JP6734800B2 - Welded structure of differential case and ring gear - Google Patents

Welded structure of differential case and ring gear Download PDF

Info

Publication number
JP6734800B2
JP6734800B2 JP2017045988A JP2017045988A JP6734800B2 JP 6734800 B2 JP6734800 B2 JP 6734800B2 JP 2017045988 A JP2017045988 A JP 2017045988A JP 2017045988 A JP2017045988 A JP 2017045988A JP 6734800 B2 JP6734800 B2 JP 6734800B2
Authority
JP
Japan
Prior art keywords
case
peripheral surface
flange portion
differential
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017045988A
Other languages
Japanese (ja)
Other versions
JP2018150963A (en
Inventor
真澄 浜名
真澄 浜名
雄介 有田
雄介 有田
信治 山本
信治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASANO GEAR CO Ltd
Original Assignee
ASANO GEAR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASANO GEAR CO Ltd filed Critical ASANO GEAR CO Ltd
Priority to JP2017045988A priority Critical patent/JP6734800B2/en
Publication of JP2018150963A publication Critical patent/JP2018150963A/en
Application granted granted Critical
Publication of JP6734800B2 publication Critical patent/JP6734800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、例えば車両の左右輪を駆動するディファレンシャルギヤ装置のように、軸線方向一方の出力回転と軸線方向他方の出力回転に回転差を与える差動装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential device such as a differential gear device that drives left and right wheels of a vehicle, for providing a rotational difference between one axial output rotation and the other axial output rotation.

差動装置は、デフケースに設けられるリングギヤから回転を入力されて、デフケースの回転軸線と同軸に延びる1対の出力軸へ回転を出力する。溶接でリングギヤをデフケースに取付固定する構造は、例えば、特開2016−98847号公報(特許文献1)に開示されている。 The differential device receives rotation from a ring gear provided in the differential case, and outputs the rotation to a pair of output shafts extending coaxially with the rotation axis of the differential case. A structure for attaching and fixing the ring gear to the differential case by welding is disclosed in, for example, JP-A-2016-98847 (Patent Document 1).

特許文献1は差動装置の軽量化を目的とするものであって、特許文献1のデフケースは第1ケースおよび第2ケースを含み、第1ケースの第1フランジ部は厚肉に形成され、第2ケースの第2フランジ部は薄肉に形成される。厚肉の第1フランジ部と薄肉の第2フランジ部はデフケースの周方向に交互に並ぶように配置され、第1フランジ部はリングギヤのハブ部に軸方向に深く溶接され、第2フランジ部は軸方向に浅く溶接される。特開2015−124874号公報(特許文献2)も略同様の取り付け構造を有する。 Patent Document 1 is intended to reduce the weight of a differential device, and the differential case of Patent Document 1 includes a first case and a second case, and a first flange portion of the first case is formed thick. The second flange portion of the second case is formed thin. The thick first flange portion and the thin second flange portion are arranged alternately in the circumferential direction of the differential case. The first flange portion is deeply welded to the hub portion of the ring gear in the axial direction, and the second flange portion is It is welded shallowly in the axial direction. Japanese Unexamined Patent Application Publication No. 2015-124874 (Patent Document 2) also has a substantially similar mounting structure.

国際公開第WO2013/018223号(特許文献3)は、溶接品質の向上を目的とするものであって、特許文献3のリングギヤとデフケースのフランジとの間に圧入部と第1空洞部と第2空洞部とこれらの空洞部を連通する切欠き溝を設け、フランジには第2空洞部と接続する貫通孔を設け、リングギヤとデフケースは中心軸方向の両側から溶接される。つまり特許文献3のリングギヤとフランジは2列の溶接ビードで溶接される。 International Publication No. WO 2013/018223 (Patent Document 3) is intended to improve welding quality, and includes a press-fitting portion, a first cavity portion, and a second cavity portion between the ring gear and the flange of the differential case of Patent Document 3. The cavity is provided with a notch groove that communicates these cavities, the flange is provided with a through hole that connects to the second cavity, and the ring gear and the differential case are welded from both sides in the central axis direction. That is, the ring gear and the flange of Patent Document 3 are welded with two rows of welding beads.

特開2011−231782号公報(特許文献4)のリングギヤとフランジも2列の溶接ビードで溶接される。ただし2列の溶接ビードは内径側および外径側に段違いに配設される。 The ring gear and the flange of JP 2011-231782 A (Patent Document 4) are also welded with the welding beads in two rows. However, the two rows of welding beads are arranged in different steps on the inner diameter side and the outer diameter side.

特開2016−98847号公報JP, 2016-98847, A 特開2015−124874号公報JP, 2005-124874, A 国際公開第WO2013/018223号International Publication No. WO2013/018223 特開2011−231782号公報JP, 2011-231782, A

従来の溶接部は、外径側のリングギヤと内径側のデフケースとの間で溶接金属が全周に亘って凝固したものであり、半径方向に開いた開先形状にされる。また従来は、デフケースの剛性を大きくするため、デフケースのフランジが肉厚にされ、溶接部の軸線方向寸法が大きくされる。 The conventional welded portion is formed by welding metal that is solidified over the entire circumference between the ring gear on the outer diameter side and the differential case on the inner diameter side, and has a groove shape opened in the radial direction. Further, conventionally, in order to increase the rigidity of the differential case, the flange of the differential case is made thick, and the axial dimension of the welded portion is increased.

従来の溶接構造にあっては、改善すべき点があることを本発明者は見いだした。つまり従来は、リングギヤとデフケースとの溶接完了後に溶接部が冷却すると溶接中の熱による残留応力が溶接金属に集中するという問題につき何ら考慮されていなかった。溶接中の熱は、冷却によって凝固した溶接金属に引っ張り力が作用する原因となる。このため、デフケースの剛性が大きい場合や溶接金属の引っ張り耐力が小さい場合、溶接部に溶接歪や割れが発生する虞がある。そうすると差動装置の強度および耐久性が低下してしまう。また溶接部の割れは微小なため発見が困難であり、検品によって不良品を除去できない場合も想定される。さらに割れが生じない場合でも残留応力が高くディファレンシャルギヤ装置の使用中に、トルクの応力が加わって溶接部の割れが発生する懸念がある。このため溶接部の残留応力を低減する技術が望まれる。 The present inventor has found that the conventional welded structure has some points to be improved. That is, conventionally, no consideration has been given to the problem that residual stress due to heat during welding is concentrated on the weld metal when the welded part cools after the completion of welding between the ring gear and the differential case. The heat during welding causes a tensile force to act on the weld metal solidified by cooling. Therefore, when the rigidity of the differential case is high or when the tensile strength of the weld metal is low, welding distortion or cracks may occur in the welded portion. This will reduce the strength and durability of the differential gear. Moreover, cracks in the welded portion are so small that they are difficult to find, and it is assumed that defective products cannot be removed by inspection. Even if cracking does not occur, residual stress is high and torque stress is applied during use of the differential gear device, which may cause cracking in the welded portion. Therefore, a technique for reducing the residual stress in the welded portion is desired.

本発明は、上述の実情に鑑み、差動装置においてリングギヤとデフケースの溶接部の残留応力を低減する技術を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for reducing residual stress in a welded portion of a ring gear and a differential case in a differential gear.

この目的のため本発明によるデフケースとリングギヤの溶接構造は、同軸配置される1対のサイドギヤに回転差を与えるディファレンシャルギヤ装置に用いられ、1対のサイドギヤおよび1対のサイドギヤと噛合するデフピニオンを収容するための空間を区画するケース部、ケース部の軸線方向一方領域から外径方向に広がるフランジ部、およびフランジ部の外縁部よりも内径側に一体形成されてフランジ部の軸線方向一方端面から軸線方向一方へさらに突出する環状突条を有するデフケースと、リング部およびリング部に形成されて周方向に整列する多数のギヤ歯を有し、リング部の内周面が環状突条の外周面と対面するとともにリング部の軸線方向他方端面がフランジ部の外縁部と当接するリングギヤと、環状突条の外周面およびリング部の内周面を結合する溶接部とを備える。そして溶接部はケース部の軸線方向他方から一方に向かう程、径方向厚みが大きくなる開先形状であり、環状突条の内周面とフランジ部の軸線方向一方端面とケース部の軸線方向一方領域における外周面は、軸線方向一方へ開口する凹部を区画する。 For this purpose, the welded structure of the differential case and the ring gear according to the present invention is used in a differential gear device that imparts a rotational difference to a pair of coaxially arranged side gears, and accommodates a pair of side gears and a differential pinion that meshes with the pair of side gears. For defining a space for defining the space, a flange portion that extends in the outer diameter direction from one axial direction area of the case portion, and an axial line that is integrally formed on the inner diameter side with respect to the outer edge portion of the flange portion from one end surface in the axial direction of the flange portion. a differential case having an annular ridge protrudes further toward one direction, has a number of gear teeth to be aligned in the circumferential direction are formed on the ring portion and the ring portion, the inner peripheral surface of the ring portion and the outer peripheral surface of the annular projection A ring gear, which faces each other and whose other axial end surface of the ring portion abuts the outer edge portion of the flange portion, and a weld portion which joins the outer peripheral surface of the annular projection and the inner peripheral surface of the ring portion. The welded portion has a groove shape in which the thickness in the radial direction increases from the other side of the case portion in the axial direction toward the one side, and the inner peripheral surface of the annular protrusion and the one axial end surface of the flange portion and one axial direction of the case portion The outer peripheral surface in the region defines a concave portion that is open to one side in the axial direction.

かかる本発明によれば、凹部を大きくし、フランジ部を薄肉にし、環状突条の径方向厚みを小さくして、凝固した溶接金属に発生する残留応力を低減することができる。したがって、溶接部に割れが発生することを防止できる。また環状突条とフランジ部を一体形成することから、フランジ部の外縁部が補強リブの役目を果たす。したがってフランジ部の剛性が大きくなり、デフケースおよびリングギヤを結合してなる結合体の強度を確保することができ、ディファレンシャルギヤ装置に要求されるトルク伝達能力、耐久性、および信頼性を確保することができる。傘歯車や平歯車や外歯歯車や内歯歯車等、リングギヤのギヤ歯の配列は特に限定されない。 According to the present invention, it is possible to reduce the residual stress generated in the solidified weld metal by increasing the size of the recess, reducing the thickness of the flange, and reducing the radial thickness of the annular projection. Therefore, it is possible to prevent cracks from occurring in the welded portion. Further, since the annular protrusion and the flange portion are integrally formed, the outer edge portion of the flange portion serves as a reinforcing rib. Therefore, the rigidity of the flange portion is increased, the strength of the combined body formed by connecting the differential case and the ring gear can be secured, and the torque transmission capacity, durability, and reliability required for the differential gear device can be secured. it can. The arrangement of gear teeth of the ring gear such as a bevel gear, a spur gear, an external gear, and an internal gear is not particularly limited.

環状突条の径方向厚み寸法と、溶接部の軸線方向寸法と、フランジ部からみた環状突条の立設高さ(軸線方向寸法)は特に限定されない。本発明の好ましい実施形態として、溶接部の軸線方向寸法wと、溶接部の開先中心から環状突条の内周面までの径方向寸法tと、フランジ部の軸線方向一方端面と環状突条の内周面との交差箇所から環状突条の軸線方向一方端までの軸線方向寸法hは、t≦w≦hの関係を満たす。かかる実施形態によれば、溶接部に生じる溶接残留応力の低減と、デフケースの剛性の向上と、デフケースの軽量化を同時に実現することができる。 The radial thickness of the annular projection, the axial dimension of the welded portion, and the standing height (axial dimension) of the annular projection as viewed from the flange are not particularly limited. As a preferred embodiment of the present invention, the axial dimension w of the welded portion, the radial dimension t from the groove center of the welded portion to the inner peripheral surface of the annular protrusion, the one axial end face of the flange portion and the annular protrusion. The axial dimension h from the point of intersection with the inner peripheral surface to the axially one end of the annular protrusion satisfies the relationship of t≦w≦h. According to this embodiment, it is possible to reduce the residual welding stress generated in the welded portion, improve the rigidity of the differential case, and reduce the weight of the differential case at the same time.

本発明の好ましい実施形態として、ケース部およびフランジ部は一体形成される。かかる実施形態によれば、ケース部およびフランジ部をボルト等で締結する構造と比較してデフケースの軽量化と剛性の向上を図ることができる。 As a preferred embodiment of the present invention, the case portion and the flange portion are integrally formed. According to this embodiment, it is possible to reduce the weight and improve the rigidity of the differential case as compared with the structure in which the case portion and the flange portion are fastened with bolts or the like.

デフケースの軸線に関し、デフケースのフランジ部はケース本体から外径方向直角に張り出していてもよいし、あるいは外径方向に傾斜して張り出していてもよい。本発明のさらに好ましい実施形態として、フランジ部は内径側から外径側に向かうにつれて軸線方向一方へ傾斜する。かかる実施形態によればフランジ部は中空の円錐形状となり、リングギヤおよびフランジ部の結合体に対して軽量化と剛性の向上を図ることができる。 With respect to the axis of the differential case, the flange portion of the differential case may project from the case body at a right angle to the outer diameter direction, or may be inclined and projected in the outer diameter direction. As a further preferred embodiment of the present invention, the flange portion is inclined in one axial direction from the inner diameter side toward the outer diameter side. According to this embodiment, the flange portion has a hollow conical shape, so that it is possible to reduce the weight and improve the rigidity of the combined body of the ring gear and the flange portion.

本発明のさらに好ましい実施形態としてデフケースは、環状突条の内周面とフランジ部の軸線方向一方端面とケース部の軸線方向一方領域の外周面に形成されるリブをさらに有する。かかる実施形態によれば環状突条とフランジ部とケース部の軸線方向一方領域はリブによって一体結合するので、デフケースの剛性が益々大きくなり、ディファレンシャルギヤ装置1の耐久性が向上する。リブの延在方向、本数、間隔、および配置は特に限定されないが、好ましくはデフケースの軸線から放射状に延びる。フランジ部の軸線方向一方端面からみてリブの高さは特に限定されないが、好ましくは凹部の深さよりも低く、この場合にリブは凹部の中に収容される。本発明の他の実施形態として、リブは環状突条の内周面からフランジ部の軸線方向一方端面まで延び、ケース部の軸線方向一方領域の外周面と結合しない。あるいはリブは、フランジ部の軸線方向一方端面からケース部の軸線方向一方領域の外周面まで延び、環状突条の内周面と結合しない。 As a further preferred embodiment of the present invention, the differential case further includes ribs formed on the inner peripheral surface of the annular projection, the one axial end surface of the flange portion, and the outer peripheral surface of one axial region of the case portion. According to this embodiment, the annular projection, the flange portion, and the axially one region of the case portion are integrally coupled by the ribs, so that the rigidity of the differential case is further increased and the durability of the differential gear device 1 is improved. The extending direction, the number, the spacing, and the arrangement of the ribs are not particularly limited, but they preferably extend radially from the axis of the differential case. The height of the rib as viewed from one end face in the axial direction of the flange portion is not particularly limited, but is preferably lower than the depth of the recess, and in this case, the rib is housed in the recess. As another embodiment of the present invention, the rib extends from the inner peripheral surface of the annular protrusion to the one axial end surface of the flange portion and is not coupled to the outer peripheral surface of one axial region of the case portion. Alternatively, the rib extends from one end surface in the axial direction of the flange portion to the outer peripheral surface of one area in the axial direction of the case portion and is not coupled to the inner peripheral surface of the annular protrusion.

このように本発明によれば、差動装置においてリングギヤとデフケースの溶接部の残留応力を低減することができる。したがって溶接部に割れが発生せず、不良品を防止することができる。 As described above, according to the present invention, it is possible to reduce the residual stress in the welded portion of the ring gear and the differential case in the differential device. Therefore, cracks do not occur in the welded portion, and defective products can be prevented.

本発明の一実施形態を示すディファレンシャルギヤ装置の縦断面図である。1 is a vertical sectional view of a differential gear device showing an embodiment of the present invention. 同実施形態のリングギヤとデフケースの結合体を示す斜視図である。FIG. 3 is a perspective view showing a combined body of the ring gear and the differential case of the same embodiment. リングギヤとデフケースの溶接構造における各寸法を示す拡大縦断面図である。It is an expanded longitudinal cross-sectional view showing each dimension in the welded structure of the ring gear and the differential case.

以下、本発明の実施の形態を、図面に基づき詳細に説明する。図1は、本発明の一実施形態になるディファレンシャルギヤ装置1の縦断面図であり、ディファレンシャルギヤ装置1の回転軸線O(以下、単に軸線Oという)を含む平面でディファレンシャルギヤ装置1を切断した切断面を表す。ディファレンシャルギヤ装置1は、リングギヤ10と、デフケース20と、ピニオンシャフト30と、デフピニオン40と、サイドギヤ50とを備えている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a vertical cross-sectional view of a differential gear device 1 according to an embodiment of the present invention, in which the differential gear device 1 is cut along a plane including a rotation axis O (hereinafter, simply referred to as axis O) of the differential gear device 1. Represents a cutting plane. The differential gear device 1 includes a ring gear 10, a differential case 20, a pinion shaft 30, a differential pinion 40, and a side gear 50.

リングギヤ10は、図示しない駆動源から回転が入力される。具体的には図示はしなかったが、リングギヤ10は、入力軸の端部と結合するドライブピニオンに噛み合うように配置される。リングギヤ10は、軸線Oを中心に回転する。 The rotation of the ring gear 10 is input from a drive source (not shown). Although not specifically shown, the ring gear 10 is arranged so as to mesh with a drive pinion coupled to the end of the input shaft. The ring gear 10 rotates about the axis O.

このリングギヤ10は、詳しくは後述するが、デフケース20の軸線O方向一方領域に取付固定されている。デフケース20は、図示しなかったが、軸受を介してデフキャリアまたは変速機ケースに回転可能に支持されている。以下の説明において、図中の紙面左側を軸線O方向一方ともいい、図中の紙面右側を軸線O方向他方ともいう。 The ring gear 10, which will be described in detail later, is attached and fixed to one region of the differential case 20 in the direction of the axis O. Although not shown, the differential case 20 is rotatably supported by the differential carrier or the transmission case via bearings. In the following description, the left side of the drawing in the drawing is also referred to as one of the directions of the axis O, and the right side of the drawing is also referred to as the other of the directions of the axis O.

デフケース20の内部空間にはピニオンシャフト30、一対のデフピニオン40、および一対のサイドギヤ50が配置されている。ピニオンシャフト30は、一対のデフピニオン40およびデフケース20を貫通するように真っ直ぐ延び、デフケース20の回転中心になる軸線Oと直交する。ピニオンシャフト30は両端でデフケースに支持される。またピニオンシャフト30は一対のデフピニオン40を回転自在に枢支する。 A pinion shaft 30, a pair of differential pinions 40, and a pair of side gears 50 are arranged in the internal space of the differential case 20. The pinion shaft 30 extends straight so as to penetrate the pair of differential pinions 40 and the differential case 20, and is orthogonal to the axis O that is the center of rotation of the differential case 20. The pinion shaft 30 is supported by the differential case at both ends. The pinion shaft 30 rotatably supports a pair of differential pinions 40.

一対のデフピニオン40は傘歯車であり、正面合わせで互いに対向する。一対のサイドギヤ50も傘歯車であり、互いに対向するよう正面合わせで同軸配置され、軸線Oを中心として回転する。一対のサイドピニオン50は一対のデフピニオン40に噛み合う。なお図示しない変形例として、デフピニオン40は1個であってもよく、個数を限定されない。 The pair of diff pinions 40 are bevel gears, and face each other in a face-to-face relationship. The pair of side gears 50 are also bevel gears, are coaxially arranged so as to face each other so as to face each other, and rotate about the axis O. The pair of side pinions 50 mesh with the pair of differential pinions 40. As a modification not shown, the number of differential pinions 40 may be one, and the number is not limited.

デフケース20の軸線O方向両端には1対の貫通孔23,24が形成される。貫通孔23,24には図示しない出力軸が通される。各出力軸の端部は各サイドギヤ50と嵌合する。また図示はしなかったがデフケース20には、デフピニオン40およびサイドギヤ50をデフケース20の内部空間に組み込むための開口が形成される。 A pair of through holes 23, 24 are formed at both ends of the differential case 20 in the direction of the axis O. An output shaft (not shown) is passed through the through holes 23 and 24. The end of each output shaft fits with each side gear 50. Although not shown, the differential case 20 has an opening for incorporating the differential pinion 40 and the side gear 50 into the internal space of the differential case 20.

リングギヤ10から回転を入力されると、通常状態でディファレンシャルギヤ装置1全体は軸線Oを中心として一体回転し、一対のデフピニオン40は相対回転せず、一対のサイドピニオン50も相対回転しない。これにより1対のサイドギヤ50は等速回転し、ディファレンシャルギヤ装置1は上述した1対の出力軸に等速回転を出力する。これに対しいずれか一方の出力軸が回転数を規制される等の理由により1対のサイドギヤ50に回転差が与えられると、デフピニオン40が自転して、1対のサイドギヤ50に高回転および低回転をそれぞれ出力する。 When the rotation is input from the ring gear 10, the differential gear device 1 as a whole rotates integrally about the axis O in a normal state, the pair of differential pinions 40 do not relatively rotate, and the pair of side pinions 50 do not relatively rotate. As a result, the pair of side gears 50 rotate at a constant speed, and the differential gear device 1 outputs the constant speed rotation to the pair of output shafts described above. On the other hand, when a rotational difference is applied to the pair of side gears 50 due to the reason that the rotational speed of either one of the output shafts is regulated, the differential pinion 40 rotates and the pair of side gears 50 rotates at high speed and low. Output each rotation.

次にデフケース20とリングギヤ10の溶接構造につき説明する。 Next, the welding structure of the differential case 20 and the ring gear 10 will be described.

デフケース20は、内部空間を区画する殻状のケース部21と、ケース部21の軸線O方向一方領域から外径方向に広がるフランジ部22を含む。ケース部21とフランジ部22は一体形成されることから、デフケース20は組立体ではなく一部品である。 The differential case 20 includes a shell-shaped case portion 21 that defines an internal space, and a flange portion 22 that expands in the outer diameter direction from one region of the case portion 21 in the axis O direction. Since the case portion 21 and the flange portion 22 are integrally formed, the differential case 20 is not an assembly but a single component.

ピニオンシャフト30はケース部21の軸線O方向中央に配置される。ケース部21の軸線O方向一方領域とは、ケース部21のうちピニオンシャフト30よりも軸線O方向一方側の領域をいう。 The pinion shaft 30 is arranged at the center of the case portion 21 in the direction of the axis O. The one region of the case portion 21 in the axis O direction refers to a region of the case portion 21 on one side of the pinion shaft 30 in the axis O direction.

フランジ部22は軸線O方向一方端面25および他方端面26を有する。一方端面25は凹部Bを区画する。フランジ部22の他方端面26は、内径側から外径側に向かうにつれて軸線O方向一方となるよう傾斜する。他方端面26とケース部21の軸線O方向中央の外周面は曲面Cで滑らかに接続する。これによりフランジ部22の内縁部とケース部21の軸線O方向一方領域との結合部分Aは、フランジ部22の径方向中央領域よりも厚肉にされ、デフケース20の剛性が大きくなる。なお凹部Bはフランジ部22を薄肉にすることから、肉抜き部ともいう。軸線Oを含む平坦な切断面において、曲面Cは凹状の円弧を描く。 The flange portion 22 has one end surface 25 and the other end surface 26 in the direction of the axis O. On the other hand, the end surface 25 defines the recess B. The other end surface 26 of the flange portion 22 is inclined so as to be one in the direction of the axis O from the inner diameter side toward the outer diameter side. The other end surface 26 and the outer peripheral surface of the case portion 21 at the center in the direction of the axis O are smoothly connected by a curved surface C. As a result, the connecting portion A between the inner edge of the flange portion 22 and one region of the case portion 21 in the axis O direction is made thicker than the radial center region of the flange portion 22, and the rigidity of the differential case 20 is increased. The concave portion B is also referred to as a thinned portion because the flange portion 22 is thin. On the flat cut surface including the axis O, the curved surface C draws a concave arc.

他方端面26とケース部21の軸線O方向中央の外周面とがなす角度θは、図1に示すように鈍角であり、好ましくは100°≦θ≦150°の範囲に含まれる所定値である。かかる本実施形態によれば結合部分A(立上り部)にかかる応力を分散することができ、デフケース20の剛性及び強度をより向上できる。本実施形態ではθ=115°である。角度θは、軸線Oに対するフランジ部22の傾斜角を表す。 The angle θ formed between the other end surface 26 and the outer peripheral surface of the case portion 21 at the center in the direction of the axis O is an obtuse angle as shown in FIG. 1, and is preferably a predetermined value included in the range of 100°≦θ≦150°. .. According to the present embodiment, the stress applied to the joint portion A (the rising portion) can be dispersed, and the rigidity and strength of the differential case 20 can be further improved. In this embodiment, θ=115°. The angle θ represents the inclination angle of the flange portion 22 with respect to the axis O.

なお90°<θ<100°の場合、フランジ部22が円錐形状というよりも円板形状になってしまうことからフランジ部22を薄肉にすると剛性を確保することが困難となり好ましくない。あるいは150°<θ<180°の場合、フランジ部22において必要な外径寸法を確保し難くなり、好ましくない。図示しない変形例として、フランジ部22は軸線Oに直角な円板であってもよい(θ=90°)。 In the case of 90°<θ<100°, it is not preferable that the flange portion 22 has a disk shape rather than a conical shape. Therefore, if the flange portion 22 is made thin, it becomes difficult to secure rigidity. Alternatively, in the case of 150°<θ<180°, it becomes difficult to secure the required outer diameter dimension in the flange portion 22, which is not preferable. As a modified example not shown, the flange portion 22 may be a disc perpendicular to the axis O (θ=90°).

一方端面25から他方端面26までの寸法、つまりフランジ部22の厚みは、外径側部分および内径側部分を除き一定である。フランジ部22の外径側部分および内径側部分は、厚み一定の径方向中央領域よりも厚肉にされる。具体的にはフランジ部22の一方端面25には環状突条22aが立設される。 The dimension from one end surface 25 to the other end surface 26, that is, the thickness of the flange portion 22 is constant except for the outer diameter side portion and the inner diameter side portion. The outer diameter side portion and the inner diameter side portion of the flange portion 22 are made thicker than the radial center region having a constant thickness. Specifically, an annular protrusion 22a is erected on one end surface 25 of the flange portion 22.

環状突条22aは、フランジ部22の外縁部22cよりも内径側に配置され、外縁部22cよりも軸線O方向一方へ突出し、フランジ部22の全周に亘って延びて軸線Oを包囲する。また環状突条22aは、リングギヤ10のリング部11に包囲される。リングギヤ10は、リング部11の外径側に形成される多数のギヤ歯10tを有する平歯車あるいははすば歯車である。図示しない変形例としてリングギヤ10は傘歯車であってもよい。リング部11は、ギヤ歯10tの歯底部分10gから内径側に突出する内向きフランジである。歯底部分10gは、リムのように全周に亘って延びる。ギヤ歯10tと歯底部分10gとリング部11は一体形成される。図1に示すようにリング部11は、ギヤ歯10tの歯幅よりも小さな厚み寸法を有し、軸線Oに対して直角な環状の平板であり、リングギヤ10の軸線O方向中央部に配置される。リングギヤ10のギヤ歯10tおよび歯底部分10gの断面とリング部11の断面は、図1に示すようにT字状である。 The annular protrusion 22a is arranged on the inner diameter side of the outer edge portion 22c of the flange portion 22, protrudes toward the one side in the axis O direction from the outer edge portion 22c, and extends over the entire circumference of the flange portion 22 to surround the axis O. The annular protrusion 22 a is surrounded by the ring portion 11 of the ring gear 10. The ring gear 10 is a spur gear or a helical gear having a large number of gear teeth 10t formed on the outer diameter side of the ring portion 11. As a modification not shown, the ring gear 10 may be a bevel gear. The ring portion 11 is an inward flange that projects inward from the tooth bottom portion 10g of the gear tooth 10t. The tooth root portion 10g extends around the entire circumference like a rim. The gear tooth 10t, the tooth bottom portion 10g, and the ring portion 11 are integrally formed. As shown in FIG. 1, the ring portion 11 is an annular flat plate that has a thickness dimension smaller than the tooth width of the gear tooth 10t and is perpendicular to the axis O, and is arranged at the center of the ring gear 10 in the direction of the axis O. It The cross section of the gear tooth 10t and the tooth bottom portion 10g of the ring gear 10 and the cross section of the ring portion 11 are T-shaped as shown in FIG.

環状突条22aの外周面とリング部11の内周面は、溶接部60で接合される。溶接部60は、溶接作業によって軸線O方向一方から環状突条22aの外周面とリング部11の内周面との隙間で溶接金属が凝固したものであり、リングギヤ10およびデフケース20の全周に亘って延びる。溶接部60はケース部21の軸線O方向他方から一方に向かう程、径方向厚みが大きくなる開先形状である。 The outer peripheral surface of the annular protrusion 22a and the inner peripheral surface of the ring portion 11 are joined at the welded portion 60. The welded portion 60 is formed by welding work in which the weld metal is solidified in the gap between the outer peripheral surface of the annular protrusion 22a and the inner peripheral surface of the ring portion 11 from one side in the direction of the axis O, and the entire periphery of the ring gear 10 and the differential case 20 is welded. Extend over. The welded portion 60 has a groove shape in which the thickness in the radial direction increases from the other side in the direction of the axis O of the case portion 21 toward one side.

ここでリングギヤ10とデフケース20の接合方法につき附言する。両者の接合は、まずリングギヤ10の中心孔にデフケース20を圧入する圧入工程と、次に両者をレーザ溶接する溶接工程によって実現される。 Here, a method of joining the ring gear 10 and the differential case 20 will be additionally described. The joining of the two is realized by a press-fitting step of first press-fitting the differential case 20 into the center hole of the ring gear 10 and then a welding step of laser welding the both.

デフケース20のフランジ部22にあっては、環状突条22aの外周面が、軸線O方向他方(根元側)から一方(先端側)に向かって先細となるテーパに形成される。また環状突条22aは根元側でフランジ状の外縁部22cと一体結合する。リングギヤ10にあっては、リング部11の内周面が軸線O方向他方から一方に向かって拡径するテーパ孔に形成される。 In the flange portion 22 of the differential case 20, the outer peripheral surface of the annular protrusion 22a is formed in a taper tapering from the other side (root side) in the axis O direction toward one side (tip side). The annular protrusion 22a is integrally connected to the flange-shaped outer edge portion 22c on the root side. In the ring gear 10, the inner peripheral surface of the ring portion 11 is formed into a tapered hole whose diameter increases from the other side in the direction of the axis O toward one side.

まず圧入工程では、リングギヤ10の中心孔に、軸線O方向一方から環状突条22aを圧入し、外縁部22cを全周に亘ってリング部11に突き当てる。そうすると上述したリング部11の内周面の軸線O方向他方端が環状突条22aの外周面の軸線O方向他方端に全周に亘って嵌合し、リングギヤ10とデフケース20の軸線同士が一致して軸線Oを構成し、リングギヤ10はデフケース20に対して位置決めされる。このときリング部11の内周面の軸線O方向一方端と環状突条22aの外周面の軸線O方向一方端は隙間を介して対面してもよい。 First, in the press-fitting process, the annular projection 22a is press-fitted into the center hole of the ring gear 10 from one side in the direction of the axis O, and the outer edge portion 22c is abutted against the ring portion 11 over the entire circumference. Then, the other end of the inner peripheral surface of the ring portion 11 in the direction of the axis O is fitted over the other end of the outer peripheral surface of the annular projection 22a in the direction of the axis O over the entire circumference, and the axes of the ring gear 10 and the differential case 20 are aligned with each other. Therefore, the axis O is formed, and the ring gear 10 is positioned with respect to the differential case 20. At this time, one end of the inner peripheral surface of the ring portion 11 in the axis O direction and one end of the outer peripheral surface of the annular protrusion 22a in the axis O direction may face each other with a gap.

次の溶接工程では、リング部11の内周面および環状突条22aの外周面に対して、軸線O方向一方からレーザ溶接を施す。レーザ溶接は所定の周方向位置から周方向に実行され、当該所定の周方向位置に帰着するまで360°全周に対して施される。これによりリング部11の内周面および環状突条22aの外周面は、両者の対向領域全体に亘って溶け込み、溶金部が形成される。かかる溶金部は、図面において溶接部60として表される。 In the next welding step, laser welding is applied to the inner peripheral surface of the ring portion 11 and the outer peripheral surface of the annular protrusion 22a from one side in the axis O direction. Laser welding is performed in a circumferential direction from a predetermined circumferential position, and is performed on the entire 360° circumference until it is returned to the predetermined circumferential position. As a result, the inner peripheral surface of the ring portion 11 and the outer peripheral surface of the annular protrusion 22a are melted over the entire area where they are opposed to each other, so that a molten metal portion is formed. Such a molten metal portion is represented as a welded portion 60 in the drawings.

リング部11の軸線O方向他方端面12は、フランジ部22の外縁部22cと軸線O方向に当接する。リング部11の軸線O方向一方端面13は環状突条22aの先端面と共通な平面を構成する。ただし、この共通平面からみて、リング部11と環状突条22aの境界をなす溶接部60は盛り上がるため、一方端面13と環状突条22aの先端面は不連続になる。外縁部22cはデフケース20の全周に亘って延びることが好ましいが、周方向一部が間欠していてもよい。 The other end surface 12 of the ring portion 11 in the direction of the axis O contacts the outer edge portion 22c of the flange portion 22 in the direction of the axis O. The one end surface 13 of the ring portion 11 in the direction of the axis O forms a common plane with the tip surface of the annular protrusion 22a. However, when viewed from this common plane, the welded portion 60 that forms the boundary between the ring portion 11 and the annular protrusion 22a rises, so that the one end surface 13 and the tip end surface of the annular protrusion 22a become discontinuous. The outer edge portion 22c preferably extends over the entire circumference of the differential case 20, but a part in the circumferential direction may be intermittent.

図2はリングギヤ10とデフケース20の溶接構造の外観を示す斜視図であり、ケース部21の軸線O方向他方領域とリングギヤ10の各歯を図略し、リングギヤ10の歯先円を一点鎖線で表す。 FIG. 2 is a perspective view showing the external appearance of the welded structure of the ring gear 10 and the differential case 20, in which the other region of the case portion 21 in the direction of the axis O and each tooth of the ring gear 10 are omitted, and the tip circle of the ring gear 10 is represented by a chain line. ..

内周面22a1と、フランジ部22の一方端面25と、ケース部21の軸線方向一方領域における外周面は、軸線方向一方へ開口する凹部Bを区画する。フランジ部22の一方端面25およびケース部21の外周面には複数のリブ27が形成される。リブ27は軸線Oを中心として放射状に延びる突条であり、凹部Bに収容される。 The inner peripheral surface 22a1, the one end surface 25 of the flange portion 22, and the outer peripheral surface in the one axial region of the case portion 21 define a concave portion B that opens in one axial direction. A plurality of ribs 27 are formed on the one end surface 25 of the flange portion 22 and the outer peripheral surface of the case portion 21. The rib 27 is a ridge extending radially about the axis O, and is housed in the recess B.

ところで本実施形態のデフケース20は、同軸配置される1対のサイドギヤ50,50に回転差を与えるディファレンシャルギヤ装置1に用いられ、1対のサイドギヤ50,50および1対のサイドギヤ50,50と噛合するデフピニオン40,40を収容するための空間を区画するケース部21と、ケース部21の軸線O方向一方領域から外径方向に広がるフランジ部22と、フランジ部22の外縁部22cよりも内径側に一体形成されて軸線O方向一方へ突出する環状突条22aと、リング部11およびリング部11に形成されて周方向に整列する多数のギヤ歯10tを有し、リング部11の内周面が環状突条22aの外周面と対面するとともにリング部11の軸線O方向端部がフランジ部22の外縁部22cと当接するリングギヤ10と、環状突条22aの外周面およびリング部11の内周面を結合する溶接部60とを備え、溶接部60はケース部21の軸線O方向他方から一方に向かう程、径方向厚みが大きくなる開先形状であり、環状突条22aの内周面22a1とフランジ部22の軸線O方向一方端面25とケース部21の軸線O方向一方領域における外周面は、軸線O方向一方へ開口する凹部Bを区画する。かかる実施形態によれば、凹部Bを大きくし、フランジ部22を薄肉にし、環状突条22aの径方向厚みを小さくして、溶接部60に生じる溶接残留応力を低減することができる。したがって溶接部60の溶接割れを防止することができる。 By the way, the differential case 20 of the present embodiment is used for the differential gear device 1 which gives a rotational difference to the pair of side gears 50, 50 coaxially arranged, and meshes with the pair of side gears 50, 50 and the pair of side gears 50, 50. The case portion 21 defining a space for accommodating the diff pinions 40, 40, the flange portion 22 that extends from the one side region in the axis O direction of the case portion 21 in the outer diameter direction, and the inner diameter side of the outer edge portion 22c of the flange portion 22. An annular projection 22a integrally formed on the inner peripheral surface of the ring portion 11 and protruding in one direction of the axis O, and a ring portion 11 and a large number of gear teeth 10t formed on the ring portion 11 and aligned in the circumferential direction. Is opposed to the outer peripheral surface of the annular protrusion 22a, and the end of the ring portion 11 in the direction of the axis O in contact with the outer edge portion 22c of the flange portion 22, and the outer peripheral surface of the annular protrusion 22a and the inner periphery of the ring portion 11. The welded portion 60 has a groove shape in which the thickness in the radial direction increases from the other side in the direction of the axis O of the case portion 21 to one side, and the inner peripheral surface 22a1 of the annular projection 22a1. The one end surface 25 of the flange portion 22 in the direction of the axis O and the outer peripheral surface of the one region of the case portion 21 in the direction of the axis O define a recess B that opens in one direction of the axis O. According to such an embodiment, the recess B can be made large, the flange portion 22 can be made thin, and the radial thickness of the annular projection 22a can be made small to reduce the welding residual stress generated in the weld portion 60. Therefore, weld cracking of the welded portion 60 can be prevented.

また本実施形態によれば、溶接部60の軸線方向寸法を長くし、フランジ部22の内径側領域と環状突条22aと外縁部22cを一体形成してフランジ部22の剛性を大きくできることから、デフケース20およびリングギヤ10を結合してなる結合体の強度を確保することができ、ディファレンシャルギヤ装置1に要求されるトルク伝達能力、耐久性、および信頼性を確保することができる。 Further, according to the present embodiment, since the axial dimension of the welded portion 60 is lengthened and the inner diameter side region of the flange portion 22, the annular protrusion 22a, and the outer edge portion 22c are integrally formed, the rigidity of the flange portion 22 can be increased, The strength of the combined body formed by connecting the differential case 20 and the ring gear 10 can be secured, and the torque transmission capability, durability, and reliability required for the differential gear device 1 can be secured.

また本実施形態によれば、ケース部21およびフランジ部22は一体形成されることから、ケース部21およびフランジ部22をボルト等で締結する構造と比較してデフケース20の軽量化と剛性の向上を図ることができる。 Further, according to the present embodiment, since the case portion 21 and the flange portion 22 are integrally formed, the weight and rigidity of the differential case 20 are reduced as compared with the structure in which the case portion 21 and the flange portion 22 are fastened with bolts or the like. Can be planned.

また本実施形態によれば、フランジ部22は傾斜角θで、内径側から外径側に向かうにつれて軸線O方向一方へ傾斜することから、フランジ部22は中空の円錐形状になり、フランジ部22の軽量化と剛性の向上を図ることができる。 Further, according to the present embodiment, since the flange portion 22 has the inclination angle θ and is inclined in one direction of the axis O from the inner diameter side toward the outer diameter side, the flange portion 22 has a hollow conical shape, and the flange portion 22 It is possible to reduce the weight and improve the rigidity.

また本実施形態によれば、環状突条22aの内周面22a1とフランジ部22の一方端面25とケース部21の軸線O方向一方領域の外周面に形成されるリブ27をさらに有する。これによりデフケース20の剛性が益々大きくなり、ディファレンシャルギヤ装置1の耐久性が向上する。 Further, according to the present embodiment, there is further provided a rib 27 formed on the inner peripheral surface 22a1 of the annular projection 22a, the one end surface 25 of the flange portion 22 and the outer peripheral surface of the one region of the case portion 21 in the axis O direction. As a result, the rigidity of the differential case 20 is further increased, and the durability of the differential gear device 1 is improved.

次に本発明のフランジ部の各寸法を詳細に説明する。 Next, each dimension of the flange portion of the present invention will be described in detail.

図3はリングギヤ10とデフケース20の溶接構造を示す拡大縦断面図である。溶接部60は、ケース部21の軸線方向他方から一方に向かう程、径方向厚みが大きくなる開先形状である。また溶接部60は、フランジ部22の全周に亘って延びる。フランジ部22の一方端面25と環状突条22aの内周面22a1は曲面Dで滑らかに接続する。内周面22a1は略円筒面である。すなわち軸線Oに対して勾配0°の円筒面であってもよいし、あるいは僅かな勾配(0.5°から5°までの範囲に含まれる勾配)を有するテーパ孔面であってもよい。本実施形態では1.5°の勾配を設ける。軸線Oを含む平坦な切断面において、曲面Dは凹状の円弧を描く。 FIG. 3 is an enlarged vertical sectional view showing a welded structure of the ring gear 10 and the differential case 20. The welded portion 60 has a groove shape in which the radial thickness increases from the other side of the case portion 21 in the axial direction toward the one side. The welded portion 60 extends over the entire circumference of the flange portion 22. The one end surface 25 of the flange portion 22 and the inner peripheral surface 22a1 of the annular projection 22a are smoothly connected by the curved surface D. The inner peripheral surface 22a1 is a substantially cylindrical surface. That is, it may be a cylindrical surface having a gradient of 0° with respect to the axis O, or a tapered hole surface having a slight gradient (a gradient included in the range of 0.5° to 5°). In this embodiment, a gradient of 1.5° is provided. On the flat cut surface including the axis O, the curved surface D draws a concave arc.

外縁部22cの軸線O方向一方端面は、外径側で平坦面22bとされ、内径側で肉ヌスミ22dとされ、環状突条22aの外周面と、肉ヌスミ22dと、平坦面22bは、この順序で連続する。平坦面22bは、リング部11の軸線O方向他方端面12と面接触する。 One end surface of the outer edge portion 22c in the direction of the axis O is a flat surface 22b on the outer diameter side, and is a flat body 22d on the inner diameter side. Sequential in order. The flat surface 22b makes surface contact with the other end surface 12 of the ring portion 11 in the direction of the axis O.

軸線Oを含む切断面において、溶接部60の開先中心Gは、図3に一点鎖線で示す直線であり、軸線Oと平行である。溶接部60の軸線O方向他端における開先中心Gから環状突条22aの内周面22a1までの径方向寸法をtとする。ここで附言すると径方向寸法tは、環状突条22aをリング部11に溶接する前の圧入工程における環状突条22aの根元部の径方向厚みに一致する。また開先中心Gは、環状突条22aをリング部11に圧入する(図示せず)ことによって互いに密着する箇所の径方向位置を表す。 On the cut surface including the axis O, the groove center G of the welded portion 60 is a straight line indicated by a chain line in FIG. 3, and is parallel to the axis O. The radial dimension from the groove center G at the other end of the welded portion 60 in the axis O direction to the inner peripheral surface 22a1 of the annular projection 22a is defined as t. In addition, the radial dimension t matches the radial thickness of the root portion of the annular protrusion 22a in the press-fitting process before welding the annular protrusion 22a to the ring portion 11. Further, the groove center G represents a radial position where the annular projection 22a is pressed into the ring portion 11 (not shown) so as to be in close contact with each other.

溶接部60の軸線O方向寸法をwとする。軸線O方向寸法wは、一方端面13から他方端面12までのリング部11の厚み寸法に等しい。基準直線Eで示すように一方端面13は環状突条22aの先端面と面一にされる。基準直線Fは、他方端面12と一致し、基準直線Eと平行な直線である。軸線O方向寸法wは、基準直線Eと基準直線Fの間隔を表す。径方向寸法tは、基準直線Fにおける環状突条22aの肉厚を表す。なお基準直線Eと基準直線Fは軸線O(図1)と直交する。基準直線Fと内周面22a1の交差箇所を通り、軸線Oと平行な直線を基準直線Lとする。径方向寸法tは、基準直線Lと基準直線Gの間隔を表す。 The dimension of the welded portion 60 in the direction of the axis O is w. The dimension w in the direction of the axis O is equal to the thickness dimension of the ring portion 11 from the one end surface 13 to the other end surface 12. As indicated by the reference straight line E, the one end surface 13 is flush with the tip surface of the annular projection 22a. The reference straight line F is a straight line that coincides with the other end surface 12 and is parallel to the reference straight line E. The dimension w in the direction of the axis O represents the distance between the reference straight line E and the reference straight line F. The radial dimension t represents the wall thickness of the annular protrusion 22a on the reference straight line F. The reference straight line E and the reference straight line F are orthogonal to the axis O (FIG. 1). A straight line passing through the intersection of the reference straight line F and the inner peripheral surface 22a1 and parallel to the axis O is referred to as a reference straight line L. The radial dimension t represents the distance between the reference straight line L and the reference straight line G.

フランジ部22の一方端面25と環状突条22aの内周面22a1との交差箇所Jから環状突条22aの軸線O方向一方端までの軸線O方向寸法をhとする。本実施形態では円弧状に窪んだ曲面Dで内周面22a1と一方端面25を滑らかに接続するため、交差箇所Jは曲面Dよりも壁側に埋没する。交差箇所Jを通り、軸線Oと平行な直線を基準直線Iとする。交差箇所Jを通り、軸線Oと直角な直線を、基準直線Kとする。軸線O方向寸法hは、基準直線Eと基準直線Kの間隔を表す。 The dimension in the axis O direction from the intersection J of the one end surface 25 of the flange portion 22 and the inner peripheral surface 22a1 of the annular protrusion 22a to one end in the axis O direction of the annular protrusion 22a is h. In this embodiment, since the inner peripheral surface 22a1 and the one end surface 25 are smoothly connected by the curved surface D that is recessed in an arc shape, the intersection J is buried on the wall side of the curved surface D. A straight line passing through the intersection J and parallel to the axis O is referred to as a reference straight line I. A straight line passing through the intersection J and perpendicular to the axis O is referred to as a reference straight line K. The dimension h in the direction of the axis O represents the distance between the reference straight line E and the reference straight line K.

内周面22a1は軸線O方向一方側(凹部Bの開口側)に向かう程拡径するテーパ孔を構成するため、基準直線Lは基準直線Iよりも外径側に位置する。図示しない変形例として、内周面22a1に勾配をつけないで、基準直線Lと基準直線Iを一致させてもよい。 Since the inner peripheral surface 22a1 forms a tapered hole whose diameter increases toward one side in the axis O direction (the opening side of the recess B), the reference straight line L is located on the outer diameter side of the reference straight line I. As a modification (not shown), the reference straight line L and the reference straight line I may be made to coincide with each other without providing the inner peripheral surface 22a1 with a gradient.

本実施形態はt≦w≦hの関係を満たす。具体的にはh=1.83wである。 In this embodiment, the relationship of t≦w≦h is satisfied. Specifically, h=1.83w.

かかる本実施形態によれば、溶接部60に生じる残留応力が益々低減されるばかりでなく、デフケース20の剛性の向上と、デフケース20の軽量化を同時に実現することができる。したがって溶接部60に溶接割れが発生することを防止できる。 According to the present embodiment, not only the residual stress generated in the welded portion 60 is further reduced, but also the rigidity of the differential case 20 and the weight reduction of the differential case 20 can be realized at the same time. Therefore, it is possible to prevent welding cracks from occurring in the welded portion 60.

凹部Bの存在によって、フランジ部22は薄肉に形成される。フランジ部22の肉厚寸法sは特に限定されないが、w≦s≦hの関係を満たすことが好ましい。s<wの場合、フランジ部22の強度を確保することが困難になるからである。h<sの場合、溶接金属に残留する応力の低減が困難になり、デフケース20が重くなるためである。 Due to the presence of the recess B, the flange portion 22 is formed thin. The thickness dimension s of the flange portion 22 is not particularly limited, but it is preferable to satisfy the relationship of w≦s≦h. This is because if s<w, it becomes difficult to secure the strength of the flange portion 22. This is because when h<s, it becomes difficult to reduce the stress remaining in the weld metal and the differential case 20 becomes heavy.

以上、図面を参照してこの発明の実施の形態を説明したが、この発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。本発明の他の実施形態として、t≦w≦hの関係を満たさないものであってもよい。 Although the embodiments of the present invention have been described above with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications and variations can be made to the illustrated embodiment within the same range as or equivalent to the present invention. As another embodiment of the present invention, the relationship of t≦w≦h may not be satisfied.

溶接部に発生する残留応力の低減のため、他の実施形態は、例えば0.5w≦h≦3wの関係を満たすか、あるいは0.5w≦t≦5wを満たせばよい。本発明の図示しない変形例は、t=1.17wとされる。これらの範囲を超える場合、溶接に発生する残留応力の低減が困難になる。 In order to reduce the residual stress generated in the welded portion, in another embodiment, for example, the relationship of 0.5w≦h≦3w or the relationship of 0.5w≦t≦5w may be satisfied. In a modified example (not shown) of the present invention, t=1.17w. When it exceeds these ranges, it becomes difficult to reduce the residual stress generated in welding.

この発明になるリングギヤとデフケースとの溶接構造は、左右輪を有する車両において有利に利用される。 The welded structure of the ring gear and the differential case according to the present invention is advantageously used in a vehicle having left and right wheels.

1 ディファレンシャルギヤ装置、 10 リングギヤ、
10g 歯底部分、 10t ギヤ歯、 11 リング部、
12 他方端面、 13 一方端面、 20 デフケース、
21 ケース部、 22 フランジ部、 22a1 内周面、
22a 環状突条、 22b 平坦面、 22c 外縁部、
22d 肉ヌスミ、 23,24 貫通孔、 25 一方端面、
26 他方端面、 27 リブ、 30 ピニオンシャフト、
40 デフピニオン、 50 サイドギヤ、 60 溶接部、
A 結合部分、 B 凹部(肉抜き部)、 C,D 曲面、
E,F,I,K,L 基準直線、 G 開先中心、
J 交差箇所、 O リングギヤおよびデフケースの軸線、
θ フランジ部の傾斜角度。
1 differential gear device, 10 ring gear,
10g bottom part, 10t gear tooth, 11 ring part,
12 other end face, 13 one end face, 20 differential case,
21 case part, 22 flange part, 22a1 inner peripheral surface,
22a annular protrusion, 22b flat surface, 22c outer edge portion,
22d meat slime, 23,24 through hole, 25 one end face,
26 other end surface, 27 ribs, 30 pinion shaft,
40 differential pinion, 50 side gear, 60 weld,
A connecting part, B concave part (thinning part), C, D curved surface,
E, F, I, K, L reference straight line, G groove center,
J intersection, O ring gear and differential case axis,
θ Flange inclination angle.

Claims (4)

同軸配置される1対のサイドギヤに回転差を与えるディファレンシャルギヤ装置に用いられ、
前記1対のサイドギヤおよび前記1対のサイドギヤと噛合するデフピニオンを収容するための空間を区画するケース部、前記ケース部の軸線方向一方領域から外径方向に広がるフランジ部、および前記フランジ部の外縁部よりも内径側に一体形成されて前記フランジ部の軸線方向一方端面から軸線方向一方へさらに突出する環状突条を有するデフケースと、
リング部および前記リング部に形成されて周方向に整列する多数のギヤ歯を有し、前記リング部の内周面が前記環状突条の外周面と対面するとともに前記リング部の軸線方向他方端面が前記フランジ部の前記外縁部と当接するリングギヤと、
前記環状突条の前記外周面および前記リング部の前記内周面を結合する溶接部とを備え、
前記溶接部は、前記ケース部の軸線方向他方から一方に向かう程、径方向厚みが大きくなる開先形状であり、
前記環状突条の内周面と前記フランジ部の軸線方向一方端面と前記ケース部の軸線方向一方領域における外周面は、軸線方向一方へ開口する凹部を区画する、デフケースとリングギヤの溶接構造。
Used in a differential gear device that gives a rotation difference to a pair of coaxially arranged side gears,
A case portion that defines a space for accommodating the pair of side gears and a differential pinion that meshes with the pair of side gears, a flange portion that extends radially outward from one axial direction region of the case portion, and an outer edge of the flange portion. A diff case having an annular protrusion that is integrally formed on the inner diameter side of the portion and further projects from the one axial end surface of the flange portion to the one axial direction ,
A ring portion and a large number of gear teeth formed in the ring portion and aligned in the circumferential direction, the inner peripheral surface of the ring portion faces the outer peripheral surface of the annular ridge, and the other end surface in the axial direction of the ring portion. A ring gear that is in contact with the outer edge portion of the flange portion,
A welded portion connecting the outer peripheral surface of the annular protrusion and the inner peripheral surface of the ring portion,
The welded portion has a groove shape in which the thickness in the radial direction increases from the other side in the axial direction of the case portion toward one side,
A welding structure for a differential case and a ring gear, wherein an inner peripheral surface of the annular projection, one end surface in the axial direction of the flange portion, and an outer peripheral surface in one area in the axial direction of the case portion define a recess opening in one axial direction.
前記溶接部の軸線方向寸法wと、前記溶接部の開先中心から前記環状突条の内周面までの径方向寸法tと、前記フランジ部の軸線方向一方端面と前記環状突条の前記内周面との交差箇所から前記環状突条の軸線方向一方端までの軸線方向寸法hは、t≦w≦hの関係を満たす、請求項1に記載のデフケースとリングギヤの溶接構造。 The axial dimension w of the welded portion, the radial dimension t from the groove center of the welded portion to the inner peripheral surface of the annular protrusion, the one axial end face of the flange portion and the inner portion of the annular protrusion. The welded structure for a differential case and a ring gear according to claim 1, wherein an axial dimension h from an intersection with the circumferential surface to one end of the annular protrusion in the axial direction satisfies the relationship of t≦w≦h. 前記ケース部および前記フランジ部は一体形成される、請求項1または2に記載のデフケースとリングギヤの溶接構造。 The welding structure for a differential case and a ring gear according to claim 1, wherein the case portion and the flange portion are integrally formed. 前記フランジ部は内径側から外径側に向かうにつれて軸線方向一方へ傾斜する、請求項1〜3のいずれかに記載のデフケースとリングギヤの溶接構造。
The welded structure for a differential case and a ring gear according to any one of claims 1 to 3, wherein the flange portion inclines in one axial direction from the inner diameter side toward the outer diameter side.
JP2017045988A 2017-03-10 2017-03-10 Welded structure of differential case and ring gear Active JP6734800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017045988A JP6734800B2 (en) 2017-03-10 2017-03-10 Welded structure of differential case and ring gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017045988A JP6734800B2 (en) 2017-03-10 2017-03-10 Welded structure of differential case and ring gear

Publications (2)

Publication Number Publication Date
JP2018150963A JP2018150963A (en) 2018-09-27
JP6734800B2 true JP6734800B2 (en) 2020-08-05

Family

ID=63680259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017045988A Active JP6734800B2 (en) 2017-03-10 2017-03-10 Welded structure of differential case and ring gear

Country Status (1)

Country Link
JP (1) JP6734800B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11213917B2 (en) * 2018-11-13 2022-01-04 GM Global Technology Operations LLC Fusion welding of ferrous alloy component parts using low carbon steel band

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807418B2 (en) * 2009-01-27 2011-11-02 トヨタ自動車株式会社 Differential equipment
JP5327394B2 (en) * 2010-09-20 2013-10-30 トヨタ自動車株式会社 Welded structure
JP5687577B2 (en) * 2011-07-12 2015-03-18 トヨタ自動車株式会社 Welded structure and welding method
JP6644404B2 (en) * 2015-05-19 2020-02-12 ジヤトコ株式会社 Welding structure and welding method

Also Published As

Publication number Publication date
JP2018150963A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP6217023B2 (en) Differential device and manufacturing method thereof
JP5614054B2 (en) Beam welding member and differential device provided with the same
JP5293840B2 (en) Welded structure and manufacturing method of welded structure
US9933061B2 (en) Weld structure
JP5206656B2 (en) Differential gear device for vehicle
JP2015124874A5 (en)
JP2009133414A (en) Wave gear sspeed reducer and variable transmission ratio steering device
JP6876592B2 (en) Differential device
JP6816831B2 (en) Differential device
JP6412383B2 (en) Welding structure of differential for vehicles
JP6734800B2 (en) Welded structure of differential case and ring gear
JP6269615B2 (en) Differential device for vehicle
WO2014098087A1 (en) Yoke and shaft joint structure and joining method therefor
WO2020262626A1 (en) Power transmission device
JP2021008899A (en) Transmission device
JP2010281419A (en) Drive plate
JP5381501B2 (en) Welded joint parts and welded joint method
JP6457031B2 (en) Differential
JP6756049B2 (en) Manufacturing method of differential device
JP6187280B2 (en) Differential gear device and manufacturing method thereof
US11384830B2 (en) Window design for a differential housing
WO2019187212A1 (en) Differential gear device
JP2021021399A (en) Differential device for automobile
JP2024031464A (en) Stepped gear and manufacturing method thereof
JP2022165158A (en) Vehicle differential device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200710

R150 Certificate of patent or registration of utility model

Ref document number: 6734800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250