。4)角度の平均値を求める。 The angle of repose was measured with the instrument shown in FIG. 3, and the measurement was performed by the following procedure. 1) Put the sample in the funnel. 2) Vibration is applied to the funnel to drop the sample. 3) Measure the angle of the mountain of the sample that was dropped. 4) Find the average value of the angles.

圧縮度の測定は、図4に示す器具でなされたものであり、圧縮度(Cp)はゆるめ嵩密度(ρa)と固めカサ密度(ρp)から、次の式を用いて求めた。
Cp=(ρp−ρa)/ρp×100
The compression degree was measured with the instrument shown in FIG. 4, and the compression degree (Cp) was calculated from the loosened bulk density (ρa) and the solidified bulk density (ρp) using the following formula.
Cp=(ρp−ρa)/ρp×100

ゆるめ嵩密度ρaの測定は、次の手順により行った。1)160mmLの容器に篩をかけながら試料を充填した。ただし試料を圧密しないように充填させている。2)上部から溢れた試料を擦り切った。3)秤量器で重量を測定し密度を求めた。 The loosened bulk density ρa was measured by the following procedure. 1) The sample was filled while sieving in a 160 mmL container. However, the sample is filled so as not to be consolidated. 2) The sample overflowing from the top was scraped off. 3) The weight was measured with a weighing machine to determine the density.

固め嵩密度ρpの測定は、次の手順により行った。1)容器にカバーをつけて試料を多めに充填させた。2)充填後、180回タッピングを行った。3)上部から溢れた試料を擦り切った。4)秤量器で重量を測定し密度を求めた。 The consolidation bulk density ρp was measured by the following procedure. 1) The container was covered and a large amount of sample was filled. 2) After filling, tapping was performed 180 times. 3) The sample overflowing from the top was scraped off. 4) The weight was measured with a weighing machine to determine the density.

スパチュラ角の測定は、図5に示す器具でなされたものであり、次の手順により行った。1)スパチュラ板(22×105mm)に十分な量の試料を堆積させた。2)スパチュラ板を上昇させてスパチュラ板に残った試料の傾斜角を測定した。なお、3箇所測定した。3)錘で衝撃を与えた後、残った試料の傾斜角を測定した。4)衝撃を与える前後の傾斜角(計6箇所)の平均値を求めた。 The measurement of the spatula angle was performed by the instrument shown in FIG. 5, and was performed by the following procedure. 1) A sufficient amount of the sample was deposited on a spatula plate (22×105 mm). 2) The spatula plate was raised and the tilt angle of the sample remaining on the spatula plate was measured. In addition, it measured at 3 places. 3) After impact with a weight, the tilt angle of the remaining sample was measured. 4) The average value of the tilt angles (total of 6 points) before and after the impact was calculated.

また、均一度(UF)は、粒度分布測定から得た累積分布曲線より60%粒子径(X60)および10%粒子径(X10)を用いて次式により求めた。
UF=X60/X10
The homogeneity (UF) was determined by the following equation using the 60% particle diameter (X60) and the 10% particle diameter (X10) from the cumulative distribution curve obtained from the particle size distribution measurement.
UF=X60/X10

上記手段により、粉体の安息角、圧縮度、スパチェラ角、均一度を測定し、各測定結果を表2に示す表を参考に指標化し、合計した値を粉体の流動性指標とした。 The angle of repose, the degree of compression, the spatula angle, and the uniformity of the powder were measured by the above means, the measurement results were indexed with reference to the table shown in Table 2, and the summed values were used as the powder fluidity index.

この結果を図6に示す。従来の手順Aに比べ、より平均粒径の小さい粉体が混ざっている粉体へシリコンオイルを添加する手順B、または平均粒径の小さい粉体から順にシリコンオイルを添加する手順Bを採用した方が、流動性指数が大きくなって流動性が良くなった。また、シリコンオイルの添加比率が小さい条件でも、即ちシリコンオイルが少なくても流動性を確保できた。手順A〜Cを比べると、シリコンオイルの添加順が異なると、流動性指数が良くも悪くもなることが分かった。また、従来の手順Aが流動性指数が悪いということも分かった。尚、従来の手順Aの実操業における工程は図9に示すとおりである。 The result is shown in FIG. Compared with the conventional procedure A, a procedure B of adding silicon oil to a powder mixed with a powder having a smaller average particle diameter or a procedure B of adding silicon oil in order from a powder having a smaller average particle diameter is adopted. In this case, the liquidity index increased and the liquidity improved. Further, the fluidity was able to be secured even under the condition that the addition ratio of silicone oil was small, that is, even when the silicone oil was small. Comparing the procedures A to C, it was found that the fluidity index was good or bad when the order of addition of the silicone oil was different. It was also found that the conventional procedure A has a poor liquidity index. The process in the actual operation of the conventional procedure A is as shown in FIG.

図6に示されていることから理解されるように、手順Cは、シリコンオイルの添加量比率(wt%)が0.1以下の場合が効果的である。特に、図6からは0.02〜0.1以下の比率の場合に効果が得られることが見て取れる。また、シリコンオイルが0.06〜0.1の比率の場合、他の手順で混合した場合よりも手順Cを採用したほうが、流動性指数が向上しやすくなることがわかる。 As understood from FIG. 6, the procedure C is effective when the addition amount ratio (wt %) of the silicone oil is 0.1 or less. In particular, it can be seen from FIG. 6 that the effect is obtained when the ratio is 0.02 to 0.1 or less. Further, it can be seen that when the ratio of silicone oil is 0.06 to 0.1, the fluidity index is more likely to be improved when the procedure C is adopted than when the silicone oil is mixed by another procedure.

ところで、シリコンオイルは高価なうえに、炉内に入れば、揮発するだけのものである。このため、その添加量はなるべく少なくすることが求められるが、図6には、シリコンオイルの添加量比率(wt%)が0.06以下でも比較的高い流動性指数を維持できることも示されている。特に0.02〜0.06の比率の場合であっても、従来からなされてきた手順Aと比べて流動性が良いことが見て取れ、コストや資源の有効活用という面において、優れた手段であることが理解できる。なお、運転条件のばらつきなどを考慮すると、シリコンオイルを0.03〜0.06の比率で投入することが好ましい。 By the way, silicone oil is expensive and only volatilizes when it enters the furnace. Therefore, it is required to reduce the addition amount as much as possible, but FIG. 6 also shows that a relatively high fluidity index can be maintained even when the addition amount ratio (wt %) of silicone oil is 0.06 or less. There is. Especially, even in the case of the ratio of 0.02 to 0.06, it can be seen that the fluidity is better than that of the procedure A which has been conventionally performed, and it is an excellent means in terms of cost and effective utilization of resources. I understand. In consideration of variations in operating conditions, it is preferable to add silicon oil in a ratio of 0.03 to 0.06.

以上に示すように、複数の脱りん用粉体を用いた製鋼の精錬方法において、最大平均粒径以外の脱りん用粉体にシリコンオイルを混合した後に他の脱りん用粉体を混合し、配管にて気流搬送することで、配管の詰まりを抑制することが可能である。特に、平均粒径が最も小さい脱りん用粉体にシリコンオイルを混合した後に他の脱りん用粉体を混合し、配管にて気流搬送することで、配管の詰まりを効果的に抑制することが可能である。 As shown above, in the steel refining method using a plurality of dephosphorization powders, the dephosphorization powders other than the maximum average particle size are mixed with silicon oil, and then other dephosphorization powders are mixed. By carrying the air flow through the pipe, it is possible to suppress clogging of the pipe. In particular, by effectively mixing silicon oil with the dephosphorization powder having the smallest average particle size and then mixing the other dephosphorization powders and carrying them by air flow through the pipes, it is possible to effectively prevent clogging of the pipes. Is possible.

次に脱硫の場合について説明する。脱硫にはCaOとNaCOの混合粉体を製鋼の予備処理に使用される炉に吹き込んでいる。窒素をキャリアーガスとして底吹き羽口から炉に吹き込む前に、CaOとNaCOとシリコンオイルを混合しているが、図10に示すように、従来の手順においては、ホッパに貯留されたNaCOに対してシリコンオイルを混合して搬送し、NaCOとシリコンオイルとの混合物をCaOと混合して搬送する。なお、各搬送は、スクリューフィーダにより行われ、粉体は攪拌されながら搬送される。 Next, the case of desulfurization will be described. For desulfurization, a mixed powder of CaO and Na 2 CO 3 is blown into a furnace used for pretreatment of steelmaking. CaO, Na 2 CO 3 and silicon oil were mixed before blowing nitrogen into the furnace from the bottom blowing tuyere as a carrier gas, but as shown in FIG. 10, in the conventional procedure, it was stored in the hopper. conveying a mixture of silicone oil with respect to Na 2 CO 3, carrying a mixture of Na 2 CO 3 and the silicon oil is mixed with CaO. In addition, each conveyance is performed by a screw feeder, and the powder is conveyed while being stirred.

本実施形態においては、粒径の異なる粉体と液体状のシリコンオイルを備えた精錬剤を形成するに当たり、シリコンオイルと各粉体の混合手順と、粉体の流動性との関係を確認するため、CaOとNaCOの混合粉体からなる脱硫剤、及びシリコンオイルに関し、表3に示すような手順で混合を実施した。ここで表3中の手順Cは従来の添加順である。なお、図7にCaOとNaCOの混合粉体の粒径データを示す。 In this embodiment, when forming a refining agent comprising powders having different particle sizes and liquid silicone oil, the relationship between the mixing procedure of the silicone oil and each powder and the fluidity of the powder is confirmed. Therefore, the desulfurizing agent composed of a mixed powder of CaO and Na 2 CO 3 and the silicone oil were mixed by the procedure shown in Table 3. Here, the procedure C in Table 3 is the conventional addition order. In addition, FIG. 7 shows particle diameter data of a mixed powder of CaO and Na 2 CO 3 .

シリコンオイルの添加量を変化させて手順A、B、Cの流動指数の変化をみた。この結果を図8に示す。従来の手順Cに比べ、より平均粒径の小さい粉体が混ざっている粉体へシリコンオイルを添加する手順A、または平均粒径の小さい粉体から順にシリコンオイルを添加する手順Bを採用したほうが、流動性指数が大きくなって流動性が良くなった。また、シリコンオイルの添加比率が小さい条件でも、即ちシリコンオイルが少なくても流動性を確保できる傾向があることがわかる。尚、従来の手順Cの実操業における工程を図10に示す。 The flow index of Procedures A, B, and C was changed by changing the amount of silicone oil added. The result is shown in FIG. Compared with the conventional procedure C, a procedure A of adding silicon oil to a powder mixed with a powder having a smaller average particle diameter, or a procedure B of sequentially adding silicon oil to a powder having a smaller average particle diameter is adopted. The larger the liquidity index, the better the liquidity. Further, it is understood that the fluidity tends to be secured even under the condition that the addition ratio of silicone oil is small, that is, even when the silicone oil is small. The process in the actual operation of the conventional procedure C is shown in FIG.

図8に示す例においては、手順Bを用いるとシリコンオイルの添加量比率(wt%)が0.1以下の場合に手順Aよりも流動性指数が高くなることから、一定の効果が得られることが理解される。特に、0.05〜0.1以下の比率の場合に効果が得られることが見て取れる。また、シリコンオイルが0.06〜0.1の比率の場合、従来から行われている手順Cで混合した場合よりも流動性指数が向上しやすくなることがわかる。コスト面なども考慮すると、シリコンオイルの添加量比率(wt%)が0.05〜0.08の比率であることが好ましい。また、運転条件のばらつきなどを考慮すると、0.06〜0.08の比率とすることが好ましい。 In the example shown in FIG. 8, when the procedure B is used, the fluidity index becomes higher than that of the procedure A when the addition amount ratio (wt%) of the silicone oil is 0.1 or less, so that a certain effect is obtained. Be understood. In particular, it can be seen that the effect is obtained when the ratio is 0.05 to 0.1 or less. Further, it can be seen that when the silicone oil is in the ratio of 0.06 to 0.1, the fluidity index is more likely to be improved than in the case of mixing in the conventionally performed procedure C. Considering cost and the like, it is preferable that the addition amount ratio (wt%) of silicon oil is 0.05 to 0.08. Further, in consideration of variations in operating conditions and the like, it is preferable to set the ratio to 0.06 to 0.08.

本実施形態によると、複数の脱硫用粉体を用いた製鋼の精錬方法において、最大平均粒径以外の脱硫用粉体にシリコンオイルを混合した後に他の脱硫用粉体を混合し、配管にて気流搬送することで、詰まりなく気流搬送し、コスト的に有効な潤滑用シリコンオイル添加方法とすることが可能となる。また、平均粒径が最も小さい脱硫用粉体にシリコンオイルを混合した後に他の脱硫用粉体を混合し、配管にて気流搬送することで、効果的に詰まりなく気流搬送し、コスト的に有効な潤滑用シリコンオイル添加方法とすることが可能である。特に製鋼の予備処理に使用される炉において、搬送配管を通して混合された複数の精錬粉体を詰まりなく気流搬送するにあたり、詰まり改善効果およびコスト的に有効な潤滑用シリコンオイル添加方法とすることが可能となる。 According to the present embodiment, in the steel refining method using a plurality of desulfurization powders, after mixing silicon oil to the desulfurization powders other than the maximum average particle size, other desulfurization powders are mixed, and pipes are By carrying out the air flow by means of air flow, the air flow can be carried without clogging, and a cost-effective method for adding silicon oil for lubrication can be provided. In addition, by mixing silicon oil with the desulfurizing powder having the smallest average particle size and then mixing with other desulfurizing powders, and by air-stream conveying through a pipe, the air-stream is effectively conveyed without clogging, and the cost is reduced. It is possible to use an effective method for adding silicon oil for lubrication. Especially in a furnace used for pretreatment of steelmaking, when conveying a plurality of refined powders mixed through a transfer pipe in an air stream without clogging, a clogging improving effect and a cost-effective method for adding lubricating silicon oil can be provided. It will be possible.

本発明は、以上の実施形態には限定されることは無く、本発明の趣旨を逸脱しない範囲で適応可能なことは勿論のことである。例えば、脱リンや脱硫以外に適用しても良い。また、製鋼の予備処理に使用される炉に気流搬送する場合に限ることもない。 It is needless to say that the present invention is not limited to the above embodiment and can be applied without departing from the spirit of the present invention. For example, it may be applied other than dephosphorization and desulfurization. Further, the method is not limited to the case of carrying by air flow to a furnace used for pretreatment of steel making.

複数種類の粉体とシリコンオイルの混合体は、気流搬送する前に、一旦貯留される必要は無い。 The mixture of plural kinds of powder and silicon oil does not need to be temporarily stored before being conveyed by air flow.

また、実施例に示した例とは異なる脱硫剤や脱りん材やシリコンオイルとすることも可能である。 Further, it is also possible to use a desulfurizing agent, a dephosphorizing material, or silicone oil different from the examples shown in the examples.

Claims (6)

平均粒径が異なる2種以上の粉体とシリコンオイルを混合して配管にて気流搬送する場合において、
最大平均粒径以外の粉体にシリコンオイルを混合した後に他の粉体を混合して気流搬送することを特徴とする粉体の配管による気流搬送方法。
In the case of mixing two or more kinds of powders having different average particle diameters and silicon oil and carrying them by air flow,
An air flow conveying method using a pipe for powder, which comprises mixing silicon oil with a powder having a particle size other than the maximum average particle size, and then mixing the other powder with air flow.
平均粒径が異なる2種以上の粉体とシリコンオイルを混合して配管にて気流搬送する場合において、
平均粒径が最も小さい粉体にシリコンオイルを混合した後に他の粉体を混合して気流搬送することを特徴とする粉体の配管による気流搬送方法。
In the case of mixing two or more kinds of powders having different average particle diameters and silicon oil and carrying them by air flow,
An air flow conveying method using a pipe for powder, characterized in that silicon oil is mixed with powder having the smallest average particle diameter, and then other powders are mixed and conveyed by air flow.
複数の脱りん用粉体を用いた製鋼の精錬方法であって、
最大平均粒径以外の脱りん用粉体にシリコンオイルを混合した後に他の脱りん用粉体を混合し、配管にて気流搬送することを特徴とする製鋼の精錬方法。
A method of refining steel using a plurality of powders for dephosphorization, comprising:
A method for smelting steel, which comprises mixing silicon oil with a powder for dephosphorization having a particle size other than the maximum average particle size, then mixing the powder for dephosphorization with another, and conveying the powder by air flow.
複数の脱りん用粉体を用いた製鋼の精錬方法であって、
平均粒径が最も小さい脱りん用粉体にシリコンオイルを混合した後に他の脱りん用粉体を混合し、配管にて気流搬送することを特徴とする製鋼の精錬方法。
A method of refining steel using a plurality of powders for dephosphorization, comprising:
A method for refining steel making, characterized in that silicon powder is mixed with powder for dephosphorization having the smallest average particle diameter, then other powder for dephosphorization is mixed, and the mixture is conveyed by air flow through a pipe.
複数の脱硫用粉体を用いた製鋼の精錬方法であって、
最大平均粒径以外の脱硫用粉体にシリコンオイルを混合した後に他の脱硫用粉体を混合し、配管にて気流搬送することを特徴とする製鋼の精錬方法。
A method for refining steel using a plurality of desulfurizing powders,
A method for refining steel making, characterized in that a desulfurizing powder having a particle size other than the maximum average particle size is mixed with silicon oil, then another desulfurizing powder is mixed, and the mixture is conveyed by air flow through a pipe.
複数の脱硫用粉体を用いた製鋼の精錬方法であって、
平均粒径が最も小さい脱硫用粉体にシリコンオイルを混合した後に他の脱硫用粉体を混合し、配管にて気流搬送することを特徴とする製鋼の精錬方法。
A method for refining steel using a plurality of desulfurizing powders,
A method for refining steel making, characterized in that a desulfurization powder having the smallest average particle size is mixed with silicon oil, then another desulfurization powder is mixed, and the mixture is conveyed by air flow in a pipe.
JP2016239987A 2016-12-12 2016-12-12 Airflow transportation method and steelmaking refining method Active JP6737161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016239987A JP6737161B2 (en) 2016-12-12 2016-12-12 Airflow transportation method and steelmaking refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016239987A JP6737161B2 (en) 2016-12-12 2016-12-12 Airflow transportation method and steelmaking refining method

Publications (2)

Publication Number Publication Date
JP2018095902A JP2018095902A (en) 2018-06-21
JP6737161B2 true JP6737161B2 (en) 2020-08-05

Family

ID=62631290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016239987A Active JP6737161B2 (en) 2016-12-12 2016-12-12 Airflow transportation method and steelmaking refining method

Country Status (1)

Country Link
JP (1) JP6737161B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110712A (en) * 1979-02-15 1980-08-26 Kawasaki Steel Corp Desulfurizing agent for blowing-in
JPS5835565B2 (en) * 1979-03-13 1983-08-03 川崎製鉄株式会社 Out-of-furnace blowing desulfurization method to reduce iron content in slag
JPS57108213A (en) * 1980-12-26 1982-07-06 Kawasaki Steel Corp Desulfurizing agent for molten iron
JPS6119771A (en) * 1984-07-06 1986-01-28 Shinshu Ceramic:Kk Transportation of fine powder
GB8712168D0 (en) * 1987-05-22 1987-06-24 Foseco Int Metallurgical treatment agents
CN102395690A (en) * 2009-04-17 2012-03-28 新日本制铁株式会社 Powder transport method
DE102011116501C5 (en) * 2011-10-20 2018-05-24 Almamet Gmbh Bitumen-containing desulphurising agent

Also Published As

Publication number Publication date
JP2018095902A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
KR101366720B1 (en) Method of desulfurization of molten iron
JP6061053B2 (en) Hot metal desulfurization method and desulfurization agent
JPH0438808B2 (en)
JP5884952B1 (en) How to reuse desulfurized slag
JP6737161B2 (en) Airflow transportation method and steelmaking refining method
JPWO2019208303A1 (en) Forming sedation method for discharged slag and refining equipment used for this
JP4927467B2 (en) CaO-based desulfurizing agent and method for desulfurizing molten iron
WO2008062580A1 (en) Heavy weight aggregates
JP5910069B2 (en) Desulfurization agent, hot metal desulfurization treatment method using the desulfurization agent, and hot metal desulfurization treatment method using refractory
US8221519B2 (en) Powder for sulphur-based flux-cored wire, flux-cored wire and method for producing a flux-cored wire using it
JP6634337B2 (en) Hot metal desulfurization method
CN109072318B (en) Method for charging raw material into blast furnace
JPWO2010119987A1 (en) Powder transportation method
JP3903520B2 (en) Iron-based powder mixture for powder metallurgy and method for producing the same
JP2007002340A (en) Iron based powder mixture for powder metallurgy, and method for producing the same
JP2011068926A (en) Method for charging raw material into blast furnace
JP2019123779A (en) Method for producing molding article for ferrocoke and method for producing the ferrocoke
JP5689024B2 (en) Dephosphorization method of hot metal using dust
JP7520799B2 (en) Raw material hopper discharge chute
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
JP2018150565A (en) Method for use of fine particle material, and smelting method for molten metal
JP2018178165A (en) Blast furnace operation method
JP6769507B2 (en) How to charge raw materials for blast furnace
JP2004183031A (en) Method for manufacturing sintered ore
JP2007022869A (en) Settable composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6737161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151