JP6736454B2 - Ground voltage detector - Google Patents

Ground voltage detector Download PDF

Info

Publication number
JP6736454B2
JP6736454B2 JP2016215879A JP2016215879A JP6736454B2 JP 6736454 B2 JP6736454 B2 JP 6736454B2 JP 2016215879 A JP2016215879 A JP 2016215879A JP 2016215879 A JP2016215879 A JP 2016215879A JP 6736454 B2 JP6736454 B2 JP 6736454B2
Authority
JP
Japan
Prior art keywords
voltage
ground
capacitor
current transformer
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016215879A
Other languages
Japanese (ja)
Other versions
JP2018072277A (en
Inventor
善和 井上
善和 井上
Original Assignee
一般財団法人 関西電気保安協会
一般財団法人 関西電気保安協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人 関西電気保安協会, 一般財団法人 関西電気保安協会 filed Critical 一般財団法人 関西電気保安協会
Priority to JP2016215879A priority Critical patent/JP6736454B2/en
Publication of JP2018072277A publication Critical patent/JP2018072277A/en
Application granted granted Critical
Publication of JP6736454B2 publication Critical patent/JP6736454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、例えば、構内高圧電路の絶縁劣化状態を監視する高圧絶縁監視装置で使用され、地絡事故の前兆現象発生時に構内高圧電路の対地電圧を検出する対地電圧検出装置に関する。 The present invention relates to a ground voltage detecting device used in, for example, a high-voltage insulation monitoring device that monitors an insulation deterioration state of a high-voltage premises road and detects a ground voltage of a high-voltage premises road when a precursor phenomenon of a ground fault occurs.

送配電事業者より配電線網を通じて電力供給される受電設備には、各種の電気設備(例えば、電力ケーブル、避雷器、電力変圧器、進相コンデンサ、計器用変圧器、変流器など)が接続されている。これら各種の電気設備において、電気設備の絶縁劣化により構内設備の停電を伴う地絡事故が発生することがある。 A variety of electrical equipment (eg, power cables, lightning arresters, power transformers, phase-advancing capacitors, instrument transformers, current transformers, etc.) are connected to the power receiving equipment that is supplied with power from the power transmission and distribution company through the distribution line network. Has been done. In these various types of electrical equipment, a ground fault may occur due to a power failure of the premises equipment due to insulation deterioration of the electrical equipment.

この地絡事故に進展する前兆現象として小規模の地絡現象である微地絡がある。このような地絡事故の前兆現象が発生した時、構内高圧電路に流入する地絡電流を常時計測することにより、構内高圧電路の絶縁劣化状態を監視するようにしている。 As a precursory phenomenon that progresses to this ground fault accident, there is a small-scale ground fault phenomenon, that is, a small ground fault. When such a precursor phenomenon of a ground fault accident occurs, the ground fault current flowing into the high-voltage premises road is constantly measured to monitor the insulation deterioration state of the high-voltage premises road.

この絶縁劣化状態の監視では、高圧電路との接続点である受電点から負荷側を構内と称して保護範囲とし、前述の受電点から系統側を構外と称して保護範囲外とすることで、構内高圧電路に接続された電気設備を保護するようにしている。 In this insulation deterioration state monitoring, the load side from the power receiving point, which is the connection point with the high-voltage path, is referred to as the premises, and the system side is referred to as the outside from the above-mentioned power receiving point and is outside the protection range. It is designed to protect the electrical equipment connected to the high-voltage path on the premises.

つまり、常時、三相高圧電路の各相の対地電圧(主に位相)を検出し、これを基準値とする。別の手段の零相変流器で検出した零相電流をこの基準値の各相対地電圧で演算(位相検波)することにより、対地電圧と同相成分を地絡電流として得ることができる。このようにして得られた地絡電流から地絡事故が構内地絡であるか否かを判定することで、構内高圧電路の絶縁劣化状態を監視するようにしている。 That is, the ground voltage (mainly the phase) of each phase of the three-phase high-voltage path is always detected, and this is used as the reference value. By calculating (phase detection) the zero-phase current detected by the zero-phase current transformer of another means with each relative ground voltage of this reference value, the in-phase component with respect to the ground voltage can be obtained as a ground fault current. By determining whether or not the ground fault accident is a ground fault in the premises from the ground fault current obtained in this manner, the insulation deterioration state of the high piezoelectric path in the premises is monitored.

従来、構内高圧電路の対地電圧を検出するための対地電圧検出装置として、例えば、特許文献1で開示されたものが提案されている。 Conventionally, as a ground voltage detection device for detecting a ground voltage of a high-voltage path in a premises, for example, one disclosed in Patent Document 1 has been proposed.

この特許文献1で開示された対地電圧検出装置は、図14に示すように、対地電圧が印加される入力端子1と大地との間に第1のコンデンサ2と第2のコンデンサ3とを直列接続し、第1のコンデンサ2と第2のコンデンサ3の接続点から出力端子4を導出した回路構成を具備する。 As shown in FIG. 14, the ground voltage detection device disclosed in Patent Document 1 includes a first capacitor 2 and a second capacitor 3 in series between an input terminal 1 to which a ground voltage is applied and the ground. It has a circuit configuration in which an output terminal 4 is derived from the connection point of the first capacitor 2 and the second capacitor 3 which are connected to each other.

この対地電圧検出装置では、入力端子1に入力される対地電圧を第1のコンデンサ2と第2のコンデンサ3とで分圧し、このコンデンサ分圧により出力端子4に現出する出力電圧に基づいて対地電圧を検出するようにしている。 In this ground voltage detection device, the ground voltage input to the input terminal 1 is divided by the first capacitor 2 and the second capacitor 3, and based on the output voltage appearing at the output terminal 4 by this capacitor division. It detects the ground voltage.

特開2003−215167号公報JP, 2003-215167, A

「CVT(コンデンサ分圧型計器用変圧器)」(宮田明則技術士事務所 2009年発行)"CVT (capacitor voltage divider type transformer)" (Akinori Miyata Technician Office, 2009)

ところで、特許文献1で開示された対地電圧検出装置は、対地電圧が印加される入力端子1と大地との間に第1のコンデンサ2と第2のコンデンサ3とを直列接続し、第1のコンデンサ2と第2のコンデンサ3の接続点から出力端子4を導出した回路構成を具備することから、以下のような課題を持つ。 By the way, the ground voltage detection device disclosed in Patent Document 1 has a first capacitor 2 and a second capacitor 3 connected in series between the input terminal 1 to which a ground voltage is applied and the ground, and Since it has a circuit configuration in which the output terminal 4 is derived from the connection point of the capacitor 2 and the second capacitor 3, it has the following problems.

つまり、この対地電圧検出装置では、第2のコンデンサ3が破壊する事故、例えば高圧電路に発生した過電圧による破壊および焼損事故や、物理的外圧ショック(物損)による破壊事故などによる断線により電路が開放状態になると、例えば6.6kV程度の高電圧が出力端子4に現出することになる。このように、高電圧が出力端子4に現出すると、対地電圧検出装置を取り扱う作業者にとって感電事故や放電による火災時の発生など非常に危険で安全な設備環境を確保できない。 That is, in this ground voltage detecting device, the electric circuit is broken due to an accident that the second capacitor 3 is broken, for example, a breakage and a burnout accident due to an overvoltage generated in the high-voltage path, or a breakage accident due to a physical external pressure shock (property loss). In the open state, a high voltage of about 6.6 kV appears at the output terminal 4. As described above, when a high voltage appears at the output terminal 4, it is very dangerous for the operator who handles the ground voltage detecting device to receive a shock hazard or a fire due to electric discharge, and cannot secure a safe equipment environment.

そこで、本発明は前述の課題に鑑みて提案されたもので、その目的とするところは、構内高圧電路の対地電圧を検出するに際して、安全性に富んだ対地電圧検出装置を提供することにある。 Therefore, the present invention has been proposed in view of the above problems, and an object of the present invention is to provide a ground voltage detection device that is highly safe in detecting the ground voltage of a high-voltage premises road. ..

前述した目的を達成するための技術的手段として、本発明は、高圧電路の高圧端子と大地との間に高圧コンデンサを接続し、その高圧コンデンサの接地線に流れる電流を計測する変流器を高圧コンデンサの接地線に取り付け、その変流器の二次側端子間にコンデンサ端末を接続し、変流器の一次側端子間に高圧コンデンサが接続されていないことを特徴とする。 As a technical means for achieving the above-mentioned object, the present invention provides a current transformer that connects a high-voltage capacitor between a high-voltage terminal of a high-voltage piezoelectric path and ground and measures the current flowing through the ground wire of the high-voltage capacitor. It is characterized in that it is attached to the ground wire of a high voltage capacitor, a capacitor terminal is connected between the secondary side terminals of the current transformer, and the high voltage capacitor is not connected between the primary side terminals of the current transformer .

本発明の対地電圧検出装置では、高圧コンデンサの接地線に取り付けられた変流器の二次側端子間にコンデンサ端末を接続したことにより、高圧コンデンサのコンデンサ容量とコンデンサ端末のコンデンサ容量による変流器の変成比機能を利用したコンデンサ分圧が可能となり、このコンデンサ分圧により変流器の二次電圧を計測し、変成比を乗算した値から、高圧電路の対地電圧を検出することができる。 In the ground voltage detecting device of the present invention, by connecting the capacitor terminal between the secondary side terminals of the current transformer attached to the ground wire of the high voltage capacitor, the current change due to the capacitor capacity of the high voltage capacitor and the capacitor capacity of the capacitor terminal. Capacitor voltage division using the transformer's transformation ratio function is possible, the secondary voltage of the current transformer is measured by this capacitor division voltage, and the ground voltage of the high piezoelectric path can be detected from the value multiplied by the transformation ratio. ..

この対地電圧検出装置では、高圧コンデンサの接地線に変流器を取り付けた構成であることから、変流器二次側のコンデンサ端末の断線により開放状態になっても、例えば6.6kV程度の高電圧が変流器の二次側端子間に現出することはない。そのため、対地電圧検出装置を取り扱う作業者にとって安全性に富んだ対地電圧検出装置を提供することができる。 In this ground voltage detecting device, since the current transformer is attached to the ground wire of the high-voltage capacitor, even if it is opened due to the disconnection of the capacitor terminal on the secondary side of the current transformer, for example, about 6.6 kV. No high voltage appears between the secondary terminals of the current transformer. Therefore, it is possible to provide a ground voltage detecting device that is highly safe for an operator who handles the ground voltage detecting device.

本発明における高圧コンデンサは、高圧気中開閉器に内蔵された碍子型コンデンサであることが望ましい。 The high-voltage capacitor according to the present invention is preferably an insulator type capacitor built in a high-voltage air switch.

このような構成を採用すれば、高圧気中開閉器に内蔵した3個の碍子型コンデンサの各相の接地線に変流器を設置し、その接地線に流れる電流を変流器で検出し、変流器の二次側端子間に現出した出力電圧を変成比演算することにより、三相高圧電路の各相の対地電圧(主に位相)を検出し基準値とする。別の手段の零相変流器で検出した零相電流をこの基準値の各相対地電圧で演算(位相検波)することにより、地絡事故が構内地絡であるか否かを判定することで、構内高圧電路の絶縁劣化状態を容易に監視することができる。 If such a configuration is adopted, a current transformer is installed in the ground wire of each phase of the three insulator capacitors built into the high voltage air switch, and the current flowing in the ground wire is detected by the current transformer. , The ground voltage (mainly the phase) of each phase of the three-phase high piezoelectric path is detected and used as a reference value by calculating the transformation ratio of the output voltage developed between the secondary side terminals of the current transformer. By calculating (phase detection) the zero-phase current detected by the zero-phase current transformer of another means with each relative ground voltage of this reference value, it is determined whether the ground fault is a ground fault in the premises. Thus, it is possible to easily monitor the insulation deterioration state of the high-voltage path in the premises.

本発明における接地線は、構内高圧電路に設置された電力ケーブルのシールド線の接地線であることが望ましい。 The ground wire in the present invention is preferably the ground wire of the shield wire of the power cable installed in the high voltage path of the premises.

このような構成を採用すれば、電力ケーブルの三相各相のシールド線に3個の変流器をそれぞれ設置し、その接地線に流れる電流を変流器で検出し、変流器の二次側端子間に現出する出力電圧を変成比演算することにより、三相高圧電路の各相の対地電圧(主に位相)を検出し基準値とする。別の手段の零相変流器で検出した零相電流をこの基準値の各相対地電圧で演算(位相検波)することにより、地絡事故が構内地絡であるか否かを判定することで、構内高圧電路の絶縁劣化状態を容易に監視することができる。 If such a configuration is adopted, three current transformers are installed on each three-phase shielded wire of the power cable, and the current flowing through the ground wire is detected by the current transformer, and the two current transformers are detected. By calculating the transformation ratio of the output voltage appearing between the secondary terminals, the ground voltage (mainly the phase) of each phase of the three-phase high piezoelectric path is detected and used as the reference value. By calculating (phase detection) the zero-phase current detected by the zero-phase current transformer of another means with each relative ground voltage of this reference value, it is determined whether the ground fault is a ground fault in the premises. Thus, it is possible to easily monitor the insulation deterioration state of the high-voltage path in the premises.

なお、変流器の二次側端子間に現出する出力電圧に基づいて算出された各相の対地電圧を加算することにより零相電圧を得ることができる。 The zero-phase voltage can be obtained by adding the ground voltage of each phase calculated based on the output voltage appearing between the secondary side terminals of the current transformer.

本発明によれば、高圧コンデンサの接地線に取り付けられた変流器の二次側端子間にコンデンサ端末を接続したことにより、変流器の変成比機能を利用したコンデンサ分圧が可能となり、そのコンデンサ分圧により対地電圧を検出することができる。 According to the present invention, by connecting the capacitor terminal between the secondary side terminals of the current transformer attached to the ground wire of the high-voltage capacitor, it is possible to divide the capacitor voltage using the transformation ratio function of the current transformer, The voltage to ground can be detected by the voltage division of the capacitor.

一方、コンデンサ端末の断線により開放状態になっても、例えば6.6kV程度の高電圧が変流器の二次側端子間に現出することはない。そのため、対地電圧検出装置を取り扱う作業者にとって安全性に富んだ対地電圧検出装置を提供することができる。 On the other hand, even if the capacitor terminal is opened due to disconnection, a high voltage of, for example, about 6.6 kV does not appear between the secondary side terminals of the current transformer. Therefore, it is possible to provide a ground voltage detecting device that is highly safe for an operator who handles the ground voltage detecting device.

本発明の実施形態で、対地電圧検出装置を示す回路図である。It is a circuit diagram which shows the ground voltage detection apparatus in embodiment of this invention. 三相各相の対地電圧と零相電圧との関係を示すベクトル図である。It is a vector diagram which shows the relationship between the ground voltage of each three-phase and zero phase voltage. コンデンサ端末、抵抗端末およびリアクトル端末におけるインピーダンスと周波数との関係を示す特性図である。It is a characteristic view which shows the relationship between the impedance and frequency in a capacitor terminal, a resistance terminal, and a reactor terminal. 変流器の二次側端子間に抵抗端末を設けた試験回路を示す構成図である。It is a block diagram which shows the test circuit which provided the resistance terminal between the secondary side terminals of a current transformer. 変流器の二次側端子間に抵抗端末を接続した試験結果の一例を示す波形図である。It is a waveform diagram which shows an example of the test result which connected the resistance terminal between the secondary side terminals of a current transformer. 変流器の二次側端子間に抵抗端末を接続した試験結果の他例を示す波形図である。It is a wave form diagram which shows the other example of the test result which connected the resistance terminal between the secondary side terminals of a current transformer. 変流器の二次側端子間にリアクトル端末を設けた試験回路を示す構成図である。It is a block diagram which shows the test circuit which provided the reactor terminal between the secondary side terminals of a current transformer. 変流器の二次側端子間にリアクトル端末を接続した試験結果の一例を示す波形図である。It is a waveform diagram which shows an example of the test result which connected the reactor terminal between the secondary side terminals of a current transformer. 変流器の二次側端子間にリアクトル端末を接続した試験結果の他例を示す波形図である。It is a wave form diagram which shows the other example of the test result which connected the reactor terminal between the secondary side terminals of a current transformer. 変流器の二次側端子間にコンデンサ端末を設けた試験回路を示す構成図である。It is a block diagram which shows the test circuit which provided the capacitor terminal between the secondary side terminals of a current transformer. 変流器の二次側端子間にコンデンサ端末を接続した試験結果の一例を示す波形図である。It is a waveform diagram which shows an example of the test result which connected the capacitor terminal between the secondary side terminals of a current transformer. 変流器の二次側端子間にコンデンサ端末を接続した試験結果の他例を示す波形図である。It is a wave form diagram which shows the other example of the test result which connected the capacitor terminal between the secondary side terminals of a current transformer. 変流器の二次側端子間にコンデンサ端末を接続した試験結果の他例を示す波形図である。It is a wave form diagram which shows the other example of the test result which connected the capacitor terminal between the secondary side terminals of a current transformer. 従来の対地電圧検出装置を示す回路図である。It is a circuit diagram which shows the conventional ground voltage detection apparatus.

本発明に係る対地電圧検出装置の実施形態を図面に基づいて以下に詳述する。 An embodiment of a ground voltage detecting device according to the present invention will be described below in detail with reference to the drawings.

送配電事業者より配電線網を通じて電力供給される受電設備には、各種の電気設備(例えば、電力ケーブル、避雷器、電力変圧器、進相コンデンサ、計器用変圧器、変流器など)が接続されている。これら各種の電気設備において、電気設備の絶縁劣化により構内設備の停電を伴う地絡事故が発生することがある。 A variety of electrical equipment (eg, power cables, lightning arresters, power transformers, phase-advancing capacitors, instrument transformers, current transformers, etc.) are connected to the power receiving equipment that is supplied with power from the power transmission and distribution company through the distribution line network. Has been done. In these various types of electrical equipment, a ground fault may occur due to a power failure of the premises equipment due to insulation deterioration of the electrical equipment.

この地絡事故に進展する前兆現象として小規模の地絡現象である微地絡がある。このような地絡事故の前兆現象が発生した時、構内高圧電路に流入する地絡電流を常時監視することにより、構内高圧電路の絶縁劣化状態を監視するようにしている。 As a precursory phenomenon that progresses to this ground fault accident, there is a small-scale ground fault phenomenon, that is, a small ground fault. When such a precursory phenomenon of a ground fault accident occurs, the ground fault current flowing into the high voltage premises road is constantly monitored to monitor the insulation deterioration state of the high piezo voltage road.

この絶縁劣化状態の監視では、高圧電路との接続点である受電点から負荷側を構内と称して保護範囲とし、前述の受電点から系統側を構外と称して保護範囲外とすることで、構内高圧電路に接続された電気設備を保護するようにしている。 In this insulation deterioration state monitoring, the load side from the power receiving point, which is the connection point with the high-voltage path, is referred to as the premises, and the system side is referred to as the outside from the above-mentioned power receiving point and is outside the protection range. It is designed to protect the electrical equipment connected to the high-voltage path on the premises.

つまり、常時、三相高圧電路の各相の対地電圧(主に位相)を検出し基準値とする。別の手段の零相変流器で検出した零相電流をこの基準値の各相対地電圧で演算(位相検波)することにより、対地電圧と同相成分を地絡電流として得ることができる。この得られた地絡電流からその地絡事故が構内地絡であるか否かを判定することで、構内高圧電路の絶縁劣化状態を監視するようにしている。 That is, the ground voltage (mainly the phase) of each phase of the three-phase high piezoelectric path is constantly detected and used as the reference value. By calculating (phase detection) the zero-phase current detected by the zero-phase current transformer of another means with each relative ground voltage of this reference value, the in-phase component with respect to the ground voltage can be obtained as a ground fault current. By determining from the obtained ground fault current whether or not the ground fault is a ground fault in the premises, the insulation deterioration state of the high piezoelectric path in the premises is monitored.

本出願人は、例えば6.6kVの非接地系電路(三相回路)において、変電所から配電線路を通じて分岐接続される構内高圧電路の絶縁劣化状態を監視する高圧絶縁監視装置を先に提案している(特開2015−108618号公報)。 The present applicant has previously proposed a high-voltage insulation monitoring device for monitoring the insulation deterioration state of a high-voltage piezoelectric road in a premises, which is branched and connected from a substation through a distribution line in a non-grounded electric circuit (three-phase circuit) of 6.6 kV, for example. (Japanese Patent Application Laid-Open No. 2015-108618).

この実施形態において、構内高圧電路の対地電圧を検出するための対地電圧検出装置は、高圧絶縁監視装置(特開2015−108618号公報)により構内高圧電路の絶縁劣化状態を監視する場合に利用される。 In this embodiment, the ground voltage detection device for detecting the ground voltage of the high-voltage premises road is used when the insulation deterioration state of the high-voltage premises is monitored by the high-voltage insulation monitoring device (JP-A-2015-108618). It

この実施形態の対地電圧検出装置は、図1に示すように、高圧回路の高圧端子11と大地との間に高圧コンデンサ12を接続し、その高圧コンデンサ12の接地線13に流れる電流を計測する変流器14を高圧コンデンサ12の接地線13に取り付け、その変流器14の二次側端子15間にコンデンサ端末16を接続した回路構成を具備する。 As shown in FIG. 1, the ground voltage detecting device of this embodiment connects a high voltage capacitor 12 between a high voltage terminal 11 of a high voltage circuit and the ground, and measures a current flowing through a ground wire 13 of the high voltage capacitor 12. The current transformer 14 is attached to the ground wire 13 of the high-voltage capacitor 12, and a circuit configuration in which a capacitor terminal 16 is connected between the secondary side terminals 15 of the current transformer 14 is provided.

一般的に、構内高圧電路に架設された電力需要家の電柱には、高圧気中開閉器(PAS)が設置されている。高圧絶縁監視装置に対地電圧検出装置を適用する場合、その対地電圧検出装置の高圧コンデンサ12は、高圧気中開閉器に内蔵された碍子型コンデンサとすることが可能である。この場合、変流器14は、碍子型コンデンサの接地線に取り付けられることになる。 In general, a high-voltage air switch (PAS) is installed on a power pole of a power consumer installed on a high-voltage path in a premises. When the ground voltage detecting device is applied to the high voltage insulation monitoring device, the high voltage capacitor 12 of the ground voltage detecting device can be an insulator type capacitor built in the high voltage air switch. In this case, the current transformer 14 is attached to the ground wire of the insulator type capacitor.

また、高圧コンデンサ12を前述の碍子型コンデンサとする以外に、高圧絶縁監視装置に対地電圧検出装置を適用する場合、その対地電圧検出装置の接地線13は、構内高圧電路に設置されたCVT型電力ケーブルのシールド線の接地線とすることも可能である。この場合、高圧コンデンサ12は、電力ケーブルの高圧電路とシールド線間の対地静電容量となる。 Further, in addition to the above-mentioned insulator type capacitor for the high voltage capacitor 12, when the ground voltage detecting device is applied to the high voltage insulation monitoring device, the ground wire 13 of the ground voltage detecting device is a CVT type installed on the high voltage premises of the premises. It is also possible to use the ground wire of the shield wire of the power cable. In this case, the high-voltage capacitor 12 serves as a ground capacitance between the high-voltage path of the power cable and the shield wire.

碍子型コンデンサの接地線あるいは電力ケーブルのシールド線の接地線に取り付ける変流器14としては、クランプ式変流器を使用することが可能である。このクランプ式変流器を採用することにより、取り付け作業が簡単になり、絶縁監視を簡易に行うことができる。なお、クランプ式以外に、例えば、貫通式変流器であってもよい。また、電力ケーブルのシールド線の接地線を三相一体型変流器で各相の電流を個々に計測できるものであってもよい。 A clamp-type current transformer can be used as the current transformer 14 attached to the ground wire of the insulator capacitor or the ground wire of the shield wire of the power cable. By adopting this clamp type current transformer, the installation work is simplified and the insulation can be easily monitored. In addition to the clamp type, for example, a through type current transformer may be used. Further, the ground wire of the shielded wire of the power cable may be a three-phase integrated current transformer capable of individually measuring the current of each phase.

以上の構成からなる対地電圧検出装置では、変流器14の二次側端子15間にコンデンサ端末16を接続したことにより、高圧コンデンサ12のコンデンサ容量とコンデンサ端末16のコンデンサ容量による変流器16の変成比機能を利用したコンデンサ分圧が可能となる。 In the ground voltage detection device having the above-described configuration, the capacitor terminal 16 is connected between the secondary side terminals 15 of the current transformer 14, so that the current transformer 16 based on the capacitor capacity of the high voltage capacitor 12 and the capacitor capacity of the capacitor terminal 16 is connected. Capacitor voltage division using the transformation ratio function of is possible.

この高圧コンデンサ12とコンデンサ端末16によるコンデンサ分圧でもって対地電圧を検出することができる。つまり、変流器14の二次側端子15間に現出する出力電圧に、変流器14の変成比に基づく変換係数を乗算することにより対地電圧を算出することができる。 The ground voltage can be detected by the partial voltage division of the high voltage capacitor 12 and the capacitor terminal 16. That is, the ground voltage can be calculated by multiplying the output voltage appearing between the secondary side terminals 15 of the current transformer 14 by the conversion coefficient based on the transformation ratio of the current transformer 14.

つまり、VOUT=C1/(C1+α・C2)×VINとなる。ここで、VINは高圧端子11に印加される入力電圧[V]、VOUTは変流器14の二次側端子15間に現出する出力電圧[V]、C1は高圧コンデンサ12の容量[F]、C2はコンデンサ端末16の容量[F]、αは変成比(変流器14の二次側巻数N2/一次側巻数N1)である。 That is, V OUT =C 1 /(C 1 +α·C 2 )×V IN . Here, V IN is the input voltage [V] applied to the high voltage terminal 11, V OUT is the output voltage [V] that appears between the secondary side terminals 15 of the current transformer 14, and C 1 is the voltage of the high voltage capacitor 12. Capacitance [F], C 2 is the capacity [F] of the capacitor terminal 16, and α is the transformation ratio (secondary winding number N 2 /primary side winding number N 1 of the current transformer 14 ).

なお、電力ケーブルのシールド線の接地線に変流器14を取り付ける場合、電力ケーブルの長さや太さにより、電力ケーブルにおける対地静電容量が異なるため、シールド線に流れる電流は、一相当たりの電力ケーブル芯線に印加している対地電圧と電力ケーブルにおける対地静電容量のインピーダンスの関数になる。 When the current transformer 14 is attached to the ground wire of the shielded wire of the power cable, the ground capacitance of the power cable differs depending on the length and the thickness of the power cable, so that the current flowing through the shielded wire depends on the phase. It is a function of the ground voltage applied to the core of the power cable and the impedance of the ground capacitance of the power cable.

つまり、ISC=V/ZC[A]、ZC=1/ωC〔ωは角速度(2πf)〕となる。ここで、ZCは電力ケーブルにおける対地静電容量のインピーダンス(1相当り)[Ω]、Vは対地電圧[V]、Cは電力ケーブルにおける対地静電容量[F]、ISCは電力ケーブルシールド線に流れる電流[A]である。 That is, I SC =V/Z C [A], Z C =1/ωC [ω is the angular velocity (2πf)]. Here, Z C is the impedance (1 equivalent) [Ω] of the ground capacitance of the power cable, V is the ground voltage [V], C is the ground capacitance of the power cable [F], and I SC is the power cable. It is the current [A] flowing through the shield line.

これから、電力ケーブルの対地静電容量を計測しまたは設定することで、シールド線に流れる電流から対地電圧を計測することができる。 From this, by measuring or setting the ground capacitance of the power cable, the ground voltage can be measured from the current flowing through the shielded wire.

その場合、停電させて電力ケーブルの対地静電容量を直接的に計測するか、あるいは、停電させずに計器用変圧器または三相動力変圧器を利用することにより電力ケーブルの対地静電容量を間接的に計測すればよい。 In that case, the ground capacitance of the power cable can be measured directly by causing a power failure, or the ground capacitance of the power cable can be measured by using an instrument transformer or a three-phase power transformer without a power failure. It may be measured indirectly.

計器用変圧器(VT)を利用する場合は、電力ケーブルの対地静電容量を間接的に計測する方法として、高圧電路の線間電圧を変成比(60=6600/110)で低圧に変成された二次電圧を利用する方法がある。 When using a transformer for a meter (VT), as a method of indirectly measuring the capacitance to ground of the power cable, the line voltage of the high-voltage line is transformed to a low voltage with a transformation ratio (60=6600/110). There is a method of utilizing the secondary voltage.

計器用変圧器が計測している二次電圧は、高圧電路の線間電圧を計器用変圧器の変成比で除算した値である。従って、計器用変圧器で計測した二次電圧を変成比倍することにより高圧電路の線間電圧を演算できる。そして、対地電圧は、線間電圧からY−Δ電圧変換することで得られる。 The secondary voltage measured by the instrument transformer is the value obtained by dividing the line voltage of the high-voltage path by the transformation ratio of the instrument transformer. Therefore, the line voltage of the high piezoelectric path can be calculated by multiplying the secondary voltage measured by the instrument transformer by the transformation ratio. The ground voltage is obtained by converting the line voltage into a Y-Δ voltage.

次に、電力ケーブルの各相対地インピーダンスと静電容量は、得られた対地電圧を計測した各相シールド線電流で除算することで得られる。さらに、各相対地静電容量C[F]は、電力ケーブルの各相対地インピーダンスを角速度ω(2πf、f=50/60Hz)で除算することで得られる。 Next, the relative ground impedance and the capacitance of the power cable are obtained by dividing the obtained ground voltage by the measured shielded line current of each phase. Further, each relative ground capacitance C[F] is obtained by dividing each relative ground impedance of the power cable by the angular velocity ω (2πf, f=50/60 Hz).

一方、三相動力変圧器を利用する場合は、三相動力変圧器の負荷電流による電圧降下が生じている。変圧器の負荷率による電圧降下を補正する必要がある。その補正方法は、三相動力変圧器の銘板に記載のインピーダンス%に変圧器の負荷率の二乗を乗算し変圧器の電圧降下を得ることができる。この変圧器電圧降下を補償することにより高圧電路の線間電圧を得ることができる。そして、対地電圧は、線間電圧からY−Δ電圧変換することで得られる。 On the other hand, when a three-phase power transformer is used, a voltage drop occurs due to the load current of the three-phase power transformer. It is necessary to correct the voltage drop due to the load factor of the transformer. The correction method can obtain the voltage drop of the transformer by multiplying the impedance% described on the nameplate of the three-phase power transformer by the square of the load factor of the transformer. By compensating for this transformer voltage drop, the line voltage of the high piezoelectric path can be obtained. The ground voltage is obtained by converting the line voltage into a Y-Δ voltage.

次に、電力ケーブルの各相対地インピーダンスと対地静電容量は、得られた対地電圧を計測した各相シールド線電流で除算することで得られる。さらに、各相対地静電容量C[F]は、電力ケーブルの各相対地インピーダンスを角速度ω(2πf)で除算することで得られる。 Next, the relative ground impedance and the ground capacitance of the power cable are obtained by dividing the obtained ground voltage by the measured shield line current of each phase. Further, each relative ground capacitance C[F] is obtained by dividing each relative ground impedance of the power cable by the angular velocity ω(2πf).

以上のようにして計測された電力ケーブルの対地静電容量に基づいて対地電圧を算出することができる。 The ground voltage can be calculated based on the ground capacitance of the power cable measured as described above.

ここで、前述したように求めた三相各相の対地電圧を加算することにより、図2に示すように、零相電圧VOを求めることができる。つまり、EA=VA+VO、EB=VB+VO、EC=VC+VOから、EA+EB+EC=(VA+VB+VC)+3VOとなり、−3VO=VA+VB+VCとなる。 Here, the zero-phase voltage V O can be obtained as shown in FIG. 2 by adding the ground voltage of each of the three phases obtained as described above. That is, from E A =V A +V O , E B =V B +V O , E C =V C +V O , E A +E B +E C =(V A +V B +V C )+3 V O , and −3 V O = It becomes V A +V B +V C.

ここで、変流器14の二次側端子15間に現出した出力電圧をADC変換によりアナログ−デジタル変換し、そのデジタル数値(瞬時値)を1波形分(商用周波数1波形)のサンプル数でFT変換(フーリエ変換)することにより、対地電圧(ベクトル)の基本波成分を複素数(ベクトル)の実効値として得ることができる。 Here, the output voltage appearing between the secondary side terminals 15 of the current transformer 14 is converted from analog to digital by ADC conversion, and the digital value (instantaneous value) is sampled for one waveform (commercial frequency 1 waveform). By performing the FT transform (Fourier transform) with, the fundamental wave component of the ground voltage (vector) can be obtained as the effective value of the complex number (vector).

この対地電圧の基本波成分は、本出願人が先に提案した高圧絶縁監視装置(特開2015−108618号公報)において、電力ケーブルのシールド線の接地線に流れる電流を90°位相補正することにより得られた対地電圧の基本波成分と同等である。 The ground wave component of the ground voltage should be 90° phase-corrected for the current flowing through the ground wire of the shield wire of the power cable in the high voltage insulation monitoring device (Japanese Patent Laid-Open No. 2015-108618) previously proposed by the present applicant. It is equivalent to the fundamental wave component of the ground voltage obtained by.

前述した対地電圧の基本波成分以外に、地絡現象の分析で必要となるもう一つの波形情報は、1波形分(商用周波数1波形)の高周波成分を含む対地電圧および零相電圧の瞬時値である。つまり、対地電圧および零相電圧の瞬時値から得られる電圧波形は地絡要因の情報を含んでいる。 In addition to the fundamental wave component of the ground voltage described above, another waveform information necessary for analysis of the ground fault phenomenon is the instantaneous value of the ground voltage and zero-phase voltage including the high frequency component of one waveform (1 commercial frequency waveform). Is. That is, the voltage waveform obtained from the instantaneous values of the ground voltage and the zero-phase voltage includes information on the ground fault factor.

この実施形態の対地電圧検出装置では、コンデンサ分圧により変流器14の二次側端子15間に現出する出力電圧をサンプリング定理に基づくADC変換によりアナログ−デジタル変換したデジタル数値が対地電圧および零相電圧の瞬時値として得られる。 In the ground voltage detecting device of this embodiment, the digital value obtained by analog-digital converting the output voltage appearing between the secondary side terminals 15 of the current transformer 14 by the voltage division of the capacitor by the ADC conversion based on the sampling theorem is expressed as the ground voltage and the ground voltage. Obtained as the instantaneous value of the zero-phase voltage.

この実施形態で、高圧コンデンサ12とコンデンサ端末16によるコンデンサ分圧でもって変流器14の二次側端子15間に出力電圧が現出するように構成した利点は、高圧電路の電圧波形を変流器14の変成比でそのまま低圧電圧に変成している瞬時値であることから、基本波成分と高周波成分を含む対地電圧および零相電圧の電圧波形が得られることである。 In this embodiment, the advantage that the output voltage appears between the secondary side terminal 15 of the current transformer 14 by the capacitor partial pressure by the high voltage capacitor 12 and the capacitor terminal 16 is that the voltage waveform of the high piezoelectric path is changed. The voltage waveforms of the ground voltage and the zero-phase voltage including the fundamental wave component and the high frequency component are obtained because the instantaneous value is directly transformed to the low voltage by the transformation ratio of the current transformer 14.

また、電力ケーブルのシールド線の接地線に流れる電流を一括しまとめたシールド線電流と三相電力ケーブルの対地インピーダンスの乗算により求めることができる。つまり、VO=ISO×ZCOとなる。ここで、VOは零相電圧[V]、ZCOは 三相電力ケーブルの対地インピーダンス[Ω]、ISOは 一括した電力ケーブルのシールド線の接地線に流れる電流[A]である。 Further, the current flowing through the ground wire of the shield wire of the power cable can be obtained by multiplying the shield wire current collectively and the ground impedance of the three phase power cable. That is, V O =I SO ×Z CO . Here, the V O zero-phase voltage [V], Z CO is ground impedance of the three-phase power cable [Omega], I SO is the current [A] flows to the ground line of the shielded wire of the power cable together.

ところで、この対地電圧検出装置では、高圧コンデンサ12の接地線13に変流器14を介してコンデンサ端末16を接続した構成としている。このことから、コンデンサ端末16の断線により開放状態になっても、例えば6.6kV程度の高電圧が変流器14の二次側端子15間に現出することはない。そのため、対地電圧検出装置を取り扱う作業者にとって安全性に富んだ対地電圧検出装置を提供することができる。 By the way, in this ground voltage detection device, the capacitor terminal 16 is connected to the ground wire 13 of the high-voltage capacitor 12 via the current transformer 14. Therefore, even if the capacitor terminal 16 is opened due to the disconnection, a high voltage of, for example, about 6.6 kV does not appear between the secondary side terminals 15 of the current transformer 14. Therefore, it is possible to provide a ground voltage detecting device that is highly safe for an operator who handles the ground voltage detecting device.

コンデンサ端末16による分圧で変流器14の二次側端子15間に現出した出力電圧に基づいて構内高圧電路の対地電圧を算出する。地絡事故の前兆現象が発生した時、常時計測している対地電圧に基づいて、その地絡事故が構内地絡であるか否かを判定することで、構内高圧電路の絶縁劣化状態を監視する。 The ground voltage of the high piezoelectric path in the premises is calculated based on the output voltage developed between the secondary side terminals 15 of the current transformer 14 by the voltage division by the capacitor terminal 16. When a precursor phenomenon of a ground fault accident occurs, the insulation deterioration state of the high-voltage premises road is monitored by determining whether the ground fault accident is a ground fault in the premises based on the ground voltage that is constantly measured. To do.

高圧コンデンサ12を高圧気中開閉器の碍子型コンデンサとした場合、その碍子型コンデンサに流れる電流を変流器14で検出し、その電流および対地電圧に基づいて、その地絡事故が構内地絡であるか否かを判定することで、構内高圧電路の絶縁劣化状態を監視する。 When the high-voltage capacitor 12 is an insulator-type capacitor for a high-voltage air switch, the current flowing through the insulator-type capacitor is detected by the current transformer 14, and based on the current and the ground voltage, the ground fault is the ground fault. By deciding whether or not this is the case, the insulation deterioration state of the high piezoelectric path in the premises is monitored.

一方、接地線13を電力ケーブルのシールド線の接地線とした場合、電力ケーブルのシールド線の接地線に流れる電流を変流器14で検出し、その電流および対地電圧に基づいて、その地絡事故が構内地絡であるか否かを判定することで、構内高圧電路の絶縁劣化状態を監視する。 On the other hand, when the ground wire 13 is used as the ground wire of the shield wire of the power cable, the current flowing through the ground wire of the shield wire of the power cable is detected by the current transformer 14, and the ground fault is detected based on the current and the ground voltage. By determining whether or not the accident is a ground fault on the premises, the insulation deterioration state of the high piezoelectric path on the premises is monitored.

以下、この実施形態のように、変流器14の二次側端子15間に端末負担としてコンデンサ端末16を設ける有効性について説明する。なお、コンデンサ端末16との比較例として、他の端末負担として、抵抗端末およびリアクトル端末を例示する。 Hereinafter, the effectiveness of providing the capacitor terminal 16 as a terminal burden between the secondary side terminals 15 of the current transformer 14 as in this embodiment will be described. As a comparative example with the capacitor terminal 16, a resistance terminal and a reactor terminal will be illustrated as other terminal loads.

図3は、コンデンサ端末(C)、抵抗端末(R)およびリアクトル端末(L)におけるインピーダンスと周波数との関係を示す特性図である。 FIG. 3 is a characteristic diagram showing a relationship between impedance and frequency in the capacitor terminal (C), the resistance terminal (R), and the reactor terminal (L).

抵抗端末の場合、変流器14の二次側端子15間に現出する出力値(図中の破線参照)は、波形に含まれる高周波や低周波に対して変動しない一定の周波数数特性となる。 In the case of a resistance terminal, the output value that appears between the secondary side terminals 15 of the current transformer 14 (see the broken line in the figure) has a constant frequency number characteristic that does not fluctuate with respect to the high and low frequencies included in the waveform. Become.

また、リアクトル端末の場合、変流器14の二次側端子15間に現出する出力値(図中の一点鎖線参照)は、波形に含まれる高周波成分が増大する周波数特性となる。 Further, in the case of the reactor terminal, the output value appearing between the secondary side terminals 15 of the current transformer 14 (see the alternate long and short dash line in the figure) has a frequency characteristic in which the high frequency component included in the waveform increases.

これに対して、コンデンサ端末の場合、変流器14の二次側端子15間に現出する出力値(図中の実線参照)は、波形に含まれる高周波成分が減衰する周波数特性となる。 On the other hand, in the case of the capacitor terminal, the output value appearing between the secondary side terminals 15 of the current transformer 14 (see the solid line in the figure) has a frequency characteristic in which the high frequency component included in the waveform is attenuated.

このように、変流器14の二次側端子15間にコンデンサ端末16を設けることにより、商用周波数(50/60Hz)で得られる出力値を1.0とした場合、周波数がN倍の高周波数になると、変流器14の二次側端子15間に現出する出力値が1/N倍となる。 Thus, by providing the capacitor terminal 16 between the secondary side terminals 15 of the current transformer 14, when the output value obtained at the commercial frequency (50/60 Hz) is 1.0, the frequency is N times higher. At the frequency, the output value appearing between the secondary side terminals 15 of the current transformer 14 becomes 1/N times.

例えば、変流器14の二次側端子15間に設ける端末負担を50Ωとした場合(図中のAライン参照)、2倍の周波数(2f)時(図中のBライン参照)、リアクトル端末(L)では、インピーダンスが2倍になり、コンデンサ端末(C)では、インピーダンスが1/2倍になる。 For example, when the terminal load provided between the secondary side terminals 15 of the current transformer 14 is 50Ω (see line A in the figure), when the frequency is doubled (2f) (see line B in the figure), the reactor terminal In (L), the impedance is doubled, and in the capacitor terminal (C), the impedance is halved.

その結果、変流器14の二次側端子15間にコンデンサ端末16を接続したことにより、高圧コンデンサ12に印加されている対地電圧の商用周波数(基本波電圧)ばかりでなく、高調波、高周波およびインパルス性波形を抑制した分圧比で得ることができる。 As a result, by connecting the capacitor terminal 16 between the secondary side terminals 15 of the current transformer 14, not only the commercial frequency (fundamental wave voltage) of the ground voltage applied to the high-voltage capacitor 12 but also harmonics and high frequencies Also, it can be obtained with a partial pressure ratio in which the impulse waveform is suppressed.

ここで、対地電圧検出装置の変流器14の二次側端子15間にコンデンサ端末16を設けたことにより、二次側端子15間に現出する出力電圧の位相と対地電圧の位相とを一致させることができる。このように、対地電圧検出装置の出力電圧の位相が対地電圧の位相と一致することで、位相補正が不要となって地絡電流を簡易に計測することができる。 Here, by providing the capacitor terminal 16 between the secondary side terminals 15 of the current transformer 14 of the ground voltage detecting device, the phase of the output voltage appearing between the secondary side terminals 15 and the phase of the ground voltage are determined. Can be matched. In this way, since the phase of the output voltage of the ground voltage detecting device matches the phase of the ground voltage, the phase correction is unnecessary and the ground fault current can be easily measured.

本出願人は、コンデンサ端末16を実施例とし、そのコンデンサ端末16に代わる抵抗端末17およびリアクトル端末18を比較例として、変流器14の二次側端子15間に現出する出力電圧の位相と対地電圧の位相とを比較する試験を行った。 The applicant of the present invention uses the capacitor terminal 16 as an example, and uses the resistor terminal 17 and the reactor terminal 18 in place of the capacitor terminal 16 as comparative examples to determine the phase of the output voltage appearing between the secondary side terminals 15 of the current transformer 14. A test was conducted to compare the phase with the ground voltage.

図4は抵抗端末17とした時の試験回路を示す。この変流器14の二次側端子15間に抵抗端末17を設けた試験において、入力電圧を70.7Vrms、変流器14の巻線比を1:800、抵抗端末17(100Ω)とした時、
入力電圧 VIN=70.7[Vrms]
インピーダンス Z=1/{(2π60)・1μF}=2652.6[Ω]
変流器の一次電流 IC1=VIN/Z
=70.7V/2652.6Ω
=26.6[mA]
変流器の二次電流 IC2=IC1/巻線比
=26.6[mA]/800
=33.32[μA]
抵抗端末 R=100[Ω]
出力電圧 VOUT=IC2×R
=33.32[μA]×100Ω
∴(計算値)=3.332[mV]
実測値 VOUT(Peak)=4.99[mVP]
OUT(rms)=VOUT(Peak)/√2
=4.99/1.414
∴(実測値)=3.53[mVrms]
結果:誤差[%]={(実測値)−(計算値)}/(計算値)×100[%]
=(3.53mV−3.332mV)/3.332mV×100
=5.89[%]
抵抗端末17では、計算値と実測値の誤差は約6%であった。
FIG. 4 shows a test circuit when the resistance terminal 17 is used. In the test in which the resistance terminal 17 is provided between the secondary side terminals 15 of the current transformer 14, the input voltage is 70.7 Vrms, the winding ratio of the current transformer 14 is 1:800, and the resistance terminal 17 (100Ω). Time,
Input voltage V IN =70.7 [Vrms]
Impedance Z=1/{(2π60)·1μF}=2652.6[Ω]
Primary current of current transformer I C1 =V IN /Z
=70.7V/2652.6Ω
=26.6 [mA]
Secondary current of current transformer I C2 =I C1 /turn ratio
=26.6 [mA]/800
=33.32 [μA]
Resistance terminal R=100[Ω]
Output voltage V OUT =I C2 ×R
= 33.32 [μA] × 100Ω
∴ (calculated value) = 3.332 [mV]
Measured value V OUT (Peak)=4.99 [mVP]
V OUT (rms)=V OUT (Peak)/√2
=4.99/1.414
∴ (measured value) = 3.53 [mVrms]
Result: error [%]={(measured value)−(calculated value)}/(calculated value)×100[%]
= (3.53 mV-3.332 mV)/3.332 mV x 100
= 5.89 [%]
In the resistance terminal 17, the error between the calculated value and the measured value was about 6%.

図5および図6は試験結果としての出力波形を示す。なお、図6は、図5の条件(入力電圧70.7Vrms、出力電圧3.53mVrms)で、出力側にローパスフィルタ500Hzを挿入した場合を示す。 5 and 6 show output waveforms as test results. Note that FIG. 6 shows a case where the low-pass filter 500 Hz is inserted on the output side under the conditions of FIG. 5 (input voltage 70.7 Vrms, output voltage 3.53 mVrms).

端末負担を抵抗端末17とした場合、図5および図6に示すように、入力電圧波形VIN(正弦波)に対して出力電圧波形VOUTが90°進み位相となることを実証した。 When the terminal load is the resistance terminal 17, it has been demonstrated that the output voltage waveform V OUT has a 90° lead phase with respect to the input voltage waveform V IN (sine wave), as shown in FIGS.

図7はリアクトル端末18とした時の試験回路を示す。この変流器14の二次側端子15間にリアクトル端末18を設けた試験において、入力電圧を70.7Vrms、変流器14の巻線比を1:800、リアクトル端末18(559mH)とした時、
入力電圧 VIN=70.7[Vrms]
インピーダンス Z=1/{(2π60)・1μF}=2652.6[Ω]
変流器の一次電流 IC1=VIN/Z
=70.7V/2652.6Ω
=26.65[mA]
変流器の二次電流 IC2=IC1/巻線比
=26.65[mA]/800
=33.32[μA]
リアクトル端末 ZL=55mH+1.4kΩ
=√(ωL2+SR2
=√{(2・π・60・0.559)2+14002
=√{210.72+14002
=√{44410.52+1960000}
=1415.78Ω
出力電圧 VOUT=IC2×ZL
=33.3[μA]× 1415.78Ω
∴(計算値)=47.01[mV]
実測値 VOUT(Peak)=71.0[mVP]
OUT(rms)=VOUT(Peak)/√2
=71.0/1.414
∴(実測値)=50.2[mVrms]
結果:誤差[%]={(実測値)−(計算値)} /(計算値)×100[%]
=(50.2mV−47.01mV)/47.01mV×100
=−6.78[%]
リアクトル端末18では、計算値と実測値は、約7%になった。
FIG. 7 shows a test circuit when the reactor terminal 18 is used. In the test in which the reactor terminal 18 was provided between the secondary side terminals 15 of the current transformer 14, the input voltage was 70.7 Vrms, the winding ratio of the current transformer 14 was 1:800, and the reactor terminal 18 (559 mH). Time,
Input voltage V IN =70.7 [Vrms]
Impedance Z=1/{(2π60)·1μF}=2652.6[Ω]
Primary current of current transformer I C1 =V IN /Z
=70.7V/2652.6Ω
= 26.65 [mA]
Secondary current of current transformer I C2 =I C1 /turn ratio
=26.65 [mA]/800
=33.32 [μA]
Reactor terminal Z L =55mH+1.4kΩ
=√(ωL 2 +SR 2 )
=√{(2・π・60・0.559) 2 +1400 2 }
=√{210.7 2 +1400 2 }
=√{44410.52+1960000}
= 1415.78Ω
Output voltage V OUT =I C2 ×Z L
=33.3 [μA]×1415.78Ω
∴(calculated value)=47.01 [mV]
Measured value V OUT (Peak)=71.0 [mVP]
V OUT (rms)=V OUT (Peak)/√2
=71.0/1.414
∴ (measured value) = 50.2 [mVrms]
Result: error [%]={(measured value)−(calculated value)}/(calculated value)×100[%]
=(50.2 mV-47.01 mV)/47.01 mV×100
= -6.78 [%]
In the reactor terminal 18, the calculated value and the actual measured value were about 7%.

図8および図9は試験結果としての出力波形を示す。なお、図9は、図8の条件(入力電圧70.7Vrms、出力電圧50.2mVrms)で、出力側にローパスフィルタ500Hzを挿入した場合を示す。 8 and 9 show output waveforms as test results. Note that FIG. 9 shows a case where a low-pass filter 500 Hz is inserted on the output side under the conditions of FIG. 8 (input voltage 70.7 Vrms, output voltage 50.2 mVrms).

端末負担をリアクトル端末18とした場合、図8および図9に示すように、入力電圧波形VIN(正弦波)に対して出力電圧波形VOUTが遅れ位相となることを実証した。このリアクトル端末18では、リアクタンス(ωL+SR)には、リアクタンス部ωL(210Ω)に直列抵抗分SR(1.4kΩ)が6.66倍もあることから、遅れ位相が20°程度となった。 When the terminal load is set to the reactor terminal 18, it was demonstrated that the output voltage waveform V OUT has a delay phase with respect to the input voltage waveform V IN (sine wave), as shown in FIGS. 8 and 9. In the reactor terminal 18, in the reactance (ωL+SR), since the reactance part ωL (210Ω) has a series resistance SR (1.4kΩ) of 6.66 times, the delay phase is about 20°.

図10はコンデンサ端末16とした時の試験回路を示す。この変流器14の二次側端子15間にコンデンサ端末16を設けた試験において、入力電圧を70.7Vrms、変流器14の巻線比を1:800、コンデンサ端末16(10μF)とした時、
入力電圧 VIN=70.7[V]
インピーダンス Z=1/{(2π60)・1μF}=2652.6[Ω]
変流器の一次電流 IC1=VIN/Z
=70.7V/2652.6Ω
=26.65[mA]
変流器の二次電流 IC2=IC1/巻線比
=26.65[mA]/800
=33.32[μA]
コンデンサ端末 ZC=1/ωC
=1/(2・π・60・10μF)
=265.26Ω
出力電圧 VOUT=IC2×ZC
=33.32[μA]× 265.26Ω
∴(計算値)=8.84[mV]
実測値 VOUT(Peak)=12.0[mVP]
OUT(rms)=VOUT(Peak)/√2
=12.0/1.414
∴(実測値)=8.48[mVrms]
結果:誤差[%]={(実測値)−(計算値)} /(計算値)×100[%]
=(8.48mV−8.84mV)/8.84mV×100
=−4.07[%]
コンデンサ端末16では、計算値と実測値は、約−4%になった。
FIG. 10 shows a test circuit when the capacitor terminal 16 is used. In the test in which the capacitor terminal 16 was provided between the secondary side terminals 15 of the current transformer 14, the input voltage was 70.7 Vrms, the winding ratio of the current transformer 14 was 1:800, and the capacitor terminal 16 (10 μF). Time,
Input voltage V IN =70.7 [V]
Impedance Z=1/{(2π60)·1μF}=2652.6[Ω]
Primary current of current transformer I C1 =V IN /Z
=70.7V/2652.6Ω
= 26.65 [mA]
Secondary current of current transformer I C2 =I C1 /turn ratio
=26.65 [mA]/800
=33.32 [μA]
Capacitor terminal Z C =1/ωC
= 1/(2・π・60・10μF)
=265.26Ω
Output voltage V OUT =I C2 ×Z C
= 33.32 [μA] × 265.26Ω
∴(calculated value)=8.84[mV]
Measured value V OUT (Peak)=12.0 [mVP]
V OUT (rms)=V OUT (Peak)/√2
= 12.0/1.414
∴ (measured value) = 8.48 [mVrms]
Result: error [%]={(measured value)−(calculated value)}/(calculated value)×100[%]
= (8.48 mV-8.84 mV)/8.84 mV x 100
=-4.07 [%]
In the capacitor terminal 16, the calculated value and the actual measured value were about -4%.

図11〜図13は試験結果としての出力波形を示す。なお、図12は、図11の条件(入力電圧70.7Vrms、出力電圧8.48mVrms)で、出力側にローパスフィルタ500Hzを挿入した場合を示す。また、図13は、入力電圧を矩形波(100V)とした場合を示す。 11 to 13 show output waveforms as test results. Note that FIG. 12 shows a case where the low-pass filter 500 Hz is inserted on the output side under the conditions of FIG. 11 (input voltage 70.7 Vrms, output voltage 8.48 mVrms). Further, FIG. 13 shows a case where the input voltage is a rectangular wave (100 V).

端末負担をコンデンサ端末16とした場合、図11〜図13に示すように、入力電圧波形VIN(正弦波)に対して出力電圧波形VOUTが同一進み位相となることを実証した。 When the terminal load is the capacitor terminal 16, it has been demonstrated that the output voltage waveform V OUT has the same lead phase with respect to the input voltage waveform V IN (sine wave), as shown in FIGS. 11 to 13.

以上の実施形態では、構内高圧電路の対地電圧を検出するための対地電圧検出装置として、前述の高圧絶縁監視装置(特開2015−108618号公報)に適用した場合を例示する。 In the above embodiment, the case where the above-described high voltage insulation monitoring device (Japanese Patent Laid-Open No. 2015-108618) is applied as a ground voltage detecting device for detecting the ground voltage of the high voltage piezoelectric road.

なお、コンデンサ分圧回路の低圧側出力端子に接続する電気計器や電力用継電器などの入力インピーダンスは、低インピーダンス(1kΩ程度以下)が一般的であるため、単純な分圧回路では誤差が生じる。 Since the input impedance of an electric meter or power relay connected to the low-voltage side output terminal of the capacitor voltage dividing circuit is generally low impedance (about 1 kΩ or less), an error occurs in a simple voltage dividing circuit.

この対策として直列接続した2個のコンデンサ容量を加算した容量で商用周波数と共振するインダクタンスをコンデンサの出力側に直列接続することにより、正確に容量比に分圧することができる対地電圧検出装置が知られている(例えば、非特許文献1参照)。 As a countermeasure against this, there is known a ground voltage detection device capable of accurately dividing the capacitance into a capacitance ratio by connecting an inductance that resonates with a commercial frequency in series with a capacitance obtained by adding the capacitances of two capacitors connected in series. (For example, see Non-Patent Document 1).

この非特許文献1で開示された対地電圧検出装置では、コンデンサの出力側にインダクタンスを直列接続している。これにより、非特許文献1の対地電圧検出装置では、出力側にインピーダンスの外部機器を接続した場合に生じる誤差をコンデンサとインダクタンスの直列共振によりキャンセルする効果がある。 In the ground voltage detection device disclosed in Non-Patent Document 1, an inductance is connected in series to the output side of the capacitor. As a result, the ground voltage detection device of Non-Patent Document 1 has an effect of canceling an error generated when an external device having an impedance is connected to the output side by series resonance of the capacitor and the inductance.

一方、以上で説明した実施形態の対地電圧検出装置は、変流器14の二次側端子15間にコンデンサ端末16のみを接続しているが、変流器14の二次側端子15間に高インピーダンス(1MΩ程度)の高圧絶縁監視装置(特開2015−108618号公報)を接続するため、この実施形態においても、非特許文献1のように、コンデンサ端末16の出力側にインダクタンスを直列接続する構成としてもよい。 On the other hand, in the ground voltage detecting device of the embodiment described above, only the capacitor terminal 16 is connected between the secondary side terminals 15 of the current transformer 14, but between the secondary side terminals 15 of the current transformer 14. In order to connect a high-voltage insulation monitoring device (Japanese Unexamined Patent Application Publication No. 2015-108618) having high impedance (about 1 MΩ), an inductance is connected in series to the output side of the capacitor terminal 16 in this embodiment as in Non-Patent Document 1. It may be configured to.

このように、コンデンサ端末16の出力側にインダクタンスを直列接続する構成とすれば、この実施形態の対地電圧検出装置においても、変流器14の二次側端子15間に高インピーダンスの高圧絶縁監視装置などの外部機器を接続した場合に生じる誤差をコンデンサ端末16とインダクタンスの直列共振によりキャンセルする効果が得られる。 In this way, if the inductance is connected in series to the output side of the capacitor terminal 16, the high voltage high voltage insulation monitoring between the secondary side terminals 15 of the current transformer 14 is performed also in the ground voltage detecting device of this embodiment. It is possible to obtain an effect of canceling an error generated when an external device such as a device is connected by series resonance of the capacitor terminal 16 and the inductance.

また、以上の実施形態では、非接地系電路における構内高圧電路の絶縁劣化状態を監視する高圧絶縁監視装置に対地電圧検出装置を適用した場合について説明したが、本発明はこれに限定されることなく、高圧絶縁監視装置以外の他の装置およびシステムにおいて、対地電圧を検出する場合に使用することが可能である。 Further, in the above embodiment, the case where the ground voltage detecting device is applied to the high voltage insulation monitoring device for monitoring the insulation deterioration state of the high voltage path in the premises in the non-grounded electric circuit has been described, but the present invention is not limited to this. However, it can be used to detect the voltage to ground in other devices and systems other than the high voltage insulation monitoring device.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the embodiments described above, and it goes without saying that the present invention can be implemented in various forms within the scope of the present invention, and the scope of the present invention is It is indicated by the scope of the claims and further includes equivalent meanings to the claims and all modifications within the scope.

11 高圧端子
12 高圧コンデンサ
13 接地線
14 変流器
15 二次側端子
16 コンデンサ端末
11 High-voltage terminal 12 High-voltage capacitor 13 Ground wire 14 Current transformer 15 Secondary side terminal 16 Capacitor terminal

Claims (4)

高圧電路の高圧端子と大地との間に高圧コンデンサを接続し、前記高圧コンデンサの接地線に流れる電流を計測する変流器を高圧コンデンサの接地線に取り付け、前記変流器の二次側端子間にコンデンサ端末を接続し、前記変流器の一次側端子間に高圧コンデンサが接続されていないことを特徴とする対地電圧検出装置。 A high voltage capacitor is connected between the high voltage terminal of the high piezoelectric path and the ground, and a current transformer that measures the current flowing through the ground wire of the high voltage capacitor is attached to the ground wire of the high voltage capacitor, and the secondary side terminal of the current transformer is connected. A device for detecting a voltage to ground, characterized in that a capacitor terminal is connected in between, and a high voltage capacitor is not connected between the primary side terminals of the current transformer . 前記高圧コンデンサは、高圧気中開閉器に内蔵された碍子型コンデンサである請求項1に記載の対地電圧検出装置。 The ground voltage detecting device according to claim 1, wherein the high-voltage capacitor is an insulator-type capacitor incorporated in a high-voltage air switch. 前記接地線は、構内高圧電路に設置された電力ケーブルのシールド線の接地線である請求項1に記載の対地電圧検出装置。 The ground voltage detection device according to claim 1, wherein the ground wire is a ground wire of a shield wire of a power cable installed in a high-voltage path in a premises. 前記変流器の二次側端子間に現出する出力電圧に基づいて算出された各相の対地電圧を加算することにより零相電圧を得るように構成した請求項1に記載の対地電圧検出装置。 The ground voltage detection according to claim 1, wherein the ground voltage is obtained by adding the ground voltage of each phase calculated based on the output voltage appearing between the secondary side terminals of the current transformer. apparatus.
JP2016215879A 2016-11-04 2016-11-04 Ground voltage detector Active JP6736454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016215879A JP6736454B2 (en) 2016-11-04 2016-11-04 Ground voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215879A JP6736454B2 (en) 2016-11-04 2016-11-04 Ground voltage detector

Publications (2)

Publication Number Publication Date
JP2018072277A JP2018072277A (en) 2018-05-10
JP6736454B2 true JP6736454B2 (en) 2020-08-05

Family

ID=62115231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215879A Active JP6736454B2 (en) 2016-11-04 2016-11-04 Ground voltage detector

Country Status (1)

Country Link
JP (1) JP6736454B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113281552B (en) * 2021-04-13 2023-02-10 上海电机学院 Zero-contact cable voltage measurement method

Also Published As

Publication number Publication date
JP2018072277A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
Dong et al. Implementation and application of practical traveling-wave-based directional protection in UHV transmission lines
EP2553480B1 (en) Improvements introduced in monitoring system of dielectric state of high voltage equipments with capacitive insulation, such as condensive bushings, current transformers, potential transformers and similar
JP5770903B1 (en) Leakage current calculation device and leakage current calculation method
WO2013004285A1 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
WO2019139973A1 (en) Temporary overvoltage and ground fault overvoltage protection based on arrester current measurement and analysis
CN103840437A (en) Quick diagnostic and processing method of power distribution network ferromagnetic resonance and one-phase earth faults
CN111095000A (en) High fidelity voltage measurement using capacitively coupled voltage transformers
CN106030738B (en) For monitoring the method and apparatus of the condenser-type terminal for three-phase AC grid
CN112305352A (en) Voltage reconstruction MOA resistive current testing method based on in-phase capacitive equipment
JP6328591B2 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
Coffeen et al. High voltage ac resistive current measurements using a computer based digital watts technique
CN108919026B (en) Live detection method for leakage current of lightning arrester
JP5996709B1 (en) High voltage insulation monitoring device
RU2771222C1 (en) Method for determining a damaged feeder in case of single phase to ground fault in a distribution electrical network
JP6736454B2 (en) Ground voltage detector
US11364810B2 (en) Monitoring device for leakage currents
JP2010187446A (en) Power cable ground fault detecting apparatus and power cable ground fault protection device
CN111108399A (en) High fidelity voltage measurement using resistive divider in capacitively coupled voltage transformer
KR20150004563A (en) Protection device and operating verification metohd thereof
JP5529300B1 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
US20200341035A1 (en) Capacitance-coupled voltage transformer monitoring
CN110018384A (en) Method for detecting the ground fault condition in power conversion unit
RU2631121C2 (en) Method of selective identification of outgoing line with single-phase earth fault in distribution networks with voltage of 6-35 kv
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
JP3161757B2 (en) Power system insulation deterioration detection method, insulation deterioration detection device, insulation deterioration detection system, and insulation deterioration determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200715

R150 Certificate of patent or registration of utility model

Ref document number: 6736454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250