JP6734574B2 - Rotating equipment for nuclear facilities - Google Patents

Rotating equipment for nuclear facilities Download PDF

Info

Publication number
JP6734574B2
JP6734574B2 JP2019061568A JP2019061568A JP6734574B2 JP 6734574 B2 JP6734574 B2 JP 6734574B2 JP 2019061568 A JP2019061568 A JP 2019061568A JP 2019061568 A JP2019061568 A JP 2019061568A JP 6734574 B2 JP6734574 B2 JP 6734574B2
Authority
JP
Japan
Prior art keywords
radionuclide
rotating mechanism
rotating
nuclear
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019061568A
Other languages
Japanese (ja)
Other versions
JP2019124702A (en
Inventor
章仁 大谷
章仁 大谷
聰 高橋
聰 高橋
ヤン ジングロン
ヤン ジングロン
佐藤 博之
博之 佐藤
良行 今井
良行 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2019061568A priority Critical patent/JP6734574B2/en
Publication of JP2019124702A publication Critical patent/JP2019124702A/en
Application granted granted Critical
Publication of JP6734574B2 publication Critical patent/JP6734574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、原子力施設における放射性核種を内包する冷却流体の循環路内に配置される原子力施設の回転機器に関するものである。 TECHNICAL FIELD The present invention relates to a rotating device of a nuclear facility, which is arranged in a circulation path of a cooling fluid containing a radionuclide in the nuclear facility.

従来、上記した原子力施設としては、例えば、特許文献1に記載された原子力プラントがある。
この原子力プラントは、高温ガス炉と熱交換器との間で放射性核種を内包する冷却流体としての一次冷却ヘリウムを循環させる一次冷却回路と、熱交換器と発電設備との間で発電作動流体としての二次冷却ヘリウムを循環させる二次冷却回路を備えている。
Conventionally, as the above-mentioned nuclear facility, for example, there is a nuclear plant described in Patent Document 1.
This nuclear power plant is a primary cooling circuit that circulates primary cooling helium as a cooling fluid containing a radionuclide between a high temperature gas reactor and a heat exchanger, and as a power generation working fluid between a heat exchanger and a power generation facility. The secondary cooling circuit for circulating the secondary cooling helium is provided.

この原子力プラントでは、一次冷却回路を循環する一次冷却ヘリウムによって、高温ガス炉で生じる熱を熱交換器に運び、この熱交換器において、二次冷却回路を循環する二次冷却ヘリウムに一次冷却ヘリウムの熱を移動させ、この二次冷却ヘリウムに移動した熱を発電設備に送って発電に供するようになっている。 In this nuclear power plant, the primary cooling helium circulating in the primary cooling circuit carries the heat generated in the high temperature gas reactor to the heat exchanger, and in this heat exchanger, the primary cooling helium is circulated in the secondary cooling helium circulating in the secondary cooling circuit. The heat transferred to the secondary cooling helium is sent to the power generation equipment for power generation.

このような原子力プラントにおいて、通常一次冷却回路にサーキュレータ(回転機器)を配置して、一次冷却ヘリウムを加速して循環させるようになっている。 In such a nuclear power plant, a circulator (rotating device) is usually arranged in the primary cooling circuit to accelerate and circulate the primary cooling helium.

特開平10-319169号公報JP 10-319169 A

上記した原子力プラントのサーキュレータにおいて、放射性核種を内包する一次冷却ヘリウムと接触する回転翼や翼軸には多結晶合金(通常結晶粒径材)が用いられているので、高温ガス炉と熱交換器との間で一次冷却ヘリウムを循環させるべく運転を重ねるうちに、一次冷却ヘリウムに内包される放射性核種、例えば、銀が回転翼や翼軸を構成する多結晶合金の深部に拡散浸透してしまう。 In the circulator of the nuclear power plant described above, a polycrystalline alloy (usually a grain size material) is used for the rotor blade and blade shaft that come into contact with the primary cooling helium containing the radionuclide, so that the high temperature gas reactor and the heat exchanger are used. During repeated operation to circulate the primary cooling helium between and, the radioactive nuclide contained in the primary cooling helium, for example, silver diffuses and permeates into the deep part of the polycrystalline alloy forming the rotor blade and blade axis. ..

つまり、従来の原子力プラントにおけるサーキュレータでは、多結晶合金の深部に拡散浸透した銀からのガンマ線等による作業員被曝を防ぐために、補修点検時おいて作業時間の制限を設けたり遠隔装置を使用したりしなければならず、その結果、メンテナンスコストが高いものとなってしまうという問題があり、この問題を解決することが従来の課題となっていた。 In other words, in circulators in conventional nuclear power plants, in order to prevent worker exposure to gamma rays, etc. from silver that diffused and penetrated into the deep part of polycrystalline alloys, limit the working time at the time of repair inspection or use remote equipment. Therefore, there is a problem that the maintenance cost becomes high as a result, and it has been a conventional problem to solve this problem.

本発明は、上記した従来の課題に着目してなされたもので、放射性核種を内包する冷却流体と接触する回転翼や翼軸を構成する材料の深部に放射性核種が拡散浸透するのを防ぐことができ、その結果、メンテナンスコストの低減を実現することが可能である原子力施設の回転機器を提供することを目的としている。 The present invention has been made by paying attention to the above-mentioned conventional problems, and prevents the radioactive nuclide from diffusing and penetrating into the deep part of the material forming the rotor blade or the blade shaft that comes into contact with the cooling fluid containing the radioactive nuclide. Therefore, it is an object of the present invention to provide a rotating device for a nuclear facility that can reduce maintenance costs.

ここで、図5に示すように、材料に対する放射性核種の拡散とは、熱によって材料の原子と放射性核種の原子、例えば銀(Ag)の原子とが場所を入れ替わる現象であり、材料の表面Sから結晶粒Cの境目である結晶粒界Caへの拡散速度は、結晶粒Cの中央に比べて早いことが知られている。 Here, as shown in FIG. 5, the diffusion of a radionuclide into a material is a phenomenon in which an atom of the material and an atom of the radionuclide, for example, an atom of silver (Ag) are exchanged with each other by heat, and the surface S of the material. It is known that the diffusion rate from the crystal grain C to the crystal grain boundary Ca, which is the boundary of the crystal grain C, is faster than that in the center of the crystal grain C.

本発明者らは、この現象を踏まえて、結晶粒の粒径を大きくしたり単結晶化したりして単位体積中の結晶粒(結晶粒界)の数を減らす、すなわち、拡散速度の大きい粒界の面積を減少させることで、拡散により増加する単位体積当たりのAg含有量を減らし得ることを見出した。 Based on this phenomenon, the present inventors reduce the number of crystal grains (grain boundaries) in a unit volume by increasing the grain size of the crystal grains or converting them into single crystals, that is, grains having a high diffusion rate. It has been found that reducing the area of the field can reduce the Ag content per unit volume, which increases due to diffusion.

また、本発明者らは、格子拡散係数にも着目し、この格子拡散係数がNiよりも小さい元素を通常のNi基合金に大量に添加(ドープ)して格子拡散係数を小さくする(合金組成を変える)ことでも、拡散量を減らし得ることを見出して、本発明をするに至った。 The present inventors also pay attention to the lattice diffusion coefficient, and add (dope) a large amount of an element having a lattice diffusion coefficient smaller than Ni to a normal Ni-based alloy to reduce the lattice diffusion coefficient (alloy composition. It was found that the diffusion amount can be reduced also by changing ().

この際、粒界拡散係数及び格子拡散係数の双方を含む拡散係数として「実効拡散係数」の文言を用いることとした。 At this time, the word "effective diffusion coefficient" is used as the diffusion coefficient including both the grain boundary diffusion coefficient and the lattice diffusion coefficient.

すなわち、本発明の態様は、原子力施設における放射性核種を内包する一次冷却ヘリウムの循環路内に配置される原子力施設の回転機器であって、ケーシングと、前記ケーシング内において該ケーシングの内部を通過する前記放射性核種を内包する前記一次冷却ヘリウムと接触する回転翼及び翼軸を具備した回転機構を備え、前記ケーシング及び前記回転機構のうちの少なくとも前記回転機構の前記回転翼と前記翼軸は、前記放射性核種の拡散浸透を防止可能な単結晶材から成っている構成としている。 That is, an aspect of the present invention is a rotating device of a nuclear facility, which is arranged in a circulation path of primary cooling helium containing a radionuclide in a nuclear facility, and a casing and a casing that passes through the inside of the casing. A rotating mechanism comprising a rotating blade and a blade shaft that come into contact with the primary cooling helium containing the radionuclide, and the rotating blade and the blade shaft of at least the rotating mechanism of the casing and the rotating mechanism, It is made of a single crystal material that can prevent the diffusion and penetration of radionuclides.

本発明の第1の参考態様において、前記ケーシング及び前記回転機構のうちの少なくとも前記回転機構の前記回転翼及び前記翼軸は、前記多結晶合金の結晶粒径を粗大化して実効拡散係数を小さくして成る粗大結晶粒径材である構成としている。 In the first reference aspect of the present invention, at least the rotating blade and the blade shaft of the rotating mechanism of the casing and the rotating mechanism have a large effective crystal grain size of the polycrystalline alloy and a small effective diffusion coefficient. It is configured to be a material having a coarse crystal grain size.

本発明の第2の参考態様において、前記ケーシング及び前記回転機構のうちの少なくとも前記回転機構の前記回転翼及び前記翼軸は、前記単結晶材材と、Niよりも格子拡散係数が小さい元素をNiに添加して成る格子拡散係数低減材とを組み合わせたものである構成としている。 In the second reference aspect of the present invention, at least the rotary blade and the blade shaft of the rotating mechanism of the casing and the rotating mechanism are made of the single crystal material and an element having a lattice diffusion coefficient smaller than Ni. It is configured to be combined with a lattice diffusion coefficient reducing material added to Ni.

本発明に係る原子力施設の回転機器において、原子力施設には、原子炉を備えた原子力プラントのほか、核燃料再処理施設や燃料加工施設が含まれる。 In the rotating equipment of a nuclear facility according to the present invention, the nuclear facility includes a nuclear fuel reprocessing facility and a fuel processing facility as well as a nuclear plant equipped with a nuclear reactor.

また、本発明に係る原子力施設の回転機器において、回転機器には、遠心式のサーキュレータ(ポンプ)や軸流式のサーキュレータ(ポンプ)のほか、蒸気タービン、ガスタービン、ガスコンプレッサが含まれる。 In addition, in the rotating equipment of the nuclear facility according to the present invention, the rotating equipment includes a centrifugal circulator (pump) and an axial flow circulator (pump), as well as a steam turbine, a gas turbine, and a gas compressor.

さらに、本発明に係る原子力施設の回転機器において、放射性核種を内包する冷却流体には、ヘリウムや水やナトリウムを用いることができる。 Further, in the rotating equipment of the nuclear facility according to the present invention, helium, water or sodium can be used as the cooling fluid containing the radionuclide.

本発明に係る原子力施設の回転機器において、例えば、原子炉内で生じた核***生成物や、炉心構造材料が腐食することで生じた放射性腐食生成物等の放射性核種が、冷却流体に内包されてケーシングの内部に導入されて、回転機構の回転翼及び翼軸に接触しそして付着したとしても、ケーシング及び回転機構のうちの少なくとも回転機構の回転翼と翼軸が、放射性核種の拡散浸透を防止可能な単結晶材から成っているので、放射性核種が回転機構の回転翼及び翼軸の深部にまで拡散浸透することを少なく抑え得ることとなる。 In the rotating equipment of the nuclear facility according to the present invention, for example, fission products generated in the nuclear reactor, radioactive nuclides such as radioactive corrosion products generated by the corrosion of the core structure material, is included in the cooling fluid. Even if it is introduced into the casing and comes into contact with and adheres to the rotor blades and blade shafts of the rotating mechanism, at least the rotor blades and blade shafts of the casing and rotating mechanism prevent diffusion and penetration of radionuclides. Since it is made of a possible single crystal material, it is possible to suppress the radionuclide from diffusing and penetrating deep into the rotary blade and the blade shaft of the rotating mechanism.

加えて、ケーシング及び回転機構のうちの少なくとも回転機構の回転翼及び翼軸が放射性核種にほとんど汚染されないので、施設解体時における放射性廃棄物の量を低減させ得ることとなる。 In addition, since at least the rotor and the blade shaft of the rotating mechanism of the casing and the rotating mechanism are hardly contaminated with the radionuclide, the amount of radioactive waste at the time of dismantling the facility can be reduced.

本発明に係る原子力施設の回転機器では、少なくとも回転翼や翼軸を構成する材料の深部に放射性核種が拡散浸透するのを防ぐことができるので、メンテナンスコストの低減を実現することが可能であるという非常に優れた効果がもたらされる。 In the rotating equipment of the nuclear facility according to the present invention, since it is possible to prevent the radionuclide from diffusing and penetrating into the deep portion of the material forming at least the rotating blade or the blade shaft, it is possible to reduce the maintenance cost. That is a very good effect.

本発明の一実施例に係る原子力施設の回転機器が備えられた原子力プラントの冷却回路を示す概略構成説明図である。It is a schematic structure explanatory view showing a cooling circuit of a nuclear power plant provided with a rotating machine of a nuclear power plant concerning one example of the present invention. 図1における回転機器の回転機構部位を断面にして示す側面説明図である。It is a side surface explanatory view which shows the rotation mechanism part of the rotary machine in FIG. 1 in section. 一実施例に係る原子力施設の回転機器の効果を示すグラフである。It is a graph which shows the effect of the rotating equipment of the nuclear power plant which concerns on one Example. 他の実施例に係る原子力施設の回転機器の効果を示すグラフである。It is a graph which shows the effect of the rotating equipment of the nuclear power plant which concerns on another Example. 多結晶合金の表面付近における結晶粒及び結晶粒界を模型的に示す図である。FIG. 3 is a diagram schematically showing crystal grains and crystal grain boundaries in the vicinity of the surface of a polycrystalline alloy.

以下、本発明を図面に基づいて説明する。
図1及び図2は本発明に係る原子力施設の回転機器の一実施例を示しており、この実施例では、本発明に係る原子力施設の回転機器を原子力プラントのサーキュレータとして採用した場合を例に挙げて説明する。
The present invention will be described below with reference to the drawings.
1 and 2 show an embodiment of a rotating device for a nuclear facility according to the present invention. In this embodiment, a case where the rotating device for a nuclear facility according to the present invention is used as a circulator of a nuclear plant is taken as an example. I will give you an explanation.

図1に示すように、この原子力プラントは、高温ガス炉1と熱交換器3との間で放射性核種を内包する冷却流体としての一次冷却ヘリウムを循環させる一次冷却回路(循環路)2と、熱交換器3と図示しない発電設備との間で発電作動流体としての二次冷却ヘリウムを循環させる二次冷却回路4を備えている。 As shown in FIG. 1, this nuclear power plant has a primary cooling circuit (circulation path) 2 for circulating a primary cooling helium as a cooling fluid containing a radionuclide between a high temperature gas reactor 1 and a heat exchanger 3, A secondary cooling circuit 4 that circulates secondary cooling helium as a power generation working fluid between the heat exchanger 3 and a power generation facility (not shown) is provided.

この原子力プラントでは、一次冷却回路2を循環する一次冷却ヘリウムによって、高温ガス炉1内の核燃料における核***で発生した高温(約950℃)の熱を熱交換器3に運び、この熱交換器3において、二次冷却回路4を循環する二次冷却ヘリウムに一次冷却ヘリウムが保有する熱を移動させ、この二次冷却ヘリウムに移動した熱を発電設備に送って発電に供するようになっている。 In this nuclear power plant, the primary cooling helium circulating in the primary cooling circuit 2 carries the high temperature (about 950° C.) heat generated by the nuclear fission in the nuclear fuel in the high temperature gas reactor 1 to the heat exchanger 3, and the heat exchanger 3 In the above, the heat retained by the primary cooling helium is transferred to the secondary cooling helium circulating in the secondary cooling circuit 4, and the heat transferred to the secondary cooling helium is sent to the power generation equipment for power generation.

このような原子力プラントにおいて用いられるサーキュレータ(回転機器)10は、高温ガス炉1及び熱交換器3間の一次冷却回路2において、二次冷却ヘリウムに熱を移動させた後の一次冷却ヘリウムを加速して高温ガス炉1に戻すものであって、このサーキュレータ10は、図2に示すように、導入口11a及び排出口11bを具備したケーシング11と、ケーシング11内に収容されたインペラ(回転翼)12と、モータ13を備えている。 The circulator (rotating device) 10 used in such a nuclear power plant accelerates the primary cooling helium after transferring heat to the secondary cooling helium in the primary cooling circuit 2 between the high temperature gas reactor 1 and the heat exchanger 3. As shown in FIG. 2, the circulator 10 is for returning to the high temperature gas furnace 1 and a casing 11 having an inlet 11a and an outlet 11b, and an impeller (rotor blade) housed in the casing 11. ) 12 and a motor 13.

インペラ12は、モータ13の出力シャフト13a(翼軸)に固定されて、この出力シャフト13aとともに回転機構を構成しており、このインペラ12は、モータ13の出力により回転して、ケーシング11の導入口11aから内部に導入される熱交換器3からの一次冷却ヘリウムを加速して、排出口11bから高温ガス炉1に向けて排出するようになっている。 The impeller 12 is fixed to the output shaft 13a (blade shaft) of the motor 13 and constitutes a rotation mechanism together with the output shaft 13a. The impeller 12 rotates by the output of the motor 13 to introduce the casing 11. The primary cooling helium from the heat exchanger 3 introduced into the inside from the port 11a is accelerated and discharged from the discharge port 11b toward the high temperature gas furnace 1.

一参考例において、サーキュレータ10におけるケーシング11及び回転機構のうちの少なくとも回転機構のインペラ12及び出力シャフト13aは、多結晶合金(通常結晶粒径材)よりも実効拡散係数を低くした低実効拡散係数合金、すなわち、溶融金属を凝固させる際の冷却速度を遅くする、あるいは、熱処理を施すことで結晶粒径を粗大化して実効拡散係数を小さくした粗大結晶粒径材から成っている。 In one reference example, the casing 11 and the impeller 12 and the output shaft 13a of at least the rotating mechanism of the rotating mechanism of the circulator 10 have a low effective diffusion coefficient that is lower than that of a polycrystalline alloy (normal grain size material). It is made of an alloy, that is, a coarse crystal grain size material in which the cooling rate at the time of solidifying the molten metal is slowed or a heat treatment is performed to coarsen the crystal grain size to reduce the effective diffusion coefficient.

この実施例では、サーキュレータ10におけるケーシング11及び回転機構のうちの少なくとも回転機構のインペラ12と出力シャフト13aに、溶融金属を一方向から凝固させることで単結晶化した放射性核種の拡散浸透を防止可能な単結晶材を用いている。 In this embodiment, it is possible to prevent the diffusion and permeation of the single crystallized radionuclide by solidifying the molten metal in one direction from the impeller 12 and the output shaft 13a of at least the rotating mechanism of the casing 11 and the rotating mechanism in the circulator 10. A single crystal material is used.

この実施例に係るサーキュレータ10では、高温ガス炉1内で生じた核***生成物や、炉心構造材料が腐食することで生じた放射性腐食生成物等の放射性核種が、一次冷却ヘリウムに内包されてケーシング11の内部に導入されて、回転機構のインペラ12及び出力シャフト13aに接触しそして付着したとしても、回転機構のインペラ12及び出力シャフト13aが、単結晶材から成っているので、放射性核種が回転機構のインペラ12及び出力シャフト13aの深部にまで拡散浸透することを少なく抑え得ることとなる。 In the circulator 10 according to this embodiment, radioactive nuclides such as fission products generated in the high temperature gas reactor 1 and radioactive corrosion products generated by corrosion of the core structural material are enclosed in the primary cooling helium and casing. Even if it is introduced into the inside of 11 and comes into contact with and adheres to the impeller 12 and the output shaft 13a of the rotating mechanism, since the impeller 12 and the output shaft 13a of the rotating mechanism are made of a single crystal material, the radionuclide rotates. It is possible to suppress diffusion and permeation to the deep portions of the impeller 12 and the output shaft 13a of the mechanism.

その結果、メンテナンスコストの低減が図られることとなり、加えて、回転機構のインペラ12及び出力シャフト13aが放射性核種にほとんど汚染されないので、施設解体時における放射性廃棄物の量を低減させ得ることとなる。 As a result, the maintenance cost can be reduced, and in addition, since the impeller 12 and the output shaft 13a of the rotating mechanism are hardly contaminated with radioactive nuclides, the amount of radioactive waste at the time of dismantling the facility can be reduced. ..

そこで、サーキュレータ10の回転機構のインペラ12及び出力シャフト13aに、多結晶合金(通常結晶粒径材)を用いた場合の放射性核種含有量と、上記した一参考例の粗大結晶粒径材を用いた場合の放射性核種含有量とを比較したところ、図3のグラフに示すように、多結晶合金(通常結晶粒径材)を用いた場合には、放射性核種が表面から奥深くにまで拡散浸透しているのに対して、一参考例の粗大結晶粒径材を用いた場合には、放射性核種が深部にまで拡散浸透していないことが判る。 Therefore, for the impeller 12 and the output shaft 13a of the rotating mechanism of the circulator 10, the content of radionuclide when a polycrystalline alloy (normal grain size material) is used and the coarse grain size material of the above-mentioned one reference example are used. When compared with the radionuclide content in the case where it is present, as shown in the graph of FIG. 3, when a polycrystalline alloy (normal grain size material) is used, the radionuclide diffuses and permeates deeply from the surface. On the other hand, when the coarse crystal grain size material of one reference example is used, it is understood that the radionuclide does not diffuse and penetrate into the deep part.

特に、実効拡散係数を多結晶合金(通常結晶粒径材)の1/100に低減したこの実施例の単結晶材を用いた場合には、深部の放射性核種含有量が1/10に低減していることが判る。 In particular, when the single crystal material of this example in which the effective diffusion coefficient was reduced to 1/100 of that of the polycrystalline alloy (normal grain size material), the radionuclide content in the deep portion was reduced to 1/10. I understand that.

したがって、この実施例に係るサーキュレータ10では、回転機構のインペラ12及び出力シャフト13aの深部に放射性核種が拡散浸透するのを防ぎ得ることが実証できた。 Therefore, it was demonstrated that the circulator 10 according to this example can prevent the diffusion and penetration of radionuclides into the deep parts of the impeller 12 and the output shaft 13a of the rotating mechanism.

上記した実施例では、回転機構のインペラ12及び出力シャフト13aが、放射性核種の拡散浸透を防止可能な単結晶材から成っている場合を示したが、他の参考例として、回転機構のインペラ12及び出力シャフト13aに、Niよりも格子拡散係数が小さい元素をNiに添加して成る格子拡散係数低減材を用いる場合があるほか、さらに他の参考例として、単結晶材とNiよりも格子拡散係数が小さい元素をNiに添加して成る格子拡散係数低減材とを組み合わせたものを用いる場合がある。 In the above-described embodiments, the case where the impeller 12 and the output shaft 13a of the rotating mechanism are made of a single crystal material capable of preventing the diffusion and penetration of radionuclides is shown, but as another reference example, the impeller 12 of the rotating mechanism is shown. In addition, a material having a lattice diffusion coefficient smaller than that of Ni added to Ni may be used for the output shaft 13a. In addition, as another reference example, a lattice diffusion of a single crystal material and that of Ni may be used. A combination of a lattice diffusion coefficient reducing material formed by adding an element having a small coefficient to Ni may be used.

そこで、サーキュレータ10の回転機構のインペラ12及び出力シャフト13aに、多結晶合金(通常結晶粒径材)を用いた場合の放射性核種含有量と、上記した他の参考例による格子拡散係数低減材を用いた場合の放射性核種含有量とを比較したところ、図4のグラフに示すように、多結晶合金(通常結晶粒径材)を用いた場合には、放射性核種が表面から奥深くにまで拡散浸透しているのに対して、格子拡散係数低減材を用いた場合には、放射性核種が深部にまで拡散浸透していないことが判る。 Therefore, for the impeller 12 and the output shaft 13a of the rotating mechanism of the circulator 10, the radionuclide content in the case of using a polycrystalline alloy (normal grain size material) and the lattice diffusion coefficient reducing material according to the other reference examples described above are used. When compared with the radionuclide content when used, as shown in the graph of Fig. 4, when a polycrystalline alloy (normal grain size material) is used, the radionuclide diffuses and penetrates deeply from the surface. On the other hand, when the lattice diffusion coefficient reducing material is used, it is understood that the radionuclide has not diffused and penetrated to the deep part.

したがって、上記した他の参考例に係るサーキュレータ10にあっても、回転機構のインペラ12及び出力シャフト13aの深部に放射性核種が拡散浸透するのを防ぎ得ることが判る。 Therefore, it can be seen that even in the circulator 10 according to the other reference example described above, the radionuclide can be prevented from diffusing and penetrating into the deep portions of the impeller 12 and the output shaft 13a of the rotating mechanism.

上記した実施例では、本発明に係る原子力施設の回転機器を原子力プラントのサーキュレータとして採用した場合を例に挙げて説明したが、これに限定されるものではなく、核燃料再処理施設や燃料加工施設における遠心式のサーキュレータ(ポンプ)や軸流式のサーキュレータ(ポンプ)や、蒸気タービンや、ガスタービンや、ガスコンプレッサとして採用することができる。 In the above-mentioned embodiment, the case where the rotating equipment of the nuclear facility according to the present invention is adopted as the circulator of the nuclear plant has been described as an example, but the present invention is not limited to this, and the nuclear fuel reprocessing facility or the fuel processing facility is not limited thereto. Can be used as a centrifugal circulator (pump), an axial circulator (pump), a steam turbine, a gas turbine, or a gas compressor.

また、上記した実施例では、回転機構のインペラ12及び出力シャフト13aのみに、単結晶材を採用した構成としているが、これに限定されるものではなく、他の構成として、ケーシング11にも単結晶材を用いてもよい。 Further, in the above-described embodiment, the single crystal material is adopted only in the impeller 12 and the output shaft 13a of the rotating mechanism, but the present invention is not limited to this, and as another structure, the single crystal material is used in the casing 11. A crystal material may be used.

本発明に係る原子力施設の回転機器の構成は、上記した実施例の構成に限定されるものではなく、例えば、回転機構の回転翼がブレードであってもよいほか、回転機構にタービンディスクや軸受やシール部材が含まれていてもよい。 The configuration of the rotating equipment of the nuclear power facility according to the present invention is not limited to the configuration of the above-described embodiment, and for example, the rotating blades of the rotating mechanism may be blades, or the rotating mechanism may include a turbine disk or a bearing. Or a seal member may be included.

1 高温ガス炉
2 一次冷却回路(循環路)
10 サーキュレータ(回転機器)
11 ケーシング
12 インペラ(回転翼)
13 モータ
13a 出力シャフト(翼軸)
1 High-temperature gas furnace 2 Primary cooling circuit (circulation path)
10 Circulator (rotating equipment)
11 casing 12 impeller (rotor blade)
13 Motor 13a Output shaft (blade axis)

Claims (1)

原子力施設における放射性核種を内包する一次冷却ヘリウムの循環路内に配置される原子力施設の回転機器であって、
ケーシングと、
前記ケーシング内において該ケーシングの内部を通過する前記放射性核種を内包する前記一次冷却ヘリウムと接触する回転翼及び翼軸を具備した回転機構を備え、
前記ケーシング及び前記回転機構のうちの少なくとも前記回転機構の前記回転翼と前記翼軸は、前記放射性核種の拡散浸透を防止可能な単結晶材から成っている原子力施設の回転機器。
A rotating device of a nuclear facility arranged in a circulation path of primary cooled helium containing a radionuclide in a nuclear facility,
A casing,
A rotating mechanism having a rotary blade and a blade shaft in contact with the primary cooling helium containing the radionuclide passing through the inside of the casing,
At least the rotating blade and the blade axis of the rotating mechanism of the casing and the rotating mechanism are made of a single crystal material capable of preventing diffusion and penetration of the radionuclide.
JP2019061568A 2019-03-27 2019-03-27 Rotating equipment for nuclear facilities Active JP6734574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061568A JP6734574B2 (en) 2019-03-27 2019-03-27 Rotating equipment for nuclear facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061568A JP6734574B2 (en) 2019-03-27 2019-03-27 Rotating equipment for nuclear facilities

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014105242A Division JP6528926B2 (en) 2014-05-21 2014-05-21 Rotating equipment of nuclear facilities

Publications (2)

Publication Number Publication Date
JP2019124702A JP2019124702A (en) 2019-07-25
JP6734574B2 true JP6734574B2 (en) 2020-08-05

Family

ID=67398552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061568A Active JP6734574B2 (en) 2019-03-27 2019-03-27 Rotating equipment for nuclear facilities

Country Status (1)

Country Link
JP (1) JP6734574B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402603B2 (en) * 1986-03-27 2003-05-06 ゼネラル・エレクトリック・カンパニイ Nickel-base-superalloy with improved low angle grain boundary resistance for producing single crystal products
JP4496361B2 (en) * 2003-05-30 2010-07-07 独立行政法人 日本原子力研究開発機構 Method for forming coating layer of heat-resistant ceramic thin film on Ni-base heat-resistant alloy
EP2888456A2 (en) * 2012-08-22 2015-07-01 Hi Eff Utility Rescue LLC High efficiency power generation system and system upgrades
US9551049B2 (en) * 2012-08-28 2017-01-24 United Technologies Corporation High elastic modulus shafts and method of manufacture

Also Published As

Publication number Publication date
JP2019124702A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US20170316841A1 (en) Molten fuel reactor cooling and pump configurations
JP6734574B2 (en) Rotating equipment for nuclear facilities
JP6528926B2 (en) Rotating equipment of nuclear facilities
JP2024506703A (en) Molten salt reactors with integrated primary exchangers and generators equipped with such reactors
JP2014145635A (en) Core fused material extracting method and system
JP2668643B2 (en) Method for extinction of minor actinide nuclides
US3070530A (en) Neutronic reactor power plant
US3047483A (en) Nuclear energy reactors
JP7136449B2 (en) Plutonium extinction molten salt reactor, power generation system using the same, and operation method of plutonium extinction molten salt reactor
Kim et al. Coupling of an innovative small PWR and advanced sodium‐cooled fast reactor for incineration of TRU from once‐through PWRs
JPH0664183B2 (en) High temperature pump thermal fatigue prevention device
Kharitonova et al. Some aspects of coolant chemistry safety regulations at Russia’s nuclear power plant with fast reactors
JPH05296177A (en) Reactor built-in type recirculating pump
Orlov et al. Lead coolant as a natural safety component
JP2005049099A (en) Internal pump and light water nuclear power plant primary system piping
Frost et al. Liquid metal fuel technology
Wider et al. Safety aspects of heavy metal-cooled accelerator-driven waste
WO2015088389A1 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
Ainscough THE IRRADIATION OF SINTERED URANIUM OXIDE TO HIGH BURN-UP
Lampe HAZARDS ANALYSIS SINGLE BLOWER FAILURE
Rugh Nuclear divisional reactor
JP2017089677A (en) Flange structure and circulation machine provided with the same
JPH04127090A (en) Built-in type recirculation pump
Secrist CONTROL ROD DRIVE MECHANISM TESTING DURING SEED 3 OPERATION AND SEED 3-4 REFUELING
Mueller NEGATIVE REACTIVITY EFFECT OF FUEL ELEMENT EXPANSION ON COLD WATER ACCIDENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200623

R151 Written notification of patent or utility model registration

Ref document number: 6734574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151