JP6729464B2 - Magnetic core, coil unit and wireless power transmission unit - Google Patents

Magnetic core, coil unit and wireless power transmission unit Download PDF

Info

Publication number
JP6729464B2
JP6729464B2 JP2017061790A JP2017061790A JP6729464B2 JP 6729464 B2 JP6729464 B2 JP 6729464B2 JP 2017061790 A JP2017061790 A JP 2017061790A JP 2017061790 A JP2017061790 A JP 2017061790A JP 6729464 B2 JP6729464 B2 JP 6729464B2
Authority
JP
Japan
Prior art keywords
soft magnetic
adhesive layer
magnetic core
magnetic
ribbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017061790A
Other languages
Japanese (ja)
Other versions
JP2018164053A (en
Inventor
功 中畑
功 中畑
光浩 松橋
光浩 松橋
裕之 松元
裕之 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017061790A priority Critical patent/JP6729464B2/en
Publication of JP2018164053A publication Critical patent/JP2018164053A/en
Application granted granted Critical
Publication of JP6729464B2 publication Critical patent/JP6729464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、磁性コア、コイルユニット及びワイヤレス電力伝送ユニットに関する。 The present invention relates to a magnetic core, a coil unit and a wireless power transmission unit.

電源コードを用いずに電力を伝送する技術、いわゆる、ワイヤレス電力伝送技術が注目されつつある。ワイヤレス電力伝送技術は、給電機器から受電機器へ、非接触で電力を供給できることから、電車、電気自動車等の移動体、家電製品、電子機器、無線通信機器、玩具、といったさまざまな製品への応用が期待されている。 A technique for transmitting electric power without using a power cord, that is, a so-called wireless electric power transmission technique is drawing attention. Since wireless power transmission technology can supply power from a power feeding device to a power receiving device in a contactless manner, it is applied to various products such as moving bodies such as trains and electric cars, home appliances, electronic devices, wireless communication devices, and toys. Is expected.

ワイヤレス電力伝送に用いられる装置において、高い電力伝送効率、薄型軽量化、高出力伝送を実現するために、例えば、コイルユニットに具備されるコイルを形成する導体部材や巻線の構造、磁性体の構造や材質の検討がなされている(例えば、特許文献1)。 In a device used for wireless power transmission, in order to realize high power transmission efficiency, thinness and light weight, and high output transmission, for example, the structure of a conductor member or winding forming a coil included in a coil unit, the structure of a magnetic material The structure and material have been studied (for example, Patent Document 1).

例えば、特許文献1に示されるように、フェライトが磁性体として用いられていることが多い。しかしながら、自動車などの移動体またはスマートフォン等携帯機器の場合には、機器に振動、衝撃が加わるため、磁性体の耐振動、耐衝撃性が高いことが望まれるが、フェライトは典型的なセラミックスであり容易に破損する。
また、自動車などの移動体またはスマートフォン等携帯機器においては薄型化、軽量化が望まれているが、薄くするとさらに容易に破損すること、またフェライトは飽和磁束密度が低く、特に高出力な機器においては磁気飽和の懸念から薄型化に限界がある。
For example, as shown in Patent Document 1, ferrite is often used as a magnetic material. However, in the case of mobile devices such as automobiles or mobile devices such as smartphones, vibration and impact are applied to the device, so it is desirable that the magnetic material has high vibration resistance and shock resistance, but ferrite is a typical ceramic. Yes easily damaged.
In mobile devices such as automobiles or mobile devices such as smartphones, it is desired to make them thinner and lighter, but if they are made thinner, they will be more easily damaged.Ferrite has a low saturation magnetic flux density, especially in devices with high output. Has a limit in thinning due to magnetic saturation.

特許文献2には耐衝撃性を高め、落下等の衝撃により破損しないワイヤレス電力伝送向け磁性コアが開示されている。しかしながら、開示されているワイヤレス電力伝送向け磁性コアはフェライト樹脂組成物成型体であり、透磁率が5〜15と低く、またフェライトを用いているため飽和磁束密度が低い。低い透磁率のため、インダクタンスを大きくするにはコイルの巻線を多くする必要がある。特に高出力な機器においてはコイルの巻き数が増えると銅損が非常に大きくなり効率は低下する。また飽和磁束密度が低いため高出力機器で用いるためには大きな磁性コア断面積が必要となり、機器の小型化に適さない。 Patent Document 2 discloses a magnetic core for wireless power transmission, which has high impact resistance and is not damaged by an impact such as a drop. However, the disclosed magnetic core for wireless power transmission is a ferrite resin composition molded body and has a low magnetic permeability of 5 to 15, and since ferrite is used, the saturation magnetic flux density is low. Due to the low magnetic permeability, it is necessary to increase the number of coil windings in order to increase the inductance. Particularly in a high-power device, as the number of coil turns increases, copper loss becomes very large and efficiency decreases. Also, since the saturation magnetic flux density is low, a large magnetic core cross-sectional area is required for use in high-power equipment, which is not suitable for downsizing equipment.

非接触伝送機器の薄型化においては、磁性コアを薄くしても磁気飽和しないよう磁性体の飽和磁束密度が高いことが望ましい。高い飽和磁束密度を持つ軟磁性体としては金属系軟磁性体が知られているが、金属系軟磁性体は電気抵抗率が非常に低く、ワイヤレス電力伝送用磁性コアとして用いる場合、渦電流による損失が非常に大きく効率が低下するという問題がある。 In thinning non-contact transmission equipment, it is desirable that the magnetic material has a high saturation magnetic flux density so that magnetic saturation does not occur even if the magnetic core is thinned. A metal-based soft magnetic material is known as a soft magnetic material having a high saturation magnetic flux density, but the metal-based soft magnetic material has an extremely low electric resistivity, and when used as a magnetic core for wireless power transmission, eddy current causes There is a problem that the loss is very large and the efficiency is reduced.

渦電流損失の影響を下げ効率を向上する方法として、特許文献3のような複数の小片に分割された軟磁性薄帯を用いた磁性コアが開示されている。また、特許文献4に渦電流損失を小さくする共に、透磁率の低下を極力抑え、また小片分割時に問題となる小片の飛散を改善するための構造が開示されている。なお、小片化あるいは小片の分割は、コイル面をXY面としたとき、XY面に直交する方向であるZ方向の磁束密度変化による渦電流損を小さくする目的で行われるものである。
特許文献3及び4に開示されている磁性コアは、磁性体の飽和磁束密度が大きいため非常に薄く、かつ金属系軟磁性材料の課題であった渦電流損失を改善したものであり、薄型軽量化、高伝送効率化に適したものである。しかし、磁性体層の厚みは30μmと非常に薄く高出力伝送においては磁気飽和が起きるため、伝送できる出力に制限がある。
As a method of reducing the effect of eddy current loss and improving efficiency, a magnetic core using a soft magnetic ribbon divided into a plurality of small pieces is disclosed as in Patent Document 3. Further, Patent Document 4 discloses a structure for reducing the eddy current loss, suppressing the decrease in magnetic permeability as much as possible, and improving the scattering of small pieces which is a problem when dividing the small pieces. It should be noted that the division into small pieces or division of small pieces is performed for the purpose of reducing eddy current loss due to a change in magnetic flux density in the Z direction, which is a direction orthogonal to the XY plane, when the coil surface is the XY plane.
The magnetic cores disclosed in Patent Documents 3 and 4 are very thin because the saturation magnetic flux density of the magnetic body is large, and have improved eddy current loss, which was a problem of metal-based soft magnetic materials. It is suitable for high efficiency and high transmission efficiency. However, the magnetic layer has a very small thickness of 30 μm, and magnetic saturation occurs in high-power transmission, so that the output that can be transmitted is limited.

高出力伝送において磁気飽和を防ぐためには軟磁性薄帯を複数層積層することが有効であり、そのような構造として特許文献5に軟磁性薄帯を両面テープを用いて複数積層した磁性シートが開示されている。 In order to prevent magnetic saturation in high power transmission, it is effective to laminate a plurality of soft magnetic ribbons. As such a structure, a magnetic sheet obtained by laminating a plurality of soft magnetic ribbons by using a double-sided tape is disclosed in Patent Document 5. It is disclosed.

特開2012−70557号公報JP 2012-70557 A 国際公開第2015/064694号International Publication No. 2015/064694 特許第4836749号公報Japanese Patent No. 4836749 特開2011−134959号公報JP, 2011-134959, A 特表2015−505166号公報Japanese Patent Publication No. 2015-505166

特許文献5に開示されている両面テープで積層した構造では積層していないものに比べ、磁性層の厚みが厚く、高出力伝送においても磁気飽和しにくい。しかし、軟磁性薄帯毎に非磁性である接着層が存在しており、その厚み分、磁性コアが厚くなってしまうという問題がある。また、特許文献5で用いられているような両面テープは非常に高価であるため、磁性コアの価格が高くなってしまうという問題がある。 In the structure in which the double-sided tape is laminated, which is disclosed in Patent Document 5, the magnetic layer is thicker than that in which the double-sided tape is not laminated, and magnetic saturation is less likely to occur even in high-power transmission. However, since there is a non-magnetic adhesive layer for each soft magnetic ribbon, there is a problem that the magnetic core becomes thicker by the thickness thereof. Further, since the double-sided tape used in Patent Document 5 is very expensive, there is a problem that the price of the magnetic core becomes high.

かかる問題を解決するため、仮に、軟磁性薄帯間に配置する接着層を用いないとすると、軟磁性薄帯同士が直接接触することになり、直接接触する2枚の軟磁性薄帯は軟磁性薄帯が厚くなること、すなわち、厚み方向の断面積が大きくなることに相当するから、接着層がある場合に比べて渦電流が大きくなると当業者は予想する。また、接着層が全くない場合、小片が自由に動くことになり、磁性コアとしての形状を保つことができず、また外周が保護層で包まれている場合にも接着層が全くなければ、保護層内部で小片が自由に動くため、磁性体が偏るなどして特性に悪影響があると当業者は予想する。 In order to solve this problem, if the adhesive layer disposed between the soft magnetic ribbons is not used, the soft magnetic ribbons come into direct contact with each other, and the two soft magnetic ribbons that are in direct contact with each other are soft. Those skilled in the art expect that the magnetic ribbon becomes thicker, that is, the cross-sectional area in the thickness direction becomes larger, so that the eddy current becomes larger than that when the adhesive layer is provided. Also, if there is no adhesive layer at all, the small piece will move freely, the shape as a magnetic core cannot be maintained, and even if the outer periphery is wrapped with a protective layer, if there is no adhesive layer, A person skilled in the art would expect that since the small pieces move freely inside the protective layer, the magnetic material may be biased and the characteristics may be adversely affected.

本発明者は、複数の軟磁性薄帯を備える磁性コアであって、複数の軟磁性薄帯間のうちの一部の軟磁性薄帯間に接着層を備えていない磁性コアであっても、全ての軟磁性薄帯間に接着層を備えた磁性コアと同等程度の特性が得られるという、当業者の常識を覆す結果を得て、さらに鋭意検討することにより本発明に想到したのである。 The present inventor has proposed a magnetic core provided with a plurality of soft magnetic ribbons, and a magnetic core not provided with an adhesive layer between some soft magnetic ribbons among the plurality of soft magnetic ribbons. The inventors arrived at the present invention by earnestly studying the results, which overturned the common sense of those skilled in the art that characteristics equivalent to those of a magnetic core provided with an adhesive layer between all soft magnetic ribbons were obtained. ..

本発明は上記問題に鑑みてなされたものであり、低コスト化構造を有する磁性コア、コイルユニット及びワイヤレス電力伝送ユニットを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a magnetic core, a coil unit, and a wireless power transmission unit that have a low cost structure.

上記課題を解決するため、以下の手段を提供する。
(1)本発明の一態様に係る磁性コアは、小片に分割された複数の軟磁性薄帯と、隣り合う軟磁性薄帯間に有する接着層とを備えた積層体を含む磁性コアであって、前記積層体中に、接着層を介さずに接触する軟磁性薄帯のペアを少なくとも一組備える。
To solve the above problems, the following means are provided.
(1) A magnetic core according to one aspect of the present invention is a magnetic core including a laminated body including a plurality of soft magnetic ribbons divided into small pieces and an adhesive layer provided between adjacent soft magnetic ribbons. Then, at least one pair of soft magnetic ribbons that are in contact with each other without an adhesive layer is provided in the laminate.

(2)上記態様において、各軟磁性薄帯の少なくとも一方の面には接着層を備えてもよい。 (2) In the above aspect, an adhesive layer may be provided on at least one surface of each soft magnetic ribbon.

(3)上記態様において、前記接着層の層数を前記軟磁性薄帯の層数で割った値が0.75以下であってもよい。 (3) In the above aspect, a value obtained by dividing the number of layers of the adhesive layer by the number of layers of the soft magnetic ribbon may be 0.75 or less.

(4)本発明の一態様に係るコイルユニットは、上記態様に係る磁性コアと、該磁性コア上に配置するコイルとを備える。 (4) A coil unit according to one aspect of the present invention includes the magnetic core according to the above aspect and a coil arranged on the magnetic core.

(5)本発明の一態様にワイヤレス電力伝送ユニットは、上記態様に係るコイルユニットを備える。 (5) A wireless power transmission unit according to one aspect of the present invention includes the coil unit according to the above aspect.

本発明によれば、従来よりも接着層の数を低減した磁性コア、コイルユニット及びワイヤレス電力伝送ユニットを提供できる。 According to the present invention, it is possible to provide a magnetic core, a coil unit, and a wireless power transmission unit in which the number of adhesive layers is reduced as compared with the related art.

(a)は、本発明の一実施形態にかかる磁性コアの断面模式図であり、図1(b)は従来の磁性コアの断面模式図である。1A is a schematic sectional view of a magnetic core according to an embodiment of the present invention, and FIG. 1B is a schematic sectional view of a conventional magnetic core. (a)は、本発明の磁性コアの例を示す断面模式図であり、(b)は、発明の磁性コアの例を示す断面模式図であり、(c)は、発明の磁性コアの例を示す断面模式図であり、(d)は、発明の磁性コアの例を示す断面模式図であり、(e)は、本発明の磁性コアの例を示す断面模式図である。(A) is a schematic cross-sectional view showing an example of the magnetic core of the present invention, (b) is a schematic cross-sectional view showing an example of the magnetic core of the present invention, and (c) is an example of the magnetic core of the present invention. 2D is a schematic sectional view showing an example of the magnetic core of the present invention, and FIG. 3E is a schematic sectional view showing an example of the magnetic core of the present invention. (a)は、本発明の一実施形態にかかるコイルユニットの側面模式図であり、(b)は、コイル側から見たコイルユニットの平面図である。(A) is a side surface schematic diagram of the coil unit concerning one embodiment of the present invention, and (b) is a top view of the coil unit seen from the coil side. 他の実施形態にかかるコイルユニットであって、コイル側から見たコイルユニットの平面図である。It is a coil unit concerning other embodiments, and is a top view of the coil unit seen from the coil side. 本発明の一実施形態にかかるコイルユニットを、受電コイルユニット及び送電コイルユニットとして用いた、本発明の一実施形態に係るワイヤレス電力伝送ユニットの側面模式図である。It is a side surface schematic diagram of the wireless electric power transmission unit concerning one embodiment of the present invention which used the coil unit concerning one embodiment of the present invention as an electric power receiving coil unit and an electric power transmitting coil unit. 本発明の他の実施形態にかかるコイルユニットを、受電コイルユニット及び送電コイルユニットとして用いた、本発明の他の実施形態に係るワイヤレス電力伝送ユニットの側面模式図である。FIG. 9 is a schematic side view of a wireless power transmission unit according to another embodiment of the present invention, which uses a coil unit according to another embodiment of the present invention as a power receiving coil unit and a power transmitting coil unit. 実施例の作製方法を説明するための断面模式図である。FIG. 6 is a schematic cross-sectional view for explaining the manufacturing method of the example. 実施例及び比較例の送電効率ηの大きさを示すグラフである。7 is a graph showing the magnitude of power transmission efficiency η in Examples and Comparative Examples. 実施例及び比較例の送電効率測定時に磁性コアの温度上昇を示すグラフである。It is a graph which shows the temperature rise of a magnetic core at the time of power transmission efficiency measurement of an Example and a comparative example.

以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。 Hereinafter, the present embodiment will be described in detail with reference to the drawings. In the drawings used in the following description, in order to make the features of the present invention easy to understand, there are cases where features are enlarged for the sake of convenience, and the dimensional ratios of the respective components may be different from the actual ones. is there. The materials, dimensions, and the like exemplified in the following description are merely examples, and the present invention is not limited to them, and can be appropriately modified and implemented within the scope of the effects of the present invention.

[磁性コア]
図1(a)は、一実施形態にかかる磁性コアの断面模式図であり、図1(b)は従来の磁性コアの断面模式図である。
図1(a)に示す磁性コア10は、小片に分割された複数の軟磁性薄帯1a〜1jと、隣り合う軟磁性薄帯間に有する接着層2a〜2eとを備えた積層体Mを含む磁性コア10であって、積層体M中に、接着層を介さずに接触する軟磁性薄帯のペアとして、軟磁性薄帯1bと軟磁性薄帯1c、軟磁性薄帯1dと軟磁性薄帯1e、軟磁性薄帯1fと軟磁性薄帯1g、軟磁性薄帯1hと軟磁性薄帯1iの4組備えている。
また、図1に示す磁性コア10は、積層体の上面及び下面のそれぞれに保護膜3a、3bを備えている。
本発明の磁性コアは通常の磁性コアと同様に、軟磁性薄帯と接着層とを主要な部材として有するが、本発明の効果を奏する範囲で他の構成要素を含んでもよい。本発明の磁性コアは他の構成要素を備えない場合には、軟磁性薄帯と接着層とからなるものである。
[Magnetic core]
FIG. 1A is a schematic sectional view of a magnetic core according to one embodiment, and FIG. 1B is a schematic sectional view of a conventional magnetic core.
The magnetic core 10 shown in FIG. 1A is a laminated body M including a plurality of soft magnetic ribbons 1a to 1j divided into small pieces and adhesive layers 2a to 2e between adjacent soft magnetic ribbons. The magnetic core 10 including the soft magnetic ribbon 1b and the soft magnetic ribbon 1c, and the soft magnetic ribbon 1d and the soft magnetic layer, as a pair of the soft magnetic ribbons that are in contact with each other in the laminated body M without an adhesive layer. Four sets of a thin ribbon 1e, a soft magnetic thin strip 1f, a soft magnetic thin strip 1g, a soft magnetic thin strip 1h and a soft magnetic thin strip 1i are provided.
The magnetic core 10 shown in FIG. 1 includes protective films 3a and 3b on the upper surface and the lower surface of the laminated body, respectively.
The magnetic core of the present invention has the soft magnetic ribbon and the adhesive layer as the main members, like the ordinary magnetic core, but may include other components within the range that the effects of the present invention are exhibited. The magnetic core of the present invention comprises a soft magnetic ribbon and an adhesive layer when it is not provided with other components.

本発明の磁性コアは、隣り合う軟磁性薄帯のペアのうち、少なくとも一組は接着層を介さずに接触している。言い換えると、本発明の磁性コアは、隣り合う軟磁性薄帯間のすべてに接着層を有する構成ではなく、隣り合う軟磁性薄帯間には接着層を有さないところがある。
すなわち、図1に示す磁性コア10の場合、軟磁性薄帯1aと軟磁性薄帯1bとの間には接着層2aを有し、軟磁性薄帯1cと軟磁性薄帯1dとの間には接着層2bを有し、軟磁性薄帯1eと軟磁性薄帯1fとの間には接着層2cを有し、軟磁性薄帯1gと軟磁性薄帯1hとの間には接着層2dを有し、軟磁性薄帯1iと軟磁性薄帯1jとの間には接着層2eを有するものの、軟磁性薄帯1bと軟磁性薄帯1cとの間、軟磁性薄帯1dと軟磁性薄帯1eとの間、軟磁性薄帯1fと軟磁性薄帯1gとの間、軟磁性薄帯1hと軟磁性薄帯1iの間とには接着層を有さない。
隣り合う軟磁性薄帯間に接着層を有さない場合、隣り合う軟磁性薄帯は接触する構成となる。図1に示す磁性コア10は、接着層を介さずに接触している軟磁性薄帯のペアが4組備えた場合である。
In the magnetic core of the present invention, at least one of the pair of adjacent soft magnetic ribbons is in contact without an adhesive layer. In other words, the magnetic core of the present invention does not have an adhesive layer between all adjacent soft magnetic ribbons, but may not have an adhesive layer between adjacent soft magnetic ribbons.
That is, in the case of the magnetic core 10 shown in FIG. 1, the adhesive layer 2a is provided between the soft magnetic ribbon 1a and the soft magnetic ribbon 1b, and between the soft magnetic ribbon 1c and the soft magnetic ribbon 1d. Has an adhesive layer 2b, an adhesive layer 2c between the soft magnetic ribbon 1e and the soft magnetic ribbon 1f, and an adhesive layer 2d between the soft magnetic ribbon 1g and the soft magnetic ribbon 1h. Although the adhesive layer 2e is provided between the soft magnetic ribbon 1i and the soft magnetic ribbon 1j, the soft magnetic ribbon 1d and the soft magnetic ribbon 1d are provided between the soft magnetic ribbon 1b and the soft magnetic ribbon 1c. There is no adhesive layer between the thin ribbon 1e, between the soft magnetic thin strip 1f and the soft magnetic thin strip 1g, and between the soft magnetic thin strip 1h and the soft magnetic thin strip 1i.
When there is no adhesive layer between adjacent soft magnetic ribbons, the adjacent soft magnetic ribbons are in contact with each other. The magnetic core 10 shown in FIG. 1 has four pairs of soft magnetic ribbons that are in contact with each other without an adhesive layer.

本発明の磁性コアは、接着層を介さずに接触する軟磁性薄帯のペアを含む低コスト化構造を有するものである。
本発明の磁性コアによれば、接着層数の減少によりコスト低下、また接着層の厚み減により、従来と同一の機能を保ちつつコアを薄型化でき、小片に分割していることにより面直方向の渦電流損失が低減され、さらに接着層を介さずに積層した部分の面平行方向の損失増大を抑制できるという効果を奏する。
The magnetic core of the present invention has a low-cost structure including a pair of soft magnetic ribbons that are in contact with each other without an adhesive layer.
According to the magnetic core of the present invention, the cost can be reduced by reducing the number of adhesive layers, and the core can be thinned while maintaining the same function as the conventional one by reducing the thickness of the adhesive layer. The effect that the eddy current loss in the direction is reduced, and further the increase in the loss in the plane parallel direction of the laminated portion without the adhesive layer can be suppressed.

これに対して、従来の磁性コアは図1(b)に示す通り、接着層2Aa〜2Ajと共に、積層体MAを構成する10個の軟磁性薄帯1Aa〜1Ajの各軟磁性薄帯間のすべてに接着層を有する構成となっている。
すなわち、軟磁性薄帯1Aaと軟磁性薄帯1Abとの間には接着層2Aaを有し、軟磁性薄帯1Abと軟磁性薄帯1Acとの間には接着層2Abを有し、軟磁性薄帯1Acと軟磁性薄帯1Adとの間には接着層2Acを有し、軟磁性薄帯1Adと軟磁性薄帯1Aeとの間には接着層2Adを有し、軟磁性薄帯1Aeと軟磁性薄帯1Afとの間には接着層2Aeを有し、軟磁性薄帯1Afと軟磁性薄帯1Agとの間には接着層2Afを有し、軟磁性薄帯1Agと軟磁性薄帯1Ahとの間には接着層2Agを有し、軟磁性薄帯1Ahと軟磁性薄帯1Aiとの間には接着層2Ahを有し、軟磁性薄帯1Aiと軟磁性薄帯1Ajとの間には接着層2Aiを有する。
On the other hand, in the conventional magnetic core, as shown in FIG. 1B, between the soft magnetic ribbons of the ten soft magnetic ribbons 1Aa to 1Aj forming the laminated body MA together with the adhesive layers 2Aa to 2Aj. All of them have a bonding layer.
That is, the adhesive layer 2Aa is provided between the soft magnetic ribbon 1Aa and the soft magnetic ribbon 1Ab, and the adhesive layer 2Ab is provided between the soft magnetic ribbon 1Ab and the soft magnetic ribbon 1Ac. An adhesive layer 2Ac is provided between the ribbon 1Ac and the soft magnetic ribbon 1Ad, and an adhesive layer 2Ad is provided between the soft magnetic ribbon 1Ad and the soft magnetic ribbon 1Ae. An adhesive layer 2Ae is provided between the soft magnetic ribbon 1Af and an adhesive layer 2Af between the soft magnetic ribbon 1Af and the soft magnetic ribbon 1Ag, and the soft magnetic ribbon 1Ag and the soft magnetic ribbon are provided. The adhesive layer 2Ag is provided between the soft magnetic ribbon 1Ah and the soft magnetic ribbon 1Ai, and the adhesive layer 2Ah is provided between the soft magnetic ribbon 1Ah and the soft magnetic ribbon 1Ai. Has an adhesive layer 2Ai.

各軟磁性薄帯の少なくとも一方の面(上面又は下面)には接着層を備えることが好ましい。
軟磁性薄帯の少なくとも一方の面に接着層を備えていれば、軟磁性薄帯の小片は接着層によって固定されるため、特性が安定するからである。
An adhesive layer is preferably provided on at least one surface (upper surface or lower surface) of each soft magnetic ribbon.
This is because if the adhesive layer is provided on at least one surface of the soft magnetic ribbon, the small pieces of the soft magnetic ribbon are fixed by the adhesive layer, so that the characteristics are stable.

接着層の層数を軟磁性薄帯の層数で割った値が0.75以下であることが好ましい。
かかる構成であれば、従来の構成より接着層の層数がかなり少ないため、コスト低減効果が大きいからである。
接着層の層数を軟磁性薄帯の層数で割った値の下限を0.5とすることができる。
A value obtained by dividing the number of adhesive layers by the number of soft magnetic ribbons is preferably 0.75 or less.
With such a configuration, the number of adhesive layers is considerably smaller than that of the conventional configuration, and the cost reduction effect is large.
The lower limit of the value obtained by dividing the number of adhesive layers by the number of soft magnetic ribbons can be set to 0.5.

図1(a)に示した磁性コア10の場合、接着層の層数は5層であり、軟磁性薄帯の層数は10層であるから、接着層の層数を軟磁性薄帯の層数で割った値は0.5である。 In the case of the magnetic core 10 shown in FIG. 1A, the number of adhesive layers is 5 and the number of soft magnetic ribbons is 10. Therefore, the number of adhesive layers is equal to the number of soft magnetic ribbons. The value divided by the number of layers is 0.5.

図2に、本発明の磁性コアの例と、本発明ではない磁性コアの例を示す。図2に示す磁性コアの例では全て、軟磁性薄帯と接着層とからなる積層体の外側が保護層3で囲繞されている。
保護層3としては、アラミドフィルム、PETフィルム、ポリイミドフィルム、PPSフィルム等を用いることができる。
FIG. 2 shows an example of the magnetic core of the present invention and an example of the magnetic core not of the present invention. In all the examples of the magnetic core shown in FIG. 2, the protective layer 3 surrounds the outer side of the laminated body including the soft magnetic ribbon and the adhesive layer.
As the protective layer 3, an aramid film, a PET film, a polyimide film, a PPS film or the like can be used.

磁性コア用軟磁性薄帯としては公知の材料のものを用いることができ、例えば、アモルファス合金、微結晶合金、パーマロイ等の磁性合金のものなどを用いることができる。アモルファス合金材料からなるものとしては例えば、Fe基アモルファス軟磁性材料、Co基アモルファス材料からなるものなどがあり、また、微結晶合金材料からなるものとしては例えば、Fe基ナノ結晶軟磁性材料からなるものがある。 As the soft magnetic ribbon for the magnetic core, a known material can be used, for example, an amorphous alloy, a microcrystalline alloy, a magnetic alloy such as permalloy, or the like can be used. The amorphous alloy material includes, for example, an Fe-based amorphous soft magnetic material and a Co-based amorphous material, and the microcrystalline alloy material includes, for example, an Fe-based nanocrystalline soft magnetic material. There is something.

接着層としては公知のものを用いることができ、例えば、PETフィルムの表面にアクリル系接着剤が塗布されたもの、ポリエステルフィルムにシリコーン系接着剤が塗布されたものなどを例示できる。 As the adhesive layer, a known adhesive layer can be used, and examples thereof include those in which an acrylic adhesive is applied to the surface of a PET film, and those in which a silicone adhesive is applied to a polyester film.

図2(a)に示す磁性コアは、軟磁性薄帯が6層で、接着層が3層の場合であり、積層体の上面及び下面のいずれの端面にも接着層を有さず、隣り合う軟磁性薄帯間に接着層を有する例であり、間に接着層を有する軟磁性薄帯のペアと間に接着層を有さない軟磁性薄帯のペアとが交互に配置する場合である。この例は、間に接着層を有さない軟磁性薄帯のペアを2組有するから本発明の磁性コアである。また、この例では、接着層の層数を軟磁性薄帯の層数で割った値は0.5である。 The magnetic core shown in FIG. 2A is a case where the soft magnetic ribbon has 6 layers and the adhesive layers have 3 layers, and there is no adhesive layer on either the upper surface or the lower surface of the laminated body, It is an example of having an adhesive layer between matching soft magnetic ribbons, in which a pair of soft magnetic ribbons having an adhesive layer between them and a pair of soft magnetic ribbons having no adhesive layer between them are alternately arranged. is there. This example is the magnetic core of the present invention because it has two pairs of soft magnetic ribbons having no adhesive layer between them. In this example, the value obtained by dividing the number of adhesive layers by the number of soft magnetic ribbons is 0.5.

図2(b)に示す磁性コアは、左側の例も右側の例も軟磁性薄帯が5層で、接着層が3層の場合である。
左側の例は積層体の一方の端面(上面)に接着層を有し、間に接着層を有する軟磁性薄帯のペアと間に接着層を有さない軟磁性薄帯のペアとが交互に配置する場合である。この例は、間に接着層を有さない軟磁性薄帯のペアを2組有するから本発明の磁性コアである。また、この例では、接着層の層数を軟磁性薄帯の層数で割った値は0.6である。
一方、右側の例は積層体の上面及び下面のいずれの端面にも接着層を有さず、上側から順に、間に接着層を有する軟磁性薄帯のペア、間に接着層を有さない軟磁性薄帯のペア、間に接着層を有する軟磁性薄帯のペア、間に接着層を有する軟磁性薄帯のペアが配置する場合である。この例は、間に接着層を有さない軟磁性薄帯のペアを1組有するから本発明の磁性コアである。また、この例では、接着層の層数を軟磁性薄帯の層数で割った値は0.6である。
In the magnetic core shown in FIG. 2B, the examples on the left side and the example on the right side each have five soft magnetic ribbons and three adhesive layers.
In the example on the left side, a pair of soft magnetic ribbons that have an adhesive layer on one end surface (upper surface) of the laminate and have an adhesive layer between them alternate with a pair of soft magnetic ribbons that do not have an adhesive layer between them. This is the case when arranging in. This example is the magnetic core of the present invention because it has two pairs of soft magnetic ribbons having no adhesive layer between them. In this example, the value obtained by dividing the number of adhesive layers by the number of soft magnetic ribbons is 0.6.
On the other hand, the example on the right side does not have an adhesive layer on either end face of the upper and lower surfaces of the laminate, and in the order from the upper side, a pair of soft magnetic ribbons having an adhesive layer between them, and no adhesive layer between them. This is a case where a pair of soft magnetic ribbons, a pair of soft magnetic ribbons having an adhesive layer between them, and a pair of soft magnetic ribbons having an adhesive layer between them are arranged. This example is a magnetic core of the present invention because it has one pair of soft magnetic ribbons having no adhesive layer between them. In this example, the value obtained by dividing the number of adhesive layers by the number of soft magnetic ribbons is 0.6.

図2(c)に示す磁性コアは、左側の例も右側の例も軟磁性薄帯が4層であるが、左側の例は接着層が2層であるのに対して、右側の例は接着層が3層である。
左側の例は積層体の上面及び下面のいずれの端面にも接着層を有さず、隣り合う軟磁性薄帯間に接着層を有する例であり、間に接着層を有する軟磁性薄帯のペアとの間に接着層を有さない軟磁性薄帯のペアとが交互に配置する場合である。この例は、間に接着層を有さない軟磁性薄帯のペアを1組有するから本発明の磁性コアである。また、この例では、接着層の層数を軟磁性薄帯の層数で割った値は0.5である。
一方、右側の例は積層体の上面及び下面のいずれの端面にも接着層を有し、間に接着層を有さない軟磁性薄帯のペアと間に接着層を有する軟磁性薄帯のペアとが交互に配置する場合である。この例は、間に接着層を有さない軟磁性薄帯のペアを2組有するから本発明の磁性コアである。また、この例では、接着層の層数を軟磁性薄帯の層数で割った値は0.75である。
The magnetic core shown in FIG. 2C has four layers of soft magnetic ribbons in both the left and right examples, while the left example has two adhesive layers, while the right example has four layers. The adhesive layer is three layers.
The example on the left is an example in which no adhesive layer is provided on either the upper surface or the lower surface of the laminate, and an adhesive layer is provided between adjacent soft magnetic ribbons. This is a case where pairs and pairs of soft magnetic ribbons having no adhesive layer are alternately arranged. This example is a magnetic core of the present invention because it has one pair of soft magnetic ribbons having no adhesive layer between them. In this example, the value obtained by dividing the number of adhesive layers by the number of soft magnetic ribbons is 0.5.
On the other hand, the example on the right side has a pair of soft magnetic ribbons having an adhesive layer on each of the upper and lower end faces of the laminate and having no adhesive layer between them, and a soft magnetic ribbon having an adhesive layer between them. This is a case where pairs are arranged alternately. This example is the magnetic core of the present invention because it has two pairs of soft magnetic ribbons having no adhesive layer between them. In this example, the value obtained by dividing the number of adhesive layers by the number of soft magnetic ribbons is 0.75.

図2(d)に示す磁性コアは、軟磁性薄帯が3層で、接着層が2層の場合であり、積層体の一方の端面(下面)に接着層を有し、間に接着層を有する軟磁性薄帯のペアと間に接着層を有さない軟磁性薄帯のペアとが交互に配置する場合である。この例は、間に接着層を有さない軟磁性薄帯のペアを1組有するから本発明の磁性コアである。また、この例では、接着層の層数を軟磁性薄帯の層数で割った値は0.67である。 The magnetic core shown in FIG. 2D is a case where the soft magnetic ribbon has three layers and the adhesive layer has two layers, and the adhesive layer is provided on one end surface (lower surface) of the laminate, and the adhesive layer is provided between them. In this case, a pair of soft magnetic ribbons having a and a pair of soft magnetic ribbons having no adhesive layer between them are alternately arranged. This example is a magnetic core of the present invention because it has one pair of soft magnetic ribbons having no adhesive layer between them. In this example, the value obtained by dividing the number of adhesive layers by the number of soft magnetic ribbons is 0.67.

図2(e)に示す磁性コアは、軟磁性薄帯が2層で、接着層が2層の場合である。
この例は、積層体の上面及び下面のいずれの端面にも接着層を有し、間に接着層を有さない軟磁性薄帯のペアを1組有するから本発明の磁性コアである。この例では、接着層の層数を軟磁性薄帯の層数で割った値は1である。
The magnetic core shown in FIG. 2E is a case where the soft magnetic ribbon has two layers and the adhesive layer has two layers.
This example is a magnetic core of the present invention because it has an adhesive layer on each of the upper and lower end faces of the laminate and one pair of soft magnetic ribbons having no adhesive layer between them. In this example, the value obtained by dividing the number of adhesive layers by the number of soft magnetic ribbons is one.

本発明の磁性コアは、本発明の効果を奏する限り、他の層を備えても構わない。他の層としては例えば、上述の保護膜3a、3bや、磁性コアで発生する熱を効率的に放熱するための熱伝導シートなどがある。 The magnetic core of the present invention may include other layers as long as the effects of the present invention are exhibited. Other layers include, for example, the above-described protective films 3a and 3b, and a heat conductive sheet for efficiently dissipating heat generated in the magnetic core.

[コイルユニット]
図3(a)は、一実施形態にかかるコイルユニットの側面模式図であり、図3(b)は、コイル側から見たコイルユニットの平面図である。
図3に示すコイルユニット100は、磁性コア10と、該磁性コア10上に配置するコイル20とを備える。
図3に示すコイルユニット100は受電コイルユニットとしても送電コイルユニットとしても用いることができる。
[Coil unit]
FIG. 3A is a schematic side view of the coil unit according to the embodiment, and FIG. 3B is a plan view of the coil unit seen from the coil side.
The coil unit 100 shown in FIG. 3 includes a magnetic core 10 and a coil 20 arranged on the magnetic core 10.
The coil unit 100 shown in FIG. 3 can be used as both a power receiving coil unit and a power transmitting coil unit.

図4は、他の実施形態にかかるコイルユニットであって、コイル側から見たコイルユニットの平面図である。
図4に示すコイルユニット101は、磁性コア10と、該磁性コア10上に配置するコイル21とを備える。図3に示したコイルユニットと比較すると、コイルが矩形である点が異なる。
FIG. 4 is a coil unit according to another embodiment, and is a plan view of the coil unit viewed from the coil side.
The coil unit 101 shown in FIG. 4 includes a magnetic core 10 and a coil 21 arranged on the magnetic core 10. Compared with the coil unit shown in FIG. 3, it is different in that the coil is rectangular.

本発明のコイルユニットによれば、コスト増大を抑制しつつ、ワイヤレス電力伝送ユニットを薄型、軽量化できるという効果を奏する。 According to the coil unit of the present invention, there is an effect that the wireless power transmission unit can be made thin and lightweight while suppressing an increase in cost.

[ワイヤレス電力伝送ユニット]
図5は、一実施形態にかかるコイルユニットを、受電コイルユニット及び送電コイルユニットとして用いたワイヤレス電力伝送ユニットの側面模式図であり、図にはワイヤレス電力伝送ユニットのうち、受電コイルユニット及び送電コイルユニットのみを示した。なお、ワイヤレス電力伝送ユニットの構成要素としてはその他に例えば、電源、インバータ等からなるアンプユニット、整流器などからなる受電ユニット、受電した電気を蓄電池に充電するための充電ユニット、または機器に適した電圧にするためのDCDCコンバータなどがある。
図5に示すワイヤレス電力伝送ユニット200は、磁性コア10及び送電コイル20を備える送電コイルユニット210と、磁性コア30及び受電コイル40を備える受電コイルユニット220とを有する。
[Wireless power transmission unit]
FIG. 5 is a schematic side view of a wireless power transmission unit using the coil unit according to the embodiment as a power reception coil unit and a power transmission coil unit. In the figure, the power reception coil unit and the power transmission coil are included in the wireless power transmission unit. Only units are shown. Other components of the wireless power transmission unit include, for example, a power supply, an amplifier unit including an inverter, a power receiving unit including a rectifier, a charging unit for charging the received electricity to a storage battery, or a voltage suitable for a device. There is a DCDC converter for doing so.
The wireless power transmission unit 200 shown in FIG. 5 includes a power transmission coil unit 210 including the magnetic core 10 and the power transmission coil 20, and a power receiving coil unit 220 including the magnetic core 30 and the power receiving coil 40.

図6は、他の実施形態にかかるコイルユニットを、受電コイルユニット及び送電コイルユニットとして用いたワイヤレス電力伝送ユニットの側面模式図であり、図にはワイヤレス電力伝送ユニットのうち、受電コイルユニット及び送電コイルユニットのみを示した。
図6に示すワイヤレス電力伝送ユニット300は、ボビン11、磁性コア12、金属シールド13及び送電コイル20を備える送電コイルユニット310と、ボビン31、磁性コア32、金属シールド33及び受電コイル40を備える受電コイルユニット320とを有する。
この実施形態では、送電コイルユニット310がボビン12及び金属シールド13を備え、同様に、受電コイルユニット320がボビン32及び金属シールド33を備える点が、図5に示した実施形態と異なる。
なお、ボビンはコイルをきれいに巻くための樹脂部品であり、また、金属シールドは漏れ磁束が周辺機器等に影響を与えないように遮断するための金属板である。
FIG. 6 is a schematic side view of a wireless power transmission unit that uses a coil unit according to another embodiment as a power reception coil unit and a power transmission coil unit. Only the coil unit is shown.
A wireless power transmission unit 300 shown in FIG. 6 includes a power transmission coil unit 310 including a bobbin 11, a magnetic core 12, a metal shield 13 and a power transmission coil 20, and a power reception including a bobbin 31, a magnetic core 32, a metal shield 33 and a power reception coil 40. And a coil unit 320.
This embodiment differs from the embodiment shown in FIG. 5 in that the power transmission coil unit 310 includes the bobbin 12 and the metal shield 13, and similarly, the power receiving coil unit 320 includes the bobbin 32 and the metal shield 33.
The bobbin is a resin component for winding the coil cleanly, and the metal shield is a metal plate for blocking the leakage magnetic flux so as not to affect peripheral devices.

以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。 Although the embodiments of the present invention have been described in detail above with reference to the drawings, the configurations and combinations thereof in each of the embodiments are examples, and addition and omission of the configurations are not departing from the scope of the present invention. , Substitutions, and other changes are possible.

「実施例」
1.磁性コアの作製
磁性コアの作製方法について図7を参照して説明する。以下の(1)〜(3)は図6中の(1)〜(3)に対応する。
(1)まず、両面に粘着剤が塗布されて厚み5μmとなるPETフィルム(PETフィルムと粘着剤とを併せて5μm)の片面に、あらかじめ熱処理した厚み約20μmのナノ結晶軟磁性薄帯を接着して磁性シート(接着層として片面に粘着剤が塗布されたPETフィルムに、ナノ結晶軟磁性薄帯を貼った構成。縦横サイズは150mm×150mm)を作製した。
(2)次いで、両面にナノ結晶軟磁性薄帯が接着された磁性シートのナノ結晶軟磁性薄帯に対して小片化処理として表面にローレット加工を施したローラーによる処理を施して、小片化磁性シートを作製した。
(3)次いで、小片化磁性シートを5枚積層した積層体の全面を、保護層として厚み約5μmのアラミドフィルムで包むことにより一体化したものを磁性コアとした。
この場合、接着層の層数を軟磁性薄帯の層数で割った値は、0.5である。
"Example"
1. Production of Magnetic Core A method for producing the magnetic core will be described with reference to FIG. 7. The following (1) to (3) correspond to (1) to (3) in FIG.
(1) First, a nanocrystal soft magnetic ribbon having a thickness of about 20 μm that has been preheated is adhered to one side of a PET film (5 μm in which the PET film and the adhesive are combined together) having a thickness of 5 μm coated with an adhesive on both sides. Then, a magnetic sheet (a structure in which a nanocrystal soft magnetic thin strip was attached to a PET film having an adhesive layer coated on one side as an adhesive layer, the size of which is 150 mm×150 mm) was prepared.
(2) Next, the nanocrystalline soft magnetic ribbon of the magnetic sheet with the nanocrystalline soft magnetic ribbon adhered to both sides is subjected to a knurled surface treatment as a fragmentation treatment to obtain a fragmented magnetic strip. A sheet was prepared.
(3) Next, the entire surface of the laminated body in which five pieces of the diced magnetic sheets were laminated was wrapped with an aramid film having a thickness of about 5 μm as a protective layer to form a magnetic core.
In this case, the value obtained by dividing the number of adhesive layers by the number of soft magnetic ribbons is 0.5.

2.評価
(1)コイルのインダクタンス
得られた磁性コアを22ターンの平面スパイラルコイルに配置し,LCRメーターを用いて、コイルのインダクタンスを測定した。
(2)送電効率(出力電力/入力電力)η
直流電源、アンプユニット、共振用キャパシタ、送電コイルユニットからなる送電部及び、受電コイルユニット、共振用キャパシタ、整流平滑回路,電子負荷からなる受電部から構成されるワイヤレス電力伝送装置を用い、送電コイルユニットの磁性コアとして厚み1.5mmのフェライト板、また,受電コイルユニットの磁性コアとして実施例1の磁性コアを用いた送電コイルユニットと受電コイルユニットとをコイル間距離が60mmとなるように対向させ、250Wの電力をワイヤレス電力伝送により受電したときの送電効率η(100×(出力電力/入力電力))を測定した。
入力電力および出力電力はパワーメーター(横河電気WT210)を用いて測定した。
(3)送電効率測定時に磁性コアの温度
送電効率測定時に、受電コイルの磁性コアに熱電対をつけて、磁性コアの温度上昇を測定した。
2. Evaluation (1) Inductance of coil The obtained magnetic core was arranged in a planar spiral coil of 22 turns, and the inductance of the coil was measured using an LCR meter.
(2) Transmission efficiency (output power/input power) η
A wireless power transmission device including a power transmission unit including a DC power supply, an amplifier unit, a resonance capacitor, and a power transmission coil unit, and a power reception unit including a power reception coil unit, a resonance capacitor, a rectifying/smoothing circuit, and an electronic load. A ferrite plate having a thickness of 1.5 mm is used as the magnetic core of the unit, and a power transmitting coil unit and a power receiving coil unit that use the magnetic core of the first embodiment as the magnetic core of the power receiving coil unit are opposed to each other with a coil-to-coil distance of 60 mm. Then, the transmission efficiency η (100×(output power/input power)) when 250 W of power was received by wireless power transmission was measured.
The input power and the output power were measured using a power meter (Yokogawa WT210).
(3) Temperature of magnetic core during measurement of power transmission efficiency During measurement of power transmission efficiency, a thermocouple was attached to the magnetic core of the power receiving coil to measure the temperature rise of the magnetic core.

評価の結果を表1、図8及び図9に示す。送電効率ηは(出力電力/入力電力)×100であり、温度上昇ΔTはコア温度−室温である。

Figure 0006729464
The evaluation results are shown in Table 1 and FIGS. 8 and 9. The power transmission efficiency η is (output power/input power)×100, and the temperature increase ΔT is the core temperature−room temperature.
Figure 0006729464

「比較例」
比較例の磁性コアは以下のように作製した。
両面に粘着剤が塗布された、厚み5μmのPETフィルムの両面に、あらかじめ熱処理した厚み約20μmのナノ結晶軟磁性薄帯を接着し、その後、一方の側に順に、両面に粘着剤が塗布されたPETフィルム(接着層(2層目))、ナノ結晶軟磁性薄帯(3枚目)、接着層(3層目)、ナノ結晶軟磁性薄帯(4枚目)、接着層(4層目)、ナノ結晶軟磁性薄帯(5枚目)、接着層(5層目)、ナノ結晶軟磁性薄帯(6枚目)、接着層(6層目)、ナノ結晶軟磁性薄帯(7枚目)、接着層(7層目)、ナノ結晶軟磁性薄帯(8枚目)、接着層(8層目)、ナノ結晶軟磁性薄帯(9枚目)、接着層(9層目)、ナノ結晶軟磁性薄帯(10枚目)を積層して、積層体を作製したこと、その後、この積層体について実施例と同様の小片化処理を行い、ナノ結晶軟磁性薄帯が小片化された積層体の全面を、実施例と同様の保護層で包むことにより一体化したものを磁性コアとした。
比較例もナノ結晶軟磁性薄帯の枚数(層数)は実施例と同じであるが、すべてのナノ結晶軟磁性薄帯ペア間に接着層を有する点が実施例と異なる。
比較例についても同様に、コイルのインダクタンス、送電効率((出力電力/入力電力)×100)送電効率測定時に磁性コアの温度の測定を行った。
"Comparative example"
The magnetic core of the comparative example was manufactured as follows.
A pre-heat treated nanocrystalline soft magnetic ribbon of about 20 μm in thickness was adhered to both sides of a PET film having a thickness of 5 μm, which was applied to both sides, and then the adhesive was applied to both sides in order. PET film (adhesive layer (second layer)), nanocrystalline soft magnetic ribbon (third layer), adhesive layer (third layer), nanocrystalline soft magnetic ribbon (fourth layer), adhesive layer (four layers) Eye), nanocrystalline soft magnetic ribbon (fifth sheet), adhesive layer (fifth layer), nanocrystalline soft magnetic ribbon (sixth sheet), adhesive layer (sixth layer), nanocrystalline soft magnetic ribbon ( 7th), adhesive layer (7th layer), nanocrystalline soft magnetic ribbon (8th), adhesive layer (8th layer), nanocrystalline soft magnetic ribbon (9th), adhesive layer (9th layer) Eye), a nanocrystal soft magnetic ribbon (10th sheet) was laminated to produce a laminated body, and thereafter, this laminated body was subjected to the same fragmentation treatment as in the example to obtain a nanocrystal soft magnetic ribbon. A magnetic core was obtained by wrapping the entire surface of the diced laminate with a protective layer similar to that of the example to form an integrated body.
The comparative example also has the same number of nanocrystalline soft magnetic ribbons (the number of layers) as the example, but differs from the example in that an adhesive layer is provided between all the pairs of nanocrystalline soft magnetic ribbons.
Similarly, in the comparative example, the temperature of the magnetic core was measured when measuring the inductance of the coil and the power transmission efficiency ((output power/input power)×100) power transmission efficiency.

表1、図8及び図9に示した通り、実施例は、コイルのインダクタンス、送電コイルユニット及び受電コイルユニットによる送電効率η、並びに、送電効率測定時に磁性コアの温度上昇がいずれも従来構造の比較例とほぼ変わらないことが確認できた。すなわち、実施例は、従来構造よりも低コスト構造でありながら、いずれの特性も従来構造の比較例とほぼ変わらないことが確認できた。 As shown in Table 1, FIG. 8 and FIG. 9, in the example, the coil inductance, the power transmission efficiency η by the power transmission coil unit and the power receiving coil unit, and the temperature rise of the magnetic core during the measurement of the power transmission efficiency are all of the conventional structure. It was confirmed that it was almost the same as the comparative example. That is, it was confirmed that the example has a lower cost structure than the conventional structure, but has substantially the same characteristics as the comparative example of the conventional structure.

1a〜1j 軟磁性薄帯
2a〜2e 接着層
3、3a、3b 保護膜
10、12、30、32 磁性コア
20、21、40、 コイル
100、101 コイルユニット
200、300 ワイヤレス電力伝送ユニット
210、310 送電コイルユニット
220、320 受電コイルユニット
積層体 M
1a-1j Soft magnetic ribbon 2a-2e Adhesive layer 3,3a,3b Protective film 10,12,30,32 Magnetic core 20,21,40, Coil 100,101 Coil unit 200,300 Wireless power transmission unit 210,310 Power transmitting coil unit 220, 320 Power receiving coil unit Laminated body M

Claims (5)

小片に分割された複数の軟磁性薄帯と、隣り合う軟磁性薄帯間に有する接着層とを備えた積層体を含む磁性コアであって、
前記積層体中に、接着層を介さずに接触する軟磁性薄帯のペアを少なくとも一組備える磁性コア。
A magnetic core including a laminate including a plurality of soft magnetic ribbons divided into small pieces and an adhesive layer between adjacent soft magnetic ribbons,
A magnetic core comprising at least one pair of soft magnetic ribbons which are in contact with each other without an adhesive layer in the laminate.
各軟磁性薄帯の少なくとも一方の面には接着層を備える請求項1に記載の磁性コア。 The magnetic core according to claim 1, wherein an adhesive layer is provided on at least one surface of each soft magnetic ribbon. 前記接着層の層数を前記軟磁性薄帯の層数で割った値が0.75以下である請求項1又は2のいずれかに記載の磁性コア。 The magnetic core according to claim 1, wherein a value obtained by dividing the number of layers of the adhesive layer by the number of layers of the soft magnetic ribbon is 0.75 or less. 請求項1〜3のいずれか一項に記載の磁性コアと、該磁性コア上に配置するコイルとを備えるコイルユニット。 A coil unit comprising the magnetic core according to claim 1, and a coil arranged on the magnetic core. 請求項4に記載のコイルユニットを備えたワイヤレス電力伝送ユニット。 A wireless power transmission unit comprising the coil unit according to claim 4.
JP2017061790A 2017-03-27 2017-03-27 Magnetic core, coil unit and wireless power transmission unit Active JP6729464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017061790A JP6729464B2 (en) 2017-03-27 2017-03-27 Magnetic core, coil unit and wireless power transmission unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061790A JP6729464B2 (en) 2017-03-27 2017-03-27 Magnetic core, coil unit and wireless power transmission unit

Publications (2)

Publication Number Publication Date
JP2018164053A JP2018164053A (en) 2018-10-18
JP6729464B2 true JP6729464B2 (en) 2020-07-22

Family

ID=63861131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061790A Active JP6729464B2 (en) 2017-03-27 2017-03-27 Magnetic core, coil unit and wireless power transmission unit

Country Status (1)

Country Link
JP (1) JP6729464B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247564B2 (en) * 2018-12-10 2023-03-29 株式会社プロテリアル Soft magnetic sheet manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831804B1 (en) * 2003-10-23 2008-05-28 가부시끼가이샤 도시바 Inductive device and method for manufacturing same
US9252611B2 (en) * 2011-12-21 2016-02-02 Amosense Co., Ltd. Magnetic field shielding sheet for a wireless charger, method for manufacturing same, and receiving apparatus for a wireless charger using the sheet
US9826668B2 (en) * 2013-12-31 2017-11-21 Amogreentech Co., Ltd. Composite sheet and portable terminal having same

Also Published As

Publication number Publication date
JP2018164053A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
US10333358B2 (en) Receiving antenna and wireless power receiving device including the same
CN108666107B (en) Soft magnetic thin strip for magnetic core, coil unit, and wireless power transmission unit
JP6050667B2 (en) Coil module, non-contact power transmission antenna unit, and electronic device
JP6151185B2 (en) Magnetic sheet for non-contact power receiving device, non-contact power receiving device using the same, electronic device, and non-contact charging device
JP5364745B2 (en) Magnetic element for wireless power transmission and power supply device
JP2010041906A (en) Contactless power transmission apparatus, soft magnetic sheet, and module using the same
US20170345555A1 (en) Heat radiation unit and wireless power transmitting and receiving device having same
KR20140109336A (en) Composite Sheet for Shielding Magnetic Field and Electromagnetic Wave and Antenna Module Using the Same
WO2014017351A1 (en) Coil module and power receiver
KR101807604B1 (en) Antenna unit for wireless power transfer and Wireless power transmission module having the same
KR101878353B1 (en) Wireless Power Transmitters and Wireless Charging Device having the Same
JP6729464B2 (en) Magnetic core, coil unit and wireless power transmission unit
US10075009B2 (en) Receiving antenna and wireless power receiving device including the same
KR101444552B1 (en) Magnetic sheet, method for manufacturing the same, and contactless power transmission device including the same
KR101878354B1 (en) Heat Radiation Unit and Wireless Power Receiving Device Having the Same
US20210249166A1 (en) Magnetic sheet and wireless power module comprising same
JPH11186086A (en) Manufacture of spiral coil for noncontact power transmitter
KR20170053272A (en) Magnetic Sheet and Wireless Power Charging Device
JP6539024B2 (en) Coil and coil component
JP2018037573A (en) Transformer and resonant converter
JP7296081B2 (en) inductor
JP2018166203A (en) Soft magnetic thin ribbon for magnetic core, magnetic core, coil unit, and wireless power transmission unit
US20220320912A1 (en) Shielding structures for wireless charging systems
JPH0653044A (en) Thin inductor or thin transformer and their manufacture
KR20200077902A (en) Magnetic sheet and wireless power module including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6729464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150