JP6733934B2 - Heat conductive flexible printed wiring board and method for manufacturing heat conductive flexible printed wiring board - Google Patents

Heat conductive flexible printed wiring board and method for manufacturing heat conductive flexible printed wiring board Download PDF

Info

Publication number
JP6733934B2
JP6733934B2 JP2016137300A JP2016137300A JP6733934B2 JP 6733934 B2 JP6733934 B2 JP 6733934B2 JP 2016137300 A JP2016137300 A JP 2016137300A JP 2016137300 A JP2016137300 A JP 2016137300A JP 6733934 B2 JP6733934 B2 JP 6733934B2
Authority
JP
Japan
Prior art keywords
heat
flexible printed
wiring board
printed wiring
conductive flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016137300A
Other languages
Japanese (ja)
Other versions
JP2018010911A (en
Inventor
和夫 村田
和夫 村田
淑文 内田
淑文 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Printed Circuits Inc
Original Assignee
Sumitomo Electric Printed Circuits Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Printed Circuits Inc filed Critical Sumitomo Electric Printed Circuits Inc
Priority to JP2016137300A priority Critical patent/JP6733934B2/en
Publication of JP2018010911A publication Critical patent/JP2018010911A/en
Application granted granted Critical
Publication of JP6733934B2 publication Critical patent/JP6733934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)

Description

本発明は、熱伝導性フレキシブルプリント配線板及び熱伝導性フレキシブルプリント配線板の製造方法に関する。 The present invention relates to a heat conductive flexible printed wiring board and a method for manufacturing the heat conductive flexible printed wiring board.

プリント配線板に実装される電子部品の中には、例えば発光ダイオード(LED)のように稼働時の発熱量が大きいものがある。このような発熱量が大きい電子部品を実装するプリント配線板では、熱による電子部品の機能低下や回路の損傷を防ぐため、熱源となる電子部品にヒートシンクを取り付けたり、グラファイトシート等の熱伝導の大きい材料により熱を分散させたりしている。 Some electronic components mounted on a printed wiring board generate a large amount of heat during operation, such as a light emitting diode (LED). In a printed wiring board that mounts electronic components that generate a large amount of heat as described above, in order to prevent functional deterioration of electronic components and damage to the circuit due to heat, a heat sink is attached to the electronic component that is the heat source, or heat conduction of a graphite sheet or the like occurs. Large materials are used to disperse heat.

一方、設置スペースを小さくし、電子機器の屈曲にも対応できる多層フレキシブルプリント配線板が知られている。特許文献1には、複数枚の積層板の部分領域にのみ層間接着層が形成され、この層間接着層により複数枚の積層板が貼り合わされた部分にインナビアが形成された多層フレキシブルプリント配線板が開示されている。 On the other hand, there is known a multi-layer flexible printed wiring board that can be installed in a small space and can also be used for bending electronic devices. Patent Document 1 discloses a multilayer flexible printed wiring board in which an interlayer adhesive layer is formed only in a partial region of a plurality of laminated plates, and an inner via is formed in a portion where the plurality of laminated plates are bonded by the interlayer adhesive layer. It is disclosed.

特開2006−210514号公報JP, 2006-210514, A

発熱量が大きい電子部品を特許文献1に開示された多層フレキシブルプリント配線板に実装する場合、電子機器内の設置スペースが十分でないと、電子部品にヒートシンクを取り付けるスペースが確保できない場合がある。 When mounting an electronic component that generates a large amount of heat on the multilayer flexible printed wiring board disclosed in Patent Document 1, if the installation space in the electronic device is not sufficient, a space for attaching a heat sink to the electronic component may not be secured.

また、グラファイトシートにより熱を分散させる場合、グラファイトシートは曲げに弱いため、フレキシブルプリント配線板の屈曲部にグラファイトシートを採用することは制限される。 Further, when heat is dissipated by the graphite sheet, the graphite sheet is weak against bending, so that use of the graphite sheet in the bent portion of the flexible printed wiring board is limited.

本発明は、上述のような事情に基づいてなされたものであり、熱源の放熱を効果的に促進できる熱伝導性フレキシブルプリント配線板及び熱伝導性フレキシブルプリント配線板の製造方法の提供を目的とする。 The present invention has been made based on the above circumstances, and an object thereof is to provide a heat conductive flexible printed wiring board and a method for manufacturing the heat conductive flexible printed wiring board, which can effectively promote the heat radiation of the heat source. To do.

上記課題を解決するためになされた本発明の一態様に係る熱伝導性フレキシブルプリント配線板は、絶縁層とこの絶縁層の両面に積層される一対の銅箔とを有する両面銅貼り板を用いる熱伝導性フレキシブルプリント配線板であって、表面側に実装される熱源と、上記熱源から離間した位置かつ表面に配設されるヒートシンク部と、上記熱源及びヒートシンク部間に連続する上記銅箔連続領域とを備える。 A heat conductive flexible printed wiring board according to an aspect of the present invention made to solve the above problems uses a double-sided copper-clad board having an insulating layer and a pair of copper foils laminated on both surfaces of the insulating layer. A heat conductive flexible printed wiring board, wherein a heat source mounted on the front surface side, a heat sink portion disposed on the surface at a position separated from the heat source, and the copper foil continuous between the heat source and the heat sink portion. And a region.

上記課題を解決するためになされた本発明の別の態様に係る熱伝導性フレキシブルプリント配線板の製造方法は、絶縁層及びこの絶縁層の両面に積層される一対の銅箔を有する両面銅貼り板を用い、熱源を実装し、かつ上記熱源及び上記熱源から離間した位置に配設されるヒートシンク部間に連続する上記銅箔連続領域を形成する工程と、上記熱源を実装し、上記銅箔連続領域を形成した両面銅貼り板を山折り線で山折りに屈曲する工程とを備える。 A method for manufacturing a heat conductive flexible printed wiring board according to another aspect of the present invention made to solve the above problems is a double-sided copper-bonding having an insulating layer and a pair of copper foils laminated on both surfaces of the insulating layer. Using a plate, a heat source is mounted, and a step of forming the continuous copper foil region between the heat source and a heat sink portion arranged at a position separated from the heat source; and mounting the heat source, the copper foil And a step of bending the double-sided copper-clad plate in which the continuous region is formed into a mountain fold line.

本発明の一態様に係る熱伝導性フレキシブルプリント配線板及び本発明の別の態様に係る熱伝導性フレキシブルプリント配線板の製造方法により製造される熱伝導性フレキシブルプリント配線板は、熱源の放熱を効果的に促進できる。 A heat conductive flexible printed wiring board according to an aspect of the present invention and a heat conductive flexible printed wiring board manufactured by a method for manufacturing a heat conductive flexible printed wiring board according to another aspect of the present invention, the heat radiation of a heat source. Can be effectively promoted.

本発明の一実施形態の熱伝導性フレキシブルプリント配線板を示す模式的平面図である。It is a typical top view showing the heat conductive flexible printed wiring board of one embodiment of the present invention. 本発明の他の実施形態の熱伝導性フレキシブルプリント配線板を示す模式的平面図である。It is a typical top view which shows the heat conductive flexible printed wiring board of other embodiment of this invention.

[本発明の実施形態の説明]
本発明の一態様に係る熱伝導性フレキシブルプリント配線板は、絶縁層とこの絶縁層の両面に積層される一対の銅箔とを有する両面銅貼り板を用いる熱伝導性フレキシブルプリント配線板であって、表面側に実装される熱源と、上記熱源から離間した位置かつ表面に配設されるヒートシンク部と、上記熱源及びヒートシンク部間に連続する上記銅箔連続領域とを備える。
[Description of Embodiments of the Present Invention]
A heat conductive flexible printed wiring board according to an aspect of the present invention is a heat conductive flexible printed wiring board that uses a double-sided copper-clad board having an insulating layer and a pair of copper foils laminated on both surfaces of the insulating layer. A heat source mounted on the front surface side, a heat sink portion provided on the surface at a position separated from the heat source, and the copper foil continuous region continuous between the heat source and the heat sink portion.

当該熱伝導性フレキシブルプリント配線板は、熱源とヒートシンク部とを離間して備え、熱源及びヒートシンク部間に銅箔連続領域を備えるので、銅箔連続領域を介して熱源からヒートシンク部へ熱を伝えることができるので、熱源の放熱を効果的に促進できる。 Since the heat conductive flexible printed wiring board is provided with a heat source and a heat sink part separately from each other and a copper foil continuous region is provided between the heat source and the heat sink part, heat is transmitted from the heat source to the heat sink part through the copper foil continuous region. Therefore, the heat radiation of the heat source can be effectively promoted.

当該熱伝導性フレキシブルプリント配線板は、山折り予定線を有し、この山折り予定線の一方側に上記熱源と上記銅箔からなる配線とを有し、上記山折り予定線の他方側に上記ヒートシンク部を有し、上記配線が配設される領域の裏面側の銅箔が存在しないようにするとよい。山折り予定線を跨いで配線が配設されないので、当該熱伝導性フレキシブルプリント配線板が山折り予定線で山折りされた際に、配線が損傷するのを防止することができる。また、配線が配設される領域の裏面側には銅箔が存在しないので、銅箔が存在する場合に比べて、当該熱伝導性フレキシブルプリント配線板が屈曲した際に配線が受ける応力を低減することができ、配線が損傷するのを抑制することができる。 The heat conductive flexible printed wiring board has a planned mountain fold line, has the heat source and the wiring made of the copper foil on one side of the planned mountain fold line, and on the other side of the planned mountain fold line. It is preferable to have the heat sink portion so that the copper foil on the back surface side of the region where the wiring is arranged does not exist. Since the wiring is not arranged across the planned mountain fold line, it is possible to prevent the wiring from being damaged when the heat conductive flexible printed wiring board is mountain-folded along the planned mountain fold line. Also, since there is no copper foil on the back side of the area where the wiring is arranged, the stress that the wiring receives when the heat conductive flexible printed wiring board is bent is reduced compared to the case where copper foil is present. Therefore, it is possible to prevent the wiring from being damaged.

上記銅箔連続領域が、上記山折り予定線の他方側におけるヒートシンク部に連続する領域と、上記山折り予定線の一方側における上記熱源に連続し、かつ上記ヒートシンク部連続領域から伸びる領域とを有するとよい。銅箔連続領域が、山折り予定線を跨いで連続的な領域を有するので、熱伝導性フレキシブルプリント配線板が山折り予定線で山折りされた場合であっても、銅箔連続領域を介して熱源からヒートシンク部へ熱を伝えることができる。 The copper foil continuous region, a region that is continuous with the heat sink portion on the other side of the planned mountain fold line, and a region that is continuous with the heat source on one side of the planned mountain fold line and that extends from the heat sink part continuous region. Good to have. Since the copper foil continuous region has a continuous region across the planned mountain fold line, even when the heat conductive flexible printed wiring board is mountain-folded at the planned mountain fold line, the copper foil continuous region is interposed. The heat can be transferred from the heat source to the heat sink.

当該熱伝導性フレキシブルプリント配線板は、上記山折り予定線に沿って貫通口を有するとよい。熱伝導性フレキシブルプリント配線板が貫通口を有するので、熱伝導性フレキシブルプリント配線板を簡単に山折りすることができる。 The heat conductive flexible printed wiring board may have a through hole along the planned mountain fold line. Since the heat conductive flexible printed wiring board has the through hole, the heat conductive flexible printed wiring board can be easily mountain-folded.

当該熱伝導性フレキシブルプリント配線板は、山折り予定線で山折りに屈曲してなるとよい。山折り状態の熱伝導性フレキシブルプリント配線板を小さな設置スペースに設置することができる。 It is preferable that the heat conductive flexible printed wiring board is bent in a mountain fold at a planned mountain fold line. A heat conductive flexible printed wiring board in a mountain folded state can be installed in a small installation space.

当該熱伝導性フレキシブルプリント配線板は、少なくとも上記熱源の存在領域が接着剤層で接合されているとよい。熱伝導性フレキシブルプリント配線板が180度山折りされた状態で安定的に接合されるので、小さな設置スペースに設置することができるとともに、当該熱伝導性フレキシブルプリント配線板を多層フレキシブルプリント配線板のように取り扱うことができる。 In the heat conductive flexible printed wiring board, it is preferable that at least the area where the heat source exists is bonded with an adhesive layer. Since the heat conductive flexible printed wiring board is stably joined in the state of being folded by 180 degrees, it can be installed in a small installation space and the heat conductive flexible printed wiring board can be used as a multilayer flexible printed wiring board. Can be treated like.

本発明の別の態様に係る熱伝導性フレキシブルプリント配線板の製造方法は、絶縁層及びこの絶縁層の両面に積層される一対の銅箔を有する両面銅貼り板を用い、熱源を実装し、かつ上記熱源及び上記熱源から離間した位置に配設されるヒートシンク部間に連続する上記銅箔連続領域を形成する工程と、上記熱源を実装し、上記銅箔連続領域を形成した両面銅貼り板を山折り線で山折りに屈曲する工程とを備える。 A method for manufacturing a heat conductive flexible printed wiring board according to another aspect of the present invention uses a double-sided copper-clad board having an insulating layer and a pair of copper foils laminated on both surfaces of the insulating layer, and mounts a heat source, And a step of forming the copper foil continuous region continuous between the heat source and a heat sink portion arranged at a position separated from the heat source; and a double-sided copper-clad plate on which the heat source is mounted and the copper foil continuous region is formed. And a step of bending into a mountain fold line.

当該熱伝導性フレキシブルプリント配線板の製造方法は、熱源とヒートシンク部とを離間して配設し、熱源及びヒートシンク部間に銅箔連続領域を備えた両面銅貼り板を山折りすることで、銅箔連続領域を介して熱源からヒートシンク部へ熱を伝えることができる熱伝導性フレキシブルプリント配線板を製造することができる。 The method for manufacturing the heat conductive flexible printed wiring board, the heat source and the heat sink portion are arranged separately, by mountain-folding a double-sided copper-clad board having a copper foil continuous region between the heat source and the heat sink portion, A heat conductive flexible printed wiring board capable of transmitting heat from a heat source to a heat sink portion via a copper foil continuous region can be manufactured.

ここで、「山折り」とは、熱伝導性フレキシブルプリント配線板の表面の一部が突出するように熱伝導性フレキシブルプリント配線板を変形し、熱伝導性フレキシブルプリント配線板の裏面にある二つの領域を突き合わせる折り方を意味する。なお、「表面」及び「裏面」は、ベースフィルムの導電パターンが積層される側を「表面」とし、その反対側を裏面とするものであって、使用状態における位置関係を限定するものではない。 Here, the “mountain fold” means that the heat conductive flexible printed wiring board is deformed so that a part of the surface of the heat conductive flexible printed wiring board is projected, and the two pieces are formed on the back surface of the heat conductive flexible printed wiring board. It means a fold that matches two areas. In addition, the “front surface” and the “rear surface” have the side on which the conductive pattern of the base film is laminated as the “front surface” and the opposite side as the back surface, and do not limit the positional relationship in use. ..

[本発明の実施形態の詳細]
以下、本発明の一態様に係る熱伝導性フレキシブルプリント配線板について図面を参照しつつ詳説する。
[Details of the embodiment of the present invention]
Hereinafter, a heat conductive flexible printed wiring board according to an aspect of the present invention will be described in detail with reference to the drawings.

[熱伝導性フレキシブルプリント配線板]
図1に示す熱伝導性フレキシブルプリント配線板は、絶縁層1とこの絶縁層1の両面に積層される一対の銅箔とを有する両面銅貼り板を用いる熱伝導性フレキシブルプリント配線板であって、表面側に実装される熱源4と、上記熱源から離間した位置かつ表面に配設されるヒートシンク部5と、上記熱源及びヒートシンク部間に連続する上記銅箔連続領域とを備える。
[Thermal conductive flexible printed wiring board]
The heat conductive flexible printed wiring board shown in FIG. 1 is a heat conductive flexible printed wiring board using a double-sided copper-clad board having an insulating layer 1 and a pair of copper foils laminated on both surfaces of the insulating layer 1. The heat source 4 mounted on the front surface side, the heat sink portion 5 provided on the surface at a position separated from the heat source, and the copper foil continuous region continuous between the heat source and the heat sink portion.

絶縁層1の表面側には配線2が積層される。絶縁層1の表面側に積層される銅箔3と、絶縁層1の裏面側に積層される銅箔との間にある絶縁層1には図示しないスルーホールが形成されており、このスルーホールには熱伝導材が充填される。なお本実施形態の熱伝導性フレキシブルプリント配線板における「表裏」は、熱伝導性フレキシブルプリント配線板の厚さ方向のうち、配線2が積層される側を「表」、「表」と反対側を「裏」とする方向を意味し、熱伝導性フレキシブルプリント配線板の使用状態における表裏を意味するものではない。 The wiring 2 is laminated on the front surface side of the insulating layer 1. Through holes (not shown) are formed in the insulating layer 1 between the copper foil 3 laminated on the front surface side of the insulating layer 1 and the copper foil 3 laminated on the back surface side of the insulating layer 1. Is filled with a heat conductive material. The “front and back” of the heat conductive flexible printed wiring board of the present embodiment means “side” on the side on which the wiring 2 is laminated in the thickness direction of the heat conductive flexible printed wiring board, and “opposite side”. Means the "back" direction and does not mean the front and back sides of the heat conductive flexible printed wiring board in use.

<絶縁層>
絶縁層1は、電気絶縁性及び可撓性を有する合成樹脂製の層である。また、絶縁層1は、配線2、表面側の銅箔3及び裏面側の銅箔を形成するためのベースフィルムでもある。
<Insulation layer>
The insulating layer 1 is a layer made of synthetic resin having electrical insulation and flexibility. The insulating layer 1 is also a base film for forming the wiring 2, the front side copper foil 3 and the back side copper foil.

絶縁層1の材料としては、耐熱性合成樹脂が好ましく、ポリイミド、液晶ポリマー、ポリアミドイミド等の半田リフロー耐熱性を持つものがより好ましい。 As a material of the insulating layer 1, a heat resistant synthetic resin is preferable, and a material having a solder reflow heat resistance such as polyimide, liquid crystal polymer, or polyamide imide is more preferable.

絶縁層1の平均厚さの下限としては、5μmが好ましく、10μmがより好ましい。一方絶縁層1の平均厚さの上限としては、50μmが好ましく、25μmがより好ましい。絶縁層1の平均厚さが上記下限に満たないと、絶縁層1の強度が不十分となるおそれがある。逆に、絶縁層1の平均厚さが上記上限を超えると、当該熱伝導性フレキシブルプリント配線板の可撓性が低下するおそれがある。 The lower limit of the average thickness of the insulating layer 1 is preferably 5 μm, more preferably 10 μm. On the other hand, the upper limit of the average thickness of the insulating layer 1 is preferably 50 μm, more preferably 25 μm. If the average thickness of the insulating layer 1 is less than the above lower limit, the strength of the insulating layer 1 may be insufficient. On the contrary, if the average thickness of the insulating layer 1 exceeds the above upper limit, the flexibility of the heat conductive flexible printed wiring board may decrease.

絶縁層1の平面視形状は、長辺と平行な方向を上下方向とし、短辺と平行な方向を左右方向とする上下に長い長方形の形状となっている。ここで、「上」とは、絶縁層1の短辺のうち、後述する熱源4が配設される側を意味し、「下」とは、「上」と反対側を意味する。また、「左」とは、下から上に向かう方向に対する左側を意味し、「右」とは、「左」と反対側を意味する。絶縁層1は、左右中央かつ上下方向と平行に山折り予定線Aを有し、左右の長辺が重なるように山折りに屈曲可能となっている。この山折り予定線Aに沿って、上下の短辺に到達しない長さの貫通孔7が形成されている。 The plan view shape of the insulating layer 1 is a vertically long rectangular shape in which the direction parallel to the long side is the vertical direction and the direction parallel to the short side is the horizontal direction. Here, “upper” means the side of the short side of the insulating layer 1 on which the heat source 4 described later is arranged, and “lower” means the opposite side to “upper”. Further, "left" means the left side in the direction from the bottom to the top, and "right" means the opposite side of the "left". The insulating layer 1 has a planned mountain fold line A parallel to the center in the left-right direction and in the vertical direction, and can be bent in a mountain fold so that the left and right long sides overlap. Along the planned mountain fold line A, a through hole 7 having a length that does not reach the upper and lower short sides is formed.

絶縁層1には、表裏に貫通するスルーホールが形成されている。このスルーホールは、銅箔3及び裏面側の銅箔間にあるベースフィルムに形成され、スルーホール内には熱伝導材が充填される。つまり、スルーホールに充填された熱伝導材を介して銅箔3及び裏面側の銅箔が熱交換するように構成されている。 Through-holes are formed in the insulating layer 1 so as to penetrate the front and back. The through hole is formed in the base film between the copper foil 3 and the copper foil on the back surface side, and the through hole is filled with a heat conductive material. That is, the copper foil 3 and the copper foil on the rear surface side are configured to exchange heat via the heat conductive material filled in the through holes.

<配線>
配線2は、金属箔、例えば銅箔によって形成され、可撓性を有する。配線2は、例えば絶縁層1の表面に積層された金属層をエッチングすることによって形成される。
<Wiring>
The wiring 2 is made of metal foil, for example, copper foil, and has flexibility. The wiring 2 is formed by etching a metal layer laminated on the surface of the insulating layer 1, for example.

配線2は、絶縁層1の表面かつ左側に形成されている。つまり、熱伝導性フレキシブルプリント配線板は、山折り予定線Aで分断される一方側の領域(左側)に配線2を有する。配線2は、上下方向と平行かつ直線的に複数本形成されており、一端側がブリッジ線を介して熱源4の接続端子に接続され、他端側がターミナルコネクタ6に接続される。 The wiring 2 is formed on the left side of the surface of the insulating layer 1. That is, the heat conductive flexible printed wiring board has the wiring 2 in the area (left side) on one side divided by the planned mountain fold line A. A plurality of wirings 2 are formed in parallel and linearly in the vertical direction, one end side is connected to the connection terminal of the heat source 4 via the bridge wire, and the other end side is connected to the terminal connector 6.

<表面側の銅箔>
銅箔3は、可撓性を有する薄膜層であり、配線2と同様に例えば絶縁層1の表面に積層された金属層をエッチングすることによって形成される。銅箔3上には、後述する熱源4及びヒートシンク部5が離間して配設される。
<Copper foil on the surface side>
The copper foil 3 is a flexible thin film layer, and is formed by etching, for example, a metal layer laminated on the surface of the insulating layer 1 like the wiring 2. On the copper foil 3, a heat source 4 and a heat sink portion 5 described later are arranged separately.

銅箔3は、配線2、ターミナルコネクタ6及び貫通孔7と干渉しない位置に、絶縁層1の表面に略L字型に形成されている。具体的には、銅箔3は、一定の幅を持って形成され、絶縁層1の左上から右上に向けて山折り線を跨いで上側短辺に沿って形成される領域と、絶縁層1の右下から右上に向けて右側長辺に沿って形成される領域とを有する。そしてこれらの領域が絶縁層1の右上の領域で接続されるように銅箔3が形成されている。絶縁層1の左上に形成される銅箔3上には熱源4が配設され、絶縁層1の右下に形成される銅箔3上にはヒートシンク部5が配設される。つまり、銅箔3の連続領域が、山折り予定線Aで分断される他方側(右側)におけるヒートシンク部5に連続するヒートシンク部連続領域と、山折り予定線Aで分断される一方側(左側)における熱源4に連続し、かつヒートシンク部連続領域から伸びる領域とを有する。 The copper foil 3 is formed in a substantially L-shape on the surface of the insulating layer 1 at a position where it does not interfere with the wiring 2, the terminal connector 6 and the through hole 7. Specifically, the copper foil 3 is formed to have a constant width, and a region formed along the upper short side across the mountain fold line from the upper left to the upper right of the insulating layer 1 and the insulating layer 1 A region formed along the right long side from the lower right to the upper right. The copper foil 3 is formed so that these regions are connected to each other in the upper right region of the insulating layer 1. A heat source 4 is provided on the copper foil 3 formed on the upper left of the insulating layer 1, and a heat sink portion 5 is provided on the copper foil 3 formed on the lower right of the insulating layer 1. That is, the continuous region of the copper foil 3 is separated by the planned mountain fold line A on the other side (right side), which is continuous with the heat sink part 5, and the continuous region of the mountain fold planned line A on one side (left side). ), which is continuous with the heat source 4 and extends from the heat sink part continuous region.

銅箔3の平均厚さの下限としては、10μmが好ましく、15μmがより好ましい。一方、銅箔3の平均厚さの上限としては、36μmが好ましく、25μmがより好ましい。銅箔3の平均厚さが上記下限に満たないと、熱伝導性が不十分となるおそれがある。逆に、銅箔3の平均厚さが上記上限を超えると、当該熱伝導性フレキシブルプリント配線板の可撓性が低下するおそれがある。 The lower limit of the average thickness of the copper foil 3 is preferably 10 μm, more preferably 15 μm. On the other hand, the upper limit of the average thickness of the copper foil 3 is preferably 36 μm, more preferably 25 μm. If the average thickness of the copper foil 3 is less than the above lower limit, the thermal conductivity may be insufficient. On the contrary, when the average thickness of the copper foil 3 exceeds the upper limit, the flexibility of the heat conductive flexible printed wiring board may decrease.

<裏面側の銅箔>
裏面側の銅箔は、可撓性を有する薄膜層であり、銅箔3と同様に例えば絶縁層1の裏面に積層された金属層をエッチングすることによって形成される。
<Copper foil on the back side>
The copper foil on the back surface side is a thin film layer having flexibility, and is formed by etching a metal layer laminated on the back surface of the insulating layer 1 like the copper foil 3, for example.

裏面側の銅箔は、銅箔3と対を成すように絶縁層1の裏面に積層される。つまり、裏面側の銅箔は、一定の幅を持って形成され、絶縁層1の左上から右上に向けて山折り線を跨いで上側短辺に沿って形成される領域と、絶縁層1の右下から右上に向けて右側長辺に沿って形成される領域とを有する。そしてこれらの領域が絶縁層1の右上の領域で接続されるように裏面側の銅箔が形成されている。裏面側の銅箔は、絶縁層1の裏面の全面には積層されておらず、配線2が積層された絶縁層1の裏面の領域には銅箔が積層されない。つまり、配線2が配設される領域の裏面側の銅箔が存在しない。 The copper foil on the back surface side is laminated on the back surface of the insulating layer 1 so as to form a pair with the copper foil 3. That is, the copper foil on the back surface side is formed with a certain width, and the region formed along the upper short side across the mountain fold line from the upper left to the upper right of the insulating layer 1 and the insulating layer 1 A region formed along the right long side from the lower right to the upper right. Then, a copper foil on the back surface side is formed so that these areas are connected to each other in the upper right area of the insulating layer 1. The copper foil on the back surface side is not laminated on the entire back surface of the insulating layer 1, and the copper foil is not laminated on the area of the back surface of the insulating layer 1 on which the wiring 2 is laminated. That is, there is no copper foil on the back surface side of the area where the wiring 2 is arranged.

裏面側の銅箔の平均厚さの下限としては、10μmが好ましく、15μmがより好ましい。一方、裏面側の銅箔の平均厚さの上限としては、36μmが好ましく、25μmがより好ましい。裏面側の銅箔の平均厚さが上記下限に満たないと、熱伝導性が不十分となるおそれがある。逆に、裏面側の銅箔の平均厚さが上記上限を超えると、当該熱伝導性フレキシブルプリント配線板の可撓性が低下するおそれがある。 The lower limit of the average thickness of the backside copper foil is preferably 10 μm, more preferably 15 μm. On the other hand, the upper limit of the average thickness of the copper foil on the back surface side is preferably 36 μm, more preferably 25 μm. If the average thickness of the backside copper foil is less than the above lower limit, the thermal conductivity may be insufficient. On the contrary, when the average thickness of the copper foil on the back surface exceeds the upper limit, the flexibility of the heat conductive flexible printed wiring board may decrease.

(熱源)
熱源4は、仕事をすることで発熱する電子部品であり、絶縁層1の左上領域の銅箔3上に配設される。つまり、熱伝導性フレキシブルプリント配線板は、山折り予定線Aで分断される一方側の領域(左側)に熱源4を有する。熱源4としては、特に限定されないが、例えば発光ダイオード(LED)、IC、レギュレータ等の高発熱性の電子部品が用いられる。熱源4は接続端子を有し、この接続端子にブリッジ線を介して配線2の一端が接続される。
(Heat source)
The heat source 4 is an electronic component that generates heat by performing work, and is arranged on the copper foil 3 in the upper left region of the insulating layer 1. That is, the heat conductive flexible printed wiring board has the heat source 4 in the region on one side (left side) divided by the planned mountain fold line A. The heat source 4 is not particularly limited, but for example, a high heat generating electronic component such as a light emitting diode (LED), an IC, a regulator is used. The heat source 4 has a connection terminal, and one end of the wiring 2 is connected to this connection terminal via a bridge wire.

熱源4は、電気的に絶縁された状態で銅箔3上に配設される。ただし、熱源4から排出された熱が銅箔3へ効率的に伝達されるように、熱源4及び銅箔3は熱的に接続される。このような配設構造としては、特に限定されないが、例えば熱源4と銅箔3との間にアクリル系放熱シートやシリコン系放熱シートを介在させることにより実現される。 The heat source 4 is arranged on the copper foil 3 in an electrically insulated state. However, the heat source 4 and the copper foil 3 are thermally connected so that the heat discharged from the heat source 4 is efficiently transferred to the copper foil 3. Although such an arrangement structure is not particularly limited, for example, it is realized by interposing an acrylic heat dissipation sheet or a silicon heat dissipation sheet between the heat source 4 and the copper foil 3.

(ヒートシンク部)
ヒートシンク部5は、絶縁層1の右下領域の銅箔3上に配設される。つまり、熱伝導性フレキシブルプリント配線板は、山折り予定線Aで分断される他方側の領域(右側)にヒートシンク部5を有する。ヒートシンク部5は、熱源4から離間した位置かつ銅箔3上に配設される。ヒートシンク部5には、特に限定されないが、例えば熱伝導グリスを介してヒートシンクが実装される。ヒートシンクは、電子部品用の放熱部品であり、様々な形状・構造のものを用いることができるが、その構成は周知であるのでこれ以上の説明は省略する。
(Heat sink part)
The heat sink portion 5 is arranged on the copper foil 3 in the lower right region of the insulating layer 1. That is, the heat conductive flexible printed wiring board has the heat sink portion 5 on the other side region (right side) divided by the planned mountain fold line A. The heat sink portion 5 is arranged on the copper foil 3 at a position separated from the heat source 4. Although not particularly limited, a heat sink is mounted on the heat sink portion 5 via heat conductive grease, for example. The heat sink is a heat radiating component for electronic components, and various shapes and structures can be used. However, since the configuration thereof is well known, further description will be omitted.

[熱伝導性フレキシブルプリント配線板の使用方法]
当該熱伝導性フレキシブルプリント配線板は、山折り予定線Aで山折りに屈曲した状態で電子機器に設置される。この際、山折りに屈曲した当該熱伝導性フレキシブルプリント配線板は、山折り予定線Aで分断される裏面の一方側の領域と裏面の他方側の領域とが突き合わされた状態となるが、裏面のこれらの領域同士が完全には接触しないようにこれらの領域間にエアギャップを有する構造とする。具体的には、少なくとも熱源4の存在領域が接着剤層で接合された構造とする。より具体的には、当該熱伝導性フレキシブルプリント配線板を屈曲させた状態で、熱源4の裏面領域と熱源4の裏面領域に対向する裏面領域とを接着剤で接合する。つまり、山折り予定線Aで分断される一方側(左側)における熱源4の裏側の銅箔と山折り予定線Aで分断される他方側(右側)における裏面側の銅箔とが接着剤で接合された構造とする。
[How to use the heat conductive flexible printed wiring board]
The heat conductive flexible printed wiring board is installed in an electronic device in a state of being bent in a mountain fold at a planned mountain fold line A. At this time, the heat conductive flexible printed wiring board bent in the mountain fold is in a state in which the area on one side of the back surface divided by the planned mountain fold line A and the area on the other side of the back surface are butted. A structure having an air gap between these regions is formed so that these regions on the back surface do not completely contact each other. Specifically, at least the area where the heat source 4 is present is joined by an adhesive layer. More specifically, the back surface region of the heat source 4 and the back surface region facing the back surface region of the heat source 4 are bonded with an adhesive in a state where the heat conductive flexible printed wiring board is bent. That is, the copper foil on the back side of the heat source 4 on one side (left side) divided by the planned mountain folding line A and the copper foil on the back side on the other side (right side) divided by the planned mountain folding line A are adhesive. The structure will be joined.

[熱伝導性フレキシブルプリント配線板の製造方法]
当該熱伝導性フレキシブルプリント配線板の製造方法は、絶縁層1及びこの絶縁層1の両面に積層される一対の銅箔を有する両面銅貼り板を用い、熱源4を実装し、かつ上記熱源4及び上記熱源から離間した位置に配設されるヒートシンク部5間に連続する上記銅箔連続領域を形成する工程と、上記熱源4を実装し、上記銅箔連続領域を形成した両面銅貼り板を山折り線で山折りに屈曲する工程とを備える。
[Method for manufacturing heat conductive flexible printed wiring board]
The manufacturing method of the heat conductive flexible printed wiring board uses a double-sided copper-clad board having an insulating layer 1 and a pair of copper foils laminated on both surfaces of the insulating layer 1, mounted with a heat source 4, and the heat source 4 described above. And a step of forming the continuous area of the copper foil continuous between the heat sink portions 5 arranged at a position separated from the heat source, and a double-sided copper-clad plate on which the heat source 4 is mounted and the continuous area of the copper foil is formed. And a step of bending into a mountain fold line.

熱源4を実装しかつ銅箔連続領域を形成する工程では、まず絶縁層1の両面に積層される一対の銅箔を有する両面銅貼り板に対して、配線2、表面側の銅箔3及び裏面側の銅箔を残すようにエッチングを行う。次に表面側の銅箔3及び裏面側の銅箔が重畳する位置にスルーホールを形成し、このスルーホールに熱伝導材を充填する。さらにスルーホールの形成と前後して、表面側に形成された銅箔3連続領域上にヒートシンク部5から離間して熱源4を実装する。 In the step of mounting the heat source 4 and forming the copper foil continuous region, first, with respect to the double-sided copper-clad board having a pair of copper foils laminated on both surfaces of the insulating layer 1, the wiring 2, the front-side copper foil 3 and Etching is performed so that the copper foil on the back side is left. Next, a through hole is formed at a position where the front side copper foil 3 and the back side copper foil overlap each other, and the through hole is filled with a heat conductive material. Further, before and after the formation of the through hole, the heat source 4 is mounted on the continuous area of the copper foil 3 formed on the front surface, away from the heat sink portion 5.

山折りに屈曲する工程では、熱源4及びヒートシンク部5を銅箔3連続領域上に配設した両面銅貼り板を、配線2及び熱源4を有する領域とヒートシンク部5を有する領域との間の領域を山折り線として山折りに屈曲する。 In the step of bending into a mountain fold, a double-sided copper-clad plate in which the heat source 4 and the heat sink portion 5 are arranged on the continuous area of the copper foil 3 is provided between the area having the wiring 2 and the heat source 4 and the area having the heat sink portion 5. Bend into a mountain fold with the region as a mountain fold line.

<利点>
当該熱伝導性フレキシブルプリント配線板は、表面側の銅箔3上に熱源4及びヒートシンク部5を山折り予定線Aを挟んで離間して備え、かつ銅箔3が山折り予定線Aを跨いで形成されている。そのため、当該熱伝導性フレキシブルプリント配線板を山折り予定線Aで山折りして電子機器に設置する場合に、山折りに屈曲した部分を超えて熱源4からヒートシンク部5へ排熱を伝達させることができる。また、山折りに屈曲した当該熱伝導性フレキシブルプリント配線板は、山折りに屈曲した状態でさらに別の方向へ屈曲可能であるので、エアギャップを有する多層フレキシブルプリント配線板のごとく様々な用途に利用することができる。
<Advantages>
The heat conductive flexible printed wiring board is provided with a heat source 4 and a heat sink portion 5 on a front surface side of the copper foil 3 with a planned mountain fold line A interposed therebetween, and the copper foil 3 straddles the mountain fold planned line A. Is formed of. Therefore, when the heat conductive flexible printed wiring board is mountain-folded along the mountain-folding planned line A and installed in an electronic device, the exhaust heat is transmitted from the heat source 4 to the heat sink portion 5 beyond the portion bent in the mountain-fold. be able to. Further, since the heat conductive flexible printed wiring board bent in the mountain fold can be bent in another direction in the state bent in the mountain fold, it can be used in various applications such as a multilayer flexible printed wiring board having an air gap. Can be used.

[その他の実施形態]
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other Embodiments]
The embodiments disclosed this time are to be considered as illustrative in all points and not restrictive. The scope of the present invention is not limited to the configurations of the above-described embodiments, but is shown by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope. It

上記実施形態では、スルーホールが、銅箔3及び裏面側の銅箔間にある絶縁層1に形成されるものを説明したが、銅箔3及び裏面側の銅箔が重畳する位置であれば、どの位置にスルーホールを形成してもよい。例えば、図2の熱伝導性フレキシブルプリント配線板のように、絶縁層1の左上にある熱源4の下部領域、絶縁層1の右下にあるヒートシンク部5の下部領域及び絶縁層1の右上にある領域の全てのスルーホール領域8にスルーホールを形成してもよいし、これらのスルーホール領域8の内、少なくともいずれかの領域にスルーホールを形成してもよい。ただし、熱源4の排熱を速やかに分散させること及び排熱を速やかにヒートシンク部5に伝送することを考慮すれば、少なくとも絶縁層1の左上にある熱源4の下部領域及び絶縁層1の右下にあるヒートシンク部5の下部領域のそれぞれにスルーホールを形成するのが好ましい。 In the above embodiment, the through hole is described as being formed in the insulating layer 1 between the copper foil 3 and the copper foil on the back surface side, but if the copper foil 3 and the copper foil on the back surface overlap each other, The through hole may be formed at any position. For example, as in the heat conductive flexible printed wiring board of FIG. 2, the lower region of the heat source 4 at the upper left of the insulating layer 1, the lower region of the heat sink portion 5 at the lower right of the insulating layer 1, and the upper right of the insulating layer 1 are provided. Through holes may be formed in all of the through hole regions 8 of a certain region, or through holes may be formed in at least one of these through hole regions 8. However, considering that the exhaust heat of the heat source 4 is quickly dispersed and that the exhaust heat is quickly transmitted to the heat sink portion 5, at least the lower region of the heat source 4 at the upper left of the insulating layer 1 and the right side of the insulating layer 1 are located. It is preferable to form a through hole in each of the lower regions of the underlying heat sink portion 5.

上記実施形態では、絶縁層1に、山折り予定線Aに沿って上下の短辺に到達しない長さの貫通孔7が形成されているものを説明したが、貫通孔7が形成されていなくてもよい。 In the above-described embodiment, the insulating layer 1 is described as having the through holes 7 having a length that does not reach the upper and lower short sides along the planned mountain fold line A, but the through holes 7 are not formed. May be.

上記実施形態では、山折り予定線Aで分断される裏面の一方側の領域と裏面の他方側の領域とが完全には接触しないように、熱伝導性フレキシブルプリント配線板を屈曲させた状態で接着剤により接合した構成を説明したが、接着剤で接合した構成に限定されない。例えば、屈曲した際の絶縁層1の裏面間にアクリル系放熱シートやシリコン系放熱シート等の放熱シートを介在させた構成としてもよい。 In the above-described embodiment, the heat conductive flexible printed wiring board is bent so that the region on one side of the back surface and the region on the other side of the back surface divided by the planned mountain fold line A are not completely in contact with each other. Although the configuration of joining with an adhesive has been described, the configuration is not limited to the configuration of joining with an adhesive. For example, a configuration may be adopted in which a heat dissipation sheet such as an acrylic heat dissipation sheet or a silicon heat dissipation sheet is interposed between the back surfaces of the insulating layer 1 when bent.

上記実施形態では、絶縁層1の左右中央かつ上下方向と平行に形成された山折り予定線Aにおいて、絶縁層1の左右の長辺が重なるように山折りに屈曲するものを説明したが、山折りの方向はこのようなものに限定されない。例えば、絶縁層が、上下中央かつ左右方向と平行に形成された山折り予定線を有し、上下の短辺が重なるように山折りに屈曲可能となった構成であってもよい。 In the above-described embodiment, the mountain-folding planned line A formed in the center of the insulating layer 1 in the left-right direction and in parallel with the vertical direction is bent in the mountain-fold so that the left and right long sides of the insulating layer 1 overlap. The direction of the mountain fold is not limited to this. For example, the insulating layer may have a planned mountain fold line formed in the center of the upper and lower sides and parallel to the left and right direction, and may be bendable in the mountain fold so that the upper and lower short sides overlap.

以上のように、本発明の熱伝導性フレキシブルプリント配線板は熱源の放熱を効果的に促進できる。このため携帯端末の可動部等に設置される配線板として好適に使用できる。 As described above, the heat conductive flexible printed wiring board of the present invention can effectively promote the heat dissipation of the heat source. Therefore, it can be suitably used as a wiring board installed in a movable part of a mobile terminal.

1 絶縁層
2 配線
3 銅箔
4 熱源
5 ヒートシンク部
6 ターミナルコネクタ
7 貫通孔
8 スルーホール領域
A 山折り予定線
1 Insulation Layer 2 Wiring 3 Copper Foil 4 Heat Source 5 Heat Sink Section 6 Terminal Connector 7 Through Hole 8 Through Hole Area A Planned Mountain Fold Line

Claims (7)

絶縁層とこの絶縁層の両面に積層される一対の銅箔とを有する両面銅貼り板を用いる熱伝導性フレキシブルプリント配線板であって、
表面側に実装される熱源と、
上記熱源から離間した位置かつ表面に配設されるヒートシンク部と、
上記熱源及びヒートシンク部間に連続する上記銅箔連続領域と
を備え、
山折り予定線を有し、
上記山折り予定線の一方側の領域に上記熱源を有し、上記山折り予定線の他方側の領域に上記ヒートシンク部を有し、上記一方側の領域の裏面側と、上記山折り予定線で山折りされることで上記一方側の領域の裏面側に対向する上記他方側の領域の面とが接着剤層で接合される熱伝導性フレキシブルプリント配線板。
A heat conductive flexible printed wiring board using a double-sided copper-clad board having an insulating layer and a pair of copper foils laminated on both surfaces of the insulating layer,
A heat source mounted on the front side,
A heat sink portion disposed on the surface at a position separated from the heat source,
The copper foil continuous region continuous between the heat source and the heat sink,
It has a planned mountain fold line,
Has the heat source on one side of the region of the mountain fold scheduled lines, possess the heat sink portion to the other side of the region of the mountain fold scheduled line, and the back-side region of the one side, the mountain fold scheduled line thermally conductive flexible printed wiring board and the surface of the other side of the area facing the rear surface side of Ru are bonded by adhesive layer in a mountain-folded by the one side by area.
上記山折り予定線の一方側に上記銅箔からなる配線をさらに有し、
上記配線が配設される領域の裏面側の銅箔が存在しない請求項1に記載の熱伝導性フレキシブルプリント配線板。
Further comprising a wiring made from above Kidohaku on one side of the mountain fold scheduled line,
The heat conductive flexible printed wiring board according to claim 1, wherein there is no copper foil on the back surface side of the region where the wiring is arranged.
上記銅箔連続領域が、
上記山折り予定線の他方側におけるヒートシンク部に連続する領域と、
上記山折り予定線の一方側における上記熱源に連続し、かつ上記ヒートシンク部連続領域から伸びる領域と
を有する請求項2に記載の熱伝導性フレキシブルプリント配線板。
The copper foil continuous area,
An area continuous to the heat sink on the other side of the planned mountain fold line,
The heat conductive flexible printed wiring board according to claim 2, further comprising: a region that is continuous with the heat source on one side of the planned mountain fold line and that extends from the heat sink portion continuous region.
上記山折り予定線に沿って貫通口を有する請求項2又は請求項3に記載の熱伝導性フレキシブルプリント配線板。 The heat conductive flexible printed wiring board according to claim 2, wherein the heat conductive flexible printed wiring board has a through hole along the planned mountain fold line. 請求項2、請求項3又は請求項4に記載の熱伝導性フレキシブルプリント配線板を山折り予定線で山折りしてなる熱伝導性配線構造体。 A heat conductive wiring structure formed by mountain-folding the heat-conductive flexible printed wiring board according to claim 2, 3, or 4 along a mountain-folding planned line. 記接着剤層で接合されている請求項5に記載の熱伝導性配線構造体。
Thermally conductive interconnect structure according to claim 5 which is bonded above Kise' adhesive layer.
請求項5に記載の熱伝導性配線構造体の製造方法であって、
絶縁層及びこの絶縁層の両面に積層される一対の銅箔を有する両面銅貼り板を用い、熱源を実装し、かつ上記熱源及び上記熱源から離間した位置に配設されるヒートシンク部間に連続する上記銅箔連続領域を形成する工程と、
上記熱源を実装し、上記銅箔連続領域を形成した両面銅貼り板を山折り線で山折りに屈曲する工程と
を備える熱伝導性フレキシブルプリント配線板の製造方法。
The method for manufacturing the heat conductive wiring structure according to claim 5,
Using a double-sided copper-clad plate having an insulating layer and a pair of copper foils laminated on both sides of the insulating layer, a heat source is mounted and continuous between the heat source and a heat sink portion arranged at a position separated from the heat source. A step of forming the copper foil continuous region to
A method for manufacturing a heat conductive flexible printed wiring board, comprising the step of mounting the heat source and bending the double-sided copper-clad plate on which the copper foil continuous region is formed into mountain fold lines.
JP2016137300A 2016-07-12 2016-07-12 Heat conductive flexible printed wiring board and method for manufacturing heat conductive flexible printed wiring board Active JP6733934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016137300A JP6733934B2 (en) 2016-07-12 2016-07-12 Heat conductive flexible printed wiring board and method for manufacturing heat conductive flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016137300A JP6733934B2 (en) 2016-07-12 2016-07-12 Heat conductive flexible printed wiring board and method for manufacturing heat conductive flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP2018010911A JP2018010911A (en) 2018-01-18
JP6733934B2 true JP6733934B2 (en) 2020-08-05

Family

ID=60993896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137300A Active JP6733934B2 (en) 2016-07-12 2016-07-12 Heat conductive flexible printed wiring board and method for manufacturing heat conductive flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP6733934B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128418A (en) * 2002-10-07 2004-04-22 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
US20060250780A1 (en) * 2005-05-06 2006-11-09 Staktek Group L.P. System component interposer
JP2007294619A (en) * 2006-04-24 2007-11-08 Nec Saitama Ltd Heat dissipation structure
JP2011091142A (en) * 2009-10-21 2011-05-06 Smk Corp Flex rigid substrate
JP2012060043A (en) * 2010-09-13 2012-03-22 Nikon Corp Connection body and single-sided flexible wiring board

Also Published As

Publication number Publication date
JP2018010911A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP5388598B2 (en) Element heat dissipation structure
US9516748B2 (en) Circuit board, electronic module and illuminating device having the circuit board, and method for manufacturing the circuit board
JP2013540371A5 (en)
CN106255308B (en) Printed circuit board and electronic device
WO2016162991A1 (en) Semiconductor device and semiconductor device manufacturing method
JP4992532B2 (en) Heat dissipation board and manufacturing method thereof
US10465894B2 (en) Optical module
JP2010109036A (en) Printed circuit board and circuit device
JP2011108924A (en) Heat conducting substrate and method for mounting electronic component on the same
JP5885630B2 (en) Printed board
JP2013138068A (en) Multilayer printed board
JP6249931B2 (en) Circuit board, circuit board heat dissipation structure, and circuit board manufacturing method
JP2008218618A (en) Printed circuit board
WO2012066925A1 (en) Electronic device
JP6420966B2 (en) WIRING BOARD, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT DEVICE
JP2011091142A (en) Flex rigid substrate
JP6733934B2 (en) Heat conductive flexible printed wiring board and method for manufacturing heat conductive flexible printed wiring board
JP2011091152A (en) Power module
JP6686467B2 (en) Electronic component heat dissipation structure
JP2010073943A (en) Electronic circuit device
JP2008227043A (en) Radiating substrate and power source unit using the same
JP2012038894A (en) Substrate module for mounting heat generator, and illumination device
JP2013041789A (en) Connector
TW201532507A (en) Electronic device
JP2008066527A (en) Cooling structure of printed circuit board mounting component

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200703

R150 Certificate of patent or registration of utility model

Ref document number: 6733934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250