JP6722981B2 - Aluminum alloy clad material - Google Patents

Aluminum alloy clad material Download PDF

Info

Publication number
JP6722981B2
JP6722981B2 JP2015105401A JP2015105401A JP6722981B2 JP 6722981 B2 JP6722981 B2 JP 6722981B2 JP 2015105401 A JP2015105401 A JP 2015105401A JP 2015105401 A JP2015105401 A JP 2015105401A JP 6722981 B2 JP6722981 B2 JP 6722981B2
Authority
JP
Japan
Prior art keywords
brazing
material layer
brazing material
aluminum alloy
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015105401A
Other languages
Japanese (ja)
Other versions
JP2016216791A (en
Inventor
翔 石上
翔 石上
江戸 正和
正和 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2015105401A priority Critical patent/JP6722981B2/en
Publication of JP2016216791A publication Critical patent/JP2016216791A/en
Application granted granted Critical
Publication of JP6722981B2 publication Critical patent/JP6722981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、自動車熱交換器用部品等に用いられるアルミニウム合金クラッド材に関する。 The present invention relates to an aluminum alloy clad material used for automobile heat exchanger parts and the like.

近年、電気自動車や燃料電池車に代表される環境対応車の登場により、自動車用熱交換器には従来よりも高性能化や形状の複雑化の要求が高まっている。この自動車用熱交換器の部品等にブレージングシートと称されるアルミニウム合金クラッド材が用いられている。
このアルミニウム合金クラッド材は、芯材の両面に皮材がクラッドされた構成であり、皮材の一方が犠牲材層、他方がろう材層として機能している。
In recent years, with the advent of environment-friendly vehicles typified by electric vehicles and fuel cell vehicles, there has been an increasing demand for automobile heat exchangers with higher performance and more complicated shapes than ever before. An aluminum alloy clad material called a brazing sheet is used for parts of this automobile heat exchanger.
The aluminum alloy clad material has a structure in which skin materials are clad on both sides of a core material, and one of the skin materials functions as a sacrificial material layer and the other functions as a brazing material layer.

このアルミニウム合金クラッド材において、従来では耐食性確保のため犠牲材が適用されていた熱交換器冷却水側についてもろう付を実施する例が増えており、高い耐食性を有するろう材が求められている。 With this aluminum alloy clad material, there are an increasing number of examples of brazing on the cooling water side of the heat exchanger, where a sacrificial material was conventionally applied to ensure corrosion resistance, and a brazing material with high corrosion resistance is required. ..

特許文献1では、ろう材の耐食性を向上させるため、皮材に亜鉛(Zn)を添加しており、Si:3〜6%、Zn:2〜8%を含有し、さらにMn:0.3〜1.8%、Ti:0.05〜0.30%の1種または2種を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金により皮材を構成している。この亜鉛添加により、ろう付時に皮材中のZnが芯材中へ拡散し、芯材の板厚方向にZnの濃度勾配を形成し、これにより皮材が芯材より電位的に卑となり犠牲陽極材として作用するため、板厚方向への腐食の進展を抑制できると記載されている。
特許文献2〜4でも、皮材となるろう材に亜鉛を含有したものが記載されている。
In Patent Document 1, zinc (Zn) is added to the skin material in order to improve the corrosion resistance of the brazing material, and contains Si: 3 to 6%, Zn: 2 to 8%, and further Mn: 0.3. .About.1.8%, Ti: 0.05 to 0.30% of 1 type or 2 types, and the skin material is made of an aluminum alloy containing the balance Al and unavoidable impurities. This addition of zinc causes Zn in the skin material to diffuse into the core material during brazing, forming a Zn concentration gradient in the thickness direction of the core material, which causes the skin material to become base potential lower than the core material and sacrifice. It is described that since it acts as an anode material, the progress of corrosion in the plate thickness direction can be suppressed.
Patent Documents 2 to 4 also describe a brazing filler metal as a skin material containing zinc.

特開2010−255012号公報JP, 2010-255012, A 特開2014−054656号公報JP, 2014-054656, A 特開2014−055326号公報JP, 2014-055326, A 特開2014−074226号公報JP, 2014-074226, A

しかし、ろう材に亜鉛を添加した場合、ろう付熱処理の際にろう材が流動することで、材料表面に均一に亜鉛が分布しないことや、ろう材共晶部へ局所的に腐食が進行することが問題となっている。 However, when zinc is added to the brazing filler metal, the brazing filler metal flows during the brazing heat treatment, so that the zinc is not evenly distributed on the material surface, and corrosion locally progresses to the eutectic part of the brazing filler metal. Is a problem.

本発明はこのような背景に鑑みてなされたものであり、溶融ろうの流動を制御して、腐食の進行を抑制し、耐食性に優れるアルミニウム合金クラッド材を提供することを目的とする。 The present invention has been made in view of such a background, and an object thereof is to provide an aluminum alloy clad material that controls the flow of molten brazing material to suppress the progress of corrosion and has excellent corrosion resistance.

本発明のアルミニウム合金クラッド材は、芯材の一方または両方の面にろう材層クラッドされており、前記ろう材層が質量%でSi:2.5〜6.5%、Zn:2.0〜6.0%含有し、残部がAlおよび不可避不純物からなり、ろう材層には円相当径で1μm程度のSi粒子が多数存在する、アルミニウム合金クラッド材であって、上記アルミニウム合金クラッド材を、同室温から400℃の到達時間が6分、400℃から550℃の到達時間が1分30秒、550℃から目標温度までの到達時間が4分となるような昇温速度で加熱し、600℃の目標温度で3分間保持し、その後、300℃まで約100℃/minで冷却した後、室温まで空冷を行なうろう付相当熱処理を施してろう付けすると、前記ろう付け前のろう材層の厚さをA、前記ろう付後の残存ろう材層の厚さをBとした時、B/Aが0.8以上となり、前記ろう付後のろう材層内に円相当径3μm〜8μmのシリコン粒子が8×10〜8×10個/mmの範囲で分散し、かつ、前記ろう付後のろう材初晶と前記芯材間の孔食電位差が100〜200mVであり、前記ろう付後の前記残存ろう材層の板厚中心から該残存ろう材層と芯材の界面にかけての領域内におけるろう共晶の面積占有率が5〜30%の範囲になるAluminum alloy clad material of the present invention is a brazing material layer is clad on one or both surfaces of the core material, Si the brazing material layer is in mass%: 2.5~6.5%, Zn: 2 . An aluminum alloy clad material, which contains 0 to 6.0%, the balance being Al and unavoidable impurities, and a large number of Si particles having an equivalent circle diameter of about 1 μm are present in the brazing material layer. Is heated at a temperature rising rate such that the arrival time from the same room temperature to 400° C. is 6 minutes, the arrival time from 400° C. to 550° C. is 1 minute 30 seconds, and the arrival time from 550° C. to the target temperature is 4 minutes. , held for 3 minutes at the target temperature of 600 ° C., then, after cooling at about 100 ° C. / min up to 300 ° C., the brazed subjected to considerable heat treatment brazing performing air-cooled to room temperature, the before brazing the brazing material When the thickness of the layer is A and the thickness of the remaining brazing material layer after brazing is B, B/A is 0.8 or more, and a circle equivalent diameter of 3 μm or more in the brazing material layer after brazing. 8 μm silicon particles are dispersed in the range of 8×10 to 8×10 2 pieces/mm 2 , and the pitting potential difference between the brazing material primary crystal and the core material after brazing is 100 to 200 mV, The area occupancy rate of the braze eutectic in the region from the plate thickness center of the remaining brazing material layer after brazing to the interface between the remaining brazing material layer and the core material is in the range of 5 to 30%.

本発明では、亜鉛含有ろう材へ添加されるシリコン(Si)量を制御することで、ろう付熱処理時に流動するろう材量を適正化し、材料表面に残存するろう材層の厚さおよびろう共晶組織の制御を行なっている。 In the present invention, by controlling the amount of silicon (Si) added to the zinc-containing brazing filler metal, the amount of the brazing filler metal that flows during the brazing heat treatment is optimized, and the thickness of the brazing filler metal layer remaining on the surface of the material and the brazing filler metal The crystal structure is controlled.

ろう材層成分のSiは、材料の融点を低下させるので、ろう付時に溶融して他部材と接合する機能を付与してろう付性を向上させる効果があり、2.5質量%未満では、その効果が十分に発揮されず、6.5質量%を超えると、ろう付時の溶融ろうの流動性が高くなり過ぎて、ろう付後に残存するろう材層の厚さが低下する。 Since Si of the brazing material layer component lowers the melting point of the material, it has the effect of melting at the time of brazing and imparting a function of joining with other members to improve brazing property. If the effect is not sufficiently exhibited and the content exceeds 6.5 mass %, the fluidity of the molten brazing material during brazing becomes too high, and the thickness of the brazing material layer remaining after brazing decreases.

Znは、材料の電位を卑にするので、ろう材層の電位を卑にして芯材を防食する効果がある。2.0質量%未満では、その効果が十分発揮されず、6.0質量%を超えると、腐食速度が速くなり過ぎて、ろう材層が早期に腐食、消耗することで耐食性が低下する。 Since Zn makes the electric potential of the material base, it has the effect of making the electric potential of the brazing material layer base to prevent corrosion of the core material. If it is less than 2.0% by mass, the effect is not sufficiently exhibited, and if it exceeds 6.0% by mass, the corrosion rate becomes too fast, and the brazing filler metal layer is corroded and consumed at an early stage, thereby lowering the corrosion resistance.

ろう付前のろう材層の厚さをA、ろう付相当熱処理後の残存ろう材層の厚さをBとした時、ろう付相当熱処理前後のろう材層の厚さの比率B/Aは耐食性に影響し、B/Aが0.8以上で耐食性が良好である。B/Aが0.8未満ではろう付相当熱処理後にろう材表面で防食層として作用するろう材層が減少し、ろう材層が早期に腐食、消耗することで耐食性が低下する。 When the thickness of the brazing material layer before brazing is A and the thickness of the remaining brazing material layer after the heat treatment equivalent to brazing is B, the ratio B/A of the thickness of the brazing material layer before and after the heat treatment equivalent to brazing is Affects the corrosion resistance, and B/A is 0.8 or more, and the corrosion resistance is good. When B/A is less than 0.8, the brazing material layer acting as a corrosion-preventing layer on the surface of the brazing material after heat treatment equivalent to brazing is reduced, and the brazing material layer is corroded and consumed at an early stage, resulting in deterioration of corrosion resistance.

また、シリコン粒子が所定の大きさで所定量分散していることは、耐食性を向上させる効果があり、ろう初晶内に分散するシリコン粒子の大きさを上記のように制御することで、ろう初晶内のシリコン固溶度を低下させることや、これらがAl―Mn―Si系化合物等の金属間化合物の析出サイトとなり、初晶内への分散粒子の析出を促進させることで、ろう初晶内の孔食電位を卑とすることができる。これより、ろう共晶部への局所的な腐食の進行を抑制し、腐食形態を面状に近い形態にすることで冷却水側での耐食性に優れるブレージングシートとすることができる。 Further, the fact that the silicon particles are dispersed in a predetermined amount in a predetermined size has the effect of improving the corrosion resistance, and by controlling the size of the silicon particles dispersed in the brazing primary crystal as described above, By reducing the solid solubility of silicon in the primary crystal and by forming a precipitation site for an intermetallic compound such as an Al-Mn-Si-based compound and promoting the precipitation of dispersed particles in the primary crystal, The pitting potential inside the crystal can be made base. As a result, a brazing sheet having excellent corrosion resistance on the cooling water side can be obtained by suppressing the local progress of corrosion to the braze eutectic part and making the corrosion form close to a planar form.

シリコン粒子の円相当径が3μm未満、あるいは個数が8×10個/mm2未満では、ろう材層内のSi固溶度低下やろう初晶内への分散粒子の析出促進が不十分で、耐食性向上の効果が十分に発揮されず、円相当径が8μmを超え、あるいは個数が8×10個/mm2を超えると、ろう付性が低下するおそれがある。 If the equivalent circle diameter of the silicon particles is less than 3 μm, or if the number is less than 8×10/mm 2 , the solid solubility of Si in the brazing material layer is lowered and the precipitation of dispersed particles in the brazing primary crystal is insufficiently promoted. When the equivalent circle diameter exceeds 8 μm or the number exceeds 8×10 2 pieces/mm 2 , the brazing property may be deteriorated because the effect of improving the corrosion resistance is not sufficiently exerted.

ろう付相当熱処理後のろう材初晶と芯材間の孔食電位差は、この電位差による犠牲陽極効果が発揮されるため、ろう材側からの腐食による貫通孔の発生を防ぐことができる。孔食電位差が100mV未満ではその効果が十分発揮されず、200mVを超えると腐食速度の増加を招く。 The pitting corrosion potential difference between the brazing material primary crystal and the core material after the brazing-corresponding heat treatment exhibits the sacrificial anode effect due to this potential difference, so that the formation of through holes due to corrosion from the brazing material side can be prevented. If the pitting potential difference is less than 100 mV, the effect is not sufficiently exhibited, and if it exceeds 200 mV, the corrosion rate increases.

なお、ろう付相当熱処理は、基準となる例を挙げれば、室温から400℃の到達時間が6分、400℃から550℃の到達時間が1分30秒、550℃から目標温度までの到達時間が4分となる昇温速度で加熱し、600℃の目標温度で3分間保持し、その後、300℃まで100℃/minで冷却した後、室温まで空冷を行なう熱処理である。
ただし、通常のろう付に要する熱処理であれば、必ずしも、この条件に厳密に一致したものでなくてもよい。
In addition, for the brazing equivalent heat treatment, for example, the arrival time from room temperature to 400° C. is 6 minutes, the arrival time from 400° C. to 550° C. is 1 minute 30 seconds, and the arrival time from 550° C. to the target temperature Is heated at a temperature rising rate of 4 minutes, held at a target temperature of 600° C. for 3 minutes, cooled to 300° C. at 100° C./min, and then air-cooled to room temperature.
However, the heat treatment required for ordinary brazing does not necessarily have to be exactly the same as this condition.

腐食はろう材組織の共晶部分から優先的に進行するため、残存ろう材層の板厚中心からろう材層と芯材の界面にかけての領域内におけるろう共晶が多いと、腐食が早期に芯材にまで到達する。したがって、その領域内におけるろう共晶の面積占有率は、小さいほど耐食性が向上するが、その面積占有率が5%未満ではろう付性が低下する。面積占有率が30%を超えると耐食性が低下する。 Corrosion proceeds preferentially from the eutectic part of the brazing filler metal structure, so if there is a large amount of braze eutectic in the region from the thickness center of the residual brazing filler metal layer to the interface between the brazing filler metal layer and the core material, corrosion will occur earlier. Reach the core material. Therefore, the smaller the area occupancy rate of the braze eutectic in the region, the higher the corrosion resistance, but the area occupancy rate of less than 5% lowers the brazing property. If the area occupancy exceeds 30%, the corrosion resistance decreases.

本発明のアルミニウム合金クラッド材において、前記ろう材層は、質量%でMn:0.05〜1.0%、Cr:0.05〜0.5%、Ti:0.05〜0.3%、Zr:0.05〜0.3%、Sr:0.005〜0.1%から選択される1種または2種以上をさらに含有するとよい。 In the aluminum alloy clad material of the present invention, the brazing material layer has a mass% of Mn: 0.05 to 1.0%, Cr: 0.05 to 0.5%, and Ti: 0.05 to 0.3%. , Zr: 0.05 to 0.3% and Sr: 0.005 to 0.1% may be further contained.

Mn、Cr、Ti、Zrは、アルミニウムと化合物を形成して、孔食を分散させることにより、耐食性を向上させる効果がある。Srは、Si粒子の分散を均一にする効果があり、耐食性を向上させる。いずれも、その含有量が下限値未満では、効果が十分に発揮されず、上限値を超えて含有しても効果は飽和する。 Mn, Cr, Ti, and Zr form a compound with aluminum to disperse pitting corrosion, and thus have the effect of improving corrosion resistance. Sr has the effect of making the dispersion of Si particles uniform and improves the corrosion resistance. In any case, if the content is less than the lower limit, the effect is not sufficiently exhibited, and if the content exceeds the upper limit, the effect is saturated.

本発明のアルミニウム合金クラッド材において、全体板厚が0.1〜0.5mmの範囲であるのが好ましい。 In the aluminum alloy clad material of the present invention, the total plate thickness is preferably in the range of 0.1 to 0.5 mm.

本発明によれば、腐食の進行を抑制し、耐食性に優れるアルミニウム合金クラッド材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, progress of corrosion can be suppressed and the aluminum alloy clad material excellent in corrosion resistance can be provided.

以下、本発明に係るアルミニウム合金クラッド材の実施形態を説明する。
このアルミニウム合金クラッド材は、自動車熱交換器用部品として用いられるもので、芯材の両面にろう材層がクラッドされており、ろう材層は、質量%でSi:2.5〜6.5%、Zn:2.0〜6.0%含有し、残部がAlおよび不可避不純物からなる。芯材は、例えばAl−Mn系合金が用いられる。
Hereinafter, embodiments of the aluminum alloy clad material according to the present invention will be described.
This aluminum alloy clad material is used as a component for an automobile heat exchanger, and a brazing material layer is clad on both surfaces of a core material, and the brazing material layer has a mass% of Si: 2.5 to 6.5%. , Zn: 2.0 to 6.0%, with the balance being Al and unavoidable impurities. For the core material, for example, an Al-Mn-based alloy is used.

また、ろう付前のろう材層の厚さをA、ろう付相当熱処理後の残存ろう材層の厚さをBとした時、B/Aが0.8以上であり、ろう材層内に円相当径3μm〜8μmのシリコン粒子が8×10〜8×10個/mm2の範囲で分散し、かつ、ろう付相当熱処理後のろう材初晶と芯材間の孔食電位差が100〜200mVである。
クラッド材全体の厚さは、0.1〜0.5mmの範囲である。
When the thickness of the brazing material layer before brazing is A and the thickness of the remaining brazing material layer after the brazing-corresponding heat treatment is B, B/A is 0.8 or more, and Silicon particles having an equivalent circle diameter of 3 μm to 8 μm are dispersed in the range of 8×10 to 8×10 2 particles/mm 2 , and the pitting potential difference between the brazing material primary crystal and the core material after the brazing equivalent heat treatment is 100. ~200 mV.
The total thickness of the clad material is in the range of 0.1 to 0.5 mm.

ろう材層成分のSiは、ろう付性を向上させる効果があり、2.5質量%未満では、その効果が十分に発揮されず、6.5質量%を超えると、ろう付時の溶融ろうの流動性が高くなり過ぎて、ろう付後に残存するろう材層の厚さが低下する。 Si as a brazing filler metal layer component has an effect of improving brazing property. If it is less than 2.5% by mass, the effect is not sufficiently exhibited, and if it exceeds 6.5% by mass, molten brazing at the time of brazing is performed. Becomes too high and the thickness of the brazing material layer remaining after brazing decreases.

Znは、ろう材層の電位を卑にして芯材を防食する効果がある。2.0質量%未満では、その効果が十分発揮されず、6.0質量%を超えると、腐食速度が速くなり過ぎて、ろう材層が早期に腐食、消耗することで耐食性が低下する。 Zn has the effect of making the electric potential of the brazing material layer base and protecting the core material from corrosion. If it is less than 2.0% by mass, the effect is not sufficiently exhibited, and if it exceeds 6.0% by mass, the corrosion rate becomes too fast, and the brazing filler metal layer is corroded and consumed at an early stage, thereby lowering the corrosion resistance.

ろう付相当熱処理前後のろう材層の厚さの比率B/Aは耐食性に影響し、B/Aが0.8以上で耐食性が良好である。B/Aが0.8未満では耐食性が低下する。 The ratio B/A of the thickness of the brazing material layer before and after the heat treatment equivalent to brazing affects the corrosion resistance, and when B/A is 0.8 or more, the corrosion resistance is good. If B/A is less than 0.8, the corrosion resistance decreases.

また、シリコン粒子が所定の径、量の範囲で分散していることは、耐食性を向上させる効果があり、シリコン粒子の円相当径が3μm未満、あるいは個数が8×10個/mm2未満では、その効果が十分に発揮されず、円相当径が8μmを超え、あるいは個数が8×10個/mm2を超えると、ろう付性が低下するおそれがある。 Further, the fact that the silicon particles are dispersed within a predetermined diameter and amount range has the effect of improving the corrosion resistance, and when the equivalent circle diameter of the silicon particles is less than 3 μm or the number is less than 8×10/mm 2. However, if the effect is not sufficiently exhibited and the equivalent circle diameter exceeds 8 μm or the number exceeds 8×10 2 pieces/mm 2 , the brazing property may deteriorate.

ろう付相当熱処理後のろう材初晶と芯材間の孔食電位差は、この電位差による犠牲陽極効果が発揮されるため、ろう材側からの腐食による貫通孔の発生を防ぐことができる。孔食電位差が100mV未満ではその効果が十分発揮されず、200mVを超えると腐食速度の増加を招く。 The pitting corrosion potential difference between the brazing material primary crystal and the core material after the brazing-corresponding heat treatment exhibits the sacrificial anode effect due to this potential difference, so that the formation of through holes due to corrosion from the brazing material side can be prevented. If the pitting potential difference is less than 100 mV, the effect is not sufficiently exhibited, and if it exceeds 200 mV, the corrosion rate increases.

このアルミニウム合金クラッド材において、ろう付相当熱処理後の残存ろう材層の板厚中心から残存ろう材層と芯材の界面にかけての領域内において、ろう共晶の面積占有率が5〜30%の範囲となるとよい。 In this aluminum alloy clad material, the area occupancy of the braze eutectic is 5 to 30% in the region from the plate thickness center of the residual brazing material layer after the brazing equivalent heat treatment to the interface between the residual brazing material layer and the core material. It should be a range.

残存ろう材層の板厚中心からろう材層と芯材の界面にかけての領域内におけるろう共晶の面積占有率は、小さいほど耐食性が向上するが、その面積占有率が5%未満ではろう付性が低下する。面積占有率が30%を超えると耐食性が低下する。 The smaller the area occupancy rate of the braze eutectic in the region from the plate thickness center of the residual brazing material layer to the interface between the brazing material layer and the core material, the better the corrosion resistance, but if the area occupying rate is less than 5%, brazing Sex decreases. If the area occupancy exceeds 30%, the corrosion resistance decreases.

さらに、ろう材層は、質量%でMn:0.05〜1.0%、Cr:0.05〜0.5%、Ti:0.05〜0.3%、Zr:0.05〜0.3%、Sr:0.005〜0.1%から選択される1種または2種以上を含有していてもよい。 Furthermore, the brazing filler metal layer is mass% Mn:0.05-1.0%, Cr:0.05-0.5%, Ti:0.05-0.3%, Zr:0.05-0. 3%, Sr: 0.005 to 0.1%, and may contain one kind or two or more kinds.

Mn、Cr、Ti、Zrは、アルミニウムと化合物を生成して、孔食を分散させることにより、耐食性を向上させる効果がある。Srは、Si粒子の分散を均一にする効果があり、耐食性を向上させる。いずれも、その含有量が下限値未満では、効果が十分に発揮されず、上限値を超えて含有しても効果は飽和する。 Mn, Cr, Ti, and Zr have the effect of improving corrosion resistance by forming a compound with aluminum and dispersing pitting corrosion. Sr has the effect of making the dispersion of Si particles uniform and improves the corrosion resistance. In any case, if the content is less than the lower limit, the effect is not sufficiently exhibited, and if the content exceeds the upper limit, the effect is saturated.

次に、このアルミニウム合金クラッド材を製造する方法について説明する。
まず、溶解鋳造により芯材用アルミニウム合金、ろう材層用アルミニウム合金を鋳造し、得られた鋳塊について所定温度で均質化処理を行う。
芯材の均質化処理は、530℃〜600℃で8時間〜16時間の範囲から選択することができる。
Next, a method of manufacturing this aluminum alloy clad material will be described.
First, an aluminum alloy for a core material and an aluminum alloy for a brazing material layer are cast by melt casting, and the obtained ingot is homogenized at a predetermined temperature.
The homogenization treatment of the core material can be selected from the range of 8 hours to 16 hours at 530°C to 600°C.

ろう材の均質化処理は、400〜550℃で1〜5時間とする。通常、ブレージングシートの作製工程において、ろう材層へ均質化処理を実施しないことが一般的であり、この工程にて作製されたブレージングシートのろう材層内には円相当径で1μm程度のSi粒子が多数存在する。このろう材層内のSi粒子サイズを制御するために、均質化処理が効果的であり、400〜550℃で1〜5時間の範囲から選択することができ、480〜550℃で1〜3時間の範囲で実施するのがより好ましい。 The homogenization treatment of the brazing material is performed at 400 to 550° C. for 1 to 5 hours. Usually, in the brazing sheet manufacturing process, it is general that the brazing material layer is not subjected to homogenization treatment, and in the brazing material layer of the brazing sheet manufactured in this process, Si having a circle equivalent diameter of about 1 μm is used. There are many particles. In order to control the Si particle size in this brazing material layer, homogenization treatment is effective and can be selected from the range of 400 to 550°C for 1 to 5 hours, and 1 to 480 to 550°C for 1 to 3 hours. More preferably, it is carried out within the range of time.

均質化処理を実施した芯材用アルミニウム合金及び皮材用アルミニウム合金の鋳塊は、熱間圧延を得て合金板とされる。また、鋳造工程と圧延工程とを分けずに、連続鋳造圧延を経て合金板としてもよい。 The ingots of the aluminum alloy for the core material and the aluminum alloy for the skin material, which have been subjected to the homogenization treatment, are hot-rolled to be alloy plates. Alternatively, the alloy sheet may be formed by continuous casting and rolling without dividing the casting step and the rolling step.

そして、これら合金板を適宜のクラッド率でクラッドされる。そのクラッドは一般には圧延により行われる。その後、さらに冷間圧延を施すことにより、所望の厚さのアルミニウム合金クラッド材が得られる。そして、最終焼鈍を例えば360℃で3時間行うことにより、O調質のクラッド材とする。
クラッド材の構成は、例えば、ろう材層:芯材:ろう材層=10%:80%:10%とすることができるが、これに限定されるものではなく、ろう材層のクラッド率を5%や15%としてもよい。
Then, these alloy plates are clad at an appropriate clad ratio. The clad is generally made by rolling. Then, by further cold rolling, an aluminum alloy clad material having a desired thickness can be obtained. Then, the final annealing is performed, for example, at 360° C. for 3 hours to obtain an O-tempered clad material.
The structure of the clad material can be, for example, brazing material layer:core material:brazing material layer=10%:80%:10%, but is not limited to this, and the clad ratio of the brazing material layer is It may be 5% or 15%.

熱間圧延、冷間圧延、最終焼鈍は常法によって行えばよいが、冷間圧延工程時に、中間焼鈍を介在させることも可能である。その場合、中間焼鈍としては、例えば200〜400℃で1〜6時間の加熱によって行なうことができる。中間焼鈍後の最終圧延では、10〜50%の冷間圧延率で圧延を行なう。 Hot rolling, cold rolling, and final annealing may be performed by a conventional method, but it is also possible to intervene intermediate annealing during the cold rolling process. In that case, the intermediate annealing can be performed, for example, by heating at 200 to 400° C. for 1 to 6 hours. In the final rolling after the intermediate annealing, rolling is performed at a cold rolling rate of 10 to 50%.

このようにして製造されたアルミニウム合金クラッド材は、自動車の熱交換器用部材として用いられ、その片面あるいは両面の少なくとも一部が他部品とろう付されて熱交換器に組み付けられる。この場合のろう付条件は、室温から400℃の到達時間が4分〜9分、400℃〜550℃の到達時間が1分〜2分、550℃〜目標温度までの到達時間が3分〜5分となるような昇温速度で加熱し、600℃の目標温度で3分間保持し、その後、300℃まで約100℃/minで冷却した後、室温まで空冷を行なう処理である。 The aluminum alloy clad material manufactured in this manner is used as a member for a heat exchanger of an automobile, and at least a part of one surface or both surfaces of the clad material is brazed to other parts and assembled to the heat exchanger. In this case, the brazing condition is that the arrival time from room temperature to 400°C is 4 minutes to 9 minutes, the arrival time from 400°C to 550°C is 1 minute to 2 minutes, and the arrival time from 550°C to the target temperature is 3 minutes. This is a process of heating at a temperature rising rate of 5 minutes, holding at a target temperature of 600° C. for 3 minutes, then cooling to 300° C. at about 100° C./min, and then performing air cooling to room temperature.

この時、ろう付時間をt、Znの拡散係数をDとした場合に√(ΣDt)により与えられる入熱量は18〜28となる。この熱処理によりろう材は、ろう付時相当の熱を受けて溶融する。この熱処理条件を変更することでろう付熱処理後の共晶組織の存在状態を変化させることができる。 At this time, when the brazing time is t and the diffusion coefficient of Zn is D, the heat input amount given by √(ΣDt) is 18 to 28. By this heat treatment, the brazing material is melted by receiving a considerable amount of heat during brazing. By changing the heat treatment conditions, it is possible to change the existing state of the eutectic structure after the brazing heat treatment.

本発明でいうろう付相当熱処理は、このろう付工程における熱処理に相当するものであるが、必ずしも、上記の条件に厳密に一致したものでなくてもよく、通常のろう付に要する熱処理でよい。 The heat treatment equivalent to brazing in the present invention corresponds to the heat treatment in this brazing step, but it does not necessarily have to be exactly the same as the above conditions, and may be the heat treatment required for ordinary brazing. ..

そして、ろう付後には、ろう材層が薄くなるが、前述したように、ろう付後(ろう付相当熱処理後)の残存ろう材層の厚さをBとし、ろう付前のろう材層の厚さをAとしたときに、B/Aが0.8以上となる。また、ろう材初晶と芯材間の孔食電位差が100〜200mV、残存ろう材層の板厚中心から残存ろう材層と芯材の界面にかけての領域内におけるろう共晶の面積占有率が5〜30%の範囲となる。 Then, after brazing, the brazing material layer becomes thin, but as described above, the thickness of the remaining brazing material layer after brazing (after heat treatment equivalent to brazing) is B, and the brazing material layer before brazing is When the thickness is A, B/A is 0.8 or more. Further, the pitting potential difference between the primary crystal of the brazing material and the core material is 100 to 200 mV, and the area occupancy of the brazing eutectic in the region from the plate thickness center of the residual brazing material layer to the interface between the residual brazing material layer and the core material is It is in the range of 5 to 30%.

半連続鋳造により、表1に示す組成のろう材用アルミニウム合金を鋳造した。芯材用アルミニウム合金はJIS A3003合金を用いた。得られた芯材は580℃で8時間の均質化処理を行なった。また、ろう材は480℃で1時間の均質化処理を行なった(ただし、後述の供試材No.16を除く)。 The aluminum alloy for brazing material having the composition shown in Table 1 was cast by semi-continuous casting. As the aluminum alloy for the core material, JIS A3003 alloy was used. The obtained core material was homogenized at 580° C. for 8 hours. The brazing material was homogenized at 480° C. for 1 hour (however, except for the test material No. 16 described later).

次に、芯材の一方の面にろう材を組み合わせて熱間圧延してクラッド材とし、さらに冷間圧延を行った。その後、所定の圧延率とした冷間圧延により厚さ0.20mmとした後、最終焼鈍を360℃で3時間行い、O調質のクラッド材(供試材)を作製した。クラッド材の構成は、芯材:ろう材層の厚さ比率で90%:10%とした。このクラッド材においてろう付相当熱処理前の芯材の材料板厚は180μm、ろう材層の厚さ(A)は20μmである。また、ろう材層内のシリコン粒子の円相当径及び分布密度を測定した。 Next, a brazing material was combined with one surface of the core material, hot-rolled to form a clad material, and further cold-rolled. After that, the thickness was 0.20 mm by cold rolling with a predetermined rolling ratio, and then final annealing was performed at 360° C. for 3 hours to prepare an O-tempered clad material (test material). The clad material had a thickness ratio of core material: brazing material layer of 90%:10%. In this clad material, the material plate thickness of the core material before brazing equivalent heat treatment is 180 μm, and the thickness (A) of the brazing material layer is 20 μm. Further, the equivalent circle diameter and distribution density of the silicon particles in the brazing material layer were measured.

Figure 0006722981
Figure 0006722981

この供試材について、室温から400℃の到達時間が6分、400℃から550℃の到達時間が1分30秒、550℃から目標温度までの到達時間が4分となるような昇温速度で加熱し、600℃の目標温度で3分間保持し、その後、300℃まで約100℃/minで冷却した後、室温まで空冷を行なうろう付相当熱処理を施した。後述するように、一部の供試材について、このろう付相当熱処理の条件を変更した。 For this test material, the temperature rising rate is such that the arrival time from room temperature to 400°C is 6 minutes, the arrival time from 400°C to 550°C is 1 minute 30 seconds, and the arrival time from 550°C to the target temperature is 4 minutes. Then, it was held at a target temperature of 600° C. for 3 minutes, then cooled to 300° C. at about 100° C./min, and then subjected to brazing-corresponding heat treatment of air cooling to room temperature. As described later, the conditions of the heat treatment corresponding to brazing were changed for some of the test materials.

ろう付相当熱処理を施した供試材について、残存ろう材層の厚さ(B)を測定して、ろう付相当熱処理前後のろう材層の厚さの比率B/Aを算出し、ろう材初晶と芯材間の孔食電位差、残存ろう材層の板厚中心から残存ろう材層と芯材の界面にかけての領域内におけるろう共晶の面積占有率をそれぞれ測定した。また、耐食性として内部腐食性を評価した。
また、このろう付相当熱処理とは別に、供試材をフィン材にろう付して、ろう付性を評価した。
以上の測定、評価の際の条件は以下の通りである。
The thickness (B) of the remaining brazing material layer is measured for the test material subjected to the brazing equivalent heat treatment, and the ratio B/A of the brazing material layer thickness before and after the brazing equivalent heat treatment is calculated. The pitting potential difference between the primary crystal and the core material, and the area occupancy of the braze eutectic in the region from the plate thickness center of the residual brazing material layer to the interface between the residual brazing material layer and the core material were measured. Moreover, internal corrosion was evaluated as corrosion resistance.
Separately from this heat treatment equivalent to brazing, the test material was brazed to a fin material to evaluate the brazing property.
The conditions for the above measurement and evaluation are as follows.

<ろう材層又は残存ろう材層の厚さ>
供試材は、圧延方向平行断面を樹脂埋めし、該断面を鏡面に研磨した後、光学顕微鏡を用いて、200倍の倍率で写真を撮影した。撮影した像から各ろう材層の厚さを測定した。
<Thickness of brazing material layer or residual brazing material layer>
For the test material, a cross section parallel to the rolling direction was filled with resin, the cross section was polished to a mirror surface, and then a photograph was taken at a magnification of 200 times using an optical microscope. The thickness of each brazing material layer was measured from the photographed image.

<Si粒子の円相当径及び分布密度>
供試材の断面を研磨、エッチング後、電子顕微鏡により撮影し、その撮影像を画像解析にて解析して円相当直径及び分布密度を求めた。
<ろう材初晶と芯材間の孔食電位差>
供試材のろう材初晶および芯材に対し、アノード分極測定を実施し、孔食電位を測定した。アノード分極は飽和カロメル電極を用い、窒素ガスの吹き込みにより脱気した40℃の2.67%AlCl3水溶液中で電位掃引速度0.5mV/sで測定した。
<ろう共晶の面積占有率>
供試材は、圧延方向平行断面を樹脂埋めし、該断面を鏡面に研磨した後、光学顕微鏡を用いて、任意の30箇所にて、ろう材層を500倍の倍率で写真を撮影した。撮影した像を画像解析にて解析して、ろう共晶の面積占有率を求めた。
<Equivalent circle diameter and distribution density of Si particles>
After polishing and etching the cross section of the test material, the cross section was photographed by an electron microscope, and the photographed image was analyzed by image analysis to determine the equivalent circle diameter and the distribution density.
<Potential corrosion potential difference between primary crystal of brazing material and core material>
Anodic polarization measurements were performed on the brazing material primary crystal and the core material of the test material to measure the pitting potential. Anode polarization was measured using a saturated calomel electrode in a 2.67% AlCl 3 aqueous solution degassed by blowing nitrogen gas at a potential sweep rate of 0.5 mV/s.
<Area occupancy rate of braze eutectic>
For the test material, a cross section parallel to the rolling direction was filled with resin, the cross section was polished to a mirror surface, and then a photograph was taken of the brazing material layer at an arbitrary 30 spots at a magnification of 500 times using an optical microscope. The captured image was analyzed by image analysis to determine the area occupancy of the braze eutectic.

<耐食性(内部耐食性)>
ろう付相当熱処理後の供試材から30×50mmのサンプルを切り出し、ろう材層側について、Cl:195ppm、SO 2−:60ppm、Cu2+:1ppm、Fe3+:30ppmを含む水溶液中で80℃×8時間と室温×16時間との間のサイクルで浸漬試験を4週間実施した。腐食試験後のサンプルを沸騰させたリン酸クロム酸混合溶液に浸漬して腐食生成物を除去した後、最大腐食部の断面観察を実施して腐食深さを測定した結果を内部耐食性とする。腐食深さが30μm以下であったものを◎と評価し、30μm超、50μm以下のものを○と評価し、50μm超、75μm以下のものを△と評価し、75μm超のものを×と評価した。
<ろう付性>
ろう付相当熱処理前の供試材から20×35mmのサンプルを2枚切り出した後、別途用意したコルゲート加工したフィン材(JIS A3003合金)を供試材で挟むように組み合わせ、ミニコアを作製した。このとき、フィン材に接する面は供試材のろう材側とし、フィン材との接点が50箇所存在するようにした。
このミニコアをフッ化物フラックス水溶液に浸漬し、フッ化物フラックスを5g/mで塗布した後、所定のろう付熱処理条件にてろう付を行なった。ろう付後のミニコアからフィンを剥がし、供試材とフィンの接点の中でフィレットが形成されていたものの数をNとし、ろう付の接合率をN/50として求めた。この接合率が95%以上であったものを◎、95%未満、90%以上のものを○、90%未満、85%以上のものを△、85%未満のものを×と評価した。
これらの結果を表2に示す。
<Corrosion resistance (internal corrosion resistance)>
A sample of 30×50 mm was cut out from the test material after heat treatment equivalent to brazing, and in the brazing material layer side, in an aqueous solution containing Cl : 195 ppm, SO 4 2 − : 60 ppm, Cu 2+ : 1 ppm, Fe 3+ : 30 ppm. The immersion test was carried out for 4 weeks at a cycle of 80° C.×8 hours and room temperature×16 hours. The sample after the corrosion test is dipped in a boiling chromic acid phosphoric acid mixed solution to remove the corrosion product, and then the cross-section of the maximum corrosion portion is observed to measure the corrosion depth, which is taken as the internal corrosion resistance. Those with a corrosion depth of 30 μm or less are evaluated as ⊚, those of more than 30 μm and 50 μm are evaluated as ◯, those of more than 50 μm and 75 μm are evaluated as Δ, and those of more than 75 μm are evaluated as x. did.
<Brazability>
Two 20×35 mm samples were cut out from the test material before the heat treatment equivalent to brazing, and then separately prepared corrugated fin materials (JIS A3003 alloy) were sandwiched between the test materials and combined to form a minicore. At this time, the surface in contact with the fin material was on the brazing material side of the test material, and there were 50 points of contact with the fin material.
This mini-core was immersed in an aqueous solution of fluoride flux, and after applying the fluoride flux at 5 g/m 2 , brazing was performed under a predetermined brazing heat treatment condition. The fins were peeled off from the mini-core after brazing, the number of fillets formed in the contact points between the test material and the fins was N, and the joining rate of brazing was N/50. Those having a bonding rate of 95% or more were evaluated as ⊚, less than 95%, 90% or more as ◯, less than 90%, 85% or more as Δ, and less than 85% as x.
The results are shown in Table 2.

Figure 0006722981
Figure 0006722981

この表2からわかるように、供試材No.1〜9は合金成分を所定の範囲内とした供試材であり、即ち、ろう付後(ろう付相当熱処理後)の残存ろう材層の厚さをBとし、ろう付前のろう材層の厚さをAとしたときに、B/Aが0.8以上となる。また、ろう材初晶と芯材間の孔食電位差が100〜200mV、残存ろう材層の板厚中心から残存ろう材層と芯材の界面にかけての領域内におけるろう共晶の面積占有率が5〜30%の範囲となっている。このため、耐食性およびろう付性に優れる。No.10の供試材は、ろう付熱処理の加熱時に550℃〜600℃までの到達時間が5分を超えることにより、残存ろう材層の板厚中心から残存ろう材層と芯材の界面にかけての領域内におけるろう共晶の面積占有率が5〜30%の範囲より若干大きくなる例であり、ろう付性がやや低下するものの耐食性は良好となっていた。 As can be seen from Table 2, the test material No. 1 to 9 are test materials having alloy components within a predetermined range, that is, the thickness of the remaining brazing material layer after brazing (after heat treatment equivalent to brazing) is B, and the brazing material layer before brazing When the thickness of A is A, B/A is 0.8 or more. Further, the pitting potential difference between the primary crystal of the brazing material and the core material is 100 to 200 mV, and the area occupancy of the brazing eutectic in the region from the plate thickness center of the residual brazing material layer to the interface between the residual brazing material layer and the core material is It is in the range of 5 to 30%. Therefore, it has excellent corrosion resistance and brazing property. No. The test material of No. 10 had a time required to reach 550° C. to 600° C. of more than 5 minutes at the time of heating in the brazing heat treatment, so that the thickness of the residual brazing material layer from the center of the thickness to the interface between the residual brazing material layer and the core material was increased. This is an example in which the area occupancy rate of the braze eutectic in the region is slightly larger than the range of 5 to 30%, and although the brazing property is slightly lowered, the corrosion resistance is good.

これらの供試材に対し、No.11の供試材は、ろう材のSi含有量が望ましい範囲より低くなり過ぎたため、ろう付性に劣る結果となった。No.12の供試材は、ろう材のSi含有量が望ましい範囲より高くなり過ぎたため、ろう付性に劣る結果となった。No.13の供試材は、ろう材のZn含有量が望ましい範囲より低くなり過ぎたため、耐食性に劣る結果となった。No.14の供試材は、ろう材のZn含有量が望ましい範囲より高くなり過ぎたため、耐食性に劣る結果となった。
No.15の供試材は、ろう付熱処理時の600℃での保持時間が8分を超えることで、ろう付後の残存ろう材層の厚さをBとし、ろう付前のろう材層の厚さをAとしたときに、B/Aが0.8未満となり、耐食性に劣る結果となった。No.16の供試材は、材料作製時にろう材へ均質化処理を実施していないことで、シリコン粒子が所定の径、量の範囲より低くなり、ろう付性に劣る結果となった。No.17の供試材は、ろう付熱処理時の入熱量√(ΣDt)が28を超えることで、ろう材初晶と芯材間の孔食電位差が100〜200mVの範囲より低くなり、耐食性に劣る結果となった。No.18の供試材は、ろう材のZn含有量が望ましい範囲より低く、ろう付後の残存ろう材層の厚さをBとし、ろう付前のろう材層の厚さをAとしたときに、B/Aが0.8未満となり、耐食性に劣る結果となった。No.19の供試材は、ろう材のZn含有量が望ましい範囲より低く、シリコン粒子が所定の径、量の範囲より低くなり、耐食性に劣る結果となった。No.20の供試材は、ろう材のZn含有量が望ましい範囲より低く、ろう材初晶と芯材間の孔食電位差が100〜200mVの範囲より低くなり、耐食性に劣る結果となった。No.21の供試材は、ろう材のZn含有量が望ましい範囲より低く、残存ろう材層の板厚中心から残存ろう材層と芯材の界面にかけての領域内におけるろう共晶の面積占有率が5〜30%の範囲より大きくなり、耐食性に劣る結果となった。No.22の供試材は、ろう付後の残存ろう材層の厚さをBとし、ろう付前のろう材層の厚さをAとしたときに、B/Aが0.8未満かつシリコン粒子が所定の径、量の範囲未満かつろう材初晶と芯材間の孔食電位差が100〜200mV未満となり、ろう付性および耐食性に劣る結果となった。
In contrast to these test materials, the test material of No. 11 was inferior in brazing property because the Si content of the brazing material was too lower than the desirable range. The test material of No. 12 was inferior in brazing property because the Si content of the brazing material was higher than the desirable range. The test material of No. 13 was inferior in corrosion resistance because the Zn content of the brazing material was too lower than the desirable range. The test material of No. 14 was inferior in corrosion resistance because the Zn content of the brazing material was higher than the desirable range.
The sample No. 15 had a holding time of 600°C during brazing heat treatment of more than 8 minutes, so that the thickness of the remaining brazing material layer after brazing was B, and the brazing material layer before brazing was When the thickness of A was B, B/A was less than 0.8, resulting in poor corrosion resistance. The test material of No. 16 had the result that the brazing property was inferior because the silicon particles became lower than the predetermined diameter and amount range because the brazing material was not subjected to the homogenization treatment at the time of material preparation. The heat input amount √ (ΣDt) during brazing heat treatment of No. 17 test material exceeds 28, the pitting potential difference between the primary crystal of the brazing material and the core material becomes lower than the range of 100 to 200 mV, and the corrosion resistance The result was inferior to. In the test material of No. 18, the Zn content of the brazing material was lower than the desired range, the thickness of the residual brazing material layer after brazing was B, and the thickness of the brazing material layer before brazing was A. At times, B/A was less than 0.8, resulting in poor corrosion resistance. The test material of No. 19 had a Zn content of the brazing material lower than the desired range and silicon particles lower than the predetermined diameter and quantity range, resulting in poor corrosion resistance. The No. 20 test material had a Zn content of the brazing material lower than the desired range, and the pitting potential difference between the brazing material primary crystal and the core material was lower than the range of 100 to 200 mV, resulting in poor corrosion resistance. .. The sample No. 21 had a Zn content of the brazing material lower than the desired range, and occupied area of the brazing eutectic in the region from the thickness center of the residual brazing material layer to the interface between the residual brazing material layer and the core material. The rate was larger than the range of 5 to 30%, resulting in poor corrosion resistance. When the thickness of the remaining brazing material layer after brazing is B and the thickness of the brazing material layer before brazing is A, the test material of No. 22 has a B/A of less than 0.8 and The silicon particles were less than the predetermined diameter and amount range, and the pitting potential difference between the primary crystal of the brazing material and the core material was less than 100 to 200 mV, resulting in poor brazing and corrosion resistance.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The present invention is not limited to the above-mentioned embodiment, and various modifications can be made without departing from the spirit of the present invention.

Claims (3)

芯材の一方または両方の面にろう材層クラッドされており、前記ろう材層が質量%でSi:2.5〜6.5%、Zn:2.0〜6.0%含有し、残部がAlおよび不可避不純物からなり、ろう材層には円相当径で1μm程度のSi粒子が多数存在する、アルミニウム合金クラッド材であって、
上記アルミニウム合金クラッド材を、同室温から400℃の到達時間が6分、400℃から550℃の到達時間が1分30秒、550℃から目標温度までの到達時間が4分となるような昇温速度で加熱し、600℃の目標温度で3分間保持し、その後、300℃まで約100℃/minで冷却した後、室温まで空冷を行なうろう付相当熱処理を施してろう付けすると、
前記ろう付け前のろう材層の厚さをA、前記ろう付後の残存ろう材層の厚さをBとした時、B/Aが0.8以上となり、前記ろう付後のろう材層内に円相当径3μm〜8μmのシリコン粒子が8×10〜8×10個/mmの範囲で分散し、かつ、前記ろう付後のろう材初晶と前記芯材間の孔食電位差が100〜200mVであり、
前記ろう付後の前記残存ろう材層の板厚中心から該残存ろう材層と芯材の界面にかけての領域内におけるろう共晶の面積占有率が5〜30%の範囲になること、を特徴とするアルミニウム合金クラッド材。
A brazing material layer is clad on one or both surfaces of the core material, and the brazing material layer contains Si: 2.5 to 6.5% and Zn: 2.0 to 6.0% in mass%. An aluminum alloy clad material, the balance of which is Al and unavoidable impurities, and a large number of Si particles having an equivalent circle diameter of about 1 μm are present in the brazing material layer.
The aluminum alloy clad material is heated such that the arrival time from the same room temperature to 400°C is 6 minutes, the arrival time from 400°C to 550°C is 1 minute 30 seconds, and the arrival time from 550°C to the target temperature is 4 minutes. When heated at a temperature rate, held at a target temperature of 600° C. for 3 minutes, then cooled to 300° C. at about 100° C./min, and then brazed by performing a brazing-corresponding heat treatment for air cooling to room temperature,
When the thickness of the brazing material layer before brazing is A and the thickness of the remaining brazing material layer after brazing is B, B/A is 0.8 or more, and the brazing material layer after brazing is Silicon particles having an equivalent circle diameter of 3 μm to 8 μm are dispersed within the range of 8×10 to 8×10 2 pieces/mm 2 , and the pitting potential difference between the brazing material primary crystal after brazing and the core material. Is 100 to 200 mV,
The area occupancy rate of the braze eutectic in the region from the plate thickness center of the remaining brazing material layer after brazing to the interface between the remaining brazing material layer and the core material is in the range of 5 to 30%. And aluminum alloy clad material.
前記ろう材層は、質量%でMn:0.05〜1.0%、Cr:0.05〜0.5%、Ti:0.05〜0.3%、Zr:0.05〜0.3%、Sr:0.005〜0.1%から選択される1種または2種以上をさらに含有することを特徴とする請求項1記載のアルミニウム合金クラッド材。 The mass ratio of the brazing material layer is Mn: 0.05 to 1.0%, Cr: 0.05 to 0.5%, Ti: 0.05 to 0.3%, Zr: 0.05 to 0. The aluminum alloy clad material according to claim 1, further comprising one or more selected from 3% and Sr: 0.005 to 0.1%. 全体板厚が0.1〜0.5mmの範囲であることを特徴とする請求項1又は2のいずれか一項記載のアルミニウム合金クラッド材。 The aluminum alloy clad material according to claim 1, wherein the total plate thickness is in the range of 0.1 to 0.5 mm.
JP2015105401A 2015-05-25 2015-05-25 Aluminum alloy clad material Active JP6722981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015105401A JP6722981B2 (en) 2015-05-25 2015-05-25 Aluminum alloy clad material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015105401A JP6722981B2 (en) 2015-05-25 2015-05-25 Aluminum alloy clad material

Publications (2)

Publication Number Publication Date
JP2016216791A JP2016216791A (en) 2016-12-22
JP6722981B2 true JP6722981B2 (en) 2020-07-15

Family

ID=57579895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015105401A Active JP6722981B2 (en) 2015-05-25 2015-05-25 Aluminum alloy clad material

Country Status (1)

Country Link
JP (1) JP6722981B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6480367B2 (en) * 2016-03-16 2019-03-06 三菱アルミニウム株式会社 Aluminum alloy brazing sheet
JP6803827B2 (en) * 2017-12-20 2020-12-23 三菱アルミニウム株式会社 Aluminum alloy material for heat exchanger and heat exchanger
JP7029308B2 (en) * 2018-02-09 2022-03-03 日鉄ステンレス株式会社 Stainless clad steel sheet, its manufacturing method, and cutlery
JP2020100881A (en) * 2018-12-25 2020-07-02 三菱アルミニウム株式会社 Aluminum alloy clad material for heat exchanger, and heat exchanger
JP7244271B2 (en) * 2018-12-25 2023-03-22 Maアルミニウム株式会社 Aluminum alloy clad material for heat exchanger and heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704835B2 (en) * 2009-05-27 2015-04-22 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchanger
JP5632206B2 (en) * 2010-06-15 2014-11-26 株式会社Uacj Aluminum clad material for heat exchanger

Also Published As

Publication number Publication date
JP2016216791A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
EP2808410B1 (en) Aluminum alloy for heat exchanger fin and manufacturing method therefor, as well as heat exchanger using said aluminum alloy
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP6216964B2 (en) Clad material for cooler and cooler for heating element
JP6722981B2 (en) Aluminum alloy clad material
JP5982102B2 (en) Clad material for cooler and cooler for heating element
JP4916334B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP2007327094A (en) Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger
JP4916333B2 (en) Aluminum alloy clad material for heat exchangers with excellent strength and brazing
JP6803827B2 (en) Aluminum alloy material for heat exchanger and heat exchanger
JP2016069696A (en) Aluminum alloy brazing sheet
JP2009161826A (en) Brazing sheet for tube material of heat exchanger, heat exchanger, and method for producing the same
JP6758281B2 (en) Aluminum alloy brazing sheet fin material for heat exchanger and its manufacturing method
JP2007327093A (en) Clad material of high-strength aluminum alloy excellent in brazability for heat exchanger
JP5702982B2 (en) Aluminum alloy clad material
JP7102647B2 (en) Aluminum alloy brazing sheet
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP6480367B2 (en) Aluminum alloy brazing sheet
JP6415144B2 (en) Aluminum alloy clad material and heat exchanger
JP2020100881A (en) Aluminum alloy clad material for heat exchanger, and heat exchanger
JP2022045525A (en) Aluminum alloy bare material having excellent thermal conductivity and brazing sheet
JP7244271B2 (en) Aluminum alloy clad material for heat exchanger and heat exchanger
JP5973948B2 (en) Aluminum alloy brazing material and brazing sheet
JP2022045655A (en) Aluminum alloy bare material having excellent thermal conductivity and strength and brazing sheet
JP7517811B2 (en) Aluminum alloy brazing sheet and method for manufacturing heat exchanger
JP2014028389A (en) Aluminum alloy brazing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200623

R150 Certificate of patent or registration of utility model

Ref document number: 6722981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250