JP6734934B2 - Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 - Google Patents

Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 Download PDF

Info

Publication number
JP6734934B2
JP6734934B2 JP2018554971A JP2018554971A JP6734934B2 JP 6734934 B2 JP6734934 B2 JP 6734934B2 JP 2018554971 A JP2018554971 A JP 2018554971A JP 2018554971 A JP2018554971 A JP 2018554971A JP 6734934 B2 JP6734934 B2 JP 6734934B2
Authority
JP
Japan
Prior art keywords
layer
source
opening
gate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018554971A
Other languages
English (en)
Other versions
JPWO2018105520A1 (ja
Inventor
美崎 克紀
克紀 美崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2018105520A1 publication Critical patent/JPWO2018105520A1/ja
Application granted granted Critical
Publication of JP6734934B2 publication Critical patent/JP6734934B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0012Radial guide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Waveguide Aerials (AREA)
  • Liquid Crystal (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

本発明は、走査アンテナに関し、特に、アンテナ単位(「素子アンテナ」ということもある。)が液晶容量を有する走査アンテナ(「液晶アレイアンテナ」ということもある。)、そのような走査アンテナに用いられるTFT基板、およびそのようなTFT基板の製造方法に関する。
移動体通信や衛星放送用のアンテナは、ビームの方向を変えられる(「ビーム走査」または「ビームステアリング」と言われる。)機能を必要とする。このような機能を有するアンテナ(以下、「走査アンテナ(scanned antenna)」という。)として、アンテナ単位を備えるフェイズドアレイアンテナが知られている。しかしながら、従来のフェイズドアレイアンテナは高価であり、民生品への普及の障害となっている。特に、アンテナ単位の数が増えると、コストが著しく上昇する。
そこで、液晶材料(ネマチック液晶、高分子分散液晶を含む)の大きな誘電異方性(複屈折率)を利用した走査アンテナが提案されている(特許文献1〜5および非特許文献1)。液晶材料の誘電率は周波数分散を有するので、本明細書において、マイクロ波の周波数帯における誘電率(「マイクロ波に対する誘電率」ということもある。)を特に「誘電率M(εM)」と表記することにする。
特許文献3および非特許文献1には、液晶表示装置(以下、「LCD」という。)の技術を利用することによって低価格な走査アンテナが得られると記載されている。
特開2007−116573号公報 特開2007−295044号公報 特表2009−538565号公報 特表2013−539949号公報 国際公開第2015/126550号
R. A. Stevenson et al., "Rethinking Wireless Communications:Advanced Antenna Design using LCD Technology", SID 2015 DIGEST, pp.827−830. M. ANDO et al., "A Radial Line Slot Antenna for 12GHz Satellite TV Reception", IEEE Transactions of Antennas and Propagation, Vol. AP−33, No.12, pp. 1347−1353 (1985).
上述したように、LCD技術を適用することによって低価格な走査アンテナを実現すると言うアイデアは知られてはいるものの、LCD技術を利用した走査アンテナの構造、その製造方法、およびその駆動方法を具体的に記載した文献はない。
そこで、本発明は、従来のLCDの製造技術を利用して量産することが可能な走査アンテナおよびその製造方法を提供することを目的とする。
本発明の実施形態によるTFT基板は、誘電体基板と、前記誘電体基板上に配列された複数のアンテナ単位領域とを有し、前記複数のアンテナ単位領域のそれぞれは、TFTと、前記TFTのドレイン電極に接続されたパッチ電極とを有し、前記複数のアンテナ単位領域を含む送受信領域と、前記送受信領域以外の領域に位置する非送受信領域とを備えるTFT基板であって、前記誘電体基板に支持され、前記TFTのゲート電極および前記ゲート電極に接続されたゲートバスラインを含むゲートメタル層と、前記ゲートメタル層上に形成されたゲート絶縁層と、前記ゲート絶縁層上に形成され、前記TFTのソース電極、前記ドレイン電極、および前記ソース電極に接続されたソースバスラインを含むソースメタル層と、前記ソースメタル層上に形成された第1絶縁層と、前記第1絶縁層上に形成され、前記パッチ電極を含むパッチメタル層と、前記パッチメタル層上に形成された第2絶縁層と、前記第2絶縁層上に形成された上部導電層とを有し、前記非送受信領域に配置されたソース−ゲート接続部を有し、前記ソース−ゲート接続部は、前記ゲートメタル層に含まれ、前記ゲートバスラインと電気的に分離されたソース下部接続配線と、前記ゲート絶縁層に形成され、前記ソース下部接続配線に達する第1開口部と、前記ソースメタル層に含まれ、前記ソースバスラインに接続されたソースバスライン接続部と、前記第1絶縁層に形成され、前記誘電体基板の法線方向から見たとき前記第1開口部に重なる第2開口部と、前記第1絶縁層に形成され、前記ソースバスライン接続部に達する第3開口部と、前記第1絶縁層と前記第2絶縁層との間に形成された少なくとも1つの導電層を含み、前記第1開口部内で前記ソース下部接続配線に接続され、前記第3開口部内で前記ソースバスライン接続部に接続された第1接続部と、前記第2絶縁層に形成され、前記第1接続部に達する少なくとも1つの第4開口部と、前記上部導電層に含まれ、前記少なくとも1つの第4開口部内で前記第1接続部に接続された第2接続部とを有する。
ある実施形態において、前記ソース下部接続配線の内、前記第1開口部によって露出されている部分は、前記第1接続部で覆われており、前記ソースバスライン接続部の内、前記第3開口部によって露出されている部分は、前記第1接続部で覆われている。
ある実施形態において、前記誘電体基板の法線方向から見たとき、前記第1接続部の全ては前記第2接続部と重なっている、または、前記第2接続部の全ては前記第1接続部と重なっている。
ある実施形態において、前記TFT基板は、前記非送受信領域に配置されたソース端子部を有し、前記ソース端子部は、前記ゲートメタル層に含まれ、前記ソース下部接続配線と電気的に接続されたソース端子用下部接続部と、前記ゲート絶縁層に形成され、前記ソース端子用下部接続部に達する第5開口部と、前記第1絶縁層に形成され、前記誘電体基板の法線方向から見たとき前記第5開口部に重なる第6開口部と、前記第2絶縁層に形成され、前記誘電体基板の法線方向から見たとき前記第6開口部に重なる第7開口部と、前記上部導電層に含まれ、前記第5開口部内で前記ソース端子用下部接続部と接続されたソース端子用上部接続部とを有する。
ある実施形態において、前記上部導電層は、透明導電層を含む。
ある実施形態において、前記上部導電層は、透明導電層を含む第1導電層と、前記第1導電層の下に形成され、Ti層、MoNb層、MoNbNi層、MoW層、W層およびTa層からなる群から選択される少なくとも1つの層から形成されている第2導電層とを含む。
ある実施形態において、前記TFT基板は、前記第1絶縁層と前記パッチメタル層との間に形成された下部導電層をさらに有し、前記少なくとも1つの導電層は、前記下部導電層を含む。
ある実施形態において、前記少なくとも1つの導電層は、前記パッチメタル層を含まない。
ある実施形態において、前記少なくとも1つの導電層は、前記パッチメタル層を含む。
ある実施形態において、前記誘電体基板の法線方向から見たとき、前記第1開口部の全ておよび前記第3開口部の全ては、前記第1接続部の前記パッチメタル層と重なる。
本発明の実施形態による走査アンテナは、上記のいずれかのTFT基板と、前記TFT基板と対向するように配置されたスロット基板と、前記TFT基板と前記スロット基板との間に設けられた液晶層と、前記スロット基板の前記液晶層と反対側の表面に誘電体層を介して対向するように配置された反射導電板とを備え、前記スロット基板は、他の誘電体基板と、前記他の誘電体基板の前記液晶層側の表面に形成されたスロット電極とを有し、前記スロット電極は複数のスロットを有し、前記複数のスロットは、前記TFT基板の前記複数のアンテナ単位領域における前記パッチ電極に対応して配置されている。
本発明の実施形態によるTFT基板の製造方法は、上記のいずれかのTFT基板の製造方法であって、前記誘電体基板上に、前記ソース下部接続配線を含む前記ゲートメタル層を形成する工程(a)と、前記ゲートメタル層上にゲート絶縁膜を堆積する工程(b)と、前記ゲート絶縁膜上に、前記ソースバスライン接続部を含む前記ソースメタル層を形成する工程(c)と、前記ソースメタル層上に第1絶縁膜を堆積する工程(d)と、前記ゲート絶縁膜に前記第1開口部を形成し、前記第1絶縁膜に前記第2開口部および前記第3開口部を形成する工程(e)と、前記第1絶縁膜上にパッチ用導電膜を堆積する工程(f)と、前記パッチ用導電膜をパターニングすることによって前記パッチメタル層を形成する工程(g)と、前記パッチメタル層上に第2絶縁膜を堆積する工程(h)と、前記第2絶縁膜に前記少なくとも1つの第4開口部を形成する工程(i)と、前記第2絶縁層上に、前記第2接続部を含む前記上部導電層を形成する工程(j)とを包含する。
ある実施形態において、前記工程(g)は、前記パッチメタル層に含まれる前記第1接続部を形成する工程を包含する。
ある実施形態において、前記製造方法は、前記工程(e)と前記工程(f)との間に、前記第1絶縁層上に下部導電層を形成する工程をさらに包含し、前記工程(g)は、前記下部導電層および前記パッチメタル層を含む前記第1接続部を形成する工程を包含する。
ある実施形態において、前記工程(g)は、前記ソース下部接続配線の内、前記第1開口部によって露出されている部分、および、前記ソースバスライン接続部の内、前記第3開口部によって露出されている部分を覆うように、前記第1接続部を形成する工程を包含する。
ある実施形態において、前記工程(g)は、前記誘電体基板の法線方向から見たとき、前記第1接続部の前記パッチメタル層が、前記第1開口部の全ておよび前記第3開口部の全てと重なるように、前記第1接続部を形成する工程を包含する。
ある実施形態において、前記製造方法は、前記工程(e)と前記工程(f)との間に、前記第1絶縁層上に下部導電層を形成する工程をさらに包含し、前記第1接続部は前記下部導電層に含まれる。
ある実施形態において、前記下部導電層を形成する工程は、前記ソース下部接続配線の内、前記第1開口部によって露出されている部分、および、前記ソースバスライン接続部の内、前記第3開口部によって露出されている部分を覆うように、前記第1接続部を形成する工程を包含する。
本発明のある実施形態によると、従来のLCDの製造技術を利用して量産することが可能な走査アンテナ、そのような走査アンテナに用いられるTFT基板、およびそのようなTFT基板の製造方法が提供される。
第1の実施形態の走査アンテナ1000の一部を模式的に示す断面図である。 (a)および(b)は、それぞれ、走査アンテナ1000におけるTFT基板101およびスロット基板201を示す模式的な平面図である。 (a)および(b)は、それぞれ、TFT基板101のアンテナ単位領域Uを模式的に示す断面図および平面図である。 (a)〜(c)は、それぞれ、TFT基板101のゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを模式的に示す断面図である。 TFT基板101の製造工程の一例を示す図である。 スロット基板201におけるアンテナ単位領域Uおよび端子部ITを模式的に示す断面図である。 TFT基板101およびスロット基板201におけるトランスファー部を説明するための模式的な断面図である。 (a)〜(c)は、それぞれ、第2の実施形態におけるTFT基板102のゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを示す断面図である。 TFT基板102の製造工程の一例を示す図である。 (a)〜(c)は、それぞれ、第3の実施形態におけるTFT基板103のゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを示す断面図である。 TFT基板103の製造工程の一例を示す図である。 TFT基板103およびスロット基板203におけるトランスファー部を説明するための模式的な断面図である。 (a)は、ヒーター用抵抗膜68を有するTFT基板104の模式的な平面図であり、(b)はスロット57およびパッチ電極15のサイズを説明するための模式的な平面図である。 (a)および(b)は、抵抗加熱構造80aおよび80bの模式的な構造と電流の分布を示す図である。 (a)〜(c)は、抵抗加熱構造80c〜80eの模式的な構造と電流の分布を示す図である。 (a)は、ヒーター用抵抗膜68を有する液晶パネル100Paの模式的な断面図であり、(b)は、ヒーター用抵抗膜68を有する液晶パネル100Pbの模式的な断面図である。 本発明の実施形態による走査アンテナの1つのアンテナ単位の等価回路を示す図である。 (a)〜(c)、(e)〜(g)は、実施形態の走査アンテナの駆動に用いられる各信号の波形の例を示す図であり、(d)は、ドット反転駆動を行っているLCDパネルの表示信号の波形を示す図である。 (a)〜(e)は、実施形態の走査アンテナの駆動に用いられる各信号の波形の他の例を示す図である。 (a)〜(e)は、実施形態の走査アンテナの駆動に用いられる各信号の波形のさらに他の例を示す図である。 (a)〜(c)は、第4の実施形態におけるTFT基板105を例示する模式的な平面図である。 (a)〜(g)は、TFT基板105の模式的な断面図である。 TFT基板105の模式的な断面図である。 (a)〜(f)は、TFT基板105の製造方法の一例を示す工程断面図である。 (a)〜(d)は、TFT基板105の製造方法の一例を示す工程断面図である。 (a)〜(c)は、TFT基板105の製造方法の一例を示す工程断面図である。 (a)〜(c)は、TFT基板105の製造方法の一例を示す工程断面図である。 (a)〜(c)は、第4の実施形態の変形例1のTFT基板106を例示する模式的な平面図である。 (a)〜(g)は、TFT基板106の模式的な断面図である。 TFT基板106の模式的な断面図である。 (a)および(b)は、TFT基板106の製造方法の一例を示す工程断面図である。 (a)〜(c)は、TFT基板106の製造方法の一例を示す工程断面図である。 (a)〜(c)は、第4の実施形態の変形例2のTFT基板107を例示する模式的な平面図である。 (a)〜(g)は、TFT基板107の模式的な断面図である。 TFT基板107の模式的な断面図である。 (a)〜(c)は、TFT基板107の製造方法の一例を示す工程断面図である。 (a)〜(c)は、TFT基板107の製造方法の一例を示す工程断面図である。 (a)は、従来のLCD900の構造を示す模式図であり、(b)はLCDパネル900aの模式的な断面図である。
以下、図面を参照して、本発明の実施形態による走査アンテナおよびその製造方法を説明する。以下の説明においては、まず、公知のTFT型LCD(以下、「TFT−LCD」という。)の構造および製造方法を説明する。ただし、LCDの技術分野で周知の事項については説明を省略することがある。TFT−LCDの基本的な技術については、例えば、Liquid Crystals, Applications and Uses, Vol. 1−3(Editor: Birenda Bahadur, Publisher: World Scientific Pub Co Inc)などを参照されたい。参考のために、上記の文献の開示内容の全てを本明細書に援用する。
図38(a)および(b)を参照して、典型的な透過型のTFT−LCD(以下、単に「LCD」という。)900の構造および動作を説明する。ここでは、液晶層の厚さ方向に電圧を印加する縦電界モード(例えば、TNモードや垂直配向モード)のLCD900を例示する。LCDの液晶容量に印加される電圧のフレーム周波数(典型的には極性反転周波数の2倍)は例えば4倍速駆動でも240Hzであり、LCDの液晶容量の誘電体層としての液晶層の誘電率εは、マイクロ波(例えば、衛星放送やKuバンド(12〜18GHz)、Kバンド(18〜26GHz)、Kaバンド(26〜40GHz))に対する誘電率M(εM)と異なる。
図38(a)に模式的に示すように、透過型のLCD900は、液晶表示パネル900aと、制御回路CNTLと、バックライト(不図示)と、電源回路(不図示)などを備えている。液晶表示パネル900aは、液晶表示セルLCCと、ゲートドライバGDおよびソースドライバSDを含む駆動回路とを含む。駆動回路は、例えば、液晶表示セルLCCのTFT基板910に実装されてもよいし、駆動回路の一部または全部は、TFT基板910に一体化(モノリシック化)されてもよい。
図38(b)に、LCD900が有する液晶表示パネル(以下、「LCDパネル」という。)900aの模式的に断面図を示す。LCDパネル900aは、TFT基板910と、対向基板920と、これらの間に設けられた液晶層930とを有している。TFT基板910および対向基板920は、いずれもガラス基板などの透明基板911、921を有している。透明基板911、921としては、ガラス基板の他、プラスチック基板が用いられることもある。プラスチック基板は、例えば、透明な樹脂(例えばポリエステル)とガラス繊維(例えば不織布)で形成される。
LCDパネル900aの表示領域DRは、マトリクス状に配列された画素Pによって構成されている。表示領域DRの周辺には表示に寄与しない額縁領域FRが形成されている。液晶材料は表示領域DRを包囲するように形成されたシール部(不図示)によって表示領域DR内に封止されている。シール部は、例えば、紫外線硬化性樹脂とスペーサ(例えば樹脂ビーズまたはシリカビーズ)とを含むシール材を硬化させることによって形成され、TFT基板910と対向基板920とを互いに接着、固定する。シール材中のスペーサは、TFT基板910と対向基板920との間隙、すなわち液晶層930の厚さを一定に制御する。液晶層930の厚さの面内ばらつきを抑制するために、表示領域DR内の遮光される部分(例えば配線上)に、柱状スペーサが紫外線硬化性樹脂を用いて形成される。近年、液晶テレビやスマートフォン用のLCDパネルに見られるように、表示に寄与しない額縁領域FRの幅は非常に狭くなっている。
TFT基板910では、透明基板911上に、TFT912、ゲートバスライン(走査線)GL、ソースバスライン(表示信号線)SL、画素電極914、補助容量電極(不図示)、CSバスライン(補助容量線)(不図示)が形成されている。CSバスラインはゲートバスラインと平行に設けられる。あるいは、次段のゲートバスラインをCSバスラインとして用いることもある(CSオンゲート構造)。
画素電極914は、液晶の配向を制御する配向膜(例えばポリイミド膜)に覆われている。配向膜は、液晶層930と接するように設けられる。TFT基板910はバックライト側(観察者とは反対側)に配置されることが多い。
対向基板920は、液晶層930の観察者側に配置されることが多い。対向基板920は、透明基板921上に、カラーフィルタ層(不図示)と、対向電極924と、配向膜(不図示)とを有している。対向電極924は、表示領域DRを構成する複数の画素Pに共通に設けられるので、共通電極とも呼ばれる。カラーフィルタ層は、画素P毎に設けられるカラーフィルタ(例えば、赤フィルタ、緑フィルタ、青フィルタ)と、表示に不要な光を遮光するためのブラックマトリクス(遮光層)とを含む。ブラックマトリクスは、例えば、表示領域DR内の画素Pの間、および額縁領域FRを遮光するように配置される。
TFT基板910の画素電極914と、対向基板920の対向電極924と、これらの間の液晶層930が、液晶容量Clcを構成する。個々の液晶容量が画素に対応する。液晶容量Clcに印加された電圧を保持するために(いわゆる電圧保持率を高くするために)、液晶容量Clcと電気的に並列に接続された補助容量CSが形成されている。補助容量CSは、典型的には、画素電極914と同電位とされる電極と、無機絶縁層(例えばゲート絶縁層(SiO2層))と、CSバスラインに接続された補助容量電極とで構成される。CSバスラインからは、典型的には、対向電極924と同じ共通電圧が供給される。
液晶容量Clcに印加された電圧(実効電圧)が低下する要因としては、(1)液晶容量Clcの容量値CClcと、抵抗値Rとの積であるCR時定数に基づくもの、(2)液晶材料中に含まれるイオン性不純物に起因する界面分極、および/または、液晶分子の配向分極などがある。これらのうち、液晶容量ClcのCR時定数による寄与が大きく、液晶容量Clcに電気的に並列に接続された補助容量CSを設けることによって、CR時定数を大きくすることができる。なお、液晶容量Clcの誘電体層である液晶層930の体積抵抗率は、汎用されているネマチック液晶材料の場合、1012Ω・cmのオーダを超えている。
画素電極914に供給される表示信号は、ゲートバスラインGLにゲートドライバGDから供給される走査信号によって選択されたTFT912がオン状態となったときに、そのTFT912に接続されているソースバスラインSLに供給されている表示信号である。したがって、あるゲートバスラインGLに接続されているTFT912が同時にオン状態となり、その時に、その行の画素PのそれぞれのTFT912に接続されているソースバスラインSLから対応する表示信号が供給される。この動作を、1行目(例えば表示面の最上行)からm行目(例えば表示面の最下行)まで順次に行うことによって、m行の画素行で構成された表示領域DRに1枚の画像(フレーム)が書き込まれ、表示される。画素Pがm行n列にマトリクス状に配列されているとすると、ソースバスラインSLは各画素列に対応して少なくとも1本、合計で少なくともn本設けられる。
このような走査は線順次走査と呼ばれ、1つの画素行が選択されて、次の行が選択されるまでの時間は水平走査期間(1H)と呼ばれ、ある行が選択され、再びその行が選択されるまでの時間は垂直走査期間(1V)またはフレームと呼ばれる。なお、一般に、1V(または1フレーム)は、m本の画素行を全て選択する期間m・Hに、ブランキング期間を加えたものとなる。
例えば、入力映像信号がNTSC信号の場合、従来のLCDパネルの1V(=1フレーム)は、1/60sec(16.7msec)であった。NTSC信号はインターレース信号であり、フレーム周波数は30Hzで、フィールド周波数は60Hzであるが、LCDパネルにおいては各フィールドで全ての画素に表示信号を供給する必要があるので、1V=(1/60)secで駆動する(60Hz駆動)。なお、近年では、動画表示特性を改善するために、2倍速駆動(120Hz駆動、1V=(1/120)sec)で駆動されるLCDパネルや、3D表示のために4倍速(240Hz駆動、1V=(1/240)sec)で駆動されるLCDパネルもある。
液晶層930に直流電圧が印加されると実効電圧が低下し、画素Pの輝度が低下する。この実効電圧の低下には、上記の界面分極および/または配向分極の寄与があるので、補助容量CSを設けても完全に防止することは難しい。例えば、ある中間階調に対応する表示信号を全ての画素にフレーム毎に書き込むと、フレーム毎に輝度が変動し、フリッカーとして観察される。また、液晶層930に長時間にわたって直流電圧が印加されると液晶材料の電気分解が起こることがある。また、不純物イオンが片側の電極に偏析し、液晶層に実効的な電圧が印加されなくなり、液晶分子が動かなくなることもある。これらを防止するために、LCDパネル900aはいわゆる、交流駆動される。典型的には、表示信号の極性を1フレーム毎(1垂直走査期間毎)に反転する、フレーム反転駆動が行われる。例えば、従来のLCDパネルでは、1/60sec毎に極性反転が行われている(極性反転の周期は30Hz)。
また、1フレーム内においても印加される電圧の極性の異なる画素を均一に分布させるために、ドット反転駆動またはライン反転駆動などが行われている。これは、正極性と負極性とで、液晶層に印加される実効電圧の大きさを完全に一致させることが難しいからである。例えば、液晶材料の体積抵抗率が1012Ω・cmのオーダ超であれば、1/60sec毎に、ドット反転またはライン反転駆動を行えば、フリッカーはほとんど視認されない。
LCDパネル900aにおける走査信号および表示信号は、制御回路CNTLからゲートドライバGDおよびソースドライバSDに供給される信号に基づいて、ゲートドライバGDおよびソースドライバSDからゲートバスラインGLおよびソースバスラインSLにそれぞれ供給される。例えば、ゲートドライバGDおよびソースドライバSDは、それぞれ、TFT基板910に設けられた対応する端子に接続されている。ゲートドライバGDおよびソースドライバSDは、例えば、ドライバICとしてTFT基板910の額縁領域FRに実装されることもあるし、TFT基板910の額縁領域FRにモノリシックに形成されることもある。
対向基板920の対向電極924は、トランスファー(転移)と呼ばれる導電部(不図示)を介して、TFT基板910の端子(不図示)に電気的に接続される。トランスファーは、例えば、シール部と重なるように、あるいは、シール部の一部に導電性を付与することによって形成される。額縁領域FRを狭くするためである。対向電極924には、制御回路CNTLから、直接または間接的に共通電圧が供給される。典型的には、共通電圧は、上述したように、CSバスラインにも供給される。
[走査アンテナの基本構造]
液晶材料の大きな誘電率M(εM)の異方性(複屈折率)を利用したアンテナ単位を用いた走査アンテナは、LCDパネルの画素に対応付けられるアンテナ単位の各液晶層に印加する電圧を制御し、各アンテナ単位の液晶層の実効的な誘電率M(εM)を変化させることによって、静電容量の異なるアンテナ単位で2次元的なパターンを形成する(LCDによる画像の表示に対応する。)。アンテナから出射される、または、アンテナによって受信される電磁波(例えば、マイクロ波)には、各アンテナ単位の静電容量に応じた位相差が与えられ、静電容量の異なるアンテナ単位によって形成された2次元的なパターンに応じて、特定の方向に強い指向性を有することになる(ビーム走査)。例えば、アンテナから出射される電磁波は、入力電磁波が各アンテナ単位に入射し、各アンテナ単位で散乱された結果得られる球面波を、各アンテナ単位によって与えられる位相差を考慮して積分することによって得られる。各アンテナ単位が、「フェイズシフター:phase shifter」として機能していると考えることもできる。液晶材料を用いた走査アンテナの基本的な構造および動作原理については、特許文献1〜4および非特許文献1、2を参照されたい。非特許文献2は、らせん状のスロットが配列された走査アンテナの基本的な構造を開示している。参考のために、特許文献1〜4および非特許文献1、2の開示内容の全てを本明細書に援用する。
なお、本発明の実施形態による走査アンテナにおけるアンテナ単位はLCDパネルの画素に類似してはいるものの、LCDパネルの画素の構造とは異なっているし、複数のアンテナ単位の配列もLCDパネルにおける画素の配列とは異なっている。後に詳細に説明する第1の実施形態の走査アンテナ1000を示す図1を参照して、本発明の実施形態による走査アンテナの基本構造を説明する。走査アンテナ1000は、スロットが同心円状に配列されたラジアルインラインスロットアンテナであるが、本発明の実施形態による走査アンテナはこれに限られず、例えば、スロットの配列は、公知の種々の配列であってよい。特に、スロットおよび/またはアンテナ単位の配列について、特許文献5の全ての開示内容を参考のために本明細書に援用する。
図1は、本実施形態の走査アンテナ1000の一部を模式的に示す断面図であり、同心円状に配列されたスロットの中心近傍に設けられた給電ピン72(図2(b)参照)から半径方向に沿った断面の一部を模式的に示す。
走査アンテナ1000は、TFT基板101と、スロット基板201と、これらの間に配置された液晶層LCと、スロット基板201と、空気層54を介して対向するように配置された反射導電板65とを備えている。走査アンテナ1000は、TFT基板101側からマイクロ波を送受信する。
TFT基板101は、ガラス基板などの誘電体基板1と、誘電体基板1上に形成された複数のパッチ電極15と、複数のTFT10とを有している。各パッチ電極15は、対応するTFT10に接続されている。各TFT10は、ゲートバスラインとソースバスラインとに接続されている。
スロット基板201は、ガラス基板などの誘電体基板51と、誘電体基板51の液晶層LC側に形成されたスロット電極55とを有している。スロット電極55は複数のスロット57を有している。
スロット基板201と、空気層54を介して対向するように反射導電板65が配置されている。空気層54に代えて、マイクロ波に対する誘電率Mが小さい誘電体(例えば、PTFEなどのフッ素樹脂)で形成された層を用いることができる。スロット電極55と反射導電板65と、これらの間の誘電体基板51および空気層54とが導波路301として機能する。
パッチ電極15と、スロット57を含むスロット電極55の部分と、これらの間の液晶層LCとがアンテナ単位Uを構成する。各アンテナ単位Uにおいて、1つのパッチ電極15が1つのスロット57を含むスロット電極55の部分と液晶層LCを介して対向しており、液晶容量を構成している。パッチ電極15とスロット電極55とが液晶層LCを介して対向する構造は、図38に示したLCDパネル900aの画素電極914と対向電極924とが液晶層930を介して対向する構造と似ている。すなわち、走査アンテナ1000のアンテナ単位Uと、LCDパネル900aにおける画素Pとは似た構成を有している。また、アンテナ単位は、液晶容量と電気的に並列に接続された補助容量(図13(a)、図17参照)を有している点でもLCDパネル900aにおける画素Pと似た構成を有している。しかしながら、走査アンテナ1000は、LCDパネル900aと多くの相違点を有している。
まず、走査アンテナ1000の誘電体基板1、51に求められる性能は、LCDパネルの基板に求められる性能と異なる。
一般にLCDパネルには、可視光に透明な基板が用いられ、例えば、ガラス基板またはプラスチック基板が用いられる。反射型のLCDパネルにおいては、背面側の基板には透明性が必要ないので、半導体基板が用いられることもある。これに対し、アンテナ用の誘電体基板1、51としては、マイクロ波に対する誘電損失(マイクロ波に対する誘電正接をtanδMと表すことにする。)が小さいことが好ましい。誘電体基板1、51のtanδMは、概ね0.03以下であることが好ましく、0.01以下がさらに好ましい。具体的には、ガラス基板またはプラスチック基板を用いることができる。ガラス基板はプラスチック基板よりも寸法安定性、耐熱性に優れ、TFT、配線、電極等の回路要素をLCD技術を用いて形成するのに適している。例えば、導波路を形成する材料が空気とガラスである場合、ガラスの方が上記誘電損失が大きいため、ガラスがより薄い方が導波ロスを減らすことができるとの観点から、好ましくは400μm以下であり、300μm以下がさらに好ましい。下限は特になく、製造プロセスにおいて、割れることなくハンドリングできればよい。
電極に用いられる導電材料も異なる。LCDパネルの画素電極や対向電極には透明導電膜としてITO膜が用いられることが多い。しかしながら、ITOはマイクロ波に対するtanδMが大きく、アンテナにおける導電層として用いることができない。スロット電極55は、反射導電板65とともに導波路301の壁として機能する。したがって、導波路301の壁におけるマイクロ波の透過を抑制するためには、導波路301の壁の厚さ、すなわち、金属層(Cu層またはAl層)の厚さは大きいことが好ましい。金属層の厚さが表皮深さの3倍であれば、電磁波は1/20(−26dB)に減衰され、5倍であれば1/150(−43dB)程度に減衰されることが知られている。したがって、金属層の厚さが表皮深さの5倍であれば、電磁波の透過率を1%に低減することができる。例えば、10GHzのマイクロ波に対しては、厚さが3.3μm以上のCu層、および厚さが4.0μm以上のAl層を用いると、マイクロ波を1/150まで低減することができる。また、30GHzのマイクロ波に対しては、厚さが1.9μm以上のCu層、および厚さが2.3μm以上のAl層を用いると、マイクロ波を1/150まで低減することができる。このように、スロット電極55は、比較的厚いCu層またはAl層で形成することが好ましい。Cu層またはAl層の厚さに上限は特になく、成膜時間やコストを考慮して、適宜設定され得る。Cu層を用いると、Al層を用いるよりも薄くできるという利点が得られる。比較的厚いCu層またはAl層の形成は、LCDの製造プロセスで用いられる薄膜堆積法だけでなく、Cu箔またはAl箔を基板に貼り付ける等、他の方法を採用することもできる。金属層の厚さは、例えば、2μm以上30μm以下である。薄膜堆積法を用いて形成する場合、金属層の厚さは5μm以下であることが好ましい。なお、反射導電板65は、例えば、厚さが数mmのアルミニウム板、銅板などを用いることができる。
パッチ電極15は、スロット電極55のように導波路301を構成する訳ではないので、スロット電極55よりも厚さが小さいCu層またはAl層を用いることができる。ただし、スロット電極55のスロット57付近の自由電子の振動がパッチ電極15内の自由電子の振動を誘起する際に熱に変わるロスを避けるために、抵抗が低い方が好ましい。量産性の観点からはCu層よりもAl層を用いることが好ましく、Al層の厚さは例えば0.3μm以上2μm以下が好ましい。
また、アンテナ単位Uの配列ピッチは、画素ピッチと大きく異なる。例えば、12GHz(Ku band)のマイクロ波用のアンテナを考えると、波長λは、例えば25mmである。そうすると、特許文献4に記載されているように、アンテナ単位Uのピッチはλ/4以下および/またはλ/5以下であるので、6.25mm以下および/または5mm以下ということになる。これはLCDパネルの画素のピッチと比べて10倍以上大きい。したがって、アンテナ単位Uの長さおよび幅もLCDパネルの画素長さおよび幅よりも約10倍大きいことになる。
もちろん、アンテナ単位Uの配列はLCDパネルにおける画素の配列と異なり得る。ここでは、同心円状に配列した例(例えば、特開2002−217640号公報参照)を示すが、これに限られず、例えば、非特許文献2に記載されているように、らせん状に配列されてもよい。さらに、特許文献4に記載されているようにマトリクス状に配列してもよい。
走査アンテナ1000の液晶層LCの液晶材料に求められる特性は、LCDパネルの液晶材料に求められる特性と異なる。LCDパネルは画素の液晶層の屈折率変化によって、可視光(波長380nm〜830nm)の偏光に位相差を与えることによって、偏光状態を変化させる(例えば、直線偏光の偏光軸方向を回転させる、または、円偏光の円偏光度を変化させる)ことによって、表示を行う。これに対して実施形態による走査アンテナ1000は、アンテナ単位Uが有する液晶容量の静電容量値を変化させることによって、各パッチ電極から励振(再輻射)されるマイクロ波の位相を変化させる。したがって、液晶層は、マイクロ波に対する誘電率M(εM)の異方性(ΔεM)が大きいことが好ましく、tanδMは小さいことが好ましい。例えば、M. Wittek et al., SID 2015 DIGESTpp.824−826に記載のΔεMが4以上で、tanδMが0.02以下(いずれも19Gzの値)を好適に用いることができる。この他、九鬼、高分子55巻8月号pp.599−602(2006)に記載のΔεMが0.4以上、tanδMが0.04以下の液晶材料を用いることができる。
一般に液晶材料の誘電率は周波数分散を有するが、マイクロ波に対する誘電異方性ΔεMは、可視光に対する屈折率異方性Δnと正の相関がある。したがって、マイクロ波に対するアンテナ単位用の液晶材料は、可視光に対する屈折率異方性Δnが大きい材料が好ましいと言える。LCD用の液晶材料の屈折率異方性Δnは550nmの光に対する屈折率異方性で評価される。ここでも550nmの光に対するΔn(複屈折率)を指標に用いると、Δnが0.3以上、好ましくは0.4以上のネマチック液晶が、マイクロ波に対するアンテナ単位用に用いられる。Δnに特に上限はない。ただし、Δnが大きい液晶材料は極性が強い傾向にあるので、信頼性を低下させる恐れがある。信頼性の観点からは、Δnは0.4以下であることが好ましい。液晶層の厚さは、例えば、1μm〜500μmである。
以下、本発明の実施形態による走査アンテナの構造および製造方法をより詳細に説明する。
(第1の実施形態)
まず、図1および図2を参照する。図1は詳述した様に走査アンテナ1000の中心付近の模式的な部分断面図であり、図2(a)および(b)は、それぞれ、走査アンテナ1000におけるTFT基板101およびスロット基板201を示す模式的な平面図である。
走査アンテナ1000は2次元に配列された複数のアンテナ単位Uを有しており、ここで例示する走査アンテナ1000では、複数のアンテナ単位が同心円状に配列されている。以下の説明においては、アンテナ単位Uに対応するTFT基板101の領域およびスロット基板201の領域を「アンテナ単位領域」と呼び、アンテナ単位と同じ参照符号Uを付すことにする。また、図2(a)および(b)に示す様に、TFT基板101およびスロット基板201において、2次元的に配列された複数のアンテナ単位領域によって画定される領域を「送受信領域R1」と呼び、送受信領域R1以外の領域を「非送受信領域R2」と呼ぶ。非送受信領域R2には、端子部、駆動回路などが設けられる。
図2(a)は、走査アンテナ1000におけるTFT基板101を示す模式的な平面図である。
図示する例では、TFT基板101の法線方向から見たとき、送受信領域R1はドーナツ状である。非送受信領域R2は、送受信領域R1の中心部に位置する第1非送受信領域R2aと、送受信領域R1の周縁部に位置する第2非送受信領域R2bとを含む。送受信領域R1の外径は、例えば200mm〜1500mmで、通信量などに応じて設定される。
TFT基板101の送受信領域R1には、誘電体基板1に支持された複数のゲートバスラインGLおよび複数のソースバスラインSLが設けられ、これらの配線によってアンテナ単位領域Uが規定されている。アンテナ単位領域Uは、送受信領域R1において、例えば同心円状に配列されている。アンテナ単位領域Uのそれぞれは、TFTと、TFTに電気的に接続されたパッチ電極とを含んでいる。TFTのソース電極はソースバスラインSLに、ゲート電極はゲートバスラインGLにそれぞれ電気的に接続されている。また、ドレイン電極は、パッチ電極と電気的に接続されている。
非送受信領域R2(R2a、R2b)には、送受信領域R1を包囲するようにシール領域Rsが配置されている。シール領域Rsにはシール材(不図示)が付与されている。シール材は、TFT基板101およびスロット基板201を互いに接着させるとともに、これらの基板101、201の間に液晶を封入する。
非送受信領域R2のうちシール領域Rsの外側には、ゲート端子部GT、ゲートドライバGD、ソース端子部STおよびソースドライバSDが設けられている。ゲートバスラインGLのそれぞれはゲート端子部GTを介してゲートドライバGDに接続されている。ソースバスラインSLのそれぞれはソース端子部STを介してソースドライバSDに接続されている。なお、この例では、ソースドライバSDおよびゲートドライバGDは誘電体基板1上に形成されているが、これらのドライバの一方または両方は他の誘電体基板上に設けられていてもよい。
非送受信領域R2には、また、複数のトランスファー端子部PTが設けられている。トランスファー端子部PTは、スロット基板201のスロット電極55(図2(b))と電気的に接続される。本明細書では、トランスファー端子部PTとスロット電極55との接続部を「トランスファー部」と称する。図示するように、トランスファー端子部PT(トランスファー部)は、シール領域Rs内に配置されてもよい。この場合、シール材として導電性粒子を含有する樹脂を用いてもよい。これにより、TFT基板101とスロット基板201との間に液晶を封入させるとともに、トランスファー端子部PTとスロット基板201のスロット電極55との電気的な接続を確保できる。この例では、第1非送受信領域R2aおよび第2非送受信領域R2bの両方にトランスファー端子部PTが配置されているが、いずれか一方のみに配置されていてもよい。
なお、トランスファー端子部PT(トランスファー部)は、シール領域Rs内に配置されていなくてもよい。例えば非送受信領域R2のうちシール領域Rsの外側に配置されていてもよい。
図2(b)は、走査アンテナ1000におけるスロット基板201を例示する模式的な平面図であり、スロット基板201の液晶層LC側の表面を示している。
スロット基板201では、誘電体基板51上に、送受信領域R1および非送受信領域R2に亘ってスロット電極55が形成されている。
スロット基板201の送受信領域R1では、スロット電極55には複数のスロット57が配置されている。スロット57は、TFT基板101におけるアンテナ単位領域Uに対応して配置されている。図示する例では、複数のスロット57は、ラジアルインラインスロットアンテナを構成するように、互いに概ね直交する方向に延びる一対のスロット57が同心円状に配列されている。互いに概ね直交するスロットを有するので、走査アンテナ1000は、円偏波を送受信することができる。
非送受信領域R2には、複数の、スロット電極55の端子部ITが設けられている。端子部ITは、TFT基板101のトランスファー端子部PT(図2(a))と電気的に接続される。この例では、端子部ITは、シール領域Rs内に配置されており、導電性粒子を含有するシール材によって対応するトランスファー端子部PTと電気的に接続される。
また、第1非送受信領域R2aにおいて、スロット基板201の裏面側に給電ピン72が配置されている。給電ピン72によって、スロット電極55、反射導電板65および誘電体基板51で構成された導波路301にマイクロ波が挿入される。給電ピン72は給電装置70に接続されている。給電は、スロット57が配列された同心円の中心から行う。給電の方式は、直結給電方式および電磁結合方式のいずれであってもよく、公知の給電構造を採用することができる。
図2(a)および(b)では、シール領域Rsは、送受信領域R1を含む比較的狭い領域を包囲するように設けた例を示したが、これに限られない。特に、送受信領域R1の外側に設けられるシール領域Rsは、送受信領域R1から一定以上の距離を持つように、例えば、誘電体基板1および/または誘電体基板51の辺の近傍に設けてもよい。もちろん、非送受信領域R2に設けられる、例えば端子部や駆動回路は、シール領域Rsの外側(すなわち、液晶層が存在しない側)に形成してもよい。送受信領域R1から一定以上の離れた位置にシール領域Rsを形成することによって、シール材(特に、硬化性樹脂)に含まれている不純物(特にイオン性不純物)の影響を受けてアンテナ特性が低下することを抑制することができる。
以下、図面を参照して、走査アンテナ1000の各構成要素をより詳しく説明する。
<TFT基板101の構造>
・アンテナ単位領域U
図3(a)および(b)は、それぞれ、TFT基板101のアンテナ単位領域Uを模式的に示す断面図および平面図である。
アンテナ単位領域Uのそれぞれは、誘電体基板(不図示)と、誘電体基板に支持されたTFT10と、TFT10を覆う第1絶縁層11と、第1絶縁層11上に形成され、TFT10に電気的に接続されたパッチ電極15と、パッチ電極15を覆う第2絶縁層17とを備える。TFT10は、例えば、ゲートバスラインGLおよびソースバスラインSLの交点近傍に配置されている。
TFT10は、ゲート電極3G、島状の半導体層5、ゲート電極3Gと半導体層5との間に配置されたゲート絶縁層4、ソース電極7Sおよびドレイン電極7Dを備える。TFT10の構造は特に限定しない。この例では、TFT10は、ボトムゲート構造を有するチャネルエッチ型のTFTである。
ゲート電極3Gは、ゲートバスラインGLに電気的に接続されており、ゲートバスラインGLから走査信号を供給される。ソース電極7Sは、ソースバスラインSLに電気的に接続されており、ソースバスラインSLからデータ信号を供給される。ゲート電極3GおよびゲートバスラインGLは同じ導電膜(ゲート用導電膜)から形成されていてもよい。ソース電極7S、ドレイン電極7DおよびソースバスラインSLは同じ導電膜(ソース用導電膜)から形成されていてもよい。ゲート用導電膜およびソース用導電膜は、例えば金属膜である。本明細書では、ゲート用導電膜を用いて形成された層(レイヤー)を「ゲートメタル層」、ソース用導電膜を用いて形成された層を「ソースメタル層」と呼ぶことがある。
半導体層5は、ゲート絶縁層4を介してゲート電極3Gと重なるように配置されている。図示する例では、半導体層5上に、ソースコンタクト層6Sおよびドレインコンタクト層6Dが形成されている。ソースコンタクト層6Sおよびドレインコンタクト層6Dは、それぞれ、半導体層5のうちチャネルが形成される領域(チャネル領域)の両側に配置されている。半導体層5は真性アモルファスシリコン(i−a−Si)層であり、ソースコンタクト層6Sおよびドレインコンタクト層6Dはn+型アモルファスシリコン(n+−a−Si)層であってもよい。
ソース電極7Sは、ソースコンタクト層6Sに接するように設けられ、ソースコンタクト層6Sを介して半導体層5に接続されている。ドレイン電極7Dは、ドレインコンタクト層6Dに接するように設けられ、ドレインコンタクト層6Dを介して半導体層5に接続されている。
第1絶縁層11は、TFT10のドレイン電極7Dに達するコンタクトホールCH1を有している。
パッチ電極15は、第1絶縁層11上およびコンタクトホールCH1内に設けられており、コンタクトホールCH1内で、ドレイン電極7Dと接している。パッチ電極15は、金属層を含む。パッチ電極15は、金属層のみから形成された金属電極であってもよい。パッチ電極15の材料は、ソース電極7Sおよびドレイン電極7Dと同じであってもよい。ただし、パッチ電極15における金属層の厚さ(パッチ電極15が金属電極の場合にはパッチ電極15の厚さ)は、ソース電極7Sおよびドレイン電極7Dの厚さよりも大きくなるように設定される。パッチ電極15における金属層の厚さは、Al層で形成する場合、例えば0.3μm以上に設定される。
ゲートバスラインGLと同じ導電膜を用いて、CSバスラインCLが設けられていてもよい。CSバスラインCLは、ゲート絶縁層4を介してドレイン電極(またはドレイン電極の延長部分)7Dと重なるように配置され、ゲート絶縁層4を誘電体層とする補助容量CSを構成してもよい。
ゲートバスラインGLよりも誘電体基板側に、アライメントマーク(例えば金属層)21と、アライメントマーク21を覆う下地絶縁膜2とが形成されていてもよい。アライメントマーク21は、1枚のガラス基板から例えばm枚のTFT基板を作製する場合において、フォトマスク枚がn枚(n<m)であると、各露光工程を複数回に分けて行う必要が生じる。このようにフォトマスクの枚数(n枚)が1枚のガラス基板1から作製されるTFT基板101の枚数(m枚)よりも少ないとき、フォトマスクのアライメントに用いられる。アライメントマーク21は省略され得る。
本実施形態では、ソースメタル層とは異なる層内にパッチ電極15を形成する。これにより、次のようなメリットが得られる。
ソースメタル層は、通常金属膜を用いて形成されることから、ソースメタル層内にパッチ電極を形成することも考えられる。しかしながら、パッチ電極は、電子の振動を阻害しない程度に低抵抗であることが好ましく、例えば、厚さが0.3μm以上の比較的厚いAl層で形成される。アンテナ性能の観点からは、パッチ電極は厚い方が好ましい。しかしながら、TFTの構成にも依存するが、例えば1μmを超える厚さを有するパッチ電極をソースメタル層で形成すると、所望のパターニング精度が得られないという問題が生じることがある。例えば、ソース電極とドレイン電極との間隙(TFTのチャネル長に相当)を高い精度で制御できないという問題が生じることがある。これに対し、本実施形態では、ソースメタル層とは別個にパッチ電極15を形成するので、ソースメタル層の厚さとパッチ電極15の厚さとを独立して制御できる。したがって、ソースメタル層を形成する際の制御性を確保しつつ、所望の厚さのパッチ電極15を形成できる。
本実施形態では、パッチ電極15の厚さを、ソースメタル層の厚さとは別個に、高い自由度で設定できる。なお、パッチ電極15のサイズは、ソースバスラインSL等ほど厳密に制御される必要がないので、パッチ電極15を厚くすることによって線幅シフト(設計値とのずれ)が大きくなっても構わない。なお、パッチ電極15の厚さとソースメタル層の厚さが等しい場合を排除するものではない。
パッチ電極15は、主層としてCu層またはAl層を含んでもよい。走査アンテナの性能はパッチ電極15の電気抵抗と相関があり、主層の厚さは、所望の抵抗が得られるように設定される。電気抵抗の観点から、Cu層の方がAl層よりもパッチ電極15の厚さを小さくできる可能性がある。
・ゲート端子部GT、ソース端子部STおよびトランスファー端子部PT
図4(a)〜(c)は、それぞれ、ゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを模式的に示す断面図である。
ゲート端子部GTは、誘電体基板上に形成されたゲートバスラインGL、ゲートバスラインGLを覆う絶縁層、およびゲート端子用上部接続部19gを備えている。ゲート端子用上部接続部19gは、絶縁層に形成されたコンタクトホールCH2内で、ゲートバスラインGLと接している。この例では、ゲートバスラインGLを覆う絶縁層は、誘電体基板側からゲート絶縁層4、第1絶縁層11および第2絶縁層17を含む。ゲート端子用上部接続部19gは、例えば、第2絶縁層17上に設けられた透明導電膜から形成された透明電極である。
ソース端子部STは、誘電体基板上(ここではゲート絶縁層4上)に形成されたソースバスラインSL、ソースバスラインSLを覆う絶縁層、およびソース端子用上部接続部19sを備えている。ソース端子用上部接続部19sは、絶縁層に形成されたコンタクトホールCH3内で、ソースバスラインSLと接している。この例では、ソースバスラインSLを覆う絶縁層は、第1絶縁層11および第2絶縁層17を含む。ソース端子用上部接続部19sは、例えば、第2絶縁層17上に設けられた透明導電膜から形成された透明電極である。
トランスファー端子部PTは、第1絶縁層11上に形成されたパッチ接続部15pと、パッチ接続部15pを覆う第2絶縁層17と、トランスファー端子用上部接続部19pとを有している。トランスファー端子用上部接続部19pは、第2絶縁層17に形成されたコンタクトホールCH4内で、パッチ接続部15pと接している。パッチ接続部15pは、パッチ電極15と同じ導電膜から形成されている。トランスファー端子用上部接続部(上部透明電極ともいう。)19pは、例えば、第2絶縁層17上に設けられた透明導電膜から形成された透明電極である。本実施形態では、各端子部の上部接続部19g、19sおよび19pは、同じ透明導電膜から形成されている。
本実施形態では、第2絶縁層17を形成した後のエッチング工程により、各端子部のコンタクトホールCH2、CH3、CH4を同時に形成することができるという利点がある。詳細な製造プロセスは後述する。
<TFT基板101の製造方法>
TFT基板101は、例えば以下の方法で製造され得る。図5は、TFT基板101の製造工程を例示する図である。
まず、誘電体基板上に、金属膜(例えばTi膜)を形成し、これをパターニングすることにより、アライメントマーク21を形成する。誘電体基板としては、例えばガラス基板、耐熱性を有するプラスチック基板(樹脂基板)などを用いることができる。次いで、アライメントマーク21を覆うように、下地絶縁膜2を形成する。下地絶縁膜2として、例えばSiO2膜を用いる。
続いて、下地絶縁膜2上に、ゲート電極3GおよびゲートバスラインGLを含むゲートメタル層を形成する。
ゲート電極3Gは、ゲートバスラインGLと一体的に形成され得る。ここでは、誘電体基板上に、スパッタ法などによって、図示しないゲート用導電膜(厚さ:例えば50nm以上500nm以下)を形成する。次いで、ゲート用導電膜をパターニングすることにより、ゲート電極3GおよびゲートバスラインGLを得る。ゲート用導電膜の材料は特に限定しない。アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属またはその合金、若しくはその金属窒化物を含む膜を適宜用いることができる。ここでは、ゲート用導電膜として、MoN(厚さ:例えば50nm)、Al(厚さ:例えば200nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜を形成する。
次いで、ゲートメタル層を覆うようにゲート絶縁層4を形成する。ゲート絶縁層4は、CVD法等によって形成され得る。ゲート絶縁層4としては、酸化珪素(SiO2)層、窒化珪素(SiNx)層、酸化窒化珪素(SiOxNy;x>y)層、窒化酸化珪素(SiNxOy;x>y)層等を適宜用いることができる。ゲート絶縁層4は積層構造を有していてもよい。ここでは、ゲート絶縁層4として、SiNx層(厚さ:例えば410nm)を形成する。
次いで、ゲート絶縁層4上に半導体層5およびコンタクト層を形成する。ここでは、真性アモルファスシリコン膜(厚さ:例えば125nm)およびn+型アモルファスシリコン膜(厚さ:例えば65nm)をこの順で形成し、パターニングすることにより、島状の半導体層5およびコンタクト層を得る。半導体層5に用いる半導体膜はアモルファスシリコン膜に限定されない。例えば、半導体層5として酸化物半導体層を形成してもよい。この場合には、半導体層5とソース・ドレイン電極との間にコンタクト層を設けなくてもよい。
次いで、ゲート絶縁層4上およびコンタクト層上にソース用導電膜(厚さ:例えば50nm以上500nm以下)を形成し、これをパターニングすることによって、ソース電極7S、ドレイン電極7DおよびソースバスラインSLを含むソースメタル層を形成する。このとき、コンタクト層もエッチングされ、互いに分離されたソースコンタクト層6Sとドレインコンタクト層6Dとが形成される。
ソース用導電膜の材料は特に限定しない。アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)等の金属またはその合金、若しくはその金属窒化物を含む膜を適宜用いることができる。ここでは、ソース用導電膜として、MoN(厚さ:例えば30nm)、Al(厚さ:例えば200nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜を形成する。なお、代わりに、ソース用導電膜として、Ti(厚さ:例えば30nm)、MoN(厚さ:例えば30nm)、Al(厚さ:例えば200nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜を形成してもよい。
ここでは、例えば、スパッタ法でソース用導電膜を形成し、ウェットエッチングによりソース用導電膜のパターニング(ソース・ドレイン分離)を行う。この後、例えばドライエッチングにより、コンタクト層のうち、半導体層5のチャネル領域となる領域上に位置する部分を除去してギャップ部を形成し、ソースコンタクト層6Sおよびドレインコンタクト層6Dとに分離する。このとき、ギャップ部において、半導体層5の表面近傍もエッチングされる(オーバーエッチング)。
なお、例えばソース用導電膜としてTi膜およびAl膜をこの順で積層した積層膜を用いる場合には、例えばリン酸酢酸硝酸水溶液を用いて、ウェットエッチングでAl膜のパターニングを行った後、ドライエッチングでTi膜およびコンタクト層(n+型アモルファスシリコン層)6を同時にパターニングしてもよい。あるいは、ソース用導電膜およびコンタクト層を一括してエッチングすることも可能である。ただし、ソース用導電膜またはその下層とコンタクト層6とを同時にエッチングする場合には、基板全体における半導体層5のエッチング量(ギャップ部の掘れ量)の分布の制御が困難となる場合がある。これに対し、上述したように、ソース・ドレイン分離とギャップ部の形成と別個のエッチング工程で行うと、ギャップ部のエッチング量をより容易に制御できる。
次に、TFT10を覆うように第1絶縁層11を形成する。この例では、第1絶縁層11は、半導体層5のチャネル領域と接するように配置される。また、公知のフォトリソグラフィにより、第1絶縁層11に、ドレイン電極7Dに達するコンタクトホールCH1を形成する。
第1絶縁層11は、例えば、酸化珪素(SiO2)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等の無機絶縁層であってもよい。ここでは、第1絶縁層11として、例えばCVD法により、厚さが例えば330nmのSiNx層を形成する。
次いで、第1絶縁層11上およびコンタクトホールCH1内にパッチ用導電膜を形成し、これをパターニングする。これにより、送受信領域R1にパッチ電極15を形成し、非送受信領域R2にパッチ接続部15pを形成する。パッチ電極15は、コンタクトホールCH1内でドレイン電極7Dと接する。なお、本明細書では、パッチ用導電膜から形成された、パッチ電極15、パッチ接続部15pを含む層を「パッチメタル層」と呼ぶことがある。
パッチ用導電膜の材料として、ゲート用導電膜またはソース用導電膜と同様の材料が用いられ得る。ただし、パッチ用導電膜は、ゲート用導電膜およびソース用導電膜よりも厚くなるように設定される。これにより、パッチ電極のシート抵抗を低減させることで、パッチ電極内の自由電子の振動が熱に変わるロスを低減させることが可能になる。パッチ用導電膜の好適な厚さは、例えば、0.3μm以上である。これよりも薄いと、シート抵抗が0.10Ω/sq以上となり、ロスが大きくなるという問題が生じる可能性がある。パッチ用導電膜の厚さは、例えば3μm以下、より好ましくは2μm以下である。これよりも厚いとプロセス中の熱応力により基板の反りが生じる場合がある。反りが大きいと、量産プロセスにおいて、搬送トラブル、基板の欠け、または基板の割れなどの問題が発生することがある。
ここでは、パッチ用導電膜として、MoN(厚さ:例えば50nm)、Al(厚さ:例えば1000nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜(MoN/Al/MoN)を形成する。なお、代わりに、Ti(厚さ:例えば50nm)、MoN(厚さ:例えば50nm)、Al(厚さ:例えば2000nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜(MoN/Al/MoN/Ti)を形成してもよい。あるいは、代わりに、Ti(厚さ:例えば50nm)、MoN(厚さ:例えば50nm)、Al(厚さ:例えば500nm)およびMoN(厚さ:例えば50nm)をこの順で積層した積層膜(MoN/Al/MoN/Ti)を形成してもよい。または、Ti膜、Cu膜およびTi膜をこの順で積層した積層膜(Ti/Cu/Ti)、あるいは、Ti膜およびCu膜をこの順で積層した積層膜(Cu/Ti)を用いてもよい。
次いで、パッチ電極15および第1絶縁層11上に第2絶縁層(厚さ:例えば100nm以上300nm以下)17を形成する。第2絶縁層17としては、特に限定されず、例えば酸化珪素(SiO2)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等を適宜用いることができる。ここでは、第2絶縁層17として、例えば厚さ200nmのSiNx層を形成する。
この後、例えばフッ素系ガスを用いたドライエッチングにより、無機絶縁膜(第2絶縁層17、第1絶縁層11およびゲート絶縁層4)を一括してエッチングする。エッチングでは、パッチ電極15、ソースバスラインSLおよびゲートバスラインGLはエッチストップとして機能する。これにより、第2絶縁層17、第1絶縁層11およびゲート絶縁層4に、ゲートバスラインGLに達するコンタクトホールCH2が形成され、第2絶縁層17および第1絶縁層11に、ソースバスラインSLに達するコンタクトホールCH3が形成される。また、第2絶縁層17に、パッチ接続部15pに達するコンタクトホールCH4が形成される。
この例では、無機絶縁膜を一括してエッチングするため、得られたコンタクトホールCH2の側壁では、第2絶縁層17、第1絶縁層11およびゲート絶縁層4の側面が整合し、コンタクトホールCH3の側壁では、第2絶縁層17および第1絶縁層11の側壁が整合する。なお、本明細書において、コンタクトホール内において、異なる2以上の層の「側面が整合する」とは、これらの層におけるコンタクトホール内に露出した側面が、垂直方向に面一である場合のみでなく、連続してテーパー形状などの傾斜面を構成する場合をも含む。このような構成は、例えば、同一のマスクを用いてこれらの層をエッチングする、あるいは、一方の層をマスクとして他方の層のエッチングを行うこと等によって得られる。
次に、第2絶縁層17上、およびコンタクトホールCH2、CH3、CH4内に、例えばスパッタ法により透明導電膜(厚さ:50nm以上200nm以下)を形成する。透明導電膜として、例えばITO(インジウム・錫酸化物)膜、IZO膜、ZnO膜(酸化亜鉛膜)などを用いることができる。ここでは、透明導電膜として、厚さが例えば100nmのITO膜を用いる。
次いで、透明導電膜をパターニングすることにより、ゲート端子用上部接続部19g、ソース端子用上部接続部19sおよびトランスファー端子用上部接続部19pを形成する。ゲート端子用上部接続部19g、ソース端子用上部接続部19sおよびトランスファー端子用上部接続部19pは、各端子部で露出した電極または配線を保護するために用いられる。このようにして、ゲート端子部GT、ソース端子部STおよびトランスファー端子部PTが得られる。
<スロット基板201の構造>
次いで、スロット基板201の構造をより具体的に説明する。
図6は、スロット基板201におけるアンテナ単位領域Uおよび端子部ITを模式的に示す断面図である。
スロット基板201は、表面および裏面を有する誘電体基板51と、誘電体基板51の表面に形成された第3絶縁層52と、第3絶縁層52上に形成されたスロット電極55と、スロット電極55を覆う第4絶縁層58とを備える。反射導電板65が誘電体基板51の裏面に誘電体層(空気層)54を介して対向するように配置されている。スロット電極55および反射導電板65は導波路301の壁として機能する。
送受信領域R1において、スロット電極55には複数のスロット57が形成されている。スロット57はスロット電極55を貫通する開口である。この例では、各アンテナ単位領域Uに1個のスロット57が配置されている。
第4絶縁層58は、スロット電極55上およびスロット57内に形成されている。第4絶縁層58の材料は、第3絶縁層52の材料と同じであってもよい。第4絶縁層58でスロット電極55を覆うことにより、スロット電極55と液晶層LCとが直接接触しないので、信頼性を高めることができる。スロット電極55がCu層で形成されていると、Cuが液晶層LCに溶出することがある。また、スロット電極55を薄膜堆積技術を用いてAl層で形成すると、Al層にボイドが含まれることがある。第4絶縁層58は、Al層のボイドに液晶材料が侵入するのを防止することができる。なお、Al層をアルミ箔を接着材により誘電体基板51に貼り付け、これをパターニングすることによってスロット電極55を作製すれば、ボイドの問題を回避できる。
スロット電極55は、Cu層、Al層などの主層55Mを含む。スロット電極55は、主層55Mと、それを挟むように配置された上層55Uおよび下層55Lとを含む積層構造を有していてもよい。主層55Mの厚さは、材料に応じて表皮効果を考慮して設定され、例えば2μm以上30μm以下であってもよい。主層55Mの厚さは、典型的には上層55Uおよび下層55Lの厚さよりも大きい。
図示する例では、主層55MはCu層、上層55Uおよび下層55LはTi層である。主層55Mと第3絶縁層52との間に下層55Lを配置することにより、スロット電極55と第3絶縁層52との密着性を向上できる。また、上層55Uを設けることにより、主層55M(例えばCu層)の腐食を抑制できる。
反射導電板65は、導波路301の壁を構成するので、表皮深さの3倍以上、好ましくは5倍以上の厚さを有することが好ましい。反射導電板65は、例えば、削り出しによって作製された厚さが数mmのアルミニウム板、銅板などを用いることができる。
非送受信領域R2には、端子部ITが設けられている。端子部ITは、スロット電極55と、スロット電極55を覆う第4絶縁層58と、上部接続部60とを備える。第4絶縁層58は、スロット電極55に達する開口を有している。上部接続部60は、開口内でスロット電極55に接している。本実施形態では、端子部ITは、シール領域Rs内に配置され、導電性粒子を含有するシール樹脂によって、TFT基板におけるトランスファー端子部と接続される(トランスファー部)。
・トランスファー部
図7は、TFT基板101のトランスファー端子部PTと、スロット基板201の端子部ITとを接続するトランスファー部を説明するための模式的な断面図である。図7では、図1〜図4と同様の構成要素には同じ参照符号を付している。
トランスファー部では、端子部ITの上部接続部60は、TFT基板101におけるトランスファー端子部PTのトランスファー端子用上部接続部19pと電気的に接続される。本実施形態では、上部接続部60とトランスファー端子用上部接続部19pとを、導電性ビーズ71を含む樹脂(シール樹脂)73(「シール部73」ということもある。)を介して接続する。
上部接続部60、19pは、いずれも、ITO膜、IZO膜などの透明導電層であり、その表面に酸化膜が形成される場合がある。酸化膜が形成されると、透明導電層同士の電気的な接続が確保できず、コンタクト抵抗が高くなる可能性がある。これに対し、本実施形態では、導電性ビーズ(例えばAuビーズ)71を含む樹脂を介して、これらの透明導電層を接着させるので、表面酸化膜が形成されていても、導電性ビーズが表面酸化膜を突き破る(貫通する)ことにより、コンタクト抵抗の増大を抑えることが可能である。導電性ビーズ71は、表面酸化膜だけでなく、透明導電層である上部接続部60、19pをも貫通し、パッチ接続部15pおよびスロット電極55に直接接していてもよい。
トランスファー部は、走査アンテナ1000の中心部および周縁部(すなわち、走査アンテナ1000の法線方向から見たとき、ドーナツ状の送受信領域R1の内側および外側)の両方に配置されていてもよいし、いずれか一方のみに配置されていてもよい。トランスファー部は、液晶を封入するシール領域Rs内に配置されていてもよいし、シール領域Rsの外側(液晶層と反対側)に配置されていてもよい。
<スロット基板201の製造方法>
スロット基板201は、例えば以下の方法で製造され得る。
まず、誘電体基板上に第3絶縁層(厚さ:例えば200nm)52を形成する。誘電体基板としては、ガラス基板、樹脂基板などの、電磁波に対する透過率の高い(誘電率εMおよび誘電損失tanδMが小さい)基板を用いることができる。誘電体基板は電磁波の減衰を抑制するために薄い方が好ましい。例えば、ガラス基板の表面に後述するプロセスでスロット電極55などの構成要素を形成した後、ガラス基板を裏面側から薄板化してもよい。これにより、ガラス基板の厚さを例えば500μm以下に低減できる。
誘電体基板として樹脂基板を用いる場合、TFT等の構成要素を直接、樹脂基板上に形成してもよいし、転写法を用いて樹脂基板上に形成してもよい。転写法によると、例えば、ガラス基板上に樹脂膜(例えばポリイミド膜)を形成し、樹脂膜上に後述するプロセスで構成要素を形成した後、構成要素が形成された樹脂膜とガラス基板とを分離させる。一般に、ガラスよりも樹脂の方が誘電率εMおよび誘電損失tanδMが小さい。樹脂基板の厚さは、例えば、3μm〜300μmである。樹脂材料としては、ポリイミドの他、例えば、液晶高分子を用いることもできる。
第3絶縁層52としては、特に限定しないが、例えば酸化珪素(SiO2)膜、窒化珪素(SiNx)膜、酸化窒化珪素(SiOxNy;x>y)膜、窒化酸化珪素(SiNxOy;x>y)膜等を適宜用いることができる。
次いで、第3絶縁層52の上に金属膜を形成し、これをパターニングすることによって、複数のスロット57を有するスロット電極55を得る。金属膜としては、厚さが2μm〜5μmのCu膜(またはAl膜)を用いてもよい。ここでは、Ti膜、Cu膜およびTi膜をこの順で積層した積層膜を用いる。なお、代わりに、Ti(厚さ:例えば50nm)およびCu(厚さ:例えば5000nm)をこの順で積層した積層膜を形成してもよい。
この後、スロット電極55上およびスロット57内に第4絶縁層(厚さ:例えば100nmまたは200nm)58を形成する。第4絶縁層58の材料は、第3絶縁層の材料と同じであってもよい。この後、非送受信領域R2において、第4絶縁層58に、スロット電極55に達する開口部を形成する。
次いで、第4絶縁層58上および第4絶縁層58の開口部内に透明導電膜を形成し、これをパターニングすることにより、開口部内でスロット電極55と接する上部接続部60を形成する。これにより、端子部ITを得る。
<TFT10の材料および構造>
本実施形態では、各画素に配置されるスイッチング素子として、半導体層5を活性層とするTFTが用いられる。半導体層5はアモルファスシリコン層に限定されず、ポリシリコン層、酸化物半導体層であってもよい。
酸化物半導体層を用いる場合、酸化物半導体層に含まれる酸化物半導体は、アモルファス酸化物半導体であってもよいし、結晶質部分を有する結晶質酸化物半導体であってもよい。結晶質酸化物半導体としては、多結晶酸化物半導体、微結晶酸化物半導体、c軸が層面に概ね垂直に配向した結晶質酸化物半導体などが挙げられる。
酸化物半導体層は、2層以上の積層構造を有していてもよい。酸化物半導体層が積層構造を有する場合には、酸化物半導体層は、非晶質酸化物半導体層と結晶質酸化物半導体層とを含んでいてもよい。あるいは、結晶構造の異なる複数の結晶質酸化物半導体層を含んでいてもよい。また、複数の非晶質酸化物半導体層を含んでいてもよい。酸化物半導体層が上層と下層とを含む2層構造を有する場合、上層に含まれる酸化物半導体のエネルギーギャップは、下層に含まれる酸化物半導体のエネルギーギャップよりも大きいことが好ましい。ただし、これらの層のエネルギーギャップの差が比較的小さい場合には、下層の酸化物半導体のエネルギーギャップが上層の酸化物半導体のエネルギーギャップよりも大きくてもよい。
非晶質酸化物半導体および上記の各結晶質酸化物半導体の材料、構造、成膜方法、積層構造を有する酸化物半導体層の構成などは、例えば特開2014−007399号公報に記載されている。参考のために、特開2014−007399号公報の開示内容の全てを本明細書に援用する。
酸化物半導体層は、例えば、In、GaおよびZnのうち少なくとも1種の金属元素を含んでもよい。本実施形態では、酸化物半導体層は、例えば、In−Ga−Zn−O系の半導体(例えば酸化インジウムガリウム亜鉛)を含む。ここで、In−Ga−Zn−O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、GaおよびZnの割合(組成比)は特に限定されず、例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等を含む。このような酸化物半導体層は、In−Ga−Zn−O系の半導体を含む酸化物半導体膜から形成され得る。
In−Ga−Zn−O系の半導体は、アモルファスでもよいし、結晶質でもよい。結晶質In−Ga−Zn−O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In−Ga−Zn−O系の半導体が好ましい。
なお、結晶質In−Ga−Zn−O系の半導体の結晶構造は、例えば、上述した特開2014−007399号公報、特開2012−134475号公報、特開2014−209727号公報などに開示されている。参考のために、特開2012−134475号公報および特開2014−209727号公報の開示内容の全てを本明細書に援用する。In−Ga−Zn−O系半導体層を有するTFTは、高い移動度(a−SiTFTに比べ20倍超)および低いリーク電流(a−SiTFTに比べ100分の1未満)を有しているので、駆動TFT(例えば、非送受信領域に設けられる駆動回路に含まれるTFT)および各アンテナ単位領域に設けられるTFTとして好適に用いられる。
酸化物半導体層は、In−Ga−Zn−O系半導体の代わりに、他の酸化物半導体を含んでいてもよい。例えばIn−Sn−Zn−O系半導体(例えばIn23−SnO2−ZnO;InSnZnO)を含んでもよい。In−Sn−Zn−O系半導体は、In(インジウム)、Sn(スズ)およびZn(亜鉛)の三元系酸化物である。あるいは、酸化物半導体層は、In−Al−Zn−O系半導体、In−Al−Sn−Zn−O系半導体、Zn−O系半導体、In−Zn−O系半導体、Zn−Ti−O系半導体、Cd−Ge−O系半導体、Cd−Pb−O系半導体、CdO(酸化カドミウム)、Mg−Zn−O系半導体、In−Ga−Sn−O系半導体、In−Ga−O系半導体、Zr−In−Zn−O系半導体、Hf−In−Zn−O系半導体、Al−Ga−Zn−O系半導体、Ga−Zn−O系半導体などを含んでいてもよい。
図3に示す例では、TFT10は、ボトムゲート構造を有するチャネルエッチ型のTFTである。「チャネルエッチ型のTFT」では、チャネル領域上にエッチストップ層が形成されておらず、ソースおよびドレイン電極のチャネル側の端部下面は、半導体層の上面と接するように配置されている。チャネルエッチ型のTFTは、例えば半導体層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。ソース・ドレイン分離工程において、チャネル領域の表面部分がエッチングされる場合がある。
なお、TFT10は、チャネル領域上にエッチストップ層が形成されたエッチストップ型TFTであってもよい。エッチストップ型TFTでは、ソースおよびドレイン電極のチャネル側の端部下面は、例えばエッチストップ層上に位置する。エッチストップ型のTFTは、例えば半導体層のうちチャネル領域となる部分を覆うエッチストップ層を形成した後、半導体層およびエッチストップ層上にソース・ドレイン電極用の導電膜を形成し、ソース・ドレイン分離を行うことによって形成される。
また、TFT10は、ソースおよびドレイン電極が半導体層の上面と接するトップコンタクト構造を有するが、ソースおよびドレイン電極は半導体層の下面と接するように配置されていてもよい(ボトムコンタクト構造)。さらに、TFT10は、半導体層の誘電体基板側にゲート電極を有するボトムゲート構造であってもよいし、半導体層の上方にゲート電極を有するトップゲート構造であってもよい。
(第2の実施形態)
図面を参照しながら、第2の実施形態の走査アンテナを説明する。本実施形態の走査アンテナにおけるTFT基板は、各端子部の上部接続部となる透明導電層が、TFT基板における第1絶縁層と第2絶縁層との間に設けられている点で、図2に示すTFT基板101と異なる。
図8(a)〜(c)は、それぞれ、本実施形態におけるTFT基板102のゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを示す断面図である。図4と同様の構成要素には同じ参照符号を付し、説明を省略する。なお、アンテナ単位領域Uの断面構造は前述の実施形態(図3)と同様であるので図示および説明を省略する。
本実施形態におけるゲート端子部GTは、誘電体基板上に形成されたゲートバスラインGL、ゲートバスラインGLを覆う絶縁層、およびゲート端子用上部接続部19gを備えている。ゲート端子用上部接続部19gは、絶縁層に形成されたコンタクトホールCH2内で、ゲートバスラインGLと接している。この例では、ゲートバスラインGLを覆う絶縁層は、ゲート絶縁層4および第1絶縁層11を含む。ゲート端子用上部接続部19gおよび第1絶縁層11上には第2絶縁層17が形成されている。第2絶縁層17は、ゲート端子用上部接続部19gの一部を露出する開口部18gを有している。この例では、第2絶縁層17の開口部18gは、コンタクトホールCH2全体を露出するように配置されていてもよい。
ソース端子部STは、誘電体基板上(ここではゲート絶縁層4上)に形成されたソースバスラインSL、ソースバスラインSLを覆う絶縁層、およびソース端子用上部接続部19sを備えている。ソース端子用上部接続部19sは、絶縁層に形成されたコンタクトホールCH3内で、ソースバスラインSLと接している。この例では、ソースバスラインSLを覆う絶縁層は、第1絶縁層11のみを含む。第2絶縁層17は、ソース端子用上部接続部19sおよび第1絶縁層11上に延設されている。第2絶縁層17は、ソース端子用上部接続部19sの一部を露出する開口部18sを有している。第2絶縁層17の開口部18sは、コンタクトホールCH3全体を露出するように配置されていてもよい。
トランスファー端子部PTは、ソースバスラインSLと同じ導電膜(ソース用導電膜)から形成されたソース接続配線7pと、ソース接続配線7p上に延設された第1絶縁層11と、第1絶縁層11上に形成されたトランスファー端子用上部接続部19pおよびパッチ接続部15pとを有している。
第1絶縁層11には、ソース接続配線7pを露出するコンタクトホールCH5およびCH6が設けられている。トランスファー端子用上部接続部19pは、第1絶縁層11上およびコンタクトホールCH5内に配置され、コンタクトホールCH5内で、ソース接続配線7pと接している。パッチ接続部15pは、第1絶縁層11上およびコンタクトホールCH6内に配置され、コンタクトホールCH6内でソース接続配線7pと接している。トランスファー端子用上部接続部19pは、透明導電膜から形成された透明電極である。パッチ接続部15pは、パッチ電極15と同じ導電膜から形成されている。なお、各端子部の上部接続部19g、19sおよび19pは、同じ透明導電膜から形成されていてもよい。
第2絶縁層17は、トランスファー端子用上部接続部19p、パッチ接続部15pおよび第1絶縁層11上に延設されている。第2絶縁層17は、トランスファー端子用上部接続部19pの一部を露出する開口部18pを有している。この例では、第2絶縁層17の開口部18pは、コンタクトホールCH5全体を露出するように配置されている。一方、パッチ接続部15pは、第2絶縁層17で覆われている。
このように、本実施形態では、ソースメタル層に形成されたソース接続配線7pによって、トランスファー端子部PTのトランスファー端子用上部接続部19pと、パッチ接続部15pとを電気的に接続している。図示していないが、前述の実施形態と同様に、トランスファー端子用上部接続部19pは、スロット基板201におけるスロット電極と、導電性粒子を含有するシール樹脂によって接続される。
前述した実施形態では、第2絶縁層17の形成後に、深さが異なるコンタクトホールCH1〜CH4を一括して形成する。例えばゲート端子部GT上では、比較的厚い絶縁層(ゲート絶縁層4、第1絶縁層11および第2絶縁層17)をエッチングするのに対し、トランスファー端子部PTでは、第2絶縁層17のみをエッチングする。このため、浅いコンタクトホールの下地となる導電膜(例えばパッチ電極用導電膜)がエッチング時に大きなダメージを受ける可能性がある。
これに対し、本実施形態では、第2絶縁層17を形成する前にコンタクトホールCH1〜3、CH5、CH6を形成する。これらのコンタクトホールは第1絶縁層11のみ、または第1絶縁層11およびゲート絶縁層4の積層膜に形成されるので、前述の実施形態よりも、一括形成されるコンタクトホールの深さの差を低減できる。したがって、コンタクトホールの下地となる導電膜へのダメージを低減できる。特に、パッチ電極用導電膜にAl膜を用いる場合には、ITO膜とAl膜とを直接接触させると良好なコンタクトが得られないことから、Al膜の上層にMoN層などのキャップ層を形成することがある。このような場合に、エッチングの際のダメージを考慮してキャップ層の厚さを大きくする必要がないので有利である。
<TFT基板102の製造方法>
TFT基板102は、例えば次のような方法で製造される。図9は、TFT基板102の製造工程を例示する図である。なお、以下では、各層の材料、厚さ、形成方法などが、前述したTFT基板101と同様である場合には説明を省略する。
まず、TFT基板102と同様の方法で、誘電体基板上に、アライメントマーク、下地絶縁層、ゲートメタル層、ゲート絶縁層、半導体層、コンタクト層およびソースメタル層を形成し、TFTを得る。ソースメタル層を形成する工程では、ソース用導電膜から、ソースおよびドレイン電極、ソースバスラインに加えて、ソース接続配線7pも形成する。
次に、ソースメタル層を覆うように第1絶縁層11を形成する。この後、第1絶縁層11およびゲート絶縁層4を一括してエッチングし、コンタクトホールCH1〜3、CH5、CH6を形成する。エッチングでは、ソースバスラインSLおよびゲートバスラインGLはエッチストップとして機能する。これにより、送受信領域R1において、第1絶縁層11に、TFTのドレイン電極に達するコンタクトホールCH1が形成される。また、非送受信領域R2において、第1絶縁層11およびゲート絶縁層4に、ゲートバスラインGLに達するコンタクトホールCH2、第1絶縁層11に、ソースバスラインSLに達するコンタクトホールCH3およびソース接続配線7pに達するコンタクトホールCH5、CH6が形成される。コンタクトホールCH5をシール領域Rsに配置し、コンタクトホールCH6をシール領域Rsの外側に配置してもよい。あるいは、両方ともシール領域Rsの外部に配置してもよい。
次いで、第1絶縁層11上およびコンタクトホールCH1〜3、CH5、CH6に透明導電膜を形成し、これをパターニングする。これにより、コンタクトホールCH2内でゲートバスラインGLと接するゲート端子用上部接続部19g、コンタクトホールCH3内でソースバスラインSLと接するソース端子用上部接続部19s、およびコンタクトホールCH5内でソース接続配線7pと接するトランスファー端子用上部接続部19pを形成する。
次に、第1絶縁層11上、ゲート端子用上部接続部19g、ソース端子用上部接続部19s、トランスファー端子用上部接続部19p上、およびコンタクトホールCH1、CH6内に、パッチ電極用導電膜を形成し、パターニングを行う。これにより、送受信領域R1に、コンタクトホールCH1内でドレイン電極7Dと接するパッチ電極15、非送受信領域R2に、コンタクトホールCH6内でソース接続配線7pと接するパッチ接続部15pを形成する。パッチ電極用導電膜のパターニングは、ウェットエッチングによって行ってもよい。ここでは、透明導電膜(ITOなど)とパッチ電極用導電膜(例えばAl膜)とのエッチング選択比を大きくできるエッチャントを用いる。これにより、パッチ電極用導電膜のパターニングの際に、透明導電膜をエッチストップとして機能させることができる。ソースバスラインSL、ゲートバスラインGLおよびソース接続配線7pのうちコンタクトホールCH2、CH3、CH5で露出された部分は、エッチストップ(透明導電膜)で覆われているため、エッチングされない。
続いて、第2絶縁層17を形成する。この後、例えばフッ素系ガスを用いたドライエッチングにより、第2絶縁層17のパターニングを行う。これにより、第2絶縁層17に、ゲート端子用上部接続部19gを露出する開口部18g、ソース端子用上部接続部19sを露出する開口部18sおよびトランスファー端子用上部接続部19pを露出する開口部18pを設ける。このようにして、TFT基板102を得る。
(第3の実施形態)
図面を参照しながら、第3の実施形態の走査アンテナを説明する。本実施形態の走査アンテナにおけるTFT基板は、透明導電膜からなる上部接続部をトランスファー端子部に設けない点で、図8に示すTFT基板102と異なる。
図10(a)〜(c)は、それぞれ、本実施形態におけるTFT基板103のゲート端子部GT、ソース端子部STおよびトランスファー端子部PTを示す断面図である。図8と同様の構成要素には同じ参照符号を付し、説明を省略する。なお、アンテナ単位領域Uの構造は前述の実施形態(図3)と同様であるので図示および説明を省略する。
ゲート端子部GTおよびソース端子部STの構造は、図8に示すTFT基板102のゲート端子部およびソース端子部の構造と同様である。
トランスファー端子部PTは、第1絶縁層11上に形成されたパッチ接続部15pと、パッチ接続部15p上に積み重ねられた保護導電層23とを有している。第2絶縁層17は、保護導電層23上に延設され、保護導電層23の一部を露出する開口部18pを有している。一方、パッチ電極15は、第2絶縁層17で覆われている。
<TFT基板103の製造方法>
TFT基板103は、例えば次のような方法で製造される。図11は、TFT基板103の製造工程を例示する図である。なお、以下では、各層の材料、厚さ、形成方法などが、前述したTFT基板101と同様である場合には説明を省略する。
まず、TFT基板101と同様の方法で、誘電体基板上に、アライメントマーク、下地絶縁層、ゲートメタル層、ゲート絶縁層、半導体層、コンタクト層およびソースメタル層を形成し、TFTを得る。
次に、ソースメタル層を覆うように第1絶縁層11を形成する。この後、第1絶縁層11およびゲート絶縁層4を一括してエッチングし、コンタクトホールCH1〜3を形成する。エッチングでは、ソースバスラインSLおよびゲートバスラインGLはエッチストップとして機能する。これにより、第1絶縁層11に、TFTのドレイン電極に達するコンタクトホールCH1が形成されるとともに、第1絶縁層11およびゲート絶縁層4に、ゲートバスラインGLに達するコンタクトホールCH2が形成され、第1絶縁層11に、ソースバスラインSLに達するコンタクトホールCH3が形成される。トランスファー端子部が形成される領域にはコンタクトホールを形成しない。
次いで、第1絶縁層11上およびコンタクトホールCH1、CH2、CH3内に透明導電膜を形成し、これをパターニングする。これにより、コンタクトホールCH2内でゲートバスラインGLと接するゲート端子用上部接続部19g、およびコンタクトホールCH3内でソースバスラインSLと接するソース端子用上部接続部19sを形成する。トランスファー端子部が形成される領域では、透明導電膜は除去される。
次に、第1絶縁層11上、ゲート端子用上部接続部19gおよびソース端子用上部接続部19s上、およびコンタクトホールCH1内にパッチ電極用導電膜を形成し、パターニングを行う。これにより、送受信領域R1に、コンタクトホールCH1内でドレイン電極7Dと接するパッチ電極15を形成し、非送受信領域R2に、パッチ接続部15pを形成する。前述の実施形態と同様に、パッチ電極用導電膜のパターニングには、透明導電膜(ITOなど)とパッチ電極用導電膜とのエッチング選択比を確保できるエッチャントを用いる。
続いて、パッチ接続部15p上に保護導電層23を形成する。保護導電層23として、Ti層、ITO層およびIZO(インジウム亜鉛酸化物)層など(厚さ:例えば50nm以上100nm以下)を用いることができる。ここでは、保護導電層23として、Ti層(厚さ:例えば50nm)を用いる。なお、保護導電層をパッチ電極15の上に形成してもよい。
次いで、第2絶縁層17を形成する。この後、例えばフッ素系ガスを用いたドライエッチングにより、第2絶縁層17のパターニングを行う。これにより、第2絶縁層17に、ゲート端子用上部接続部19gを露出する開口部18g、ソース端子用上部接続部19sを露出する開口部18s、および保護導電層23を露出する開口部18pを設ける。このようにして、TFT基板103を得る。
<スロット基板203の構造>
図12は、本実施形態における、TFT基板103のトランスファー端子部PTと、スロット基板203の端子部ITとを接続するトランスファー部を説明するための模式的な断面図である。図12では、前述の実施形態と同様の構成要素には同じ参照符号を付している。
まず、本実施形態におけるスロット基板203を説明する。スロット基板203は、誘電体基板51と、誘電体基板51の表面に形成された第3絶縁層52と、第3絶縁層52上に形成されたスロット電極55と、スロット電極55を覆う第4絶縁層58とを備える。反射導電板65が誘電体基板51の裏面に誘電体層(空気層)54を介して対向するように配置されている。スロット電極55および反射導電板65は導波路301の壁として機能する。
スロット電極55は、Cu層またはAl層を主層55Mとする積層構造を有している。送受信領域R1において、スロット電極55には複数のスロット57が形成されている。送受信領域R1におけるスロット電極55の構造は、図6を参照しながら前述したスロット基板201の構造と同じである。
非送受信領域R2には、端子部ITが設けられている。端子部ITでは、第4絶縁層58に、スロット電極55の表面を露出する開口が設けられている。スロット電極55の露出した領域がコンタクト面55cとなる。このように、本実施形態では、スロット電極55のコンタクト面55cは、第4絶縁層58で覆われていない。
トランスファー部では、TFT基板103におけるパッチ接続部15pを覆う保護導電層23と、スロット基板203におけるスロット電極55のコンタクト面55cとを、導電性ビーズ71を含む樹脂(シール樹脂)を介して接続する。
本実施形態におけるトランスファー部は、前述の実施形態と同様に、走査アンテナの中心部および周縁部の両方に配置されていてもよいし、いずれか一方のみに配置されていてもよい。また、シール領域Rs内に配置されていてもよいし、シール領域Rsの外側(液晶層と反対側)に配置されていてもよい。
本実施形態では、トランスファー端子部PTおよび端子部ITのコンタクト面に透明導電膜を設けない。このため、保護導電層23と、スロット基板203のスロット電極55とを、導電性粒子を含有するシール樹脂を介して接続させることができる。
また、本実施形態では、第1の実施形態(図3および図4)と比べて、一括形成されるコンタクトホールの深さの差が小さいので、コンタクトホールの下地となる導電膜へのダメージを低減できる。
<スロット基板203の製造方法>
スロット基板203は、次のようにして製造される。各層の材料、厚さおよび形成方法は、スロット基板201と同様であるので、説明を省略する。
まず、スロット基板201と同様の方法で、誘電体基板上に、第3絶縁層52およびスロット電極55を形成し、スロット電極55に複数のスロット57を形成する。次いで、スロット電極55上およびスロット内に第4絶縁層58を形成する。この後、スロット電極55のコンタクト面となる領域を露出するように、第4絶縁層58に開口部18pを設ける。このようにして、スロット基板203が製造される。
<内部ヒーター構造>
上述したように、アンテナのアンテナ単位に用いられる液晶材料の誘電異方性ΔεMは大きいことが好ましい。しかしながら、誘電異方性ΔεMが大きい液晶材料(ネマチック液晶)の粘度は大きく、応答速度が遅いという問題がある。特に、温度が低下すると、粘度は上昇する。移動体(例えば、船舶、航空機、自動車)に搭載された走査アンテナの環境温度は変動する。したがって、液晶材料の温度をある程度以上、例えば30℃以上、あるいは45℃以上に調整できることが好ましい。設定温度は、ネマチック液晶材料の粘度が概ね10cP(センチポアズ)以下となるように設定することが好ましい。
本発明の実施形態の走査アンテナは、上記の構造に加えて、内部ヒーター構造を有することが好ましい。内部ヒーターとしては、ジュール熱を利用する抵抗加熱方式のヒーターが好ましい。ヒーター用の抵抗膜の材料としては、特に限定されないが、例えば、ITOやIZOなど比較的比抵抗の高い導電材料を用いることができる。また、抵抗値の調整のために、金属(例えば、ニクロム、チタン、クロム、白金、ニッケル、アルミニウム、銅)の細線やメッシュで抵抗膜を形成してもよい。ITOやIZOなどの細線やメッシュを用いることもできる。求められる発熱量に応じて、抵抗値を設定すればよい。
例えば、直径が340mmの円の面積(約90、000mm2)を100V交流(60Hz)で、抵抗膜の発熱温度を30℃にするためには、抵抗膜の抵抗値を139Ω、電流を0.7Aで、電力密度を800W/m2とすればよい。同じ面積を100V交流(60Hz)で、抵抗膜の発熱温度を45℃にするためには、抵抗膜の抵抗値を82Ω、電流を1.2Aで、電力密度を1350W/m2とすればよい。
ヒーター用の抵抗膜は、走査アンテナの動作に影響を及ぼさない限りどこに設けてもよいが、液晶材料を効率的に加熱するためには、液晶層の近くに設けることが好ましい。例えば、図13(a)に示すTFT基板104に示す様に、誘電体基板1のほぼ全面に抵抗膜68を形成してもよい。図13(a)は、ヒーター用抵抗膜68を有するTFT基板104の模式的な平面図である。抵抗膜68は、例えば、図3に示した下地絶縁膜2で覆われる。下地絶縁膜2は、十分な絶縁耐圧を有するように形成される。
抵抗膜68は、開口部68a、68bおよび68cを有することが好ましい。TFT基板104とスロット基板とが貼り合せられたとき、パッチ電極15と対向するようにスロット57が位置する。このときに、スロット57のエッジから距離dの周囲には抵抗膜68が存在しないよう開口部68aを配置する。dは例えば0.5mmである。また、補助容量CSの下部にも開口部68bを配置し、TFTの下部にも開口部68cを配置することが好ましい。
なお、アンテナ単位Uのサイズは、例えば4mm×4mmである。また、図13(b)に示すように、例えば、スロット57の幅s2は0.5mm、スロット57の長さs1は3.3mm、スロット57の幅方向のパッチ電極15の幅p2は0.7mm、スロットの長さ方向のパッチ電極15の幅p1は0.5mmである。なお、アンテナ単位U、スロット57およびパッチ電極15のサイズ、形状、配置関係などは図13(a)および(b)に示す例に限定されない。
ヒーター用抵抗膜68からの電界の影響をさらに低減するために、シールド導電層を形成してもよい。シールド導電層は、例えば、下地絶縁膜2の上に誘電体基板1のほぼ全面に形成される。シールド導電層には、抵抗膜68のように開口部68a、68bを設ける必要はないが、開口部68cを設けることが好ましい。シールド導電層は、例えば、アルミニウム層で形成され、接地電位とされる。
また、液晶層を均一に加熱できるように、抵抗膜の抵抗値に分布を持たせることが好ましい。液晶層の温度分布は、最高温度−最低温度(温度むら)が、例えば15℃以下となることが好ましい。温度むらが15℃を超えると、位相差変調が面内でばらつき、良好なビーム形成ができなくなるという不具合が発生することがある。また、液晶層の温度がTni点(例えば125℃)に近づくと、ΔεMが小さくなるので好ましくない。
図14(a)、(b)および図15(a)〜(c)を参照して、抵抗膜における抵抗値の分布を説明する。図14(a)、(b)および図15(a)〜(c)に、抵抗加熱構造80a〜80eの模式的な構造と電流の分布を示す。抵抗加熱構造は、抵抗膜と、ヒーター用端子とを備えている。
図14(a)に示す抵抗加熱構造80aは、第1端子82aと第2端子84aとこれらに接続された抵抗膜86aとを有している。第1端子82aは、円の中心に配置され、第2端子84aは円周の全体に沿って配置されている。ここで円は、送受信領域R1に対応する。第1端子82aと第2端子84aとの間に直流電圧を供給すると、例えば、第1端子82aから第2端子84aに放射状に電流IAが流れる。したがって、抵抗膜86aは面内の抵抗値は一定であっても、均一に発熱することができる。もちろん、電流の流れる向きは、第2端子84aから第1端子82aに向かう方向でもよい。
図14(b)に抵抗加熱構造80bは、第1端子82bと第2端子84bとこれらに接続された抵抗膜86bとを有している。第1端子82bおよび第2端子84bは円周に沿って互いに隣接して配置されている。抵抗膜86bにおける第1端子82bと第2端子84bとの間を流れる電流IAによって発生する単位面積当たりの発熱量が一定になるように、抵抗膜86bの抵抗値は面内分布を有している。抵抗膜86bの抵抗値の面内分布は、例えば、抵抗膜86を細線で構成する場合、細線の太さや、細線の密度で調整すればよい。
図15(a)に示す抵抗加熱構造80cは、第1端子82cと第2端子84cとこれらに接続された抵抗膜86cとを有している。第1端子82cは、円の上側半分の円周に沿って配置されており、第2端子84cは円の下側半分の円周に沿って配置されている。抵抗膜86cを例えば第1端子82cと第2端子84cとの間を上下に延びる細線で構成する場合、電流IAによる単位面積あたりの発熱量が面内で一定になるように、例えば、中央付近の細線の太さや密度が高くなるように調整されている。
図15(b)に示す抵抗加熱構造80dは、第1端子82dと第2端子84dとこれらに接続された抵抗膜86dとを有している。第1端子82dと第2端子84dとは、それぞれ円の直径に沿って上下方向、左右方向に延びるように設けられている。図では簡略化しているが、第1端子82dと第2端子84dとは互いに絶縁されている。
また、図15(c)に示す抵抗加熱構造80eは、第1端子82eと第2端子84eとこれらに接続された抵抗膜86eとを有している。抵抗加熱構造80eは、抵抗加熱構造80dと異なり、第1端子82eおよび第2端子84eのいずれも円の中心から上下左右の4つの方向に延びる4つの部分を有している。互いに90度を成す第1端子82eの部分と第2端子84eの部分とは、電流IAが、時計回りに流れるように配置されている。
抵抗加熱構造80dおよび抵抗加熱構造80eのいずれにおいても、単位面積当たりの発熱量が面内で均一になるように、円周に近いほど電流IAが多くなるように、例えば、円周に近い側の細線を太く、密度が高くなるように調整されている。
このような内部ヒーター構造は、例えば、走査アンテナの温度を検出して、予め設定された温度を下回ったときに自動的に動作するようにしてもよい。もちろん、使用者の操作に呼応して動作するようにしてもよい。
<外部ヒーター構造>
本発明の実施形態の走査アンテナは、上記の内部ヒーター構造に代えて、あるいは、内部ヒーター構造とともに、外部ヒーター構造を有してもよい。外部ヒーターとしては、公知の種々のヒーターを用いることができるが、ジュール熱を利用する抵抗加熱方式のヒーターが好ましい。ヒーターの内、発熱する部分をヒーター部ということにする。以下では、ヒーター部として抵抗膜を用いる例を説明する。以下でも、抵抗膜は参照符号68で示す。
例えば、図16(a)および(b)に示す液晶パネル100Paまたは100Pbの様に、ヒーター用の抵抗膜68を配置することが好ましい。ここで、液晶パネル100Paおよび100Pbは、図1に示した走査アンテナ1000のTFT基板101と、スロット基板201と、これらの間に設けられた液晶層LCとを有し、さらにTFT基板101の外側に、抵抗膜68を含む抵抗加熱構造を有している。抵抗膜68をTFT基板101の誘電体基板1の液晶層LC側に形成してよいが、TFT基板101の製造プロセスが煩雑化するので、TFT基板101の外側(液晶層LCとは反対側)に配置することが好ましい。
図16(a)に示す液晶パネル100Paは、TFT基板101の誘電体基板1の外側の表面に形成されたヒーター用抵抗膜68と、ヒーター用抵抗膜68を覆う保護層69aとを有している。保護層69aは省略してもよい。走査アンテナは、例えばプラスチック製のケースに収容されるので、抵抗膜68にユーザが直接触れることはない。
抵抗膜68は、誘電体基板1の外側の表面に、例えば、公知の薄膜堆積技術(例えば、スパッタ法、CVD法)、塗布法または印刷法を用いて形成することができる。抵抗膜68は、必要に応じてパターニングされている。パターニングは、例えば、フォトリソグラフィプロセスで行われる。
ヒーター用の抵抗膜68の材料としては、内部ヒーター構造について上述したように、特に限定されず、例えば、ITOやIZOなど比較的比抵抗の高い導電材料を用いることができる。また、抵抗値の調整のために、金属(例えば、ニクロム、チタン、クロム、白金、ニッケル、アルミニウム、銅)の細線やメッシュで抵抗膜68を形成してもよい。ITOやIZOなどの細線やメッシュを用いることもできる。求められる発熱量に応じて、抵抗値を設定すればよい。
保護層69aは、絶縁材料で形成されており、抵抗膜68を覆うように形成されている。抵抗膜68がパターニングされており、誘電体基板1が露出されている部分には保護層69aを形成しなくてもよい。抵抗膜68は、後述するように、アンテナの性能が低下しないようにパターニングされる。保護層69aを形成する材料が存在することによって、アンテナの性能が低下する場合には、抵抗膜68と同様に、パターニングされた保護層69aを用いることが好ましい。
保護層69aは、ウェットプロセス、ドライプロセスのいずれで形成してもよい。例えば、抵抗膜68が形成された誘電体基板1の表面に、液状の硬化性樹脂(または樹脂の前駆体)または溶液を付与した後、硬化性樹脂を硬化させることによって形成される。液状の樹脂または樹脂の溶液は、種々の塗布法(例えば、スロットコータ―、スピンコーター、スプレイを用いて)または種々の印刷法で、所定の厚さとなるように誘電体基板1の表面に付与される。その後、樹脂の種類に応じて、室温硬化、加熱硬化、または光硬化することによって、絶縁性樹脂膜で保護層69aを形成することができる。絶縁性樹脂膜は、例えば、フォトリソグラフィプロセスでパターニングされ得る。
保護層69aを形成する材料としては、硬化性樹脂材料を好適に用いることができる。硬化性樹脂材料は、熱硬化タイプおよび光硬化タイプを含む。また、熱硬化タイプは、熱架橋タイプおよび熱重合タイプを含む。
熱架橋タイプの樹脂材料としては、例えば、エポキシ系化合物(例えばエポキシ樹脂)とアミン系化合物の組合せ、エポキシ系化合物とヒドラジド系化合物の組み合わせ、エポキシ系化合物とアルコール系化合物(例えばフェノール樹脂を含む)の組み合わせ、エポキシ系化合物とカルボン酸系化合物(例えば酸無水物を含む)の組み合わせ、イソシアネート系化合物とアミン系化合物の組み合わせ、イソシアネート系化合物とヒドラジド系化合物の組み合わせ、イソシアネート系化合物とアルコール系化合物の組み合わせ(例えばウレタン樹脂を含む)、イソシアネート系化合物とカルボン酸系化合物の組み合わせが挙げられる。また、カチオン重合タイプ接着材としては、例えば、エポキシ系化合物とカチオン重合開始剤の組み合わせ(代表的なカチオン重合開始剤、芳香族スルホニウム塩)が挙げられる。ラジカル重合タイプの樹脂材料としては、例えば、各種アクリル、メタクリル、ウレタン変性アクリル(メタクリル)樹脂等のビニル基を含むモノマーおよび/またはオリゴマーとラジカル重合開始剤の組み合わせ(代表的なラジカル重合開始剤:アゾ系化合物(例えば、AIBN(アゾビスイソブチロニトリル)))、開環重合タイプの樹脂材料としては、例えば、エチレンオキシド系化合物、エチレンイミン系化合物、シロキサン系化合物が挙げられる。この他、マレイミド樹脂、マレイミド樹脂とアミンの組合せ、マレイミドとメタクリル化合物の組合せ、ビスマレイミド−トリアジン樹脂およびポリフェニレンエーテル樹脂を用いることができる。また、ポリイミドも好適に用いることができる。なお、「ポリイミド」は、ポリイミドの前駆体であるポリアミック酸を含む意味で用いる。ポリイミドは、例えば、エポキシ系化合物またはイソシアネート系化合物と組み合わせて用いられる。
耐熱性、化学的安定性、機械特性の観点から、熱硬化性タイプの樹脂材料を用いることが好ましい。特に、エポキシ樹脂またはポリイミド樹脂を含む樹脂材料が好ましく、機械特性(特に機械強度)および吸湿性の観点から、ポリイミド樹脂を含む樹脂材料が好ましい。ポリイミド樹脂とエポキシ樹脂とを混合して用いることもできる。また、ポリイミド樹脂および/またはエポキシ樹脂に熱可塑性樹脂および/またはエラストマを混合してもよい。さらに、ポリイミド樹脂および/またはエポキシ樹脂として、ゴム変性したものを混合してもよい。熱可塑性樹脂またはエラストマを混合することによって、柔軟性や靱性(タフネス)を向上させることができる。ゴム変性したものを用いても同様の効果を得ることができる。
光硬化タイプは、紫外線または可視光によって、架橋反応および/または重合反応を起こし、硬化する。光硬化タイプには、例えば、ラジカル重合タイプとカチオン重合タイプがある。ラジカル重合タイプとしては、アクリル樹脂(エポキシ変性アクリル樹脂、ウレタン変性アクリル樹脂、シリコーン変性アクリル樹脂)と光重合開始剤との組み合わせが代表的である。紫外光用ラジカル重合開始剤としては、例えば、アセトフェノン型およびベンゾフェノン型が挙げられる。可視光用ラジカル重合開始剤としては、例えば、ベンジル型およびチオキサントン型を挙げることができる。カチオン重合タイプとしては、エポキシ系化合物と光カチオン重合開始剤との組合せが代表的である。光カチオン重合開始剤は、例えば、ヨードニウム塩系化合物を挙げることができる。なお、光硬化性と熱硬化性とを併せ持つ樹脂材料を用いることもできる。
図16(b)に示す液晶パネル100Pbは、抵抗膜68と誘電体基板1との間に接着層67をさらに有している点で、液晶パネル100Paと異なる。また、保護層69bが予め作製された高分子フィルムまたはガラス板を用いて形成される点が異なる。
例えば、保護層69bが高分子フィルムで形成された液晶パネル100Pbは、以下の様にして製造される。
まず、保護層69bとなる絶縁性の高分子フィルムを用意する。高分子フィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリフェニルスルホン、および、ポリイミド、ポリアミド等のスーパーエンジニアリングプラスチックのフィルムが用いられる。高分子フィルムの厚さ(すなわち、保護層69bの厚さ)は、例えば、5μm以上200μm以下である。
この高分子フィルムの一方の表面の上に、抵抗膜68を形成する。抵抗膜68は、上述の方法で形成され得る。抵抗膜68はパターニングされてもよく、高分子フィルムも必要に応じてパターニングされてもよい。
抵抗膜68が形成された高分子フィルム(すなわち、保護層69bと抵抗膜68とが一体に形成された部材)を、接着材を用いて、誘電体基板1に貼り付ける。接着材としては、上記の保護層69aの形成に用いられる硬化性樹脂と同様の硬化性樹脂を用いることができる。さらに、ホットメルトタイプの樹脂材料(接着材)を用いることもできる。ホットメルトタイプの樹脂材料は、熱可塑性樹脂を主成分とし、加熱により溶融し、冷却により固化する。ポリオレフィン系(例えば、ポリエチレン、ポリプロピレン)、ポリアミド系、エチレン酢酸ビニル系が例示される。また、反応性を有するウレタン系のホットメルト樹脂材料(接着材)も販売されている。接着性および耐久性の観点からは、反応性のウレタン系が好ましい。
また、接着層67は、抵抗膜68および保護層(高分子フィルム)69bと同様にパターニングされてもよい。ただし、接着層67は、抵抗膜68および保護層69bを誘電体基板1に固定できればよいので、抵抗膜68および保護層69bよりも小さくてもよい。
高分子フィルムに代えて、ガラス板を用いて保護層69bを形成することもできる。製造プロセスは、高分子フィルムを用いる場合と同様であってよい。ガラス板の厚さは、1mm以下が好ましく、0.7mm以下がさらに好ましい。ガラス板の厚さの下限は特にないが、ハンドリング性の観点から、ガラス板の厚さは0.3mm以上であることが好ましい。
図16(b)に示した液晶パネル100Pbでは、保護層(高分子フィルムまたはガラス板)69bに形成された抵抗膜68を誘電体基板1に接着層67を介して固定したが、抵抗膜68を誘電体基板1に接触するように配置すればよく、抵抗膜68および保護層69bを誘電体基板1に固定(接着)する必要は必ずしもない。すなわち、接着層67を省略してもよい。例えば、抵抗膜68が形成された高分子フィルム(すなわち、保護層69bと抵抗膜68とが一体に形成された部材)を、抵抗膜68が誘電体基板1に接触するように配置し、走査アンテナを収容するケースで、抵抗膜68を誘電体基板1に押し当てるようにしてもよい。例えば、抵抗膜68が形成された高分子フィルムを単純に置くだけでは、接触熱抵抗が高くなるおそれがあるので、押し当てることによって接触熱抵抗を低下させることが好ましい。このような構成を採用すると、抵抗膜68および保護層(高分子フィルムまたはガラス板)69bが一体として形成された部材を取り外し可能にできる。
なお、抵抗膜68(および保護層69b)が後述するようにパターニングされている場合には、アンテナの性能が低下しないように、TFT基板に対する位置がずれない程度に固定することが好ましい。
ヒーター用の抵抗膜68は、走査アンテナの動作に影響を及ぼさない限りどこに設けてもよいが、液晶材料を効率的に加熱するためには、液晶層の近くに設けることが好ましい。したがって、図16(a)および(b)に示したように、TFT基板101の外側に設けることが好ましい。また、図16(a)に示したように、TFT基板101の誘電体基板1の外側に直接、抵抗膜68を設けた方が、図16(b)に示したように、接着層67を介して抵抗膜68を誘電体基板1の外側に設けるよりも、エネルギー効率が高く、かつ、温度の制御性も高いので好ましい。
抵抗膜68は、例えば、図13(a)に示すTFT基板104に対して、誘電体基板1のほぼ全面に設けてもよい。内部ヒーター構造について上述したように、抵抗膜68は、開口部68a、68bおよび68cを有することが好ましい。
保護層69aおよび69bは、抵抗膜68を覆うように全面に形成してもよい。上述したように、保護層69aまたは69bがアンテナ特性に悪影響を及ぼす場合には、抵抗膜68の開口部68a、68bおよび68cに対応する開口部を設けてもよい。この場合、保護層69aまたは69bの開口部は、抵抗膜68の開口部68a、68bおよび68cの内側に形成される。
ヒーター用抵抗膜68からの電界の影響をさらに低減するために、シールド導電層を形成してもよい。シールド導電層は、例えば、抵抗膜68の誘電体基板1側に絶縁膜を介して形成される。シールド導電層は、誘電体基板1のほぼ全面に形成される。シールド導電層には、抵抗膜68のように開口部68a、68bを設ける必要はないが、開口部68cを設けることが好ましい。シールド導電層は、例えば、アルミニウム層で形成され、接地電位とされる。また、液晶層を均一に加熱できるように、抵抗膜の抵抗値に分布を持たせることが好ましい。これらも内部ヒーター構造について上述した通りである。
抵抗膜は、送受信領域R1の液晶層LCを加熱できればよいので、例示したように、送受信領域R1に対応する領域に抵抗膜を設ければよいが、これに限られない。例えば、図2に示したように、TFT基板101が、送受信領域R1を含む矩形の領域を画定することができるような外形を有している場合には、送受信領域R1を含む矩形の領域に対応する領域に抵抗膜を設けてもよい。勿論、抵抗膜の外形は、矩形に限られず、送受信領域R1を含む、任意の形状であってよい。
上記の例では、TFT基板101の外側に抵抗膜を配置したが、スロット基板201の外側(液晶層LCとは反対側)に、抵抗膜を配置してもよい。この場合にも、図16(a)の液晶パネル100Paと同様に、誘電体基板51に直接、抵抗膜を形成してもよいし、図16(b)の液晶パネル100Pbと同様に、接着層を介して、保護層(高分子フィルムまたはガラス板)に形成された抵抗膜を誘電体基板51に固定してもよい。あるいは、接着層を省略して、抵抗膜が形成された保護層(すなわち、保護層と抵抗膜とが一体に形成された部材)を抵抗膜が誘電体基板51に接触するように配置してもよい。例えば、抵抗膜が形成された高分子フィルムを単純に置くだけでは、接触熱抵抗が高くなるおそれがあるので、押し当てることによって接触熱抵抗を低下させることが好ましい。このような構成を採用すると、抵抗膜および保護層(高分子フィルムまたはガラス板)が一体として形成された部材を取り外し可能にできる。なお、抵抗膜(および保護層)がパターニングされている場合には、アンテナの性能が低下しないように、スロット基板に対する位置がずれない程度に固定することが好ましい。
スロット基板201の外側に抵抗膜を配置する場合には、抵抗膜のスロット57に対応する位置に開口部を設けることが好ましい。また、抵抗膜はマイクロ波を十分に透過できる厚さであることが好ましい。
ここでは、ヒーター部として抵抗膜を用いた例を説明したが、ヒーター部として、この他に、例えば、ニクロム線(例えば巻線)、赤外線ヒーター部などを用いることができる。このような場合にも、アンテナの性能を低下させないように、ヒーター部を配置することが好ましい。
このような外部ヒーター構造は、例えば、走査アンテナの温度を検出して、予め設定された温度を下回ったときに自動的に動作するようにしてもよい。もちろん、使用者の操作に呼応して動作するようにしてもよい。
外部ヒーター構造を自動的に動作させるための温度制御装置として、例えば、公知の種々のサーモスタットを用いることができる。例えば、抵抗膜に接続された2つの端子の一方と電源との間に、バイメタルを用いたサーモスタットを接続すればよい。もちろん、温度検出器を用いて、予め設定した温度を下回らないように、外部ヒーター構造に電源から電流を供給するような温度制御装置を用いてもよい。
<駆動方法>
本発明の実施形態による走査アンテナが有するアンテナ単位のアレイは、LCDパネルと類似した構造を有しているので、LCDパネルと同様に線順次駆動を行う。しかしながら、従来のLCDパネルの駆動方法を適用すると、以下の問題が発生する恐れがある。図17に示す、走査アンテナの1つのアンテナ単位の等価回路図を参照しつつ、走査アンテナに発生し得る問題点を説明する。
まず、上述したように、マイクロ波領域の誘電異方性ΔεM(可視光に対する複屈折率Δn)が大きい液晶材料の比抵抗は低いので、LCDパネルの駆動方法をそのまま適用すると、液晶層に印加される電圧を十分に保持できない。そうすると、液晶層に印加される実効電圧が低下し、液晶容量の静電容量値が目標値に到達しない。
このように液晶層に印加された電圧が所定の値からずれると、アンテナのゲインが最大となる方向が所望する方向からずれることになる。そうすると、例えば、通信衛星を正確に追尾できないことになる。これを防止するために、液晶容量Clcと電気的に並列に補助容量CSを設け、補助容量CSの容量値C−Ccsを十分に大きくする。補助容量CSの容量値C−Ccsは、液晶容量Clcの電圧保持率が例えば少なくとも30%、好ましくは55%以上となるように適宜設定することが好ましい。補助容量CSの容量値C−Ccsは、電極CSE1および電極CSE2の面積および電極CSE1と電極CSE2との間の誘電体層の厚さおよび誘電率に依存する。典型的には、電極CSE1にはパッチ電極15と同じ電圧が供給され、電極CSE2にはスロット電極55と同じ電圧が供給される。
また、比抵抗が低い液晶材料を用いると、界面分極および/または配向分極による電圧低下も起こる。これらの分極による電圧低下を防止するために、電圧降下分を見込んだ十分に高い電圧を印加することが考えられる。しかしながら、比抵抗が低い液晶層に高い電圧を印加すると、動的散乱効果(DS効果)が起こる恐れがある。DS効果は、液晶層中のイオン性不純物の対流に起因し、液晶層の誘電率εMは平均値((εM‖+2εM⊥)/3)に近づく。また、液晶層の誘電率εMを多段階(多階調)で制御するためには、常に十分に高い電圧を印加することもできない。
上記のDS効果および/または分極による電圧降下を抑制するためには、液晶層に印加する電圧の極性反転周期を十分に短くすればよい。よく知られているように、印加電圧の極性反転周期を短くするとDS効果が起こるしきい値電圧が高くなる。したがって、液晶層に印加する電圧(絶対値)の最大値が、DS効果が起こるしきい値電圧未満となるように、極性反転周波数を決めればよい。極性反転周波数が300Hz以上であれば、例えば比抵抗が1×1010Ω・cm、誘電異方性Δε(@1kHz)が−0.6程度の液晶層に絶対値が10Vの電圧を印加しても、良好な動作を確保することができる。また、極性反転周波数(典型的にはフレーム周波数の2倍と同じ)が300Hz以上であれば、上記の分極に起因する電圧降下も抑制される。極性反転周期の上限は、消費電力などの観点から約5kHz以下であることが好ましい。
液晶層に印加する電圧の極性反転周波数は、当然に液晶材料(特に比抵抗)に依存する。したがって、液晶材料によっては300Hz未満の極性反転周期で電圧を印加しても上記の問題が生じない。ただし、本発明の実施形態による走査アンテナに用いられる液晶材料はLCDに用いられている液晶材料よりも比抵抗が小さいので、概ね60Hz以上で駆動することが好ましい。
上述したように液晶材料の粘度は温度に依存するので、液晶層の温度は適宜制御されることが好ましい。ここで述べた液晶材料の物性および駆動条件は、液晶層の動作温度における値である。逆に言うと、上記の条件で駆動できるように、液晶層の温度を制御することが好ましい。
図18(a)〜(g)を参照して、走査アンテナの駆動に用いられる信号の波形の例を説明する。なお、図18(d)に、比較のために、LCDパネルのソースバスラインに供給される表示信号Vs(LCD)の波形を示している。
図18(a)はゲートバスラインG−L1に供給される走査信号Vgの波形、図18(b)はゲートバスラインG−L2に供給される走査信号Vgの波形、図18(c)はゲートバスラインG−L3に供給される走査信号Vgの波形を示し、図18(e)はソースバスラインに供給されるデータ信号Vdaの波形を示し、図18(f)はスロット基板のスロット電極(スロット電極)に供給されるスロット電圧Vidcの波形を示し、図18(g)はアンテナ単位の液晶層に印加される電圧の波形を示す。
図18(a)〜(c)に示す様に、ゲートバスラインに供給される走査信号Vgの電圧が、順次、ローレベル(VgL)からハイレベル(VgH)に切替わる。VgLおよびVgHは、TFTの特性に応じて適宜設定され得る。例えば、VgL=−5V〜0V、Vgh=+20Vである。また、VgL=−20V、Vgh=+20Vとしてもよい。あるゲートバスラインの走査信号Vgの電圧がローレベル(VgL)からハイレベル(VgH)に切替わる時刻から、その次のゲートバスラインの電圧がVgLからVgHに切替わる時刻までの期間を1水平走査期間(1H)ということにする。また、各ゲートバスラインの電圧がハイレベル(VgH)になっている期間を選択期間PSという。この選択期間PSにおいて、各ゲートバスラインに接続されたTFTがオン状態となり、ソースバスラインに供給されているデータ信号Vdaのその時の電圧が、対応するパッチ電極に供給される。データ信号Vdaは例えば−15V〜+15V(絶対値が15V)であり、例えば、12階調、好ましくは16階調に対応する絶対値の異なるデータ信号Vdaを用いる。
ここでは、全てのアンテナ単位にある中間電圧を印加している場合を例示する。すなわち、データ信号Vdaの電圧は、全てのアンテナ単位(m本のゲートバスラインに接続されているとする。)に対して一定であるとする。これはLCDパネルにおいて全面である中間調を表示している場合に対応する。このとき、LCDパネルでは、ドット反転駆動が行われる。すなわち、各フレームにおいて、互いに隣接する画素(ドット)の極性が互いに逆になるように、表示信号電圧が供給される。
図18(d)はドット反転駆動を行っているLCDパネルの表示信号の波形を示している。図18(d)に示したように、1H毎にVs(LCD)の極性が反転している。この波形を有するVs(LCD)が供給されているソースバスラインに隣接するソースバスラインに供給されるVs(LCD)の極性は、図18(d)に示すVs(LCD)の極性と逆になっている。また、全ての画素に供給される表示信号の極性は、フレーム毎に反転する。LCDパネルでは、正極性と負極性とで、液晶層に印加される実効電圧の大きさを完全に一致させることが難しく、かつ、実効電圧の差が輝度の差となり、フリッカーとして観察される。このフリッカーを観察され難くするために、各フレームにおいて極性の異なる電圧が印加される画素(ドット)を空間的に分散させている。典型的には、ドット反転駆動を行うことによって、極性が異なる画素(ドット)を市松模様に配列させる。
これに対して、走査アンテナにおいては、フリッカー自体は問題とならない。すなわち、液晶容量の静電容量値が所望の値でありさえすればよく、各フレームにおける極性の空間的な分布は問題とならない。したがって、低消費電力等の観点から、ソースバスラインから供給されるデータ信号Vdaの極性反転の回数を少なくする、すなわち、極性反転の周期を長くすることが好ましい。例えば、図18(e)に示す様に、極性反転の周期を10H(5H毎に極性反転)にすればよい。もちろん、各ソースバスラインに接続されているアンテナ単位の数(典型的には、ゲートバスラインの本数に等しい。)をm個とすると、データ信号Vdaの極性反転の周期を2m・H(m・H毎に極性反転)としてもよい。データ信号Vdaの極性反転の周期は、2フレーム(1フレーム毎に極性反転)と等しくてもよい。
また、全てのソースバスラインから供給するデータ信号Vdaの極性を同じにしてもよい。したがって、例えば、あるフレームでは、全てのソースバスラインから正極性のデータ信号Vdaを供給し、次にフレームでは、全てのソースバスラインから負極性のデータ信号Vdaを供給してもよい。
あるいは、互いに隣接するソースバスラインから供給するデータ信号Vdaの極性を互いに逆極性にしてもよい。例えば、あるフレームでは、奇数列のソースバスラインからは正極性のデータ信号Vdaを供給し、偶数列のソースバスラインからは負極性のデータ信号Vdaを供給する。そして、次のフレームでは、奇数列のソースバスラインからは負極性のデータ信号Vdaを供給し、偶数列のソースバスラインからは正極性のデータ信号Vdaを供給する。このような駆動方法は、LCDパネルでは、ソースライン反転駆動と呼ばれる。隣接するソースバスラインから供給するデータ信号Vdaを逆極性にすると、フレーム間で供給するデータ信号Vdaの極性を反転させる前に、隣接するソースバスラインを互いに接続する(ショートさせる)ことによって、液晶容量に充電された電荷を隣接する列間でキャンセルさせることができる。したがって、各フレームにおいてソースバスラインから供給する電荷の量を少なくできるという利点が得られる。
スロット電極の電圧Vidcは図18(f)に示す様に、例えば、DC電圧であり、典型的にはグランド電位である。アンテナ単位の容量(液晶容量および補助容量)の容量値は、LCDパネルの画素容量の容量値よりも大きい(例えば、20型程度のLCDパネルと比較して約30倍)ので、TFTの寄生容量に起因する引込電圧の影響がなく、スロット電極の電圧Vidcをグランド電位として、データ信号Vdaをグランド電位を基準に正負対称な電圧としても、パッチ電極に供給される電圧は正負対称な電圧となる。LCDパネルにおいては、TFTの引込電圧を考慮して、対向電極の電圧(共通電圧)を調整することによって、画素電極に正負対称な電圧が印加されるようにしているが、走査アンテナのスロット電圧についてはその必要がなく、グランド電位であってよい。また、図18に図示しないが、CSバスラインには、スロット電圧Vidcと同じ電圧が供給される。
アンテナ単位の液晶容量に印加される電圧は、スロット電極の電圧Vidc(図18(f))に対するパッチ電極の電圧(すなわち、図18(e)に示したデータ信号Vdaの電圧)なので、スロット電圧Vidcがグランド電位のとき、図18(g)に示す様に、図18(e)に示したデータ信号Vdaの波形と一致する。
走査アンテナの駆動に用いられる信号の波形は、上記の例に限られない。例えば、図19および図20を参照して以下に説明するように、スロット電極の電圧として振動波形を有するViacを用いてもよい。
例えば、図19(a)〜(e)に例示する様な信号を用いることができる。図19では、ゲートバスラインに供給される走査信号Vgの波形を省略しているが、ここでも、図18(a)〜(c)を参照して説明した走査信号Vgを用いる。
図19(a)に示す様に、図18(e)に示したのと同様に、データ信号Vdaの波形が10H周期(5H毎)で極性反転している場合を例示する。ここでは、データ信号Vdaとして、振幅が最大値|Vdamax|の場合を示す。上述したように、データ信号Vdaの波形は、2フレーム周期(1フレーム毎)で極性反転させてもよい。
ここで、スロット電極の電圧Viacは、図19(c)に示す様に、データ信号Vda(ON)と極性が逆で、振動の周期は同じ、振動電圧とする。スロット電極の電圧Viacの振幅は、データ信号Vdaの振幅の最大値|Vdamax|と等しい。すなわち、スロット電圧Viacは、データ信号Vda(ON)と極性反転の周期は同じで、極性が逆(位相が180°異なる)で、−Vdamaxと+Vdamaxとの間を振動する電圧とする。
アンテナ単位の液晶容量に印加される電圧Vlcは、スロット電極の電圧Viac(図19(c))に対するパッチ電極の電圧(すなわち、図19(a)に示したデータ信号Vda(ON)の電圧)なので、データ信号Vdaの振幅が±Vdamaxで振動しているとき、液晶容量に印加される電圧は、図19(d)に示す様に、Vdamaxの2倍の振幅で振動する波形となる。したがって、液晶容量に印加される電圧Vlcの最大振幅を±Vdamaxとするために必要なデータ信号Vdaの最大振幅は、±Vdamax/2となる。
このようなスロット電圧Viacを用いることによって、データ信号Vdaの最大振幅を半分にできるので、データ信号Vdaを出力するドライバ回路として、例えば、耐圧が20V以下の汎用のドライバICを用いることができるという利点が得られる。
なお、図19(e)に示す様に、アンテナ単位の液晶容量に印加される電圧Vlc(OFF)をゼロとするとために、図19(b)に示す様に、データ信号Vda(OFF)をスロット電圧Viacと同じ波形にすればよい。
例えば、液晶容量に印加される電圧Vlcの最大振幅を±15Vとする場合を考える。スロット電圧として、図18(f)に示したVidcを用い、Vidc=0Vとすると、図18(e)に示したVdaの最大振幅は、±15Vとなる。これに対して、スロット電圧として、図19(c)に示したViacを用い、Viacの最大振幅を±7.5Vとすると、図19(a)に示したVda(ON)の最大振幅は、±7.5Vとなる。
液晶容量に印加される電圧Vlcを0Vとする場合、図18(e)に示したVdaを0Vとすればよく、図19(b)に示したVda(OFF)の最大振幅は±7.5Vとすればよい。
図19(c)に示したViacを用いる場合は、液晶容量に印加される電圧Vlcの振幅は、Vdaの振幅とは異なるので、適宜変換する必要がある。
図20(a)〜(e)に例示する様な信号を用いることもできる。図20(a)〜(e)に示す信号は、図19(a)〜(e)に示した信号と同様に、スロット電極の電圧Viacを図20(c)に示す様に、データ信号Vda(ON)と振動の位相が180°ずれた振動電圧とする。ただし、図20(a)〜(c)にそれぞれ示す様に、データ信号Vda(ON)、Vda(OFF)およびスロット電圧Viacをいずれも0Vと正の電圧との間で振動する電圧としている。スロット電極の電圧Viacの振幅は、データ信号Vdaの振幅の最大値|Vdamax|と等しい。
このような信号を用いると、駆動回路は正の電圧だけを出力すればよく、低コスト化に寄与する。このように0Vと正の電圧との間で振動する電圧を用いても、図20(d)に示すように、液晶容量に印加される電圧Vlc(ON)は、極性反転する。図20(d)に示す電圧波形において、+(正)は、パッチ電極の電圧がスロット電圧よりも高いことを示し、−(負)は、パッチ電極の電圧がスロット電圧よりも低いことを示している。すなわち、液晶層に印加される電界の向き(極性)は、他の例と同様に反転している。液晶容量に印加される電圧Vlc(ON)の振幅はVdamaxである。
なお、図20(e)に示す様に、アンテナ単位の液晶容量に印加される電圧Vlc(OFF)をゼロとするとために、図20(b)に示す様に、データ信号Vda(OFF)をスロット電圧Viacと同じ波形にすればよい。
図19および図20を参照して説明したスロット電極の電圧Viacを振動させる(反転させる)駆動方法は、LCDパネルの駆動方法でいうと、対向電圧を反転させる駆動方法に対応する(「コモン反転駆動」といわれることがある。)。LCDパネルでは、フリッカーを十分に抑制できないことから、コモン反転駆動は採用されていない。これに対し、走査アンテナでは、フリッカーは問題とならないので、スロット電圧を反転させることができる。振動(反転)は、例えば、フレーム毎に行われる(図19および図20における5Hを1V(垂直走査期間またはフレーム)とする)。
上記の説明では、スロット電極の電圧Viacは1つの電圧が印加される例、すなわち、全てのパッチ電極に対して共通のスロット電極が設けられている例を説明したが、スロット電極を、パッチ電極の1行、または、2以上の行に対応して分割してもよい。ここで、行とは、1つのゲートバスラインにTFTを介して接続されたパッチ電極の集合を指す。このようにスロット電極を複数の行部分に分割すれば、スロット電極の各部分の電圧の極性を互いに独立にできる。例えば、任意のフレームにおいて、パッチ電極に印加される電圧の極性を、隣接するゲートバスラインに接続されたパッチ電極間で互いに逆にできる。このように、パッチ電極の1行毎に極性を反転させる行反転(1H反転)だけでなく、2以上の行毎に極性を反転させるm行反転(mH反転)を行うことができる。もちろん、行反転とフレーム反転とは組合せられる。
駆動の単純さの観点からは、任意のフレームにおいて、パッチ電極に印加される電圧の極性を全て同じにし、フレーム毎に極性が反転する駆動が好ましい。
<アンテナ単位の配列、ゲートバスライン、ソースバスラインの接続の例>
本発明の実施形態の走査アンテナにおいて、アンテナ単位は例えば、同心円状に配列される。
例えば、m個の同心円に配列されている場合、ゲートバスラインは例えば、各円に対して1本ずつ設けられ、合計m本のゲートバスラインが設けられる。送受信領域R1の外径を、例えば800mmとすると、mは例えば、200である。最も内側のゲートバスラインを1番目とすると、1番目のゲートバスラインには、n個(例えば30個)のアンテナ単位が接続され、m番目のゲートバスラインにはnx個(例えば620個)のアンテナ単位が接続されている。
このような配列では、各ゲートバスラインに接続されているアンテナ単位の数が異なる。また、最も外側の円を構成するnx個のアンテナ単位に接続されているnx本のソースバスラインのうち、最も内側の円を構成するアンテナ単位にも接続されているn本のソースバスラインには、m個のアンテナ単位が接続されているが、その他のソースバスラインに接続されているアンテナ単位の数はmよりも小さい。
このように、走査アンテナにおけるアンテナ単位の配列は、LCDパネルにおける画素(ドット)の配列とは異なり、ゲートバスラインおよび/またはソースバスラインによって、接続されているアンテナ単位の数が異なる。したがって、全てのアンテナ単位の容量(液晶容量+補助容量)を同じにすると、ゲートバスラインおよび/またはソースバスラインによって、接続されている電気的な負荷が異なることになる。そうすると、アンテナ単位への電圧の書き込みにばらつきが生じるという問題がある。
そこで、これを防止するために、例えば、補助容量の容量値を調整することによって、あるいは、ゲートバスラインおよび/またはソースバスラインに接続するアンテナ単位の数を調整することによって、各ゲートバスラインおよび各ソースバスラインに接続されている電気的な負荷を略同一にすることが好ましい。
(第4の実施形態)
以下、第4の実施形態の走査アンテナを説明する。
本実施形態の走査アンテナに用いられるTFT基板は、非送受信領域にソース−ゲート接続部を有する。ソース−ゲート接続部は、各ソースバスラインをゲートメタル層内に形成された接続配線(「ソース下部接続配線」ということがある。)に電気的に接続する。ソース−ゲート接続部を設けることによって、ソース端子部の下部接続部をゲートメタル層で形成することができる。ゲートメタル層で形成された下部接続部を有するソース端子部は、信頼性に優れる。詳細は後述する。
図21(a)〜(c)は、本実施形態におけるTFT基板105を例示する模式的な平面図である。
TFT基板105は、複数のアンテナ単位領域Uが配列された送受信領域R1と、端子部などが設けられた非送受信領域R2とを有している。非送受信領域R2は、送受信領域R1を囲むように設けられたシール領域Rsを含んでいる。シール領域Rsは、例えば、端子部が配置される端子部領域と送受信領域R1との間に位置している。
図21(a)は、送受信領域R1のアンテナ単位領域Uを示し、図21(b)は、非送受信領域R2に設けられたトランスファー端子部PT、ゲート端子部GTおよびCS端子部CTを示し、図21(c)は、非送受信領域R2に設けられたソース−ゲート接続部SGおよびソース端子部STを示している。トランスファー端子部(トランスファー部ともいう)PTは、シール領域Rsに位置する第1トランスファー端子部PT1と、シール領域Rsよりも外側に設けられた第2トランスファー端子部PT2とを含む。この例では、第1トランスファー端子部PT1は、シール領域Rsに沿って、送受信領域R1を包囲するように延びている。
一般に、ゲート端子部GTおよびソース端子部STはそれぞれゲートバスライン毎およびソースバスライン毎に設けられる。ソース−ゲート接続部は、一般にソースバスライン毎に設けられる。図21(b)には、ゲート端子部GTと並べて、CS端子部CTおよび第2トランスファー端子部PT2を図示しているが、CS端子部CTおよび第2トランスファー端子部PT2の個数および配置は、それぞれゲート端子部GTとは独立に設定される。通常、CS端子部CTおよび第2トランスファー端子部PT2の個数は、ゲート端子部GTの個数より少なく、CS電極およびスロット電極の電圧の均一性を考慮して適宜設定される。また、第2トランスファー端子部PT2は、第1トランスファー端子部PT1が形成されている場合には省略され得る。
図22(a)〜(g)および図23は、それぞれ、TFT基板105の模式的な断面図である。図22(a)は、図21(a)中のA−A'線に沿ったアンテナ単位領域Uの断面を示し、図22(b)は、図21(b)中のB−B'線に沿った第1トランスファー端子部PT1の断面を示し、図22(c)は、図21(c)中のC−C'線に沿ったソース−ゲート接続部SGの断面を示し、図22(d)は、図21(c)中のD−D'線に沿ったソース端子部STの断面を示し、図22(e)は、図21(b)中のE−E'線に沿った第2トランスファー端子部PT2の断面を示し、図22(f)は、図21(b)中のF−F'線に沿った第1トランスファー端子部PT1の断面を示し、図22(g)は、図21(c)中のG−G'線に沿ったソース−ゲート接続部SGの断面を示し、図23は、図21(c)中のH−H'線に沿ったソース−ゲート接続部SGおよびソース端子部STの断面を示している。
・アンテナ単位領域U
TFT基板105は、図21〜図23に示すように、誘電体基板1に支持されたゲートメタル層3と、ゲートメタル層3上に形成されたゲート絶縁層4と、ゲート絶縁層4上に形成されたソースメタル層7と、ソースメタル層7上に形成された第1絶縁層11と、第1絶縁層11上に形成されたパッチメタル層15lと、パッチメタル層15l上に形成された第2絶縁層17と、第2絶縁層17上に形成された上部導電層19とを有する。TFT基板105は、第1絶縁層11とパッチメタル層15lとの間に形成された下部導電層13をさらに有する。
図21(a)および図22(a)に示すように、TFT基板105における各アンテナ単位領域Uは、TFT10と、TFT10のドレイン電極7Dに接続されたパッチ電極15とを有する。
TFT10は、ゲート電極3G、島状の半導体層5、コンタクト層6Sおよび6D、ゲート電極3Gと半導体層5との間に形成されたゲート絶縁層4、ならびに、ソース電極7Sおよびドレイン電極7Dを備える。各TFT10のゲート電極3GはゲートバスラインGLに接続され、ソース電極7SはソースバスラインSLに接続されている。TFT10の構成は、図3等を参照しながら前述した構成と同様である。
TFT基板105のアンテナ単位領域Uにおける構造を具体的に説明する。
ゲートメタル層3は、TFT10のゲート電極3Gと、ゲートバスラインGLとを含む。
ソースメタル層7は、TFT10のソース電極7Sおよびドレイン電極7Dと、ソースバスラインSLとを含む。
第1絶縁層11は、TFT10を覆うように形成されている。第1絶縁層11は、ドレイン電極7Dまたはドレイン電極7Dから延設された部分に達する開口部11aを有する。
下部導電層13は、第1絶縁層11上および開口部11a内に形成された第1接続部13aを含む。第1接続部13aは、開口部11a内でドレイン電極7Dまたはドレイン電極7Dから延設された部分に接触している。
パッチメタル層15lは、パッチ電極15と、第2接続部15aとを含む。第2接続部15aは、第1接続部13a上に形成され、第1接続部13aに接触するように形成されている。
第2絶縁層17は、パッチ電極15および第2接続部15aを覆うように形成されている。
この例では、アンテナ単位領域Uは、上部導電層19に含まれる導電部を有しない。
TFT基板105は、CSバスライン(補助容量線)CLを備えていてもよい。この例では、CSバスラインCLは、ゲートバスラインGLと同じ導電膜を用いて形成されている。すなわち、CSバスラインCLは、ゲートメタル層3に含まれる。CSバスラインCLは、ゲートバスラインGLと略平行に延びている。CSバスラインCLから延設された部分の少なくとも一部は、ドレイン電極7Dから延設された部分の少なくとも一部とゲート絶縁層4を介して対向し、補助容量を形成している。本明細書では、CSバスラインCLから延設された部分のうち補助容量の下部電極となる部分を下部容量電極3Cと呼び、ドレイン電極7Dから延設された部分のうち補助容量の上部電極となる部分を上部容量電極7Cと呼ぶ。下部容量電極3Cの幅は、CSバスラインCLの幅よりも大きくてもよい。上部容量電極7Cの幅は、ドレイン電極7Dから延設された部分のうち上部容量電極7C以外の部分の幅よりも大きくてもよい。なお、補助容量とパッチ電極15との配置関係は図示する例に限定されない。
・ソース−ゲート接続部SG
図21(c)、図22(c)、図22(g)および図23に示すように、ソース−ゲート接続部SGは、ソースバスラインSLと、ソース下部接続配線3sgとを電気的に接続する。ソース−ゲート接続部SGを設けることによって、後述するように、ソース端子部STの下部接続部をゲートメタル層3で形成することができる。これによって、TFT基板105のソース端子部STは優れた信頼性を有する。
ソース−ゲート接続部SGは、ソース下部接続配線3sgと、ゲート絶縁層4に形成された開口部4sg1と、ソースバスライン接続部7sgと、第1絶縁層11に形成された開口部11sg1および開口部11sg2と、ソース−ゲート接続用第1接続部13sg(単に「第1接続部13sg」ということがある。)と、第2絶縁層17に形成された開口部17sg1および開口部17sg2と、ソース−ゲート接続用第2接続部19sg(単に「第2接続部19sg」ということがある。)とを有する。
ソース下部接続配線3sgは、ゲートメタル層3に含まれ、ゲートバスラインGLと電気的に分離されている。
ゲート絶縁層4に形成された開口部4sg1は、ソース下部接続配線3sgに達している。
ソースバスライン接続部7sgは、ソースメタル層7に含まれ、ソースバスラインSLに接続されている。この例では、ソースバスライン接続部7sgは、ソースバスラインSLから延設され、ソースバスラインSLと一体的に形成されている。ソースバスライン接続部7sgの幅は、ソースバスラインSLの幅よりも大きくてもよい。
第1絶縁層11に形成された開口部11sg1は、誘電体基板1の法線方向から見たとき、ゲート絶縁層4に形成された開口部4sg1に重なっている。ゲート絶縁層4に形成された開口部4sg1および第1絶縁層11に形成された開口部11sg1は、コンタクトホールCH_sgを構成する。
第1絶縁層11に形成された開口部11sg2は、ソースバスライン接続部7sgに達している。
第1接続部13sgは、下部導電層13に含まれる。第1接続部13sgは、第1絶縁層11上、コンタクトホールCH_sg内、および開口部11sg2内に形成され、コンタクトホールCH_sg内でソース下部接続配線3sgに接続され、開口部11sg2内でソースバスライン接続部7sgに接続される。すなわち、第1接続部13sgは、ゲート絶縁層4に形成された開口部4sg1内でソース下部接続配線3sgに接触し、第1絶縁層11に形成された開口部11sg2内でソースバスライン接続部7sgに接触している。
ソース下部接続配線3sgの内、開口部4sg1によって露出されている部分は、第1接続部13sgで覆われていることが好ましい。ソースバスライン接続部7sgの内、開口部11sg2によって露出されている部分は、第1接続部13sgで覆われていることが好ましい。
第2絶縁層17に形成された開口部17sg1および開口部17sg2は、それぞれ、第1接続部13sgに達している。
第2接続部19sgは、上部導電層19に含まれる。第2接続部19sgは、後述する各端子部の上部接続部と同じ導電膜から形成されている。第2接続部19sgは、第2絶縁層17上、開口部17sg1内および開口部17sg2内に形成され、開口部17sg1内および開口部17sg2内で第1接続部13sgに接続される。すなわち、第2接続部19sgは、開口部17sg1内および開口部17sg2内で第1接続部13sgに接触している。
この例では、ソース−ゲート接続部SGは、パッチメタル層15lに含まれる導電部を有しない。
本明細書において、「ソース−ゲート接続部SGの第1接続部」は、第1絶縁層11と第2絶縁層17との間に形成された1つの導電層に含まれる導電部であってもよいし、第1絶縁層11と第2絶縁層17との間に形成された複数の導電層を含んでもよいとする。例えば、TFT基板105のソース−ゲート接続部SGの第1接続部13sgは、下部導電層13に含まれる導電部であり、パッチメタル層15lを含まない。本実施形態はこれに限られず、後述する本実施形態の変形例1のTFT基板106(図28〜図30参照)のように、下部導電層13およびパッチメタル層15lを含む第1接続部16sgを有してもよい。あるいは、後述する本実施形態の変形例2のTFT基板107(図33〜図35参照)のように、パッチメタル層15lに含まれる導電部であり、下部導電層13を含まない第1接続部15sgを有してもよい。「ソース−ゲート接続部SGの第1接続部」が、複数の導電層を含む場合は、第1接続部全体として、ゲート絶縁層4に形成された開口部4sg1内でソース下部接続配線3sgに接触し、第1絶縁層11に形成された開口部11sg2内でソースバスライン接続部7sgに接触していればよい。
TFT基板105は、ソース−ゲート接続部SGに第1接続部13sgを有することによって、優れた動作安定性を有する。ソース−ゲート接続部SGが第1接続部13sgを有することによって、パッチメタル層15lを形成するためのパッチ用導電膜をエッチングする工程における、ゲートメタル層3および/またはソースメタル層7へのダメージが軽減される。この効果について説明する。
上述したように、TFT基板105において、ソース−ゲート接続部SGはパッチメタル層15lに含まれる導電部を有しない。つまり、パッチ用導電膜のパターニング工程において、ソース−ゲート接続部形成領域のパッチ用導電膜は除去される。コンタクトホールCH_sg内でゲートメタル層3(ソース下部接続配線3sg)が露出されていると、除去されるべきパッチ用導電膜は、コンタクトホールCH_sg内に堆積され、ソース下部接続配線3sgに接して形成される。同様に、開口部11sg2内でソースメタル層7(ソースバスライン接続部7sg)が露出されていると、除去されるべきパッチ用導電膜は、開口部11sg2内に堆積され、ソースバスライン接続部7sgに接して形成される。このような場合、ゲートメタル層3および/またはソースメタル層7がエッチングダメージを受ける可能性がある。パッチ用導電膜をパターニングする工程では、例えばリン酸、硝酸および酢酸を含むエッチング液が用いられる。ソース下部接続配線3sgおよび/またはソースバスライン接続部7sgがエッチングダメージを受けると、ソース−ゲート接続部SGにおいてコンタクト不良が生じる可能性がある。
TFT基板105のソース−ゲート接続部SGは、コンタクトホールCH_sg内および開口部11sg2内に形成された第1接続部13sgを有する。従って、パッチ用導電膜のパターニング工程における、エッチングによるソース下部接続配線3sgおよび/またはソースバスライン接続部7sgへのダメージが軽減される。従って、TFT基板105は動作安定性に優れている。
ゲートメタル層3および/またはソースメタル層7へのエッチングダメージを効果的に軽減する観点からは、ソース下部接続配線3sgの内、コンタクトホールCH_sgによって露出されている部分は、第1接続部13sgで覆われており、ソースバスライン接続部7sgの内、開口部11sg2によって露出されている部分は、第1接続部13sgで覆われていることが好ましい。
走査アンテナに用いられるTFT基板では、比較的厚い導電膜(パッチ用導電膜)を用いてパッチ電極が形成されることがある。この場合、パッチ用導電膜のエッチング時間およびオーバーエッチング時間が、他の層のエッチング工程よりも長くなり得る。このとき、コンタクトホールCH_sg内および開口部11sg2内で、ゲートメタル層3(ソース下部接続配線3sg)およびソースメタル層7(ソースバスライン接続部7sg)が露出されていると、これらのメタル層が受けるエッチングダメージが大きくなり得る。このように、比較的厚いパッチメタル層を有するTFT基板においては、ソース−ゲート接続部SGが第1接続部13sgを有することによって、ゲートメタル層3および/またはソースメタル層7へのエッチングダメージが軽減される効果が特に大きい。
さらに、TFT基板105は、ソース−ゲート接続部SGに第2接続部19sgを有することによっても、優れた動作安定性を有する。上述したように、ソース−ゲート接続部SGにおいて、ソースバスライン接続部7sgと、ソース下部接続配線3sgとは、第1接続部13sgおよび第2接続部19sgを介して電気的に接続されている。ソース−ゲート接続部SGが、ソースメタル層7とゲートメタル層3とを接続する導電部として、第1接続部13sgに加えて第2接続部19sgを有することによって、導電部全体としての電気抵抗(配線抵抗)が低減される。これにより、TFT基板105は、動作安定性に優れている。
図示するように、誘電体基板1の法線方向から見たとき、第1接続部13sgの全てが、第2接続部19sgと重なっている場合は、以下の利点がさらに得られる。ソースバスライン接続部7sgとソース下部接続配線3sgとを接続する導電部として第1接続部13sgおよび第2接続部19sgを有することによって、第1接続部13sgに断線が生じても、ソースバスライン接続部7sgとソース下部接続配線3sgとの電気的接続が確保される。これにより、TFT基板105は、動作安定性に優れている。
下部導電層13は、例えば透明導電層(例えばITO層)である。
上部導電層19は、例えば透明導電層(例えばITO層)を含む。上部導電層19は、例えば透明導電層のみから形成されていてもよい。あるいは、上部導電層19は、透明導電層を含む第1導電層と、第1導電層の下に形成された第2導電層とを含んでもよい。第2導電層は、例えば、Ti層、MoNbNi層、MoNb層、MoW層、W層およびTa層からなる群から選択される1つの層または2以上の層の積層から形成されている。
図示する例では、開口部11sg2は、コンタクトホールCH_sgから離間した位置に形成されている。本実施形態はこれに限られず、コンタクトホールCH_sgおよび開口部11sg2は、連続していてもよい(すなわち、単一のコンタクトホールとして形成されていてもよい)。コンタクトホールCH_sgおよび開口部11sg2は、単一のコンタクトホールとして同じ工程で形成されてもよい。具体的には、ソース下部接続配線3sgおよびソースバスライン接続部7sgに達する単一のコンタクトホールをゲート絶縁層4および第1絶縁層11に形成し、このコンタクトホール内および第1絶縁層11上に第1接続部13sgを形成してもよい。このとき、第1接続部13sgは、ソース下部接続配線3sgおよびソースバスライン接続部7sgの内、コンタクトホールによって露出されている部分を覆うように形成されることが好ましい。
図示する例では、開口部17sg2は、開口部17sg1から離間した位置に形成されている。本実施形態はこれに限られず、開口部17sg1および開口部17sg2は、連続していてもよい(すなわち、単一の開口部として形成されていてもよい)。第2絶縁層17には、第1接続部13sgに達する開口部が少なくとも1つ形成されていればよい。第2絶縁層17に形成されている開口部の個数、配置等は、図示する例に限られない。第2接続部19sgは、第2絶縁層17に形成されている開口部の内の少なくとも1つの開口部内において、第1接続部13sgに接触していればよい。
図示する例では、第2絶縁層17に形成されている開口部17sg1は、誘電体基板1の法線方向から見たとき、開口部11sg1および開口部4sg1と重なり、第2絶縁層17に形成されている開口部17sg2は、誘電体基板1の法線方向から見たとき、開口部11sg2と重なる。
第1接続部13sgおよび第2接続部19sg全体の電気抵抗(配線抵抗)を低下させる観点からは、誘電体基板1の法線方向から見たとき、第1接続部13sgと、第2接続部19sgとは重なることが好ましく、誘電体基板1の法線方向から見たとき、第1接続部13sgと、第2接続部19sgとが重なる面積は大きいことが好ましい。図示する例では、誘電体基板1の法線方向から見たとき、第1接続部13sgの全ては、第2接続部19sgと重なっている。誘電体基板1の法線方向から見たとき、第2接続部19sgの全てが、第1接続部13sgと重なっていてもよい。
ソースバスライン接続部7sgとソース下部接続配線3sgとの間の電気抵抗を下げるためには、ソース下部接続配線3sgの内、コンタクトホールCH_sgによって露出されている部分は、第1接続部13sgで覆われており、ソースバスライン接続部7sgの内、開口部11sg2によって露出されている部分は、第1接続部13sgで覆われていることが好ましい。
第1接続部13sgが金属層を含まない場合は、上記の条件を満たすように第1接続部13sgおよび第2接続部19sgを形成することが特に好ましい。第1接続部13sgが金属層を含まない場合、例えば、第1接続部13sgが透明導電層のみを含む場合は、第1接続部13sgの電気抵抗が高い傾向があるためである。
第2絶縁層17に、第1接続部13sgに達する開口部が複数形成されている場合(例えば図示するように開口部17sg1および開口部17sg2が形成されている場合)は、上部導電層19は、分離して形成されている複数の上部接続部を含み、複数の上部接続部のそれぞれが、開口部17sg1内または開口部17sg2内で第1接続部13sgに接触していてもよい。
・ソース端子部ST
ソース端子部STは、図21(c)、図22(d)および図23に示すように、ソース−ゲート接続部SGに形成されたソース下部接続配線3sgに接続されたソース端子用下部接続部3sA(単に「下部接続部3sA」ということもある。)と、ゲート絶縁層4に形成された開口部4sと、第1絶縁層11に形成された開口部11sと、第2絶縁層17に形成された開口部17sと、ソース端子用上部接続部19sA(単に「上部接続部19sA」ということもある。)とを有している。
下部接続部3sAは、ゲートメタル層3に含まれる。下部接続部3sAは、ソース−ゲート接続部SGに形成されているソース下部接続配線3sgと接続されている。この例では、下部接続部3sAは、ソース下部接続配線3sgから延設され、ソース下部接続配線3sgと一体的に形成されている。
ゲート絶縁層4に形成された開口部4sは、下部接続部3sAに達している。
第1絶縁層11に形成された開口部11sは、誘電体基板1の法線方向から見たとき、ゲート絶縁層4に形成された開口部4sに重なっている。
第2絶縁層17に形成された開口部17sは、誘電体基板1の法線方向から見たとき、第1絶縁層11に形成された開口部11sに重なっている。ゲート絶縁層4に形成された開口部4s、第1絶縁層11に形成された開口部11s、および第2絶縁層17に形成された開口部17sは、コンタクトホールCH_sを構成する。
上部接続部19sAは、上部導電層19に含まれる。上部接続部19sAは、第2絶縁層17上およびコンタクトホールCH_s内に形成され、コンタクトホールCH_s内で、下部接続部3sAと接続されている。すなわち、上部接続部19sAは、ゲート絶縁層4に形成された開口部4s内で、下部接続部3sAに接触している。
誘電体基板1の法線方向から見たとき、上部接続部19sAの全ては、下部接続部3sAと重なっていてもよい。
この例では、ソース端子部STは、ソースメタル層7に含まれる導電部およびパッチメタル層15lに含まれる導電部を含まない。
ソース端子部STは、ゲートメタル層3に含まれる下部接続部3sAを有するので、優れた信頼性を有する。
端子部、特にシール領域Rsよりも外側(液晶層と反対側)に設けられた端子部には、大気中の水分(不純物を含み得る。)によって腐食が生じることがある。大気中の水分は、下部接続部に達するコンタクトホールから侵入し、下部接続部に達し、下部接続部に腐食が起こり得る。腐食の発生を抑制する観点からは、下部接続部に達するコンタクトホールが深いことが好ましい。すなわち、コンタクトホールを構成する開口部が形成されている絶縁層の厚さが大きいことが好ましい。
また、誘電体基板としてガラス基板を有するTFT基板を作製する工程において、ガラス基板の破片や切り屑(カレット)によって、端子部の下部接続部にキズや断線が生じることがある。例えば、1つのマザー基板から複数のTFT基板が作製される。カレットは、例えば、マザー基板を切断する時、マザー基板にスクライブラインを形成する時、等に生じる。端子部の下部接続部のキズや断線を防ぐ観点からは、下部接続部に達するコンタクトホールが深いことが好ましい。すなわち、コンタクトホールを構成する開口部が形成されている絶縁層の厚さが大きいことが好ましい。
TFT基板105のソース端子部STにおいて、下部接続部3sAはゲートメタル層3に含まれているので、下部接続部3sAに達するコンタクトホールCH_sは、ゲート絶縁層4に形成された開口部4s、第1絶縁層11に形成された開口部11s、および第2絶縁層17に形成された開口部17sを有する。コンタクトホールCH_sの深さは、ゲート絶縁層4の厚さ、第1絶縁層11の厚さ、および第2絶縁層17の厚さの和である。これに対して、例えば下部接続部がソースメタル層7に含まれている場合、下部接続部に達するコンタクトホールは、第1絶縁層11に形成された開口部および第2絶縁層17に形成された開口部のみを有し、その深さは第1絶縁層11の厚さおよび第2絶縁層17の厚さの和であり、コンタクトホールCH_sの深さよりも小さい。ここで、コンタクトホールの深さおよび絶縁層の厚さは、それぞれ、誘電体基板1の法線方向における深さおよび厚さをいう。他のコンタクトホールおよび絶縁層についても特に断らない限り同様である。このように、TFT基板105のソース端子部STは、下部接続部3sがゲートメタル層3に含まれているので、例えば下部接続部がソースメタル層7に含まれている場合に比べて、優れた信頼性を有する。
ゲート絶縁層4に形成された開口部4sは、下部接続部3sの一部のみを露出するように形成されている。誘電体基板1の法線方向から見たとき、ゲート絶縁層4に形成された開口部4sは、下部接続部3sの内側にある。従って、開口部4s内の全ての領域は、誘電体基板1上に下部接続部3sおよび上部接続部19sを有する積層構造を有する。ソース端子部STにおいて、下部接続部3sを有しない領域の全ては、ゲート絶縁層4、第1絶縁層11および第2絶縁層17を有する積層構造を有する。これにより、TFT基板105のソース端子部STは優れた信頼性を有する。優れた信頼性を得る観点からは、ゲート絶縁層4の厚さ、第1絶縁層11の厚さおよび第2絶縁層17の厚さの和が大きいことが好ましい。
下部接続部3sの内、開口部4sによって露出されている部分は、上部接続部19sで覆われている。
端子部の上部接続部の厚さが大きい(すなわち上部導電層19の厚さが大きい)と、下部接続部に腐食が生じることが抑制される。下部接続部に腐食が生じることを効果的に抑制するために、上述したように、上部導電層19は、透明導電層(例えばITO層)を含む第1導電層と、第1導電層の下に形成され、Ti層、MoNbNi層、MoNb層、MoW層、W層およびTa層からなる群から選択される1つの層または2以上の層の積層から形成されている第2導電層とを含む積層構造を有してもよい。下部接続部に腐食が生じることをより効果的に抑制するために、第2導電層の厚さを例えば100nm超としてもよい。
・ゲート端子部GT、CS端子部CT
ゲート端子部GTおよびCS端子部CTは、断面構造の図示を省略するが、図21(b)に示すように、ソース端子部STと同様の構成を有していてもよい。
この例では、ゲート端子部GTは、ゲート端子用下部接続部3gA(単に「下部接続部3gA」ということもある。)と、ゲート絶縁層4に形成された開口部4gと、第1絶縁層11に形成された開口部11gと、第2絶縁層17に形成された開口部17gと、ゲート端子用上部接続部19gA(単に「上部接続部19gA」ということもある。)とを有している。
下部接続部3gAは、ゲートメタル層3に含まれ、ゲートバスラインGLに接続されている。この例では、下部接続部3gAは、ゲートバスラインGLから延設され、ゲートバスラインGLと一体的に形成されている。
ゲート絶縁層4に形成された開口部4gは、下部接続部3gAに達している。
第1絶縁層11に形成された開口部11gは、誘電体基板1の法線方向から見たとき、ゲート絶縁層4に形成された開口部4gに重なっている。
第2絶縁層17に形成された開口部17gは、誘電体基板1の法線方向から見たとき、第1絶縁層11に形成された開口部11gに重なっている。ゲート絶縁層4に形成された開口部4g、第1絶縁層11に形成された開口部11g、および第2絶縁層17に形成された開口部17gは、コンタクトホールCH_gを構成する。
上部接続部19gAは、上部導電層19に含まれる。上部接続部19gAは、第2絶縁層17上およびコンタクトホールCH_g内に形成され、コンタクトホールCH_g内で、下部接続部3gAと接続されている。すなわち、上部接続部19gAは、ゲート絶縁層4に形成された開口部4g内で、下部接続部3gAに接触している。
誘電体基板1の法線方向から見たとき、上部接続部19gAの全ては、下部接続部3gAと重なっていてもよい。
この例では、ゲート端子部GTは、ソースメタル層7に含まれる導電部およびパッチメタル層15lに含まれる導電部を有しない。
ゲート端子部GTは、ゲートメタル層3に含まれる下部接続部3gAを有するので、ソース端子部STと同様に、優れた信頼性を有する。
CS端子部CTは、CS端子用下部接続部3c(単に「下部接続部3c」ということもある。)と、ゲート絶縁層4に形成された開口部4cと、第1絶縁層11に形成された開口部11cと、第2絶縁層17に形成された開口部17cと、CS端子用上部接続部19c(単に「上部接続部19c」ということもある。)とを有している。
下部接続部3cは、ゲートメタル層3に含まれる。下部接続部3cは、CSバスラインCLと接続されている。この例では、下部接続部3cは、CSバスラインCLから延設され、CSバスラインCLと一体的に形成されている。
ゲート絶縁層4に形成された開口部4cは、下部接続部3cに達している。
第1絶縁層11に形成された開口部11cは、誘電体基板1の法線方向から見たとき、ゲート絶縁層4に形成された開口部4cに重なっている。
第2絶縁層17に形成された開口部17cは、誘電体基板1の法線方向から見たとき、第1絶縁層11に形成された開口部11cに重なっている。ゲート絶縁層4に形成された開口部4c、第1絶縁層11に形成された開口部11c、および第2絶縁層17に形成された開口部17cは、コンタクトホールCH_cを構成する。
上部接続部19cは、上部導電層19に含まれる。上部接続部19cは、第2絶縁層17上およびコンタクトホールCH_c内に形成され、コンタクトホールCH_c内で、下部接続部3cと接続されている。すなわち、上部接続部19cは、ゲート絶縁層4に形成された開口部4c内で、下部接続部3cに接触している。
誘電体基板1の法線方向から見たとき、上部接続部19cの全ては、下部接続部3cと重なっていてもよい。
この例では、CS端子部CTは、ソースメタル層7に含まれる導電部およびパッチメタル層15lに含まれる導電部を有しない。
CS端子部CTは、ゲートメタル層3に含まれる下部接続部3cを有するので、ソース端子部STと同様に、優れた信頼性を有する。
・トランスファー端子部PT
第1トランスファー端子部PT1は、図21(b)および図22(b)に示すように、第1トランスファー端子用下部接続部3p1(単に「下部接続部3p1」ということもある。)と、ゲート絶縁層4に形成された開口部4p1と、第1絶縁層11に形成された開口部11p1と、第1トランスファー端子用第1導電部13p1(単に「第1導電部13p1」ということもある。)と、第1トランスファー端子用第2導電部15p1(単に「第2導電部15p1」ということもある。)と、第2絶縁層17に形成された開口部17p1と、第1トランスファー端子用上部接続部19p1(単に「上部接続部19p1」ということもある。)とを有している。
下部接続部3p1は、ゲートメタル層3に含まれる。すなわち、下部接続部3p1は、ゲートバスラインGLと同じ導電膜から形成されている。下部接続部3p1は、ゲートバスラインGLとは電気的に分離されている。下部接続部3p1は、CSバスラインCLに接続されている。下部接続部3p1は、この例ではCSバスラインと一体的に形成されている。
ゲート絶縁層4に形成された開口部4p1は、下部接続部3p1に達している。
第1絶縁層11に形成された開口部11p1は、誘電体基板1の法線方向から見たとき、ゲート絶縁層4に形成された開口部4p1に重なっている。ゲート絶縁層4に形成された開口部4p1および第1絶縁層11に形成された開口部11p1は、コンタクトホールCH_p1を構成する。
第1導電部13p1は、下部導電層13に含まれる。第1導電部13p1は、第1絶縁層11上およびコンタクトホールCH_p1内に形成され、コンタクトホールCH_p1内で下部接続部3p1と接続されている。すなわち、第1導電部13p1は、コンタクトホールCH_p1内で下部接続部3p1と接触している。
第2導電部15p1は、パッチメタル層15lに含まれる。第2導電部15p1は、第1導電部13p1上に形成されている。第2導電部15p1は、第1導電部13p1に接触するように形成されている。
第2絶縁層17に形成された開口部17p1は、第2導電部15p1に達している。
上部接続部19p1は、上部導電層19に含まれる。上部接続部19p1は、第2絶縁層17上および開口部17p1内に形成され、開口部17p1内で第2導電部15p1と接続されている。すなわち、上部接続部19p1は、開口部17p1内で第2導電部15p1と接触している。上部接続部19p1は、例えば導電性粒子を含むシール材によって、スロット基板側のトランスファー端子用接続部と接続される(図7参照)。
この例では、第1トランスファー端子部PT1は、ソースメタル層7に含まれる導電部を有しない。
第1トランスファー端子部PT1は、下部接続部3p1と上部接続部19p1との間に第1導電部13p1および第2導電部15p1を有する。これにより、第1トランスファー端子部PT1は、下部接続部3p1と上部接続部19p1との間の電気抵抗が低いという利点を有する。
誘電体基板1の法線方向から見たとき、上部接続部19p1の全ては、第2導電部15p1と重なっていてもよい。
この例では、下部接続部3p1は、互いに隣接する2つのゲートバスラインGLの間に配置されている。ゲートバスラインGLを挟んで配置された2つの下部接続部3p1は、導電接続部(不図示)を介して電気的に接続されていてもよい。導電接続部は、例えばソースバスラインと同じ導電膜から形成されていてもよい。
ここでは、下部接続部3p1は、複数のコンタクトホールCH_p1によって第1導電部13p1および第2導電部15p1と接続されているが、コンタクトホールCH_p1は、1つの下部接続部3p1に対して1つ以上設けられていればよい。1つの下部接続部3p1に対して1つのコンタクトホールが設けられていてもよい。コンタクトホールの個数や形状は図示する例に限られない。
ここでは、上部接続部19p1は、1つの開口部17p1によって第1導電部13p1および第2導電部15p1と接続されているが、開口部17p1は、1つの上部接続部19p1に対して1つ以上設けられていればよい。1つの上部接続部19p1に対して複数の開口部が設けられていてもよい。開口部の個数や形状は図示する例に限られない。
第2トランスファー端子部PT2は、シール領域Rsの外側(送受信領域R1と反対側)に設けられている。第2トランスファー端子部PT2は、図21(b)および図22(e)に示すように、第2トランスファー端子用下部接続部15p2(単に「下部接続部15p2」ということもある。)と、第2絶縁層17に形成された開口部17p2と、第2トランスファー端子用上部接続部19p2(単に「上部接続部19p2」ということもある。)とを有している。
第2トランスファー端子部PT2は、第1トランスファー端子部PT1の内、下部接続部3p1、コンタクトホールCH_p1、および第1導電部13p1を有しない部分(図22(f)参照)と同様の断面構造を有している。
下部接続部15p2は、パッチメタル層15lに含まれる。下部接続部15p2は、ここでは、第1トランスファー端子用第2導電部15p1から延設され、第1トランスファー端子用第2導電部15p1と一体的に形成されている。
第2絶縁層17に形成された開口部17p2は、下部接続部15p2に達している。
上部接続部19p2は、上部導電層19に含まれる。上部接続部19p2は、第2絶縁層17上および開口部17p2内に形成され、開口部17p2内で下部接続部15p2と接続されている。すなわち、上部接続部19p2は、開口部17p2内で下部接続部15p2と接触している。
第2トランスファー端子部PT2においても、上部接続部19p2は、例えば導電性粒子を含むシール材によって、スロット基板側のトランスファー端子用接続部と接続されていてもよい。
この例では、第2トランスファー端子部PT2は、ゲートメタル層3に含まれる導電部およびソースメタル層7に含まれる導電部を有しない。

・TFT基板105の製造方法
図24〜図27を参照して、TFT基板105の製造方法を説明する。
図24(a)〜(f)、図25(a)〜(d)、図26(a)〜(c)および図27(a)〜(c)は、TFT基板105の製造方法の一例を示す工程断面図である。これらの図は、それぞれ、図22(a)〜(e)および(g)に対応する断面を示している。なお、図22(f)に対応する断面については、図示を省略するが、図22(e)に対応する断面と同様の方法で形成される。各層の材料、厚さ、形成方法などは、図5を参照しながら前述した方法と同様であれば適宜説明を省略することもある。
上述のように、TFT基板105は、誘電体基板1上に、ゲートメタル層3、ゲート絶縁層4、ソースメタル層7、第1絶縁層11、下部導電層13、パッチメタル層15l、第2絶縁層17および上部導電層19をこの順で有している。ゲートメタル層3は、TFT10のゲート電極3G、ゲートバスラインGL、CSバスラインCL、下部容量電極3C、ソース−ゲート接続部SGのソース下部接続配線3sg、ならびに、各端子部の下部接続部3p1、3gA、3cおよび3sAを含む。ソースメタル層7は、TFT10のソース電極7Sおよびドレイン電極7D、ソースバスラインSL、上部容量電極7C、ならびに、ソース−ゲート接続部SGのソースバスライン接続部7sgを含む。下部導電層13は、アンテナ単位領域Uの第1接続部13a、ソース−ゲート接続部SGの第1接続部13sg、および第1トランスファー端子部PT1の第1導電部13p1を含む。パッチメタル層15lは、アンテナ単位領域Uのパッチ電極15、第2接続部15a、第1トランスファー端子部PT1の第2導電部15p1、および第2トランスファー端子部PT2の下部接続部15p2を含む。上部導電層19は、ソース−ゲート接続部SGの第2接続部19sg、ならびに、各端子部の上部接続部19sA、19gA、19c、19p1および19p2を含む。
まず、図24(a)に示すように、誘電体基板1上に、スパッタ法などによって、ゲート用導電膜3'を形成する。ここでは、ゲート用導電膜3'として、Al膜(厚さ:例えば150nm)およびMoN膜(厚さ:例えば100nm)をこの順で積層した積層膜(MoN/Al)を形成する。
次いで、ゲート用導電膜3'をパターニングすることにより、図24(b)に示すように、ゲート電極3G、ゲートバスラインGL、CSバスラインCL、下部容量電極3C、ソース下部接続配線3sg、ならびに、下部接続部3p1、3gA、3cおよび3sAを含むゲートメタル層3を得る。ここでは、ゲート用導電膜3'のパターニングは、ウェットエッチングによって行う。
この後、図24(c)に示すように、ゲートメタル層3を覆うようにゲート絶縁膜4、真性アモルファスシリコン膜5'およびn+型アモルファスシリコン膜6'をこの順で形成する。簡単のために、ゲート絶縁層4とゲート絶縁膜4とを同じ参照符号で示す。ここでは、ゲート絶縁膜4として、例えば厚さ350nmの窒化珪素(SixNy)膜を形成する。また、例えば厚さ120nmの真性アモルファスシリコン膜5'および例えば厚さ30nmのn+型アモルファスシリコン膜6'を形成する。
次いで、真性アモルファスシリコン膜5'およびn+型アモルファスシリコン膜6'をパターニングすることにより、図24(d)に示すように、島状の半導体層5およびコンタクト層6を得る。なお、半導体層5に用いる半導体膜はアモルファスシリコン膜に限定されない。例えば、半導体層5として酸化物半導体層を形成してもよい。この場合には、半導体層5と、ソース電極およびドレイン電極との間にコンタクト層を設けなくてもよい。
次いで、図24(e)に示すように、ゲート絶縁膜4上およびコンタクト層6上にソース用導電膜7'を形成する。ここでは、ソース用導電膜7'として、MoN(厚さ:例えば50nm)、Al(厚さ:例えば150nm)およびMoN(厚さ:例えば100nm)をこの順で積層した積層膜(MoN/Al/MoN)を形成する。
次いで、ソース用導電膜7'をパターニングすることによって、図24(f)に示すように、ソース電極7Sおよびドレイン電極7D、ソースバスラインSL、上部容量電極7C、ならびに、ソースバスライン接続部7sgを含むソースメタル層7を形成する。このとき、コンタクト層6もエッチングされ、互いに分離されたソースコンタクト層6Sとドレインコンタクト層6Dとが形成される。ここでは、ソース用導電膜7'のパターニングは、ウェットエッチングによって行う。例えばリン酸、硝酸および酢酸を含む水溶液を用いて、ウェットエッチングでMoN膜およびAl膜を同時にパターニングする。このようにして、TFT10が得られる。
ここで、ソース−ゲート接続部形成領域において、ソース下部接続配線3sgの少なくとも一部は、ソースバスライン接続部7sgと重ならないようにソースメタル層7が形成されている。また、各端子部形成領域は、ソースメタル層7に含まれる導電部を有しない。
次に、図25(a)に示すように、TFT10およびソースメタル層7を覆うように第1絶縁膜11を形成する。簡単のために、第1絶縁層11と第1絶縁膜11とを同じ参照符号で示す。この例では、第1絶縁膜11は、半導体層5のチャネル領域と接するように形成される。ここでは、第1絶縁膜11として、例えば厚さ330nmの窒化珪素(SixNy)膜を形成する。
次いで、公知のフォトリソグラフィプロセスによって、第1絶縁膜11およびゲート絶縁膜4のエッチングを行うことにより、図25(b)に示すように、第1絶縁膜11およびゲート絶縁膜4に開口部を形成する。具体的には、アンテナ単位形成領域においてドレイン電極7Dの延設部に達する開口部11aと、ソース−ゲート接続部形成領域においてソース下部接続配線3sgに達するコンタクトホールCH_sgおよびソースバスライン接続部7sgに達する開口部11sg2と、第1トランスファー端子部形成領域において下部接続部3p1に達するコンタクトホールCH_p1とを形成する。
このエッチング工程では、ソースメタル層7をエッチストップとして第1絶縁膜11およびゲート絶縁膜4のエッチングが行われる。例えばソース−ゲート接続部形成領域では、コンタクトホールCH_sg形成領域においては第1絶縁膜11およびゲート絶縁膜4が一括してエッチングされるとともに、開口部11sg2形成領域においてはソースバスライン接続部7sgがエッチストップとして機能することにより第1絶縁膜11のみがエッチングされる。これにより、コンタクトホールCH_sgおよび開口部11sg2が得られる。コンタクトホールCH_sgは、ゲート絶縁膜4に形成され、ソース下部接続配線3sgに達する開口部4sg1と、第1絶縁膜11に形成され、開口部4sg1に重なる開口部11sg1とを有する。ここで、ソース下部接続配線3sgの少なくとも一部は、ソースバスライン接続部7sgと重ならないように形成されているので、開口部4sg1と開口部11sg1とを有するコンタクトホールCH_sgが形成される。コンタクトホールCH_sgの側面において、開口部4sg1の側面と開口部11sg1の側面とが整合していてもよい。
第1絶縁膜11およびゲート絶縁膜4は、例えば、同一のエッチャントを用いて一括してエッチングされる。ここでは、フッ素系ガスを用いたドライエッチングによって第1絶縁膜11およびゲート絶縁膜4をエッチングする。第1絶縁膜11およびゲート絶縁膜4は、異なるエッチャントを用いてエッチングされてもよい。
この工程で形成されるコンタクトホールのうち、第1絶縁膜11に形成された開口部とゲート絶縁膜4に形成された開口部とを有するコンタクトホールでは、第1絶縁膜11に形成された開口部の側面とゲート絶縁膜4に形成された開口部の側面とは整合し得る。
第1トランスファー端子部形成領域においては、ソースメタル層7に含まれる導電部が形成されていないので、第1絶縁膜11およびゲート絶縁膜4が一括してエッチングされることによってコンタクトホールCH_p1が形成される。コンタクトホールCH_p1は、ゲート絶縁層4に形成され、下部接続部3p1に達する開口部4p1と、第1絶縁層11に形成され、開口部4p1に重なる開口部11p1とを有する。コンタクトホールCH_p1の側面において、開口部4p1の側面と開口部11p1の側面とが整合していてもよい。
次いで、図25(c)に示すように、第1絶縁膜11上、開口部11a内、コンタクトホールCH_sg内、開口部11sg2内、およびコンタクトホールCH_p1内に、例えばスパッタ法により下部導電膜13'を形成する。下部導電膜13’は、例えば透明導電膜を含む。ここでは、下部導電膜13'として、例えば厚さ70nmのITO膜を用いる。
次いで、下部導電膜13'をパターニングすることにより、図25(d)に示すように、下部導電層13を得る。具体的には、アンテナ単位形成領域において開口部11a内でドレイン電極7Dの延設部と接触する第1接続部13aと、ソース−ゲート接続部形成領域においてコンタクトホールCH_sg内でソース下部接続配線3sgと接触し、開口部11sg2内でソースバスライン接続部7sgと接触する第1接続部13sgと、第1トランスファー端子部形成領域においてコンタクトホールCH_p1内で下部接続部3p1と接触する第1導電部13p1とを含む下部導電層13を得る。ここでは、ソース−ゲート接続部形成領域において、第1接続部13sgは、ソース下部接続配線3sgの内、開口部4sg1によって露出されている部分を覆うように、かつ、ソースバスライン接続部7sgの内、開口部11sg2によって露出されている部分を覆うように形成される。
続いて、図26(a)に示すように、第1絶縁膜11上および下部導電層13上にパッチ用導電膜15'を形成する。ここでは、パッチ用導電膜15'として、Ti膜(厚さ:例えば20nm)およびCu膜(厚さ:例えば500nm)をこの順で含む積層膜(Cu/Ti)を用いる。
次いで、パッチ用導電膜15'をパターニングすることにより、図26(b)に示すように、パッチメタル層15lを得る。具体的には、アンテナ単位領域形成領域のパッチ電極15および第2接続部15aと、第1トランスファー端子部形成領域の第2導電部15p1と、第2トランスファー端子部形成領域の下部接続部15p2とを含むパッチメタル層15lを得る。アンテナ単位形成領域の第2接続部15aは、第1接続部13aに接触するように形成される。第1トランスファー端子部形成領域の第2導電部15p1は、第1導電部13p1に接触するように形成される。パッチ用導電膜15'のパターニングには、エッチング液として、例えば混酸水溶液を用いることができる。
パッチ用導電膜15’のパターニング工程において、ソース−ゲート接続部形成領域のパッチ用導電膜15’は除去される。コンタクトホールCH_sg内および開口部11sg2内には第1接続部13sgが形成されているので、パッチ用導電膜15’のパターニング工程において、エッチングによるソース下部接続配線3sgおよび/またはソースバスライン接続部7sgへのダメージが軽減される。
ここでは、ソース下部接続配線3sgの内、コンタクトホールCH_sgによって露出されている部分は、第1接続部13sgで覆われており、ソースバスライン接続部7sgの内、開口部11sg2によって露出されている部分は、第1接続部13sgで覆われている。これにより、ソースバスライン接続部7sgおよび/またはソース下部接続配線3sgへのエッチングダメージは、効果的に軽減される。
次いで、図26(c)に示すように、パッチメタル層15l上、下部導電層13上および第1絶縁層11上に第2絶縁膜17を形成する。簡単のために、第2絶縁層17と第2絶縁膜17とを同じ参照符号で示す。ここでは、第2絶縁膜17として、例えば厚さ100nmの窒化珪素(SixNy)膜を形成する。
続いて、公知のフォトリソグラフィプロセスによって、第2絶縁膜17、第1絶縁膜11およびゲート絶縁膜4のエッチングを行うことにより、図27(a)に示すように、第2絶縁層17、第1絶縁層11およびゲート絶縁層4を得る。具体的には、ソース−ゲート接続部形成領域において第1接続部13sgに達する開口部17sg1および開口部17sg2と、ソース端子部形成領域において下部接続部3sAに達するコンタクトホールCH_sと、ゲート端子部形成領域において下部接続部3gAに達するコンタクトホールCH_gと、CS端子部形成領域において下部接続部3cに達するコンタクトホールCH_cと、第1トランスファー端子部形成領域において第2導電部15p1に達する開口部17p1と、第2トランスファー端子部形成領域において下部接続部15p2に達する開口部17p2とを形成する。ここでは、例えばフッ素系ガスを用いたドライエッチングにより、第2絶縁膜17、第1絶縁膜11およびゲート絶縁膜4のエッチングを行う。
ソース端子部形成領域においては、第2絶縁膜17、第1絶縁膜11およびゲート絶縁膜4が例えば一括してエッチングされることによってコンタクトホールCH_sが形成される。コンタクトホールCH_sは、ゲート絶縁層4に形成され、下部接続部3sAに達する開口部4sと、第1絶縁層11に形成され、開口部4sに重なる開口部11sと、第2絶縁層17に形成され、開口部11sに重なる開口部17sとを有する。コンタクトホールCH_sの側面において、開口部4sの側面と開口部11sの側面と開口部17sの側面とが整合していてもよい。
同様に、ゲート端子部形成領域においては、第2絶縁膜17、第1絶縁膜11およびゲート絶縁膜4が例えば一括してエッチングされることによってコンタクトホールCH_gが形成される。コンタクトホールCH_gは、ゲート絶縁層4に形成され、下部接続部3gAに達する開口部4gと、第1絶縁層11に形成され、開口部4gに重なる開口部11gと、第2絶縁層17に形成され、開口部11gに重なる開口部17gとを有する。コンタクトホールCH_gの側面において、開口部4gの側面と開口部11gの側面と開口部17gの側面とが整合していてもよい。
CS端子部形成領域においては、第2絶縁膜17、第1絶縁膜11およびゲート絶縁膜4が例えば一括してエッチングされることによってコンタクトホールCH_cが形成される。コンタクトホールCH_cは、ゲート絶縁層4に形成され、下部接続部3cに達する開口部4cと、第1絶縁層11に形成され、開口部4cに重なる開口部11cと、第2絶縁層17に形成され、開口部11cに重なる開口部17cとを有する。コンタクトホールCH_cの側面において、開口部4cの側面と開口部11cの側面と開口部17cの側面とが整合していてもよい。
次いで、図27(b)に示すように、第2絶縁層17上、コンタクトホールCH_s内、コンタクトホールCH_g内、コンタクトホールCH_c内、開口部17sg1内、開口部17sg2内、開口部17p1内、および開口部17p2内に、例えばスパッタ法により上部導電膜19'を形成する。上部導電膜19’は、例えば透明導電膜を含む。ここでは、上部導電膜19'として、例えば厚さ70nmのITO膜を用いる。あるいは、上部導電膜19'として、Ti(厚さ:例えば50nm)およびITO(厚さ:例えば70nm)をこの順で積層した積層膜(ITO/Ti)を用いてもよい。Ti膜に代えて、MoNbNi膜、MoNb膜、MoW膜、W膜およびTa膜からなる群から選択される1つの膜または2以上の膜の積層膜を用いてもよい。すなわち、上部導電膜19'として、Ti膜、MoNbNi膜、MoNb膜、MoW膜、W膜およびTa膜からなる群から選択される1つの膜または2以上の膜の積層膜と、ITO膜とをこの順で積層した積層膜を用いてもよい。
次いで、上部導電膜19'をパターニングすることにより、図27(c)に示すように、上部導電層19を得る。具体的には、ソース−ゲート接続部形成領域において開口部17sg1内で第1接続部13sgと接触し、開口部17sg2内で第1接続部13sgと接触する第2接続部19sgと、ソース端子部形成領域においてコンタクトホールCH_s内で下部接続部3sAと接触する上部接続部19sAと、ゲート端子部形成領域においてコンタクトホールCH_g内で下部接続部3gAと接触する上部接続部19gAと、CS端子部形成領域においてコンタクトホールCH_c内で下部接続部3cと接触する上部接続部19cと、第1トランスファー端子部形成領域において開口部17p1内で第2導電部15p1と接触する上部接続部19p1と、第2トランスファー端子部形成領域において開口部17p2内で下部接続部15p2と接触する上部接続部19p2とを形成する。これにより、アンテナ単位領域U、ソース−ゲート接続部SG、ソース端子部ST、ゲート端子部GT、CS端子部CT、第1トランスファー端子部PT1、および第2トランスファー端子部PT2が得られる。
このようにして、TFT基板105が製造される。
・変形例1
以下、図28〜図30を参照しながら、本実施形態の変形例1のTFT基板を説明する。
図28(a)〜(c)は、本実施形態の変形例1のTFT基板106を例示する模式的な平面図である。TFT基板106は、ソース−ゲート接続部SGにおいて、TFT基板105と異なる構造を有する。以下では、TFT基板105と異なる点を主に説明する。
図28(a)は、TFT基板106の送受信領域R1のアンテナ単位領域Uを示し、図28(b)は、非送受信領域R2に設けられたトランスファー端子部PT、ゲート端子部GTおよびCS端子部CTを示し、図28(c)は、非送受信領域R2に設けられたソース−ゲート接続部SGおよびソース端子部STを示している。
図29(a)〜(g)および図30は、それぞれ、TFT基板106の模式的な断面図である。図29(a)は、図28(a)中のA−A'線に沿ったアンテナ単位領域Uの断面を示し、図29(b)は、図28(b)中のB−B'線に沿った第1トランスファー端子部PT1の断面を示し、図29(c)は、図28(c)中のC−C'線に沿ったソース−ゲート接続部SGの断面を示し、図29(d)は、図28(c)中のD−D'線に沿ったソース端子部STの断面を示し、図29(e)は、図28(b)中のE−E'線に沿った第2トランスファー端子部PT2の断面を示し、図29(f)は、図28(b)中のF−F'線に沿った第1トランスファー端子部PT1の断面を示し、図29(g)は、図28(c)中のG−G'線に沿ったソース−ゲート接続部SGの断面を示し、図30は、図28(c)中のH−H'線に沿ったソース−ゲート接続部SGおよびソース端子部STの断面を示している。
図28(c)、図29(c)、図29(g)および図30に示すように、TFT基板106のソース−ゲート接続部SGは、パッチメタル層15lに含まれる接続部15sgをさらに有する点において、TFT基板105のソース−ゲート接続部SGと異なる。TFT基板105のソース−ゲート接続部SGは、第1接続部13sgを有するのに対し、TFT基板106のソース−ゲート接続部SGは、下部導電層13に含まれる接続部13sgおよびパッチメタル層15lに含まれる接続部15sgを含む第1接続部16sgを有する。
このような構造を有するTFT基板106においても、ソース−ゲート接続部SGを設けることによって、ソース端子部STの下部接続部をゲートメタル層3で形成することができる。これによって、TFT基板106のソース端子部STは優れた信頼性を有する。
TFT基板106のソース−ゲート接続部SGは、ソース下部接続配線3sgと、ゲート絶縁層4に形成された開口部4sg1と、ソースバスライン接続部7sgと、第1絶縁層11に形成された開口部11sg1および開口部11sg2と、ソース−ゲート接続用第1接続部16sg(単に「第1接続部16sg」ということがある。)と、第2絶縁層17に形成された開口部17sg1および開口部17sg2と、ソース−ゲート接続用第2接続部19sg(単に「第2接続部19sg」ということがある。)とを有する。第1接続部16sgは、下部導電層13に含まれる接続部13sgおよびパッチメタル層15lに含まれる接続部15sgを含む。
第1接続部16sgは、第1絶縁層11上、コンタクトホールCH_sg内、および、第1絶縁層11に形成された開口部11sg2内に形成され、コンタクトホールCH_sg内でソース下部接続配線3sgに接続され、開口部11sg2内でソースバスライン接続部7sgに接続される。すなわち、第1接続部16sgは、ゲート絶縁層4に形成された開口部4sg1内でソース下部接続配線3sgに接触し、第1絶縁層11に形成された開口部11sg2内でソースバスライン接続部7sgに接触している。
下部導電層13に含まれる接続部13sgは、例えば、TFT基板105のソース−ゲート接続部SGが有する第1接続部13sgと同様であってもよい。下部導電層13に含まれる接続部13sgは、例えば図示するように、第1絶縁層11上、コンタクトホールCH_sg内、および、第1絶縁層11に形成された開口部11sg2内に形成され、コンタクトホールCH_sg内でソース下部接続配線3sgに接続され、開口部11sg2内でソースバスライン接続部7sgに接続される。
パッチメタル層15lに含まれる接続部15sgは、接続部13sg上に、接続部13sgと接触するように形成されている。
第2絶縁層17に形成された開口部17sg1および開口部17sg2は、それぞれ、第1接続部16sgに達している。
第2接続部19sgは、上部導電層19に含まれる。第2接続部19sgは、第2絶縁層17上、開口部17sg1内および開口部17sg2内に形成され、開口部17sg1内および開口部17sg2内で第1接続部16sgに接続される。すなわち、第2接続部19sgは、開口部17sg1内および開口部17sg2内で第1接続部16sgに接触している。
TFT基板106のソース−ゲート接続部SGは、コンタクトホールCH_sg内および開口部11sg2内に形成された第1接続部16sgを有するので、パッチ用導電膜のパターニング工程における、エッチングによるソース下部接続配線3sgおよび/またはソースバスライン接続部7sgへのダメージを軽減することができる。従って、TFT基板106は動作安定性に優れている。
ゲートメタル層3へのエッチングダメージを効果的に軽減する観点およびソースバスライン接続部7sgとソース下部接続配線3sgとの間の電気抵抗を下げる観点からは、ソース下部接続配線3sgの内、開口部4sg1によって露出されている部分は、第1接続部16sgで覆われていることが好ましい。すなわち、ソース下部接続配線3sgの内、開口部4sg1によって露出されている部分は、下部導電層13に含まれる接続部13sgおよび/またはパッチメタル層15lに含まれる接続部15sgで覆われていることが好ましい。同様に、ソースメタル層7へのエッチングダメージを効果的に軽減する観点からは、ソースバスライン接続部7sgの内、開口部11sg2によって露出されている部分は、第1接続部16sgで覆われていることが好ましい。すなわち、ソースバスライン接続部7sgの内、開口部11sg2によって露出されている部分は、下部導電層13に含まれる接続部13sgおよび/またはパッチメタル層15lに含まれる接続部15sgで覆われていることが好ましい。
コンタクトホールCH_sgおよび開口部11sg2の内、パッチメタル層15lに含まれる接続部15sgと重なっている部分は、パッチ用導電膜を除去しないので、パッチ用導電膜のパターニング工程において、ソース下部接続配線3sgおよびソースバスライン接続部7sgがエッチングダメージを受けるという問題が生じない。誘電体基板1の法線方向から見たとき、開口部4sg1の全ておよび開口部11sg2の全ては、パッチメタル層15lに含まれる接続部15sgと重なっていることが好ましい。
TFT基板106は、TFT基板105に比べて、パッチ用導電膜のパターニング工程におけるエッチングダメージが少ない。また、TFT基板106のソース−ゲート接続部SGの第1接続部16sgは、パッチメタル層15lを含むので、TFT基板105のソース−ゲート接続部SGの第1接続部13sgに比べて電気抵抗が低減される。
TFT基板106は、ソース−ゲート接続部SGに第2接続部19sgを有することによって、優れた動作安定性を有する。上述したように、ソース−ゲート接続部SGにおいて、ソースバスライン接続部7sgと、ソース下部接続配線3sgとは、第1接続部16sgおよび第2接続部19sgを介して電気的に接続されている。ソース−ゲート接続部SGが、ソースメタル層7とゲートメタル層3とを接続する導電部として、第1接続部16sgに加えて第2接続部19sgを有することによって、導電部全体としての電気抵抗(配線抵抗)が低減される。また、導電部として第1接続部16sgおよび第2接続部19sgを有することによって、下部導電層13に含まれる接続部13sgまたはパッチメタル層15lに含まれる接続部15sgに断線が生じても、ソースバスライン接続部7sgとソース下部接続配線3sgとの電気的接続が確保されるという利点も得られる。従って、TFT基板106は、動作安定性に優れている。
図示する例では、下部導電層13に含まれる接続部13sgおよびパッチメタル層15lに含まれる接続部15sgは、ともに、誘電体基板1の法線方向から見たとき、開口部4sg1および開口部11sg2を覆うように形成されている。本実施形態はこの例に限定されず、既に述べたように、第1接続部16sg全体として、ゲート絶縁層4に形成された開口部4sg1内でソース下部接続配線3sgに接触し、第1絶縁層11に形成された開口部11sg2内でソースバスライン接続部7sgに接触する導電部であればよい。例えば、下部導電層13に含まれる接続部13sgおよびパッチメタル層15lに含まれる接続部15sgのどちらか一方は、互いに分離されている複数の部分を含んでいてもよい。例えば、下部導電層13に含まれる接続部13sgは、互いに分離されている複数の部分であって、誘電体基板1の法線方向から見たとき、開口部4sg1に重なる部分と、開口部11sg2に重なる部分とを含む複数の部分を含んでもよい。このとき、パッチメタル層15lに含まれる接続部15sgは、上記複数の部分の両方に接触するように形成されていればよい。
第1接続部16sgおよび第2接続部19sg全体の電気抵抗(配線抵抗)を低下させる観点からは、誘電体基板1の法線方向から見たとき、第1接続部16sgと、第2接続部19sgとは重なることが好ましく、誘電体基板1の法線方向から見たとき、第1接続部16sgと、第2接続部19sgとが重なる面積は大きいことが好ましい。図示する例では、誘電体基板1の法線方向から見たとき、第1接続部16sgの全ては、第2接続部19sgと重なっている。誘電体基板1の法線方向から見たとき、第2接続部19sgの全てが、第1接続部16sgと重なっていてもよい。
図31(a)〜(b)および図32(a)〜(c)を参照して、TFT基板106の製造方法を説明する。図31(a)〜(b)および図32(a)〜(c)は、TFT基板106の製造方法の一例を示す工程断面図である。これらの図は、それぞれ、図29(a)〜(e)および(g)に対応する断面を示している。以下では、TFT基板105の製造方法と異なる点を主に説明する。
TFT基板106の製造方法は、ソース−ゲート接続部SGの製造方法を除いて、図24〜図27に示したTFT基板105の製造方法と同様である。
まず、図24(a)〜(f)、図25(a)〜(d)および図26(a)を参照して説明したのと同様に、ゲートメタル層3、ゲート絶縁膜4、島状の半導体層5、コンタクト層6S、6D、ソースメタル層7、第1絶縁膜11、下部導電層13、およびパッチ用導電膜15’を形成する。
次いで、パッチ用導電膜15'をパターニングすることにより、図31(a)に示すように、パッチメタル層15lを得る。ここでは、ソース−ゲート接続部形成領域において接続部13sg上に接続部15sgを形成する点において、TFT基板105の製造方法と異なる。接続部15sgは、接続部13sgと接触するように形成される。これにより、第1接続部16sgが形成される。
パッチ用導電膜15’のパターニング工程において、TFT基板105の製造方法では、ソース−ゲート接続部形成領域のパッチ用導電膜15’が除去されるのに対し、TFT基板106の製造方法では、ソース−ゲート接続部形成領域に、パッチメタル層15lに含まれる接続部15sgが形成される。
コンタクトホールCH_sg内および開口部11sg2内には第1接続部16sgが形成されているので、パッチ用導電膜15’のパターニング工程における、エッチングによるソース下部接続配線3sgおよび/またはソースバスライン接続部7sgへのダメージが軽減される。
ここでは、ソース下部接続配線3sgの内、コンタクトホールCH_sgによって露出されている部分は、第1接続部16sgで覆われており、ソースバスライン接続部7sgの内、開口部11sg2によって露出されている部分は、第1接続部16sgで覆われている。これにより、パッチ用導電膜15’のパターニング工程における、エッチングによるソースバスライン接続部7sgおよび/またはソース下部接続配線3sgへのダメージが軽減される。
ここでは、図示するように、誘電体基板1の法線方向から見たとき、開口部4sg1の全ておよび開口部11sg2の全てが、パッチメタル層15lに含まれる接続部15sgと重なるように形成される。従って、パッチ用導電膜のパターニング工程において、ソース下部接続配線3sgおよびソースバスライン接続部7sgがエッチングダメージを受けるという問題が生じない。
次いで、図31(b)に示すように、パッチメタル層15l上、下部導電層13上および第1絶縁層11上に第2絶縁膜17を形成する。この工程は、図26(c)を参照して説明した工程と同様に行われる。
続いて、公知のフォトリソグラフィプロセスによって、第2絶縁膜17、第1絶縁膜11およびゲート絶縁膜4のエッチングを行うことにより、図32(a)に示すように、第2絶縁層17、第1絶縁層11およびゲート絶縁層4を得る。この工程は、図27(a)を参照して説明した工程と同様に行われる。
次いで、図32(b)に示すように、第2絶縁層17上、コンタクトホールCH_s内、コンタクトホールCH_g内、コンタクトホールCH_c内、開口部17sg1内、開口部17sg2内、開口部17p1内、および開口部17p2内に、例えばスパッタ法により上部導電膜19'を形成する。この工程は、図27(b)を参照して説明した工程と同様に行われる。
次いで、上部導電膜19'をパターニングすることにより、図32(c)に示すように、上部導電層19を得る。この工程は、図27(c)を参照して説明した工程と同様に行われる。
このようにして、TFT基板106が製造される。
・変形例2
以下、図33〜図35を参照しながら、本実施形態の変形例2のTFT基板を説明する。
図33(a)〜(c)は、本実施形態の変形例2のTFT基板107を例示する模式的な平面図である。TFT基板107は、下部導電層13を有しない点において、TFT基板106と異なる。以下では、TFT基板106と異なる点を主に説明する。
図33(a)は、TFT基板107の送受信領域R1のアンテナ単位領域Uを示し、図33(b)は、非送受信領域R2に設けられたトランスファー端子部PT、ゲート端子部GTおよびCS端子部CTを示し、図33(c)は、非送受信領域R2に設けられたソース−ゲート接続部SGおよびソース端子部STを示している。
図34(a)〜(g)および図35は、それぞれ、TFT基板107の模式的な断面図である。図34(a)は、図33(a)中のA−A'線に沿ったアンテナ単位領域Uの断面を示し、図34(b)は、図33(b)中のB−B'線に沿った第1トランスファー端子部PT1の断面を示し、図34(c)は、図33(c)中のC−C'線に沿ったソース−ゲート接続部SGの断面を示し、図34(d)は、図33(c)中のD−D'線に沿ったソース端子部STの断面を示し、図34(e)は、図33(b)中のE−E'線に沿った第2トランスファー端子部PT2の断面を示し、図34(f)は、図33(b)中のF−F'線に沿った第1トランスファー端子部PT1の断面を示し、図34(g)は、図33(c)中のG−G'線に沿ったソース−ゲート接続部SGの断面を示し、図35は、図33(c)中のH−H'線に沿ったソース−ゲート接続部SGおよびソース端子部STの断面を示している。
<ソース−ゲート接続部SG>
図33(c)、図34(c)、図34(g)および図35に示すように、TFT基板106のソース−ゲート接続部SGは、下部導電層13に含まれる接続部13sgを有しない点において、TFT基板106のソース−ゲート接続部SGと異なる。TFT基板106のソース−ゲート接続部SGは、下部導電層13に含まれる接続部13sgおよびパッチメタル層15lに含まれる接続部15sgを含む第1接続部16sgを有するのに対し、TFT基板107のソース−ゲート接続部SGの第1接続部は、パッチメタル層15lに含まれる第1接続部15sgを有する。
このような構造を有するTFT基板107においても、ソース−ゲート接続部SGを設けることによって、ソース端子部STの下部接続部をゲートメタル層3で形成することができる。これによって、TFT基板107のソース端子部STは優れた信頼性を有する。
TFT基板107のソース−ゲート接続部SGは、具体的には、ソース下部接続配線3sgと、ゲート絶縁層4に形成された開口部4sg1と、ソースバスライン接続部7sgと、第1絶縁層11に形成された開口部11sg1および開口部11sg2と、ソース−ゲート接続用第1接続部15sg(単に「第1接続部15sg」ということがある。)と、第2絶縁層17に形成された開口部17sg1および開口部17sg2と、ソース−ゲート接続用第2接続部19sg(単に「第2接続部19sg」ということがある。)とを有する。
第1接続部15sgは、第1絶縁層11上、コンタクトホールCH_sg内、および、第1絶縁層11に形成された開口部11sg2内に形成され、コンタクトホールCH_sg内でソース下部接続配線3sgに接続され、開口部11sg2内でソースバスライン接続部7sgに接続される。すなわち、第1接続部15sgは、ゲート絶縁層4に形成された開口部4sg1内でソース下部接続配線3sgに接触し、第1絶縁層11に形成された開口部11sg2内でソースバスライン接続部7sgに接触している。
第2絶縁層17に形成された開口部17sg1および開口部17sg2は、それぞれ、第1接続部15sgに達している。
第2接続部19sgは、上部導電層19に含まれる。第2接続部19sgは、第2絶縁層17上、開口部17sg1内および開口部17sg2内に形成され、開口部17sg1内および開口部17sg2内で第1接続部15sgに接続される。すなわち、第2接続部19sgは、開口部17sg1内および開口部17sg2内で第1接続部15sgに接触している。
TFT基板107のソース−ゲート接続部SGは、コンタクトホールCH_sg内および開口部11sg2内に形成された第1接続部15sgを有するので、パッチ用導電膜のパターニング工程における、エッチングによるソース下部接続配線3sgおよび/またはソースバスライン接続部7sgへのダメージが軽減される。従って、TFT基板107は動作安定性に優れている。
ソース下部接続配線3sgの内、開口部4sg1によって露出されている部分は、第1接続部15sgで覆われていることが好ましく、ソースバスライン接続部7sgの内、開口部11sg2によって露出されている部分は、第1接続部15sgで覆われていることが好ましい。すなわち、誘電体基板1の法線方向から見たとき、開口部4sg1の全ておよび開口部11sg2の全ては、第1接続部15sgと重なっていることが好ましい。このような場合は、パッチ用導電膜のパターニング工程において、ソース下部接続配線3sgおよびソースバスライン接続部7sgがエッチングダメージを受けるという問題が生じない。また、このような場合は、ソースバスライン接続部7sgとソース下部接続配線3sgとの間の電気抵抗を低減することができる。
TFT基板106と比較すると、TFT基板107では、ソース−ゲート接続部SGにおいて下部導電層13に含まれる接続部13sgが省略されている。しかしながら、パッチ用導電膜のパターニング工程における、ゲートメタル層3および/またはソースメタル層7のエッチングダメージを抑制する効果については、TFT基板107においても、TFT基板106と同様に得ることができる。従って、TFT基板107は、TFT基板106に比べて、動作安定性を低下させることなく、製造コストを削減することができる。
TFT基板107は、ソース−ゲート接続部SGに第2接続部19sgを有することによって、優れた動作安定性を有する。上述したように、ソース−ゲート接続部SGにおいて、ソースバスライン接続部7sgと、ソース下部接続配線3sgとは、第1接続部15sgおよび第2接続部19sgを介して電気的に接続されている。ソース−ゲート接続部SGが、ソースメタル層7とゲートメタル層3とを接続する導電部として、第1接続部15sgに加えて第2接続部19sgを有することによって、導電部全体としての電気抵抗(配線抵抗)が低減される。これにより、TFT基板107は、動作安定性に優れている。
誘電体基板1の法線方向から見たとき、第1接続部15sgの全てが、第2接続部19sgと重なっている場合は、以下の利点がさらに得られる。ソースバスライン接続部7sgとソース下部接続配線3sgとを接続する導電部として第1接続部15sgおよび第2接続部19sgを有することによって、第1接続部15sgに断線が生じても、ソースバスライン接続部7sgとソース下部接続配線3sgとの電気的接続が確保される。これにより、TFT基板107は、動作安定性に優れている。
第1接続部15sgおよび第2接続部19sg全体の電気抵抗(配線抵抗)を低下させる観点からは、誘電体基板1の法線方向から見たとき、第1接続部15sgと、第2接続部19sgとは重なることが好ましく、誘電体基板1の法線方向から見たとき、第1接続部15sgと、第2接続部19sgとが重なる面積は大きいことが好ましい。図示する例では、誘電体基板1の法線方向から見たとき、第1接続部15sgの全ては、第2接続部19sgと重なっている。誘電体基板1の法線方向から見たとき、第2接続部19sgの全てが、第1接続部15sgと重なっていてもよい。
<アンテナ単位領域U>
図33(a)および図34(a)に示すように、アンテナ単位領域Uにおいて、TFT基板107は、第1接続部13aを有しない点において、TFT基板106と異なる。
アンテナ単位領域Uにおいて、パッチメタル層15lは、パッチ電極15と、第2接続部15aとを含む。第2接続部15aは、第1絶縁層11上および開口部11a内に形成され、開口部11a内でTFT10のドレイン電極7Dまたはドレイン電極7Dから延設された部分に接触する。
<第1トランスファー端子部PT1>
図33(b)および図34(b)に示すように、第1トランスファー端子部PT1において、TFT基板107は、第1導電部13p1を有しない点において、TFT基板106と異なる。
第1トランスファー端子部PT1は、第1トランスファー端子用下部接続部3p1(単に「下部接続部3p1」ということもある。)と、ゲート絶縁層4に形成された開口部4p1と、第1絶縁層11に形成された開口部11p1と、第1トランスファー端子用第2導電部15p1(単に「第2導電部15p1」ということもある。)と、第2絶縁層17に形成された開口部17p1と、第1トランスファー端子用上部接続部19p1(単に「上部接続部19p1」ということもある。)とを有している。
第2導電部15p1は、パッチメタル層15lに含まれる。第2導電部15p1は、第1絶縁層11上およびコンタクトホールCH_p1内に形成され、コンタクトホールCH_p1内で下部接続部3p1と接続されている。すなわち、第2導電部15p1は、コンタクトホールCH_p1内で下部接続部3p1と接触している。
第2絶縁層17に形成された開口部17p1は、第2導電部15p1に達している。
上部接続部19p1は、上部導電層19に含まれる。上部接続部19p1は、第2絶縁層17上および開口部17p1内に形成され、開口部17p1内で第2導電部15p1と接続されている。すなわち、上部接続部19p1は、開口部17p1内で第2導電部15p1と接触している。
<TFT基板107の製造方法>
図36(a)〜(c)および図37(a)〜(c)を参照して、TFT基板107の製造方法を説明する。図36(a)〜(c)および図37(a)〜(c)は、TFT基板107の製造方法の一例を示す工程断面図である。これらの図は、それぞれ、図34(a)〜(e)および(g)に対応する断面を示している。以下では、TFT基板105の製造方法と異なる点およびTFT基板106の製造方法と異なる点を主に説明する。
TFT基板107の製造方法は、下部導電層13を形成しない点を除いて、TFT基板106の製造方法と同様である。
まず、図24(a)〜(f)および図25(a)〜(b)を参照して説明したのと同様に、ゲートメタル層3、ゲート絶縁膜4、島状の半導体層5、コンタクト層6S、6D、ソースメタル層7および第1絶縁膜11を形成する。
続いて、図36(a)に示すように、第1絶縁膜11上にパッチ用導電膜15'を形成する。この工程は、図26(a)を参照して説明した工程と同様に行われる。
次いで、パッチ用導電膜15'をパターニングすることにより、図36(b)に示すように、パッチメタル層15lを得る。具体的には、アンテナ単位領域形成領域のパッチ電極15および第2接続部15aと、ソース−ゲート接続部形成領域の第1接続部15sgと、第1トランスファー端子部形成領域の第2導電部15p1と、第2トランスファー端子部形成領域の下部接続部15p2とを含むパッチメタル層15lを得る。この工程は、図31(a)を参照して説明した工程と同様に行われる。
アンテナ単位形成領域の第2接続部15aは、第1絶縁膜11に形成された開口部11a内でドレイン電極7Dの延設部と接触するように形成される。ソース−ゲート接続部形成領域の第1接続部15sgは、コンタクトホールCH_sg内でソース下部接続配線3sgと接触し、開口部11sg2内でソースバスライン接続部7sgと接触するように形成される。第1トランスファー端子部PT1における第2導電部15p1は、コンタクトホールCH_p1内で下部接続部3p1と接触するように形成される。
コンタクトホールCH_sg内および開口部11sg2内には第1接続部15sgが形成されているので、パッチ用導電膜15’のパターニング工程における、エッチングによるソース下部接続配線3sgおよび/またはソースバスライン接続部7sgへのダメージが軽減される。
ここでは、ソース下部接続配線3sgの内、コンタクトホールCH_sgによって露出されている部分は、第1接続部15sgで覆われており、ソースバスライン接続部7sgの内、開口部11sg2によって露出されている部分は、第1接続部15sgで覆われている。すなわち、誘電体基板1の法線方向から見たとき、開口部4sg1の全ておよび開口部11sg2の全てが、第1接続部15sgと重なるように形成される。従って、ソースバスライン接続部7sgおよび/またはソース下部接続配線3sgへのエッチングダメージは生じない。
次いで、図36(c)に示すように、パッチメタル層15l上および第1絶縁層11上に第2絶縁膜17を形成する。この工程は、図31(b)を参照して説明した工程と同様に行われる。
続いて、公知のフォトリソグラフィプロセスによって、第2絶縁膜17、第1絶縁膜11およびゲート絶縁膜4のエッチングを行うことにより、図37(a)に示すように、第2絶縁層17、第1絶縁層11およびゲート絶縁層4を得る。この工程は、図32(a)を参照して説明した工程と同様に行われる。
次いで、図37(b)に示すように、第2絶縁層17上、コンタクトホールCH_s内、コンタクトホールCH_g内、コンタクトホールCH_c内、開口部17sg1内、開口部17sg2内、開口部17p1内、および開口部17p2内に、例えばスパッタ法により上部導電膜19'を形成する。この工程は、図32(b)を参照して説明した工程と同様に行われる。
次いで、上部導電膜19'をパターニングすることにより、図37(c)に示すように、上部導電層19を得る。この工程は、図32(c)を参照して説明した工程と同様に行われる。
このようにして、TFT基板107が製造される。
本発明の実施形態による走査アンテナは、必要に応じて、例えばプラスチック製の筺体に収容される。筺体にはマイクロ波の送受信に影響を与えない誘電率εMが小さい材料を用いることが好ましい。また、筺体の送受信領域R1に対応する部分には貫通孔を設けてもよい。さらに、液晶材料が光に曝されないように、遮光構造を設けてもよい。遮光構造は、例えば、TFT基板101の誘電体基板1および/またはスロット基板201の誘電体基板51の側面から誘電体基板1および/または51内を伝播し、液晶層に入射する光を遮光するように設ける。誘電異方性ΔεMが大きな液晶材料は、光劣化しやすいものがあり、紫外線だけでなく、可視光の中でも短波長の青色光も遮光することが好ましい。遮光構造は、例えば、黒色の粘着テープなどの遮光性のテープを用いることによって、必要な個所に容易に形成できる。
本発明による実施形態は、例えば、移動体(例えば、船舶、航空機、自動車)に搭載される衛星通信や衛星放送用の走査アンテナおよびその検査に用いられる。
1 :誘電体基板
2 :下地絶縁膜
3 :ゲートメタル層
3G :ゲート電極
3c、3gA、3p1、3p2、3sA:下部接続部
3sg :ソース下部接続配線
4 :ゲート絶縁層
4c、4g、4p1、4s、4sg1:開口部
5 :半導体層
6D :ドレインコンタクト層
6S :ソースコンタクト層
7 :ソースメタル層
7D :ドレイン電極
7S :ソース電極
7p :ソース接続配線
7sg :ソースバスライン接続部
11 :第1絶縁層
11a、11c、11g、11p1:開口部
11s、11sg1、11sg2:開口部
13 :下部導電層
13a :第1接続部
13sg :第1接続部(接続部)
15 :パッチ電極
15l :パッチメタル層
15p :パッチ接続部
15sg :第1接続部(接続部)
16sg :第1接続部
17 :第2絶縁層
17c、17g、17p1、17p2、17s:開口部
17sg1、17sg2:開口部
18g、18s、18p :開口部
19 :上部導電層
19g :ゲート端子用上部接続部
19p :トランスファー端子用上部接続部
19s :ソース端子用上部接続部
19c、19gA、19p1、19p2、19sA:上部接続部
19sg:第2接続部
21 :アライメントマーク
23 :保護導電層
51 :誘電体基板
52 :第3絶縁層
54 :誘電体層(空気層)
55 :スロット電極
55L :下層
55M :主層
55U :上層
55c :コンタクト面
57 :スロット
58 :第4絶縁層
60 :上部接続部
65 :反射導電板
67 :接着層
68 :ヒーター用抵抗膜
70 :給電装置
71 :導電性ビーズ
72 :給電ピン
73 :シール部
101、102、103、104 :TFT基板
105、106、107 :TFT基板
201、203 :スロット基板
1000 :走査アンテナ
CH1、CH2、CH3、CH4、CH5、CH6 :コンタクトホール
CH_c、CH_g:コンタクトホール
CH_p1、CH_s、CH_sg:コンタクトホール
GD :ゲートドライバ
GL :ゲートバスライン
GT :ゲート端子部
SD :ソースドライバ
SL :ソースバスライン
ST :ソース端子部
PT :トランスファー端子部
IT :端子部
LC :液晶層
R1 :送受信領域
R2 :非送受信領域
Rs :シール領域
U、U1、U2 :アンテナ単位、アンテナ単位領域

Claims (18)

  1. 誘電体基板と、前記誘電体基板上に配列された複数のアンテナ単位領域とを有し、
    前記複数のアンテナ単位領域のそれぞれは、TFTと、前記TFTのドレイン電極に接続されたパッチ電極とを有し、
    前記複数のアンテナ単位領域を含む送受信領域と、前記送受信領域以外の領域に位置する非送受信領域とを備えるTFT基板であって、
    前記誘電体基板に支持され、前記TFTのゲート電極および前記ゲート電極に接続されたゲートバスラインを含むゲートメタル層と、
    前記ゲートメタル層上に形成されたゲート絶縁層と、
    前記ゲート絶縁層上に形成され、前記TFTのソース電極、前記ドレイン電極、および前記ソース電極に接続されたソースバスラインを含むソースメタル層と、
    前記ソースメタル層上に形成された第1絶縁層と、
    前記第1絶縁層上に形成され、前記パッチ電極を含むパッチメタル層と、
    前記パッチメタル層上に形成された第2絶縁層と、
    前記第2絶縁層上に形成された上部導電層と
    を有し、
    前記非送受信領域に配置されたソース−ゲート接続部を有し、
    前記ソース−ゲート接続部は、
    前記ゲートメタル層に含まれ、前記ゲートバスラインと電気的に分離されたソース下部接続配線と、
    前記ゲート絶縁層に形成され、前記ソース下部接続配線に達する第1開口部と、
    前記ソースメタル層に含まれ、前記ソースバスラインに接続されたソースバスライン接続部と、
    前記第1絶縁層に形成され、前記誘電体基板の法線方向から見たとき前記第1開口部に重なる第2開口部と、
    前記第1絶縁層に形成され、前記ソースバスライン接続部に達する第3開口部と、
    前記第1絶縁層と前記第2絶縁層との間に形成された少なくとも1つの導電層を含み、前記第1開口部内で前記ソース下部接続配線に接続され、前記第3開口部内で前記ソースバスライン接続部に接続された第1接続部と、
    前記第2絶縁層に形成され、前記第1接続部に達する少なくとも1つの第4開口部と、
    前記上部導電層に含まれ、前記少なくとも1つの第4開口部内で前記第1接続部に接続された第2接続部と
    を有する、TFT基板。
  2. 前記ソース下部接続配線の内、前記第1開口部によって露出されている部分は、前記第1接続部で覆われており、
    前記ソースバスライン接続部の内、前記第3開口部によって露出されている部分は、前記第1接続部で覆われている、請求項1に記載のTFT基板。
  3. 前記誘電体基板の法線方向から見たとき、前記第1接続部の全ては前記第2接続部と重なっている、または、前記第2接続部の全ては前記第1接続部と重なっている、請求項1または2に記載のTFT基板。
  4. 前記非送受信領域に配置されたソース端子部を有し、
    前記ソース端子部は、
    前記ゲートメタル層に含まれ、前記ソース下部接続配線と電気的に接続されたソース端子用下部接続部と、
    前記ゲート絶縁層に形成され、前記ソース端子用下部接続部に達する第5開口部と、
    前記第1絶縁層に形成され、前記誘電体基板の法線方向から見たとき前記第5開口部に重なる第6開口部と、
    前記第2絶縁層に形成され、前記誘電体基板の法線方向から見たとき前記第6開口部に重なる第7開口部と、
    前記上部導電層に含まれ、前記第5開口部内で前記ソース端子用下部接続部と接続されたソース端子用上部接続部と
    を有する、請求項1から3のいずれかに記載のTFT基板。
  5. 前記上部導電層は、透明導電層を含む、請求項1から4のいずれかに記載のTFT基板。
  6. 前記上部導電層は、
    透明導電層を含む第1導電層と、
    前記第1導電層の下に形成され、Ti層、MoNb層、MoNbNi層、MoW層、W層およびTa層からなる群から選択される少なくとも1つの層から形成されている第2導電層と
    を含む、請求項1から5のいずれかに記載のTFT基板。
  7. 前記第1絶縁層と前記パッチメタル層との間に形成された下部導電層をさらに有し、
    前記少なくとも1つの導電層は、前記下部導電層を含む、請求項1から6のいずれかに記載のTFT基板。
  8. 前記少なくとも1つの導電層は、前記パッチメタル層を含まない、請求項7に記載のTFT基板。
  9. 前記少なくとも1つの導電層は、前記パッチメタル層を含む、請求項1から7のいずれかに記載のTFT基板。
  10. 前記誘電体基板の法線方向から見たとき、前記第1開口部の全ておよび前記第3開口部の全ては、前記第1接続部の前記パッチメタル層と重なる、請求項9に記載のTFT基板。
  11. 請求項1から10のいずれかに記載のTFT基板と、
    前記TFT基板と対向するように配置されたスロット基板と、
    前記TFT基板と前記スロット基板との間に設けられた液晶層と、
    前記スロット基板の前記液晶層と反対側の表面に誘電体層を介して対向するように配置された反射導電板と
    を備え、
    前記スロット基板は、他の誘電体基板と、前記他の誘電体基板の前記液晶層側の表面に形成されたスロット電極とを有し、
    前記スロット電極は複数のスロットを有し、前記複数のスロットは、前記TFT基板の前記複数のアンテナ単位領域における前記パッチ電極に対応して配置されている走査アンテナ。
  12. 請求項1から6のいずれかに記載のTFT基板の製造方法であって、
    前記誘電体基板上に、前記ソース下部接続配線を含む前記ゲートメタル層を形成する工程(a)と、
    前記ゲートメタル層上にゲート絶縁膜を堆積する工程(b)と、
    前記ゲート絶縁膜上に、前記ソースバスライン接続部を含む前記ソースメタル層を形成する工程(c)と、
    前記ソースメタル層上に第1絶縁膜を堆積する工程(d)と、
    前記ゲート絶縁膜に前記第1開口部を形成し、前記第1絶縁膜に前記第2開口部および前記第3開口部を形成する工程(e)と、
    前記第1絶縁膜上にパッチ用導電膜を堆積する工程(f)と、
    前記パッチ用導電膜をパターニングすることによって前記パッチメタル層を形成する工程(g)と、
    前記パッチメタル層上に第2絶縁膜を堆積する工程(h)と、
    前記第2絶縁膜に前記少なくとも1つの第4開口部を形成する工程(i)と、
    前記第2絶縁層上に、前記第2接続部を含む前記上部導電層を形成する工程(j)と
    を包含する、TFT基板の製造方法。
  13. 前記工程(g)は、前記パッチメタル層に含まれる前記第1接続部を形成する工程を包含する、請求項12に記載のTFT基板の製造方法。
  14. 前記工程(e)と前記工程(f)との間に、前記第1絶縁層上に下部導電層を形成する工程をさらに包含し、
    前記工程(g)は、前記下部導電層および前記パッチメタル層を含む前記第1接続部を形成する工程を包含する、請求項12に記載のTFT基板の製造方法。
  15. 前記工程(g)は、前記ソース下部接続配線の内、前記第1開口部によって露出されている部分、および、前記ソースバスライン接続部の内、前記第3開口部によって露出されている部分を覆うように、前記第1接続部を形成する工程を包含する、請求項13または14に記載のTFT基板の製造方法。
  16. 前記工程(g)は、前記誘電体基板の法線方向から見たとき、前記第1接続部の前記パッチメタル層が、前記第1開口部の全ておよび前記第3開口部の全てと重なるように、前記第1接続部を形成する工程を包含する、請求項13から15のいずれかに記載のTFT基板の製造方法。
  17. 前記工程(e)と前記工程(f)との間に、前記第1絶縁層上に下部導電層を形成する工程をさらに包含し、前記第1接続部は前記下部導電層に含まれる、請求項12に記載のTFT基板の製造方法。
  18. 前記下部導電層を形成する工程は、前記ソース下部接続配線の内、前記第1開口部によって露出されている部分、および、前記ソースバスライン接続部の内、前記第3開口部によって露出されている部分を覆うように、前記第1接続部を形成する工程を包含する、請求項17に記載のTFT基板の製造方法。
JP2018554971A 2016-12-08 2017-12-01 Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法 Active JP6734934B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016238754 2016-12-08
JP2016238754 2016-12-08
PCT/JP2017/043295 WO2018105520A1 (ja) 2016-12-08 2017-12-01 Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法

Publications (2)

Publication Number Publication Date
JPWO2018105520A1 JPWO2018105520A1 (ja) 2019-11-07
JP6734934B2 true JP6734934B2 (ja) 2020-08-05

Family

ID=62491874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018554971A Active JP6734934B2 (ja) 2016-12-08 2017-12-01 Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法

Country Status (4)

Country Link
US (1) US10748862B2 (ja)
JP (1) JP6734934B2 (ja)
CN (1) CN110050350B (ja)
WO (1) WO2018105520A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342666B2 (en) * 2017-02-28 2022-05-24 Sharp Kabushiki Kaisha TFT substrate, scanning antenna provided with TFT substrate, and method for manufacturing TFT substrate
CN110462843B (zh) * 2017-04-06 2023-07-07 夏普株式会社 Tft基板和具备tft基板的扫描天线
US11171161B2 (en) * 2017-04-07 2021-11-09 Sharp Kabushiki Kaisha TFT substrate, scanning antenna provided with TFT substrate, and method for producing TFT substrate
CN110462841B (zh) * 2017-04-07 2023-06-02 夏普株式会社 Tft基板、具备tft基板的扫描天线以及tft基板的制造方法
JP2019091835A (ja) * 2017-11-16 2019-06-13 シャープ株式会社 Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
CN110911382B (zh) * 2018-09-14 2021-06-25 群创光电股份有限公司 天线装置
US11139562B2 (en) * 2018-09-14 2021-10-05 Innolux Corporation Antenna device
TWI749987B (zh) * 2021-01-05 2021-12-11 友達光電股份有限公司 天線結構及陣列天線模組

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217640A (ja) 2001-01-17 2002-08-02 Radial Antenna Kenkyusho:Kk 平面アンテナ及び導波管
KR100858295B1 (ko) 2002-02-26 2008-09-11 삼성전자주식회사 반사-투과형 액정표시장치 및 이의 제조 방법
JP4310969B2 (ja) * 2002-06-13 2009-08-12 カシオ計算機株式会社 アクティブ基板の配線構造及び指紋読取装置
WO2005048354A1 (en) * 2003-11-14 2005-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, method for manufacturing the same, liquid crystal display device, and method for manufacturing the same
JP4521598B2 (ja) * 2004-10-13 2010-08-11 ルネサスエレクトロニクス株式会社 半導体集積回路装置、非接触電子装置並びに携帯情報端末
JP2007295044A (ja) * 2006-04-20 2007-11-08 Matsushita Electric Ind Co Ltd フェーズドアレイアンテナ
JP2007110256A (ja) * 2005-10-11 2007-04-26 Matsushita Electric Ind Co Ltd フェーズドアレイアンテナ
JP2007116573A (ja) 2005-10-24 2007-05-10 Toyota Central Res & Dev Lab Inc アレーアンテナ
US7466269B2 (en) 2006-05-24 2008-12-16 Wavebender, Inc. Variable dielectric constant-based antenna and array
CN101682111B (zh) * 2007-09-27 2013-01-16 夏普株式会社 显示装置基板、液晶显示单元、显示***、和显示装置基板的制造方法
CN101930134B (zh) 2009-06-19 2013-08-07 台均科技(深圳)有限公司 电磁感应式液晶面板及其制造方法和液晶显示器
JP2011100011A (ja) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp 表示装置
KR102002161B1 (ko) 2010-10-15 2019-10-01 시리트 엘엘씨 표면 산란 안테나
KR101995082B1 (ko) 2010-12-03 2019-07-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
EP2575211B1 (en) * 2011-09-27 2014-11-05 Technische Universität Darmstadt Electronically steerable planar phased array antenna
CN104170069B (zh) * 2012-03-12 2016-01-20 夏普株式会社 半导体器件及其制造方法
KR102316107B1 (ko) 2012-05-31 2021-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9385435B2 (en) 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
WO2014157019A1 (en) 2013-03-25 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
ES2935284T3 (es) 2014-02-19 2023-03-03 Kymeta Corp Antena holográfica que se alimenta de forma cilíndrica orientable
US9887456B2 (en) 2014-02-19 2018-02-06 Kymeta Corporation Dynamic polarization and coupling control from a steerable cylindrically fed holographic antenna
US10263331B2 (en) 2014-10-06 2019-04-16 Kymeta Corporation Device, system and method to mitigate side lobes with an antenna array
US9893435B2 (en) 2015-02-11 2018-02-13 Kymeta Corporation Combined antenna apertures allowing simultaneous multiple antenna functionality
KR101618286B1 (ko) * 2015-02-12 2016-05-04 주식회사 더한 정전용량 및 전자기유도 방식에 의한 위치검출이 가능한 디스플레이 모듈 및 이를 구비한 디스플레이 장치
US9887455B2 (en) 2015-03-05 2018-02-06 Kymeta Corporation Aperture segmentation of a cylindrical feed antenna
US9905921B2 (en) 2015-03-05 2018-02-27 Kymeta Corporation Antenna element placement for a cylindrical feed antenna
WO2016203842A1 (ja) * 2015-06-16 2016-12-22 株式会社村田製作所 電子機器、およびアンテナ素子
US9806159B2 (en) * 2015-10-08 2017-10-31 Macom Technology Solutions Holdings, Inc. Tuned semiconductor amplifier

Also Published As

Publication number Publication date
CN110050350A (zh) 2019-07-23
WO2018105520A1 (ja) 2018-06-14
JPWO2018105520A1 (ja) 2019-11-07
US20190385960A1 (en) 2019-12-19
CN110050350B (zh) 2021-12-07
US10748862B2 (en) 2020-08-18

Similar Documents

Publication Publication Date Title
JP6734934B2 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
JP6717970B2 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
US10992040B2 (en) TFT substrate, scanning antenna comprising TFT substrate, and method for producing TFT substrate
JP6589058B2 (ja) 走査アンテナ
WO2018186281A1 (ja) Tft基板およびtft基板を備えた走査アンテナ
US10749257B2 (en) TFT substrate, scanning antenna comprising TFT substrate, and TFT substrate production method
US10937812B2 (en) TFT substrate, scanning antenna provided with TFT substrate, and method for producing TFT substrate
WO2017204114A1 (ja) 走査アンテナおよび走査アンテナの製造方法
WO2018186311A1 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
JP6618616B2 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
JP6712320B2 (ja) 走査アンテナ
WO2017213084A1 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
US10833422B2 (en) TFT substrate and scanning antenna provided with TFT substrate
WO2017130475A1 (ja) 走査アンテナ
WO2018021247A1 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
US10790319B2 (en) TFT substrate, scanning antenna provided with TFT substrate and method for producing TFT substrate
WO2017141874A1 (ja) 走査アンテナ
WO2018131635A1 (ja) 走査アンテナおよび走査アンテナの製造方法
WO2018016387A1 (ja) Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法
JP6598998B2 (ja) 走査アンテナ
US11342666B2 (en) TFT substrate, scanning antenna provided with TFT substrate, and method for manufacturing TFT substrate
JP6717972B2 (ja) 液晶装置、液晶装置の残留dc電圧値を求める方法、液晶装置の駆動方法、および液晶装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200710

R150 Certificate of patent or registration of utility model

Ref document number: 6734934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150