JP6736979B2 - Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member - Google Patents

Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member Download PDF

Info

Publication number
JP6736979B2
JP6736979B2 JP2016105045A JP2016105045A JP6736979B2 JP 6736979 B2 JP6736979 B2 JP 6736979B2 JP 2016105045 A JP2016105045 A JP 2016105045A JP 2016105045 A JP2016105045 A JP 2016105045A JP 6736979 B2 JP6736979 B2 JP 6736979B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy member
exposure
precipitation hardening
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016105045A
Other languages
Japanese (ja)
Other versions
JP2017211291A (en
Inventor
茜 津野
茜 津野
智道 尾崎
智道 尾崎
健 中野
健 中野
中野 賢治
賢治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2016105045A priority Critical patent/JP6736979B2/en
Publication of JP2017211291A publication Critical patent/JP2017211291A/en
Application granted granted Critical
Publication of JP6736979B2 publication Critical patent/JP6736979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、析出硬化型アルミニウム合金部材の異常高温曝露検出方法及び異常高温曝露検出装置に係り、特に、250℃未満の使用環境下で熱曝露される析出硬化型アルミニウム合金部材の異常高温曝露を検出する析出硬化型アルミニウム合金部材の異常高温曝露検出方法及び異常高温曝露検出装置に関する。 The present invention relates to a method and an apparatus for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member, and particularly to an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member which is exposed to heat under a use environment of less than 250° C. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting an abnormally high temperature exposure of a precipitation hardening aluminum alloy member and an abnormally high temperature exposure detecting device.

過給機、圧縮機等の運転温度の上昇により、析出硬化型アルミニウム合金で形成されたインペラ等の析出硬化型アルミニウム合金部材における使用環境は、材料の能力の限界に近付いている。また、析出硬化型アルミニウム合金部材は、過給機、圧縮機等の異常運転等により使用環境温度を超えて異常高温曝露されると、材料特性が劣化する可能性がある。このことから、析出硬化型アルミニウム合金部材の信頼性向上のために、析出硬化型アルミニウム合金部材が使用環境温度を超えて高温曝露されたか否かをより正確に把握する必要がある。 Due to the rise in operating temperature of superchargers, compressors, and the like, the environment in which precipitation-hardening aluminum alloy members such as impellers formed of precipitation-hardening aluminum alloys are used is approaching the limits of material capacity. Further, the precipitation hardenable aluminum alloy member may be deteriorated in material characteristics when exposed to an abnormally high temperature exceeding a use environment temperature due to an abnormal operation of a supercharger, a compressor or the like. From this, in order to improve the reliability of the precipitation hardening aluminum alloy member, it is necessary to more accurately grasp whether or not the precipitation hardening aluminum alloy member has been exposed to a high temperature exceeding the ambient temperature.

従来、析出硬化型アルミニウム合金部材の熱曝露温度については、析出硬化型アルミニウム合金部材の周りの雰囲気温度を測定して推定することが行われている(例えば、特許文献1参照)。 Conventionally, the heat exposure temperature of a precipitation hardening aluminum alloy member has been estimated by measuring the ambient temperature around the precipitation hardening aluminum alloy member (see, for example, Patent Document 1).

特開2012−2231号公報JP 2012-2231 A

ところで、過給機、圧縮機等に用いられる析出硬化型アルミニウム合金部材は、250℃未満の使用環境下で熱曝露されている。上記のように析出硬化型アルミニウム合金部材の周りの雰囲気温度を測定して、析出硬化型アルミニウム合金部材が250℃以上で異常高温曝露されたか否かを検出する場合には、析出硬化型アルミニウム合金部材から直接情報を得ていないので、精度よく検出できない可能性がある。 By the way, the precipitation hardening type aluminum alloy member used for a supercharger, a compressor, etc. is exposed to heat under a use environment of less than 250°C. When the ambient temperature around the precipitation hardening aluminum alloy member is measured as described above to detect whether or not the precipitation hardening aluminum alloy member is exposed to an abnormally high temperature of 250° C. or higher, the precipitation hardening aluminum alloy is used. Since the information is not directly obtained from the member, it may not be possible to detect accurately.

そこで、本発明の目的は、析出硬化型アルミニウム合金部材の異常高温曝露をより精度よく検出することが可能な析出硬化型アルミニウム合金部材の異常高温曝露検出方法及び異常高温曝露検出装置を提供することである。 Therefore, an object of the present invention is to provide an abnormally high temperature exposure detection method and an abnormally high temperature exposure detection device for an precipitation hardenable aluminum alloy member capable of more accurately detecting an abnormally high temperature exposure of the precipitation hardened aluminum alloy member. Is.

本発明に係る析出硬化型アルミニウム合金部材の異常高温曝露検出方法は、250℃未満の使用環境下で熱曝露される析出硬化型アルミニウム合金部材の異常高温曝露を検出する析出硬化型アルミニウム合金部材の異常高温曝露検出方法であって、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定工程と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定工程と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する異常高温曝露検出工程と、を備えることを特徴とする。 An abnormal high temperature exposure detection method for a precipitation hardening aluminum alloy member according to the present invention is directed to a precipitation hardening aluminum alloy member for detecting an abnormal high temperature exposure of a precipitation hardening aluminum alloy member that is thermally exposed under a use environment of less than 250°C. An abnormal temperature exposure detection method, a conductivity measuring step of measuring the conductivity of the precipitation hardening aluminum alloy member before and after heat exposure, and a hardness measuring hardness before and after heat exposure of the precipitation hardening aluminum alloy member. Measurement step, the amount of change in conductivity before and after heat exposure in the precipitation hardening aluminum alloy member, and the relationship between the amount of change in hardness, the same composition as the precipitation hardening aluminum alloy member previously obtained The amount of change in conductivity before and after heat exposure in a precipitation-hardened aluminum alloy that has been subjected to known heat exposure, and the relationship between the amount of change in hardness are compared, and the heat-exposed temperature of the precipitation-hardened aluminum alloy member is compared. Abnormal temperature exposure detection step of detecting abnormal high temperature exposure by determining whether or not is less than 250° C.

本発明に係る析出硬化型アルミニウム合金部材の異常高温曝露検出方法において、前記導電率測定工程は、渦電流式導電率測定法で測定することを特徴とする。 In the method for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member according to the present invention, the conductivity measuring step is characterized by performing an eddy current conductivity measuring method.

本発明に係る析出硬化型アルミニウム合金部材の異常高温曝露検出方法において、前記硬さ測定工程は、ビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法またはヌープ硬さ測定法で測定することを特徴とする。 In the method of detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member according to the present invention, the hardness measurement step is performed by a Vickers hardness measurement method, a Rockwell hardness measurement method, a Brinell hardness measurement method or a Knoop hardness measurement method. It is characterized by doing.

本発明に係る析出硬化型アルミニウム合金部材の異常高温曝露検出装置は、250℃未満の使用環境下で熱曝露される析出硬化型アルミニウム合金部材の異常高温曝露を検出する析出硬化型アルミニウム合金部材の異常高温曝露検出装置であって、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定手段と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定手段と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する異常高温曝露検出手段と、を備えることを特徴とする。 An abnormal high temperature exposure detection device for a precipitation hardening aluminum alloy member according to the present invention is a precipitation hardening aluminum alloy member for detecting an abnormal high temperature exposure of a precipitation hardening aluminum alloy member that is thermally exposed under a use environment of less than 250°C. An abnormal high temperature exposure detection device, wherein the conductivity measuring means for measuring the conductivity of the precipitation hardening aluminum alloy member before and after heat exposure, and the hardness for measuring the hardness of the precipitation hardening aluminum alloy member before and after heat exposure. Measuring means, the relationship between the amount of change in conductivity before and after heat exposure in the precipitation hardening aluminum alloy member, and the amount of change in hardness, with the same composition as the precipitation hardening aluminum alloy member previously obtained. The amount of change in conductivity before and after heat exposure in a precipitation-hardened aluminum alloy that has been subjected to known heat exposure, and the relationship between the amount of change in hardness are compared, and the heat-exposed temperature of the precipitation-hardened aluminum alloy member is compared. Abnormal temperature exposure detecting means for detecting abnormal high temperature exposure by determining whether or not is less than 250° C.

上記構成によれば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化と、硬さの変化とに基づいて、析出硬化型アルミニウム合金部材の異常高温曝露を検出しているので、検出精度を高めることが可能となる。 According to the above configuration, the abnormal temperature exposure of the precipitation hardening aluminum alloy member is detected based on the change in conductivity before and after thermal exposure in the precipitation hardening aluminum alloy member and the change in hardness. It is possible to improve accuracy.

本発明の実施の形態において、析出硬化型アルミニウム合金部材の異常高温曝露検出方法の構成を示すフローチャートである。In an embodiment of the present invention, it is a flow chart showing the composition of the abnormal temperature exposure detection method of the precipitation hardening type aluminum alloy member. 本発明の実施の形態において、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係を示すモデル図である。In an embodiment of the present invention, it is a model view showing the relation between the amount of change in conductivity and the amount of change in hardness before and after thermal exposure in a precipitation hardening type aluminum alloy member. 本発明の実施の形態において、析出硬化型アルミニウム合金部材における異常高温曝露の検出方法を示すモデル図である。In an embodiment of the present invention, it is a model diagram showing a detection method of abnormal high temperature exposure in a precipitation hardening type aluminum alloy member. 本発明の実施の形態において、析出硬化型アルミニウム合金部材の異常高温曝露検出装置の構成を示すブロック図である。In an embodiment of the present invention, it is a block diagram showing the composition of the abnormal temperature exposure detecting device of a precipitation hardening type aluminum alloy member. 本発明の実施の形態において、マスター曲線を示すグラフである。3 is a graph showing a master curve in the embodiment of the present invention.

以下に本発明の実施の形態について図面を用いて詳細に説明する。図1は、析出硬化型アルミニウム合金部材の異常高温曝露検出方法の構成を示すフローチャートである。析出硬化型アルミニウム合金部材の異常高温曝露検出方法は、導電率測定工程(S10)と、硬さ測定工程(S12)と、異常高温曝露検出工程(S14)と、を備えている。 Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a flow chart showing a configuration of a method for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member. An abnormal high temperature exposure detection method for a precipitation hardening type aluminum alloy member includes a conductivity measurement step (S10), a hardness measurement step (S12), and an abnormal high temperature exposure detection step (S14).

析出硬化型アルミニウム合金部材は、例えば、船舶用過給機、発電機、車両用過給機に用いられるコンプレッサインペラ等の展伸部材や鋳造部材である。このような析出硬化型アルミニウム合金部材は、250℃未満の使用環境下(例えば、約100℃以上250℃未満)で熱曝露されている。 The precipitation hardening type aluminum alloy member is, for example, a wrought member or a cast member such as a compressor impeller used in a supercharger for ships, a generator, and a supercharger for vehicles. Such a precipitation hardening type aluminum alloy member is exposed to heat under a use environment of less than 250°C (for example, about 100°C or more and less than 250°C).

析出硬化型アルミニウム合金部材は、JIS規格等の析出硬化型アルミニウム合金で形成されている。析出硬化型アルミニウム合金は、溶体化処理した後に時効処理することにより、析出物を析出させて強化させたアルミニウム合金である。析出硬化型アルミニウム合金部材は、例えば、Al−Cu系合金、Al−Cu−Mg系合金、Al−Mg−Si系合金、Al−Zn−Mg系合金、Al−Zn−Mg−Cu系合金等(2000系、6000系、7000系、AC1B、AC4A、AC4C、AC4CH等)で形成されている。 The precipitation-hardening aluminum alloy member is formed of a precipitation-hardening aluminum alloy such as JIS. The precipitation hardening type aluminum alloy is an aluminum alloy in which precipitates are precipitated and strengthened by solution treatment followed by aging treatment. The precipitation hardening type aluminum alloy member is, for example, an Al—Cu based alloy, an Al—Cu—Mg based alloy, an Al—Mg—Si based alloy, an Al—Zn—Mg based alloy, an Al—Zn—Mg—Cu based alloy, or the like. (2000 series, 6000 series, 7000 series, AC1B, AC4A, AC4C, AC4CH, etc.).

導電率測定工程(S10)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する工程である。析出硬化型アルミニウム合金部材の導電率は、主に、析出硬化型アルミニウム合金におけるAl母相中の溶質元素の固溶量に影響される。析出硬化型アルミニウム合金部材が熱曝露されると、Al母相中に固溶している溶質元素が析出物として析出し、Al母相中の溶質元素の固溶量が低下することにより、析出硬化型アルミニウム合金部材の導電率が変化する。このことから、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化により、析出硬化型アルミニウム合金部材の熱曝露の影響を評価することができる。 The conductivity measuring step (S10) is a step of measuring the conductivity of the precipitation hardening aluminum alloy member before and after heat exposure. The electrical conductivity of the precipitation hardening aluminum alloy member is mainly affected by the amount of solute element in the Al matrix of the precipitation hardening aluminum alloy. When the precipitation-hardening aluminum alloy member is exposed to heat, the solute element solid-dissolved in the Al matrix phase precipitates as a precipitate, and the solid solution amount of the solute element in the Al matrix phase decreases, so The conductivity of the hardenable aluminum alloy member changes. From this, it is possible to evaluate the effect of heat exposure of the precipitation hardening aluminum alloy member by the change in conductivity before and after heat exposure of the precipitation hardening aluminum alloy member.

析出硬化型アルミニウム合金部材は、溶体化処理後の時効処理により、準安定相からなる析出物を析出させて強化させている。析出硬化型アルミニウム合金部材は、熱曝露されると、Al母相中に固溶している溶質元素が析出し、準安定相が増えるとともに準安定相の形態が変化し、最終的に安定相が形成される。熱曝露により、Al母相中に固溶している溶質元素が析出すると、Al母相中に固溶している溶質元素の固溶量が低下するので、析出硬化型アルミニウム合金部材の導電率が大きくなる傾向がある。また、熱曝露温度が高くなると、Al母相中に固溶している溶質元素の析出が促進されるので、Al母相中に固溶している溶質元素の固溶量の低下がより大きくなり、析出硬化型アルミニウム合金部材の導電率がより大きくなる傾向がある。 The precipitation hardening type aluminum alloy member is strengthened by precipitation of a metastable phase by aging treatment after solution treatment. When a precipitation hardenable aluminum alloy member is exposed to heat, solute elements in solid solution in the Al matrix phase precipitate, the metastable phase increases and the morphology of the metastable phase changes, and finally the stable phase. Is formed. When a solute element solid-dissolved in the Al mother phase is precipitated by heat exposure, the solid solution amount of the solute element solid-dissolved in the Al mother phase decreases, so that the conductivity of the precipitation hardening aluminum alloy member is reduced. Tends to be large. Further, when the heat exposure temperature becomes higher, the precipitation of the solute element solid-soluted in the Al mother phase is promoted, so that the solid solution amount of the solute element solid-dissolved in the Al mother phase is greatly reduced. Therefore, the conductivity of the precipitation hardening aluminum alloy member tends to be higher.

例えば、析出硬化型アルミニウム合金部材がAl−Cu−Mg系合金で形成されている場合には、熱曝露により、Al母相中に固溶しているCu、Mg等の溶質元素が析出し、合金組織内で析出物がGPB(Guinier Preston Bagaryatsky ギニエ・プレストン・バガリャツキ)(1)ゾーン→GPB(2)ゾーン(S”相)→S’相→S相(AlCuMg)の過程で変化して、最終的に安定相であるS相(AlCuMg)が形成される。熱曝露により、Al母相中に固溶しているCu、Mg等の溶質元素が析出すると、Al母相中に固溶しているCu、Mg等の溶質元素の固溶量が低下するので、析出硬化型アルミニウム合金部材の導電率が大きくなる。また、熱曝露温度が高くなると、Al母相中に固溶しているCu、Mg等の溶質元素の析出が促進されるので、Al母相中に固溶しているCu、Mg等の溶質元素の固溶量の低下が大きくなり、析出硬化型アルミニウム合金部材の導電率が大きくなる。このように、析出硬化型アルミニウム合金部材の導電率は、主に、Al母相中の溶質元素の固溶量に起因して変化する。 For example, when the precipitation hardening type aluminum alloy member is formed of an Al-Cu-Mg alloy, heat exposure causes precipitation of solute elements such as Cu and Mg which are solid-solved in the Al matrix phase. In the alloy structure, the precipitates change in the process of GPB (Guinier Preston Bagaryatsky) Guinee Preston Bagalyaski (1) zone → GPB (2) zone (S" phase) → S'phase → S phase (Al 2 CuMg) As a result, a stable S phase (Al 2 CuMg) is finally formed, and when solute elements such as Cu and Mg that are solid-solved in the Al mother phase precipitate due to the heat exposure, Since the amount of solute elements such as Cu and Mg that are solid-solved in the alloy decreases, the conductivity of the precipitation hardening aluminum alloy member increases. Since precipitation of dissolved solute elements such as Cu and Mg is promoted, the solid solution amount of solute elements such as Cu and Mg dissolved in the Al matrix is greatly reduced, and precipitation hardening type aluminum is obtained. As described above, the conductivity of the alloy member increases, and thus the conductivity of the precipitation hardening aluminum alloy member changes mainly due to the solid solution amount of the solute element in the Al matrix phase.

析出硬化型アルミニウム合金部材の導電率は、一般的な金属材料の導電率測定方法で測定可能である。析出硬化型アルミニウム合金部材の導電率は、非破壊で測定可能であることから、渦電流式導電率測定法で測定されることが好ましい。渦電流式導電率測定法であれば、析出硬化型アルミニウム合金部材が設けられている現場でも測定可能である。 The conductivity of the precipitation hardening type aluminum alloy member can be measured by a general conductivity measuring method of a metal material. Since the conductivity of the precipitation hardening aluminum alloy member can be measured nondestructively, it is preferably measured by the eddy current conductivity measuring method. The eddy current type conductivity measuring method can be measured even at the site where the precipitation hardening type aluminum alloy member is provided.

硬さ測定工程(S12)は、析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する工程である。析出硬化型アルミニウム合金部材の硬さは、主に、析出硬化型アルミニウム合金の析出物の形態に影響される。 The hardness measurement step (S12) is a step of measuring the hardness of the precipitation hardening aluminum alloy member before and after heat exposure. The hardness of the precipitation hardening aluminum alloy member is mainly affected by the morphology of precipitates of the precipitation hardening aluminum alloy.

析出硬化型アルミニウム合金部材は、熱曝露されると、Al母相中に固溶している溶質元素が析出し、準安定相が増えるとともに準安定相の形態が変化し、最終的に安定相が形成される。析出硬化型アルミニウム合金部材の硬さは、準安定相が析出物として析出している間は略一定となり、安定相が析出物として析出すると低下する傾向がある。析出硬化型アルミニウム合金部材の硬さは、安定相が析出した後においても、オストワルド成長等により更に低下する傾向がある。 When a precipitation hardenable aluminum alloy member is exposed to heat, solute elements in solid solution in the Al matrix phase precipitate, the metastable phase increases and the morphology of the metastable phase changes, and finally the stable phase. Is formed. The hardness of the precipitation hardening type aluminum alloy member is substantially constant while the metastable phase is deposited as a precipitate, and tends to decrease when the stable phase is deposited as a precipitate. The hardness of the precipitation hardenable aluminum alloy member tends to be further reduced due to Ostwald's growth even after the stable phase is precipitated.

また、析出硬化型アルミニウム合金部材の硬さは、熱曝露温度が高温の場合には、準安定相の析出速度や形態の変化が速くなり、安定相に移行し易くなるので、低下が大きくなる傾向がある。一方、析出硬化型アルミニウム合金部材の硬さは、熱曝露温度が比較的低温の場合には、準安定相の析出速度や形態の変化が遅くなり、安定相に移行し難くなるので、低下し難くなる傾向がある。 Further, when the heat exposure temperature is high, the precipitation hardness and the morphology of the metastable phase change rapidly, and the hardness of the precipitation hardening type aluminum alloy member decreases easily because it easily transitions to the stable phase. Tend. On the other hand, the hardness of the precipitation hardenable aluminum alloy member decreases when the heat exposure temperature is relatively low, because the rate of precipitation of the metastable phase and the change in morphology become slow, and it becomes difficult to transfer to the stable phase. Tends to be difficult.

例えば、析出硬化型アルミニウム合金部材がAl−Cu−Mg系合金で形成されている場合には、析出硬化型アルミニウム合金部材の硬さは、GPB(1)ゾーン、GPB(2)ゾーン(S”相)及びS’相からなる準安定相が析出物として析出している間は略一定となるが、S相(AlCuMg)からなる安定相が析出物として析出すると低下する傾向がある。このように、析出硬化型アルミニウム合金部材の硬さは、主に、析出物の形態に起因して変化する。 For example, when the precipitation hardening aluminum alloy member is formed of an Al-Cu-Mg-based alloy, the hardness of the precipitation hardening aluminum alloy member is GPB(1) zone, GPB(2) zone (S"). Phase) and the S′ phase are almost constant while the metastable phase is deposited as a precipitate, but when the stable phase composed of the S phase (Al 2 CuMg) is deposited as a precipitate, it tends to decrease. Thus, the hardness of the precipitation hardening aluminum alloy member changes mainly due to the morphology of the precipitate.

硬さ測定は、例えば、マイクロビッカース硬さ測定法等のビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法、ヌープ硬さ測定法等を用いることが可能である。硬さ測定は、析出硬化型アルミニウム合金部材を直接測定してもよいし、サンプルを切り出して樹脂埋めし、耐水研磨紙やアルミナ、コロイダルシリカ等の研磨材で研磨してから測定してもよい。また、硬さ測定は、マイクロビッカース硬さ測定法によることが好ましい。マイクロビッカース硬さ測定法によれば、圧痕サイズが小さいので、析出硬化型アルミニウム合金部材が小さくても硬さを複数箇所測定することができる。 For the hardness measurement, for example, a Vickers hardness measurement method such as a micro Vickers hardness measurement method, a Rockwell hardness measurement method, a Brinell hardness measurement method, a Knoop hardness measurement method, or the like can be used. The hardness may be measured directly on a precipitation hardening aluminum alloy member, or may be measured after cutting out a sample, embedding it in a resin, and polishing it with an abrasive material such as water resistant abrasive paper, alumina, colloidal silica or the like. .. The hardness is preferably measured by the micro Vickers hardness measuring method. According to the micro-Vickers hardness measurement method, since the indentation size is small, the hardness can be measured at a plurality of points even if the precipitation hardening aluminum alloy member is small.

異常高温曝露検出工程(S14)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する工程である。 The abnormal high temperature exposure detection step (S14) is performed by a precipitation hardening type aluminum alloy member obtained in advance and a relationship between the amount of change in conductivity of the precipitation hardening type aluminum alloy member before and after thermal exposure and the amount of change in hardness. The relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness in a precipitation-hardening aluminum alloy that has been subjected to known heat exposure with the same composition is compared, and the heat of the precipitation-hardening aluminum alloy member is compared. This is a step of detecting abnormal high temperature exposure by determining whether the exposure temperature is less than 250°C.

後述する実施例で明らかとなるように、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係は、熱曝露温度が250℃未満の場合と、熱曝露温度が250℃以上の場合とでは、大きく異なる傾向を示すことを見出した。 As will be apparent from the examples described below, the relationship between the amount of change in conductivity before and after thermal exposure and the amount of change in hardness of the precipitation hardening aluminum alloy member is that the thermal exposure temperature is less than 250° C. It has been found that the tendency is significantly different when the heat exposure temperature is 250° C. or higher.

図2は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係を示すモデル図である。図2では、横軸に硬さの変化量を取り、縦軸に導電率の変化量を取り、熱曝露温度が250℃未満のときの熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を曲線Aで示し、熱曝露温度が250℃以上のときの熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を曲線Bで示している。 FIG. 2 is a model diagram showing the relationship between the amount of change in conductivity and the amount of change in hardness before and after thermal exposure in a precipitation hardening aluminum alloy member. In FIG. 2, the horizontal axis represents the amount of change in hardness and the vertical axis represents the amount of change in conductivity. The amount of change in conductivity before and after thermal exposure when the thermal exposure temperature is less than 250° C. A curve showing a relationship with the change amount is shown by a curve A, and a curve showing a relationship between the change amount of the conductivity before and after the heat exposure when the heat exposure temperature is 250° C. and the change amount of the hardness is shown by a curve B. Showing.

析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満の場合には、熱曝露前後の導電率の変化量と、硬さの変化量との関係は、曲線Aで示される曲線と略同じになる。例えば、熱曝露温度が120℃の場合や、180℃の場合でも、熱曝露前後の導電率の変化量と、硬さの変化量との関係は、曲線Aと略一致する。 When the heat exposure temperature of the precipitation hardening type aluminum alloy member is less than 250° C., the relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness is almost the same as the curve indicated by the curve A. Become. For example, even when the heat exposure temperature is 120° C. or 180° C., the relationship between the amount of change in conductivity before and after the heat exposure and the amount of change in hardness substantially matches the curve A.

一方、析出硬化型アルミニウム合金部材の熱曝露温度が250℃以上の場合には、熱曝露前後の導電率の変化量と、硬さの変化量との関係は、曲線Bで示される曲線と略同じになる。例えば、熱曝露温度が250℃の場合や、350℃の場合でも、熱曝露前後の導電率の変化量と、硬さの変化量との関係は、曲線Bと略一致する。また、析出硬化型アルミニウム合金部材の熱曝露温度が、連続して長時間の間、250℃以上となる場合だけでなく、一時的に短時間の間、250℃以上となる場合でも、熱曝露前後の導電率の変化量と、硬さの変化量との関係は、曲線Bで示される曲線と略同じになる。 On the other hand, when the heat-exposure temperature of the precipitation hardening aluminum alloy member is 250° C. or higher, the relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness is substantially the same as that shown by the curve B. Will be the same. For example, even when the heat exposure temperature is 250° C. or 350° C., the relationship between the amount of change in conductivity before and after the heat exposure and the amount of change in hardness substantially matches the curve B. Moreover, not only when the heat exposure temperature of the precipitation hardening type aluminum alloy member is 250° C. or higher for a long time continuously, but also when the temperature is 250° C. or higher for a short time, The relationship between the amount of change in conductivity before and after and the amount of change in hardness is substantially the same as the curve shown by the curve B.

このように、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係は、熱曝露温度250℃を境にして、2つの曲線に区分できることを見出した。この理由については、熱曝露温度が250℃以上となると、析出硬化型アルミニウム合金部材の金属組織中の析出物が、準安定相から安定相に急速に移行すること等によると考えられる。したがって、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係から、熱曝露温度が250℃未満か否かを判定して、異常高温曝露を検出することが可能となる。 Thus, it was found that the relationship between the amount of change in conductivity before and after thermal exposure and the amount of change in hardness in a precipitation hardening aluminum alloy member can be divided into two curves with a thermal exposure temperature of 250°C as a boundary. It was The reason for this is considered to be that when the heat exposure temperature is 250° C. or higher, the precipitate in the metallographic structure of the precipitation hardening aluminum alloy member rapidly transitions from the metastable phase to the stable phase. Therefore, an abnormal high temperature exposure is detected by determining whether or not the heat exposure temperature is less than 250° C. from the relationship between the change amount of the electrical conductivity of the precipitation hardening aluminum alloy member before and after the heat exposure and the change amount of the hardness. It becomes possible to do.

予め析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係を実験等により求めて、例えば、マスター曲線等を作成する。そして、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び硬さの変化量の関係から、析出硬化型アルミニウム合金部材の異常高温曝露を検出する。 The amount of change in conductivity before and after thermal exposure in the precipitation-hardening aluminum alloy that has been subjected to known heat exposure with the same composition as the precipitation-hardening aluminum alloy member in advance, and the relationship between the amount of change in hardness is determined by experiments, etc. For example, a master curve or the like is created. Then, the abnormal temperature exposure of the precipitation hardening aluminum alloy member is detected from the relationship between the amount of change in conductivity and the amount of change in hardness of the precipitation hardening aluminum alloy member before and after thermal exposure.

図3は、析出硬化型アルミニウム合金部材における異常高温曝露の検出方法を示すモデル図である。図3では、横軸に硬さの変化量を取り、縦軸に導電率の変化量を取り、熱曝露温度が250℃未満のときの熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を曲線Aで示し、熱曝露温度が250℃以上のときの熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を曲線Bで示している。 FIG. 3 is a model diagram showing a method for detecting abnormal high temperature exposure in a precipitation hardening aluminum alloy member. In FIG. 3, the horizontal axis represents the amount of change in hardness, the vertical axis represents the amount of change in conductivity, and the amount of change in conductivity before and after thermal exposure when the thermal exposure temperature is less than 250° C. A curve showing a relationship with the change amount is shown by a curve A, and a curve showing a relationship between the change amount of the conductivity before and after the heat exposure when the heat exposure temperature is 250° C. and the change amount of the hardness is shown by a curve B. Showing.

例えば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量がΔE1であり、硬さの変化量がΔH1である場合には、曲線Aに対応しているので、熱曝露温度が250℃未満であると判定され、異常高温曝露が生じていないと判断される。一方、析出硬化型アルミニウム合金部材の熱曝露前後の導電率の変化量がΔE2であり、硬さの変化量がΔH2である場合には、曲線Bに対応しているので、熱曝露温度が250℃以上であると判定されて、異常高温曝露が検出される。このようにして、析出硬化型アルミニウム合金部材の異常高温曝露を検出することができる。 For example, when the amount of change in conductivity of the precipitation hardening aluminum alloy member before and after heat exposure is ΔE1 and the amount of change in hardness is ΔH1, which corresponds to the curve A, the heat exposure temperature is 250. It is determined that the temperature is below ℃, and it is determined that abnormal high temperature exposure has not occurred. On the other hand, when the amount of change in conductivity of the precipitation hardening aluminum alloy member before and after thermal exposure is ΔE2 and the amount of change in hardness is ΔH2, which corresponds to the curve B, the thermal exposure temperature is 250. It is determined that the temperature is equal to or higher than °C, and the abnormal high temperature exposure is detected. In this way, the abnormal high temperature exposure of the precipitation hardening aluminum alloy member can be detected.

また、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係から、析出硬化型アルミニウム合金部材の異常高温曝露を検出することから、析出硬化型アルミニウム合金部材の熱曝露時間を考慮する必要がないので、熱曝露時間が不明な場合でも異常高温曝露を検出することが可能となる。 Further, from the relationship between the amount of change in conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member and the amount of change in hardness, abnormal temperature exposure of the precipitation hardening type aluminum alloy member is detected. Since it is not necessary to consider the heat exposure time of the alloy member, it is possible to detect the abnormal high temperature exposure even when the heat exposure time is unknown.

なお、熱曝露前後の導電率の変化量及び硬さの変化量に基づいて異常高温曝露を検出することにより、熱曝露前(未曝露)のときの析出硬化型アルミニウム合金部材の調質状態や加工状態等が異なる場合でも、同じマスター曲線を用いて異常高温曝露を検出することができる。より詳細には、同一組成の析出硬化型アルミニウム合金で形成されており、熱処理条件や加工条件が異なる析出硬化型アルミニウム合金部材の場合でも、熱曝露前後の導電率の変化量及び硬さの変化量に基づいて検出することから、熱曝露前の影響を除くことができる。これにより、調質状態や加工状態等が異なる析出硬化型アルミニウム合金部材の場合でも、同じマスター曲線を用いて異常高温曝露を検出することが可能となる。 In addition, by detecting abnormal high temperature exposure based on the amount of change in conductivity and the amount of change in hardness before and after heat exposure, the heat treatment condition of the precipitation hardening type aluminum alloy member before heat exposure (unexposed) and Even if the processing conditions are different, the same master curve can be used to detect abnormal high temperature exposure. More specifically, even in the case of a precipitation hardening aluminum alloy member formed of a precipitation hardening aluminum alloy having the same composition and having different heat treatment conditions and processing conditions, the amount of change in conductivity and the change in hardness before and after heat exposure. Since it is detected based on the amount, the effect before heat exposure can be excluded. This makes it possible to detect abnormal high temperature exposure using the same master curve even in the case of precipitation hardening type aluminum alloy members having different tempering conditions and working conditions.

次に、析出硬化型アルミニウム合金部材の異常高温曝露検出装置について説明する。図4は、析出硬化型アルミニウム合金部材の異常高温曝露検出装置10の構成を示すブロック図である。析出硬化型アルミニウム合金部材の異常高温曝露検出装置10は、導電率測定手段12と、硬さ測定手段14と、制御手段16と、出力手段18と、を備えている。 Next, an abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy members will be described. FIG. 4 is a block diagram showing the configuration of the abnormally high temperature exposure detection device 10 for a precipitation hardening type aluminum alloy member. An apparatus 10 for detecting abnormal temperature exposure of a precipitation hardening type aluminum alloy member includes a conductivity measuring unit 12, a hardness measuring unit 14, a control unit 16, and an output unit 18.

導電率測定手段12は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する機能を有している。導電率測定手段12は、渦電流式導電率測定装置等で構成されている。 The conductivity measuring means 12 has a function of measuring the conductivity of the precipitation hardening type aluminum alloy member before and after heat exposure. The conductivity measuring means 12 is composed of an eddy current conductivity measuring device or the like.

硬さ測定手段14は、析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する機能を有している。硬さ測定手段14は、ビッカース硬さ試験機、ロックウエル硬さ試験機、ブリネル硬さ試験機、ヌープ硬さ試験機、超音波硬度計等で構成されている。 The hardness measuring means 14 has a function of measuring the hardness of the precipitation hardening aluminum alloy member before and after heat exposure. The hardness measuring means 14 is composed of a Vickers hardness tester, a Rockwell hardness tester, a Brinell hardness tester, a Knoop hardness tester, an ultrasonic hardness meter and the like.

制御手段16は、異常高温曝露検出手段20と、記憶手段22と、を有している。制御手段16は、例えば、一般的なパーソナルコンピュータ等で構成されている。 The control unit 16 has an abnormal high temperature exposure detection unit 20 and a storage unit 22. The control means 16 is composed of, for example, a general personal computer or the like.

異常高温曝露検出手段20は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する機能を有している。 The abnormal high temperature exposure detection means 20 is the same as the precipitation hardening type aluminum alloy member obtained in advance and the relationship between the amount of change in the conductivity of the precipitation hardening type aluminum alloy member before and after thermal exposure and the amount of change in hardness. The relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness in a precipitation hardening aluminum alloy that has been subjected to known heat exposure in composition is compared, and the heat exposure of the precipitation hardening aluminum alloy member is compared. It has the function of detecting abnormal high temperature exposure by determining whether the temperature is lower than 250°C.

記憶手段22は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び硬さの変化量、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び硬さの変化量、導電率の変化量及び硬さの変化量の関係を示すマスター曲線等のデータを記憶する機能を有している。 The memory means 22 was subjected to known heat exposure with the same amount of change in conductivity and hardness as before and after thermal exposure of the precipitation hardening aluminum alloy member, and with the same composition as the precipitation hardening aluminum alloy member previously obtained. It has a function to store data such as a master curve showing the relationship between the amount of change in conductivity and the amount of change in hardness before and after thermal exposure, the amount of change in conductivity and the amount of change in hardness in a precipitation hardening aluminum alloy. There is.

出力手段18は、析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを出力する機能を有している。出力手段18は、ディスプレイやプリンタ等で構成されている。 The output means 18 has a function of outputting whether or not the heat exposure temperature of the precipitation hardening aluminum alloy member is less than 250°C. The output means 18 is composed of a display, a printer and the like.

以上、上記構成によれば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び硬さの変化量の関係から、析出硬化型アルミニウム合金部材の異常高温曝露を検出することにより、析出硬化型アルミニウム合金部材から直接情報を得て検出しているので、異常高温曝露をより精度よく検出することが可能となる。 As described above, according to the above configuration, from the relationship between the amount of change in conductivity and the amount of change in hardness before and after thermal exposure in the precipitation hardening aluminum alloy member, by detecting the abnormal high temperature exposure of the precipitation hardening aluminum alloy member, Since the information is directly obtained and detected from the precipitation hardening type aluminum alloy member, the abnormal high temperature exposure can be detected more accurately.

過給機等に用いられるコンプレッサインペラにおいて、異常高温曝露を検出する場合について説明する。コンプレッサインペラは、Al−Cu−Mg系合金である2618合金(調質状態T6:溶体化処理後の人工時効処理)で形成されている。コンプレッサインペラの使用環境温度は、250℃未満である。まず、コンプレッサインペラの異常高温曝露を検出するためのマスター曲線の作成について説明する。 A case of detecting abnormal high temperature exposure in a compressor impeller used for a supercharger or the like will be described. The compressor impeller is formed of a 2618 alloy (tempered state T6: artificial aging treatment after solution treatment) which is an Al-Cu-Mg-based alloy. The operating environment temperature of the compressor impeller is less than 250°C. First, the creation of a master curve for detecting abnormally high temperature exposure of the compressor impeller will be described.

マスター曲線用供試体には、コンプレッサインペラと同一組成の2618合金材(調質状態T6)を、120℃から350℃(120℃、140℃、160℃、180℃、200℃、250℃、300℃、350℃)の各熱曝露温度で最長10000時間まで各々熱曝露したものと、未曝露のものと、を使用した。 For the master curve specimen, a 2618 alloy material (tempered state T6) having the same composition as the compressor impeller was used, and the temperature was 120°C to 350°C (120°C, 140°C, 160°C, 180°C, 200°C, 250°C, 300). C., 350.degree. C.) at each heat exposure temperature for up to 10,000 hours and those not exposed to heat were used.

マスター曲線用供試体について、室温で、熱曝露前後の導電率を測定した。導電率測定は、渦電流式導電率測定法で行った。測定装置には、GE社製シグマテスタautoSigma3000(渦電流式)を用いた。 The electrical conductivity before and after thermal exposure was measured for the master curve test piece at room temperature. The conductivity was measured by the eddy current conductivity measuring method. As a measuring device, a Sigma Sigma tester autoSigma3000 (eddy current type) was used.

マスター曲線用供試体について、室温で、熱曝露前後の硬さ測定を行った。硬さ測定は、マイクロビッカース硬さ測定法により行った。硬さ測定用サンプルについては、マスター曲線用供試体から小片(長さ10mm×幅5mm×厚み3mm)を切り出して樹脂埋めし、耐水研磨紙(エメリー紙)で#2000番まで研磨して用意した。硬さ試験機には、明石製作所製 AKASHI MVK−Hardness Testerを用いた。試験条件は、荷重1kgf、負荷時間15sとした。 The hardness of the master curve specimen was measured at room temperature before and after heat exposure. The hardness was measured by the micro Vickers hardness measuring method. For hardness measurement samples, prepare small pieces (length 10 mm x width 5 mm x thickness 3 mm t ) from the master curve specimen, bury them with resin, and polish them to #2000 with water resistant abrasive paper (emery paper). did. As a hardness tester, AKASHI MVK-Hardness Tester manufactured by Akashi Seisakusho was used. The test conditions were a load of 1 kgf and a load time of 15 s.

熱曝露前後の導電率の変化量と、硬さの変化量との関係を示すマスター曲線を作成した。図5は、マスター曲線を示すグラフである。図5のグラフでは、横軸に硬さの変化量を取り、縦軸に導電率の変化量を取り、熱曝露温度が250℃未満の場合の熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を実線で表し、熱曝露温度が250℃以上の場合の熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を破線で表している。 A master curve showing the relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness was created. FIG. 5 is a graph showing a master curve. In the graph of FIG. 5, the horizontal axis represents the amount of change in hardness, the vertical axis represents the amount of change in conductivity, and the amount of change in conductivity before and after thermal exposure when the thermal exposure temperature is less than 250° C. The curve showing the relationship with the amount of change in hardness is represented by a solid line, and the curve showing the relationship between the amount of change in conductivity before and after heat exposure when the heat exposure temperature is 250°C or more and the amount of change in hardness is shown with a broken line. It represents.

熱曝露温度が250℃未満の場合の曲線と、熱曝露温度が250℃以上の場合の曲線とは、異なる曲線となり、2つの曲線に区分できることを見出した。このように、熱曝露温度が250℃未満の場合と、熱曝露温度が250℃以上の場合とは、熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線が異なることが明らかとなった。 It was found that the curve when the heat exposure temperature is less than 250° C. and the curve when the heat exposure temperature is 250° C. or higher are different curves and can be divided into two curves. As described above, when the heat exposure temperature is less than 250° C. and when the heat exposure temperature is 250° C. or more, a curve showing the relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness is It turned out to be different.

次に、250℃未満の使用環境下で熱曝露されたコンプレッサインペラの異常高温曝露を検出する方法について説明する。まず、コンプレッサインペラにおける熱曝露前後の導電率を、渦電流式導電率測定法で測定する。そして、コンプレッサインペラにおける熱曝露前後の導電率の変化量を算出する。コンプレッサインペラにおける熱曝露前後の硬さを、マイクロビッカース硬さ試験法で測定する。そして、コンプレッサインペラにおける熱曝露前後の硬さの変化量を算出する。 Next, a method for detecting an abnormally high temperature exposure of the compressor impeller exposed to heat under a use environment of less than 250° C. will be described. First, the electrical conductivity of the compressor impeller before and after heat exposure is measured by the eddy current electrical conductivity measuring method. Then, the amount of change in conductivity of the compressor impeller before and after heat exposure is calculated. The hardness of the compressor impeller before and after heat exposure is measured by the micro Vickers hardness test method. Then, the amount of change in hardness before and after heat exposure in the compressor impeller is calculated.

予め求めておいたマスター曲線用供試体における熱曝露前後の導電率の変化量及び硬さの変化量との関係を示すデータとして、図5に示すマスター曲線を用いることにより、コンプレッサインペラの異常高温曝露を検出する。例えば、コンプレッサインペラにおける熱曝露前後の導電率の変化量が3.0(%IACS)で、硬さの変化量ΔHVが−10である場合には、図5の実線で示した曲線に対応する。これにより、コンプレッサインペラの熱曝露温度は250℃未満であると判定されて、異常高温曝露が生じていないと判断される。また、例えば、コンプレッサインペラにおける熱曝露前後の導電率の変化量が5.0(%IACS)で、硬さの変化量ΔHVが−50である場合には、図5の破線で示した曲線に対応する。これにより、コンプレッサインペラの熱曝露温度は250℃以上であると判定されて、異常高温曝露が検出される。 By using the master curve shown in FIG. 5 as the data showing the relationship between the amount of change in conductivity and the amount of change in hardness before and after heat exposure in the master curve test piece obtained in advance, by using the master curve shown in FIG. Detect exposure. For example, when the amount of change in conductivity before and after heat exposure in the compressor impeller is 3.0 (%IACS) and the amount of change in hardness ΔHV is −10, this corresponds to the curve shown by the solid line in FIG. .. As a result, the heat exposure temperature of the compressor impeller is determined to be less than 250° C., and it is determined that the abnormal high temperature exposure has not occurred. Further, for example, when the amount of change in conductivity before and after heat exposure in the compressor impeller is 5.0 (%IACS) and the amount of change in hardness ΔHV is −50, the curve indicated by the broken line in FIG. Correspond. As a result, the heat exposure temperature of the compressor impeller is determined to be 250° C. or higher, and the abnormal high temperature exposure is detected.

10 異常高温曝露検出装置
12 導電率測定手段
14 硬さ測定手段
16 制御手段
18 出力手段
20 異常高温曝露検出手段
22 記憶手段
10 Abnormal High Temperature Exposure Detecting Device 12 Conductivity Measuring Means 14 Hardness Measuring Means 16 Control Means 18 Output Means 20 Abnormal High Temperature Exposure Detecting Means 22 Storage Means

Claims (4)

250℃未満の使用環境下で熱曝露される析出硬化型アルミニウム合金部材の異常高温曝露を検出する析出硬化型アルミニウム合金部材の異常高温曝露検出方法であって、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定工程と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定工程と、
予め前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を求めておき,前記曲線と,前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と硬さの変化量のデータと、を比較して,前記析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する異常高温曝露検出工程と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の異常高温曝露検出方法。
What is claimed is: 1. A method for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member, which detects an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member that is thermally exposed under a use environment of less than 250° C.
A conductivity measuring step of measuring the conductivity before and after heat exposure in the precipitation hardening type aluminum alloy member,
A hardness measurement step of measuring the hardness before and after heat exposure in the precipitation hardening type aluminum alloy member,
The amount of change in conductivity before and after thermal exposure in the precipitation-hardening aluminum alloy that has been subjected to known heat exposure with the same composition as the precipitation-hardening aluminum alloy member in advance, and to obtain a curve showing the relationship between the amount of change in hardness Every time, the curve and the data of the amount of change in conductivity and the amount of change in hardness before and after thermal exposure in the precipitation hardening type aluminum alloy member are compared, and the heat exposure temperature of the precipitation hardening type aluminum alloy member is An abnormal high temperature exposure detection step of detecting an abnormal high temperature exposure by determining whether the temperature is lower than 250° C .;
An abnormal high temperature exposure detection method for a precipitation hardening type aluminum alloy member, comprising:
請求項1に記載の析出硬化型アルミニウム合金部材の異常高温曝露検出方法であって、
前記導電率測定工程は、渦電流式導電率測定法で測定することを特徴とする析出硬化型アルミニウム合金部材の異常高温曝露検出方法。
An abnormal high temperature exposure detection method for a precipitation hardening aluminum alloy member according to claim 1,
The method of detecting an abnormally high temperature of a precipitation hardening type aluminum alloy member, wherein the conductivity measurement step is performed by an eddy current type conductivity measurement method.
請求項1または2に記載の析出硬化型アルミニウム合金部材の異常高温曝露検出方法であって、
前記硬さ測定工程は、ビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法またはヌープ硬さ測定法で測定することを特徴とする析出硬化型アルミニウム合金部材の異常高温曝露検出方法。
An abnormal high temperature exposure detection method for the precipitation hardening type aluminum alloy member according to claim 1 or 2,
The hardness measurement step is a Vickers hardness measurement method, a Rockwell hardness measurement method, a Brinell hardness measurement method or a Knoop hardness measurement method, characterized by abnormal temperature exposure detection method of precipitation hardening type aluminum alloy member characterized by ..
250℃未満の使用環境下で熱曝露される析出硬化型アルミニウム合金部材の異常高温曝露を検出する析出硬化型アルミニウム合金部材の異常高温曝露検出装置であって、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定手段と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定手段と、
予め前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を求めておき,前記曲線と,前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と硬さの変化量のデータと、を比較して,前記析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する異常高温曝露検出手段と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の異常高温曝露検出装置。
An abnormal temperature exposure detecting device for a precipitation hardening type aluminum alloy member for detecting an abnormal high temperature exposure of a precipitation hardening type aluminum alloy member which is exposed to heat under a use environment of less than 250° C.
Conductivity measuring means for measuring the conductivity before and after heat exposure in the precipitation hardening type aluminum alloy member,
Hardness measuring means for measuring the hardness before and after thermal exposure in the precipitation hardening type aluminum alloy member,
The amount of change in conductivity before and after thermal exposure in the precipitation-hardening aluminum alloy that has been subjected to known heat exposure with the same composition as the precipitation-hardening aluminum alloy member in advance, and to obtain a curve showing the relationship between the amount of change in hardness Every time, the curve and the data of the amount of change in conductivity and the amount of change in hardness before and after thermal exposure in the precipitation hardening type aluminum alloy member are compared, and the heat exposure temperature of the precipitation hardening type aluminum alloy member is An abnormal high temperature exposure detecting means for detecting an abnormal high temperature exposure by determining whether the temperature is lower than 250° C .;
An abnormal high temperature exposure detection device for a precipitation hardening type aluminum alloy member, comprising:
JP2016105045A 2016-05-26 2016-05-26 Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member Active JP6736979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105045A JP6736979B2 (en) 2016-05-26 2016-05-26 Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105045A JP6736979B2 (en) 2016-05-26 2016-05-26 Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member

Publications (2)

Publication Number Publication Date
JP2017211291A JP2017211291A (en) 2017-11-30
JP6736979B2 true JP6736979B2 (en) 2020-08-05

Family

ID=60475410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105045A Active JP6736979B2 (en) 2016-05-26 2016-05-26 Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member

Country Status (1)

Country Link
JP (1) JP6736979B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2029584A1 (en) * 1969-06-18 1970-12-23 Kaiser Aluminum & Chemical Corp., Oakland, Calif. (V.St.A.) Method of manufacturing an electrical conductor using aluminum
JPS55141653A (en) * 1979-04-20 1980-11-05 Mitsubishi Heavy Ind Ltd Deterioration state deciding method of strong precipitation hardness type iron base alloy
JPS6275341A (en) * 1985-09-30 1987-04-07 Toshiba Corp Monitor for vacuum container
US4947117A (en) * 1989-01-03 1990-08-07 Iowa State University Research Foundation Nondestructive detection of an undesirable metallic phase, T1, during processing of aluminum-lithium alloys
JPH02183986A (en) * 1989-01-09 1990-07-18 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine
JP2773813B2 (en) * 1993-05-31 1998-07-09 株式会社神戸製鋼所 Alloy manufacturing method
JP3252672B2 (en) * 1995-08-29 2002-02-04 スズキ株式会社 Piston temperature distribution estimation method
JP2005528530A (en) * 2002-04-24 2005-09-22 ケステック イノベーションズ エルエルシー Nanophase precipitation strengthened Al alloy processed via amorphous state
JP4688096B2 (en) * 2005-01-28 2011-05-25 バブコック日立株式会社 Thermal history estimation method for heat-resistant members
JP2006257505A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability

Also Published As

Publication number Publication date
JP2017211291A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
Abbasi-Bani et al. A comparative study on the capability of Johnson–Cook and Arrhenius-type constitutive equations to describe the flow behavior of Mg–6Al–1Zn alloy
Del Valle et al. Separate contributions of texture and grain size on the creep mechanisms in a fine-grained magnesium alloy
Li et al. Fatigue strength dependence on the ultimate tensile strength and hardness in magnesium alloys
Grieb et al. Thermomechanical fatigue of cast aluminium alloys for cylinder head applications–experimental characterization and life prediction
JP2019007838A (en) Fatigue life estimation method of metal material and optimum design method applied with life fatigue estimation method
Lugo et al. Role of different material processing methods on the fatigue behavior of an AZ31 magnesium alloy
Dietrich et al. The fatigue damage development in a cast Al–Si–Cu alloy
Ye et al. The relationship between creep and tensile properties of a nickel-based superalloy
Caton et al. The influence of heat treatment and solidification time on the behavior of small-fatigue-cracks in a cast aluminum alloy
Zhang et al. Enhanced plasticity at cryogenic temperature in a magnesium alloy
JP6736979B2 (en) Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member
Ro et al. Environmental fatigue-crack surface crystallography for Al-Zn-Cu-Mg-Mn/Zr
Li et al. Simulating the residual stress in an A356 automotive wheel and its impact on fatigue life
Ilangovan et al. Effect of composition and aging time on hardness and wear behavior of Cu-Ni-Sn spinodal alloy
JP6759713B2 (en) Thermal history estimation method and thermal history estimation device for precipitation hardening aluminum alloy members
JP2010164430A (en) Method and apparatus for evaluating creep damage of metallic material
Motoyama et al. Elasto-plastic-creep constitutive equation of An Al-Si-Cu high-pressure die casting alloy for thermal stress analysis
US7841825B2 (en) Method for predicting surge in compressor
Golden et al. Variability in room temperature fatigue life of alpha+ beta processed Ti–6Al–4V
Cao et al. Influence of casting defects on fatigue behaviour of A356 aluminium alloy
US4947117A (en) Nondestructive detection of an undesirable metallic phase, T1, during processing of aluminum-lithium alloys
Jaureguizahar et al. A novel experimental method to assess the fatigue behavior of pseudoelastic NiTi wires
Omprakash et al. Creep damage evaluation of DS CM247 nickel base superalloy using alternate current potential drop technique
Sadeler Influence of contact pressure on fretting fatigue behaviour of AA 2014 alloy with dissimilar mating material
RU2567938C2 (en) Method for determining temperature of maximum serviceability of hard-alloy cutting plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6736979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151