JP6722573B2 - Condition monitoring device - Google Patents

Condition monitoring device Download PDF

Info

Publication number
JP6722573B2
JP6722573B2 JP2016237003A JP2016237003A JP6722573B2 JP 6722573 B2 JP6722573 B2 JP 6722573B2 JP 2016237003 A JP2016237003 A JP 2016237003A JP 2016237003 A JP2016237003 A JP 2016237003A JP 6722573 B2 JP6722573 B2 JP 6722573B2
Authority
JP
Japan
Prior art keywords
response waveform
detection unit
axle box
state
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016237003A
Other languages
Japanese (ja)
Other versions
JP2018090171A (en
Inventor
岳夫 城取
岳夫 城取
深澤 香敏
香敏 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2016237003A priority Critical patent/JP6722573B2/en
Publication of JP2018090171A publication Critical patent/JP2018090171A/en
Application granted granted Critical
Publication of JP6722573B2 publication Critical patent/JP6722573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、軸箱支持装置の状態監視装置に関するものである。 The present invention relates to a condition monitoring device for an axle box supporting device.

鉄道用車両の下部に設けられた台車では、台車枠に取り付けられた輪軸が、軸箱に設けられた軸受けに軸支されている。この軸箱は、軸ばねや軸ダンパ等を有する軸箱支持装置によって台車枠に取り付けられている。軸ばねは、ばね帽によって覆われており、台車枠に対する軸箱の上下方向の衝撃を緩衝する。軸ダンパは軸箱支持装置の上下方向の振動を減衰させる。また、軸箱と台車枠とは、軸箱支持装置のリンクや軸はりによって前後方向に連結され、高速走行時の蛇行等を抑制する直進安定性と、曲線走行時の転向性(輪軸の鉛直軸回りの回転性能)とのバランスを保つことが可能な前後方向の剛性が保持されている。 In a trolley provided at a lower portion of a railway vehicle, a wheel axle attached to a trolley frame is pivotally supported by a bearing provided in a axle box. The axle box is attached to the bogie frame by an axle box support device having an axle spring, an axle damper, and the like. The shaft spring is covered by a spring cap, and cushions the vertical shock of the shaft box against the bogie frame. The shaft damper damps the vertical vibration of the shaft box supporting device. In addition, the axle box and bogie frame are connected in the front-rear direction by links and axle beams of the axle box support device, and straight running stability that suppresses meandering etc. at high speed running, and turning characteristic (vertical axis of wheel axle) during curving. The rigidity in the front-rear direction that can maintain the balance with the rotational performance about the axis) is maintained.

ところで、鉄道車両は、保全のため数年ごとに大規模に分解する検査の他、営業終了後毎、月毎、或いは年毎等に、定期的に目視検査等が行われている。 By the way, railway vehicles are not only inspected on a large scale every few years for maintenance, but also regularly inspected visually after the end of business, monthly, or yearly.

極稀に、台車部品は、まだ十分に安全性が確保されている場合でも、摩耗等により異音等が生じ、営業線上で状態確認のため、乗務員が列車を停止させて検査することがあり、このために列車運行に遅延が発生することがある。このような事態を避けたいが、ばね帽に覆われた軸ばね、軸ダンパ、前後方向の剛性に関わる部品等は、目視での状態や機能の把握に限界がある。また、大手の鉄道事業者にとっては、保有する数千両の車両を対象にしなければならないという問題もある。 On rare occasions, even when the trolley parts are still sufficiently safe, noise may occur due to wear, etc., and crew members may stop the trains and inspect them to check the condition on the sales line. , Therefore, train operation may be delayed. Although it is desired to avoid such a situation, there is a limit in visually recognizing the state and function of the shaft spring covered by the spring cap, the shaft damper, the parts relating to the rigidity in the front-rear direction, and the like. There is also a problem for large railway operators that they must target the thousands of vehicles they own.

そこで、分解や部品の取り外しを行うことなく、台車に備えられた部品の状態を監視する状態監視装置が開発されている(例えば、特許文献1、2参照)。特許文献1には、台車枠に加速度センサを取付け、この加速度センサで測定した加速度に基づいて、軸ダンパ、軸ばね等の状態を監視することが開示されている。特許文献2には、ボルト等の監視対象の正常時の音と異常時の音を比較することで、状態監視を行うことが開示されている。このように、鉄道事業者等では、車両の分解等を行わなくても部品の状態監視を簡単かつ確実に行うことができる技術の開発が切望されている。 Therefore, a state monitoring device has been developed that monitors the state of the parts provided on the truck without disassembling or removing the parts (see, for example, Patent Documents 1 and 2). Patent Document 1 discloses that an acceleration sensor is attached to a bogie frame and the states of a shaft damper, a shaft spring, and the like are monitored based on the acceleration measured by the acceleration sensor. Patent Document 2 discloses that the state is monitored by comparing the sound of a monitoring target such as a bolt at the time of normal operation and the sound at the time of abnormal operation. As described above, railway operators and the like are eagerly required to develop a technique capable of easily and reliably monitoring the condition of parts without disassembling the vehicle.

特開2014−210507号公報JP, 2014-210507, A 特開2016−90461号公報JP, 2016-90461, A

本発明は上記事情に鑑みてなされたものであって、軸箱周りの部品の状態監視を、より簡易な構成で効率よく行うことが可能な状態監視装置を提供することを目的としている。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a state monitoring device capable of efficiently performing state monitoring of parts around an axle box with a simpler configuration.

前記目的を達成するために、本発明の状態監視装置は、車両の台車に取り付けられた軸箱周りの部品の状態を監視する状態監視装置であって、軌道に形成される振動励起部材と、台車枠の端部に設けられた検出部と、を備え、前記振動励起部材によって振動する前記台車の応答波形を前記検出部によって検出し、検出値に基づいて、前記軸箱周りの部品の状態監視を行うことを特徴とする。また、本発明の状態監視装置は、車両の台車に取り付けられた軸箱周りの部品の状態を監視する状態監視装置であって、軌道に形成される振動励起部材と、前記台車からの応答波形を検出する検出部と、を備え、前記検出部は、前記軌道側又は軌道脇に配置されており、前記検出部による検出値に基づいて、前記軸箱周りの部品の状態監視を行うことを特徴とする。 In order to achieve the above-mentioned object, the condition monitoring device of the present invention is a condition monitoring device for monitoring the condition of parts around an axle box attached to a bogie of a vehicle, and a vibration excitation member formed on a track, A detection section provided at an end of the bogie frame, and a response waveform of the bogie vibrated by the vibration excitation member is detected by the detection section, and the state of parts around the axle box is detected based on the detected value. It is characterized by performing monitoring. Further, the state monitoring device of the present invention is a state monitoring device for monitoring the state of parts around an axle box attached to a bogie of a vehicle, wherein a vibration excitation member formed on a track and a response waveform from the bogie. And a detection unit for detecting the state of parts around the axle box based on a detection value by the detection unit. Characterize.

ここで、前記検出部によって検出された前記応答波形を、前記台車の正常時の応答波形と比較することで、前記軸箱周りの部品の状態監視を行う構成とすることができる。また、前記検出部は、変位、角度、速度、角速度、加速度、角加速度、荷重、ひずみから選択される少なくとも何れかの応答波形を検出することが好ましい。また、前記検出部が、前記台車枠に対して着脱自在であることが好ましい。さらには、前記振動励起部材が、前記軌道に配置される板材、突起物、継ぎ目、又は波形ブロックから選択される振動励起ブロックであることが好ましい。 Here, by comparing the response waveform detected by the detection unit with the response waveform of the trolley in a normal state, it is possible to monitor the state of parts around the axle box. Further, it is preferable that the detection unit detects at least one response waveform selected from displacement, angle, velocity, angular velocity, acceleration, angular acceleration, load, and strain. Further, it is preferable that the detection unit is detachable from the bogie frame. Further, it is preferable that the vibration exciting member is a vibration exciting block selected from a plate material, a protrusion, a seam, or a corrugated block arranged on the track.

このように構成された本発明の状態監視装置は、振動励起部材によって車両に振動を与えることで、検出部によって台車の応答波形を検出する。検出された応答波形に基づいて、軸箱周りの部品の状態監視を行うことができ、部品の取り外しや分解等の手間や時間を省くことができる。このため、軸箱周りの部品の状態監視を、より簡易な構成で効率よく行うことが可能になる。 In the state monitoring device of the present invention configured as described above, the vibration excitation member applies vibration to the vehicle, and the detection unit detects the response waveform of the truck. Based on the detected response waveform, the condition of the parts around the axle box can be monitored, and the labor and time for removing and disassembling the parts can be saved. Therefore, it becomes possible to efficiently monitor the state of the components around the axle box with a simpler configuration.

また、検出部によって検出された応答波形を、台車の正常時の応答波形と比較することで、軸箱周りの部品の状態監視を行う構成であれば、軸箱周りの部品が正常であるか否か、さらにはいずれの部品に不具合を生じたか等を判定することができる。また、検出部が、変位、角度、速度、角速度、加速度、角加速度、荷重、ひずみから選択される少なくとも何れかの応答波形を検出する構成であれば、より正確に状態監視を行うことができる。また、検出部が、台車枠に対して着脱自在な構成であれば、車両ごとに検出部を付替えて、1つの検出部で複数の車両の状態監視を行うことができる。 In addition, if the response waveform detected by the detection unit is compared with the response waveform of the bogie when it is normal, if the condition of the components around the axle box is monitored, then the components around the axle box are normal. It is possible to determine whether or not, and further, which component has a defect. Moreover, if the detection unit is configured to detect at least one of response waveforms selected from displacement, angle, velocity, angular velocity, acceleration, angular acceleration, load, and strain, the state can be monitored more accurately. .. Further, if the detection unit is configured to be attachable to and detachable from the bogie frame, the detection unit can be replaced for each vehicle, and one detection unit can monitor the states of a plurality of vehicles.

さらには、振動励起部材が、軌道に配置される板材、突起物、継ぎ目、又は波形ブロックから選択される振動励起ブロックであれば、より明確な応答波形を検出することが可能な振動を車両に与えることができ、高精度な状態監視が可能となる。 Furthermore, if the vibration excitation member is a vibration excitation block selected from a plate material, a protrusion, a seam, or a waveform block arranged on the track, a vibration capable of detecting a clearer response waveform is transmitted to the vehicle. It is possible to give a high-precision condition monitoring.

本実施形態の状態監視装置を備えた軸箱支持装置を有する台車の側面図である。It is a side view of the trolley|bogie which has the axle box supporting device provided with the state monitoring device of this embodiment. 軸箱の上下振動の加速度とばね帽の上下振動の加速度に基づく応答倍率のシミュレーション実験結果のグラフを示すThe graph of the result of the simulation experiment of the response magnification based on the acceleration of the vertical vibration of the axle box and the acceleration of the vertical vibration of the spring cap is shown. ばね帽の上下振動の加速度を時刻歴で表したシミュレーション実験結果のグラフを示す。The graph of the simulation experiment result which represented the acceleration of the vertical vibration of a spring cap by the time history is shown. 図3のグラフにおける各波間の対数減衰率を表したグラフである。4 is a graph showing a logarithmic attenuation rate between waves in the graph of FIG. 3. 振動励起部材の変形例の説明図であり、軌道上に振動励起部材として突起物を設置した状態を示す。It is explanatory drawing of the modification of a vibration excitation member, and shows the state which installed the protrusion as a vibration excitation member on a track|orbit. 振動励起部材の変形例の説明図であり、軌道の継ぎ目を振動励起部材とした状態を示す。It is explanatory drawing of the modification of a vibration excitation member, and shows the state which used the vibration excitation member for the joint of a track|orbit. 振動励起部材の変形例の説明図であり、軌道上に振動励起部材として波形ブロックを設置した状態を示す。It is explanatory drawing of the modification of a vibration excitation member, and shows the state which installed the corrugated block as a vibration excitation member on the track.

以下、本発明の実施の形態について図面を参照して説明する。図1は、本実施の形態の状態監視装置を備えた軸箱支持装置を有する台車の側面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a side view of a carriage having an axle box supporting device provided with the condition monitoring device of the present embodiment.

この図1に示すように、台車1は、鉄道車両2の車体の下部に設けられるものであり、台車枠10、空気ばね20等を有する車体支持装置、輪軸30、軸箱40等を有する軸箱支持装置50、モータ等を有する駆動装置、ブレーキ等を備えている。 As shown in FIG. 1, a bogie 1 is provided below a vehicle body of a railway vehicle 2, and has a bogie frame 10, a vehicle body supporting device having an air spring 20, etc., an axle having an axle 30 and an axle box 40. It is provided with a box support device 50, a drive device having a motor and the like, a brake and the like.

台車枠10は、台車1を構成する構造部材であって、左右の側ばり、側ばりを中央でつなぐ横ばり等で構成されている。台車枠10は空気ばね20、牽引装置等の車体支持装置を介して車体に装着されている。 The bogie frame 10 is a structural member that constitutes the bogie 1, and is composed of left and right side beams, a side beam that connects the side beams in the center, and the like. The bogie frame 10 is attached to the vehicle body through a body supporting device such as an air spring 20 and a traction device.

空気ばね20は、台車枠10と車体との間に設けられている。空気ばね20は、台車1の左右に例えば1対が設けられ、台車枠10の左右の側ばりの上部にそれぞれ固定されている。輪軸30は、2枚の車輪31を車軸32に圧入して組み立てられている。 The air spring 20 is provided between the bogie frame 10 and the vehicle body. For example, one pair of air springs 20 are provided on the left and right sides of the bogie 1, and are fixed to the upper portions of the left and right side beams of the bogie frame 10, respectively. The wheel axle 30 is assembled by press-fitting two wheels 31 into an axle 32.

軸箱40は、輪軸30の車軸32の両端部に設けられ、車軸32を回転可能に支持する軸受、軸受を収容する軸箱体、潤滑装置等を備えて構成されている。 The axle box 40 is provided at both ends of the axle 32 of the wheel axle 30, and is configured to include a bearing that rotatably supports the axle 32, an axle box that houses the bearing, a lubrication device, and the like.

軸箱支持装置50は、軸箱40を台車枠10に対して位置決めし、弾性的に支持する装置である。本実施形態の軸箱支持装置50は、モノリンク式のものであって、軸箱40の他に、軸ばね51、軸ダンパ52、モノリンク53等を備えている。しかし、軸箱支持装置50がモノリンク式に限定されることはなく、軸はり式のもの等、従来公知のものを用いることができる。 The axle box support device 50 is a device that positions the axle box 40 with respect to the bogie frame 10 and elastically supports the axle box 40. The axle box supporting device 50 of the present embodiment is of a monolink type and includes an axle spring 51, an axle damper 52, a monolink 53, etc. in addition to the axle box 40. However, the axle box supporting device 50 is not limited to the monolink type, and a conventionally known one such as a shaft beam type can be used.

軸ばね51は、台車枠10の側端部に設けられたばね帽54内に収容されている。軸ばね51は、ばね帽54の上端部に設けられたばね受55と、軸箱40の上方に設けられたばね座56との間に配置されている。軸ばね51は、台車枠10に対する軸箱40の上下方向(垂直方向)の衝撃を緩衝し、車体などの荷重バランスを調整するとともに、台車枠10に対する軸箱40の鉄道車両2の進行方向における左右方向の衝撃も緩衝する。 The shaft spring 51 is housed in a spring cap 54 provided at a side end portion of the bogie frame 10. The shaft spring 51 is arranged between a spring receiver 55 provided at the upper end of the spring cap 54 and a spring seat 56 provided above the shaft box 40. The shaft spring 51 cushions a vertical (vertical) impact of the axle box 40 on the bogie frame 10, adjusts a load balance of a vehicle body, and the like. It also absorbs lateral impact.

軸ダンパ52は、軸箱40の側部と台車枠10との間に設けられている。この軸ダンパ52は、台車枠10に対する軸箱支持装置50の上下方向(垂直方向)の振動を減衰させる。したがって、車体の荷重バランスを調整して鉄道車両2の円滑な走行を可能とするためには、軸ばね51や軸ダンパ52等の一次ばね系の状態を監視することは重要である。 The shaft damper 52 is provided between the side portion of the shaft box 40 and the bogie frame 10. The shaft damper 52 damps the vertical (vertical) vibration of the shaft box supporting device 50 with respect to the bogie frame 10. Therefore, in order to adjust the load balance of the vehicle body and enable the smooth running of the railway vehicle 2, it is important to monitor the state of the primary spring system such as the shaft spring 51 and the shaft damper 52.

モノリンク53は、一方の端部が台車枠10の接続部11に連結され、他方の端部が軸箱40の接続部41に連結されている。モノリンク53によって台車枠10と軸箱40とを前後方向で連結している。各接続部11,41には、支軸12,42が設けられ、各支軸12,42がゴム等のリング状の弾性体13,43内に嵌合されている。このように、台車枠10と軸箱40とが、前後方向でモノリンク53を介して連結されることで、台車枠10に対する軸箱40の前後方向への剛性を調整して、高速走行時の蛇行等を抑制する直進安定性と、曲線走行時の転向性とのバランスが保持されている。したがって、高速走行や曲線走行を、蛇行や脱線等を生じることなく円滑に行うためには、前後方向の剛性に関わる部品の状態を監視することは重要である。 One end of the mono link 53 is connected to the connecting portion 11 of the bogie frame 10, and the other end thereof is connected to the connecting portion 41 of the axle box 40. The bogie frame 10 and the axle box 40 are connected in the front-rear direction by the monolink 53. Support shafts 12 and 42 are provided in the respective connection portions 11 and 41, and the support shafts 12 and 42 are fitted in ring-shaped elastic bodies 13 and 43 made of rubber or the like. In this way, the bogie frame 10 and the axle box 40 are connected in the front-rear direction via the monolink 53, so that the rigidity of the axle box 40 with respect to the bogie frame 10 in the front-rear direction is adjusted to allow high-speed traveling. The balance between the straight running stability that suppresses the meandering and the like and the turning performance when traveling on a curve is maintained. Therefore, in order to smoothly perform high-speed traveling and curved traveling without causing meandering, derailment, etc., it is important to monitor the state of parts relating to the rigidity in the front-rear direction.

上述のような構成の台車1の軸箱周りの部品の状態監視を行うため、状態監視装置60が設けられている。軸箱周りの部品としては、例えば、前述の軸ばね51、軸ダンパ52等の一次ばね系が挙げられる。また、モノリンク53、軸はり等の連結部材、連結部材周りの接続部11,41、支軸12,42、弾性体13,43(前後方向を支持するゴム、軸はりのゴム等)といった軸箱支持装置50の各部品等、前後方向の剛性を調整する部材等が挙げられる。また、軸バネ51等がゴムである場合もあり、この場合は軸ばね51等は、上下方向の剛性を調整する部材である。 A state monitoring device 60 is provided to monitor the state of the components around the axle box of the trolley 1 having the above-described configuration. Examples of parts around the shaft box include the primary spring system such as the shaft spring 51 and the shaft damper 52 described above. Further, shafts such as a monolink 53, a connecting member such as a shaft beam, connecting portions 11 and 41 around the connecting member, support shafts 12 and 42, elastic bodies 13 and 43 (rubber supporting the front-rear direction, rubber of a shaft beam, etc.). A member for adjusting the rigidity in the front-back direction, such as each component of the box support device 50, may be used. In addition, the shaft spring 51 and the like may be rubber, and in this case, the shaft spring 51 and the like are members that adjust the rigidity in the vertical direction.

これらの軸箱周りの部品は、正常(健全)な状態であるか、劣化等によって状態が変化したかを、目視で監視するのは困難である。本実施形態の状態監視装置60では、軸箱周りの部品を取り外したり、分解したりすることなく(在姿状態及び非分解で)、軸箱周りの部品の状態監視を簡易かつ効率よく行うことができるようになっている。 It is difficult to visually monitor whether the parts around these axle boxes are in a normal (healthy) state or have their states changed due to deterioration or the like. With the state monitoring device 60 of the present embodiment, it is possible to easily and efficiently monitor the state of the parts around the shaft box without removing or disassembling the parts around the shaft box (in the presence state or non-disassembled state). You can do it.

図1に示すように、本実施形態の状態監視装置60は、軌道3に配置される振動励起部材61と、台車枠10の端部に設けられ、振動励起部材61によって振動する台車1の応答波形を検出する検出部としての検出センサ62と、を備えている。また、本実施形態の状態監視装置60は、検出センサ62の検出値を検出信号として有線又は無線で受信し、検出値に基づいて各種演算処理を行って結果のグラフを作成したり、検出値を解析して状態を判定したりする制御部63を備えている。 As shown in FIG. 1, the state monitoring device 60 of the present embodiment is a response of the vibration exciting member 61 arranged on the track 3 and the bogie 1 provided at the end of the bogie frame 10 and vibrated by the vibration exciting member 61. And a detection sensor 62 as a detection unit that detects a waveform. In addition, the state monitoring device 60 of the present embodiment receives the detection value of the detection sensor 62 as a detection signal by wire or wirelessly, and performs various arithmetic processes based on the detection value to create a graph of the result or the detection value. Is provided with a control unit 63 for analyzing the state and determining the state.

振動励起部材61は、台車1に振動を生じさせることができるものであれば、特に限定されることはない。例えば、板材、突起物、継ぎ目、又は波形ブロック等の振動励起ブロックを用いることができる。本実施形態では、図1に示すように、振動励起部材61として鉄板を用いている。 The vibration excitation member 61 is not particularly limited as long as it can cause the carriage 1 to vibrate. For example, a plate material, a protrusion, a seam, or a vibration excitation block such as a corrugated block can be used. In this embodiment, as shown in FIG. 1, an iron plate is used as the vibration excitation member 61.

このような振動励起部材61を軌道3上に配置し、鉄道車両2を図1の矢印方向(進行方向)に低速走行させると、車輪31が振動励起部材61に乗り上げ、該車輪31が軌道3に着地する際の力により、台車1が振動(応答)する。 When such a vibration excitation member 61 is arranged on the track 3 and the railway vehicle 2 travels at a low speed in the direction of the arrow (the traveling direction) in FIG. 1, the wheels 31 ride on the vibration excitation member 61, and the wheels 31 move on the track 3. The trolley 1 vibrates (responds) by the force when landing on.

検出センサ62は、このような台車1の振動による応答波形を検出する。検出センサ62は、台車1のいずれの位置に設けてもよいが、振動によって台車1がピッチング方向や上下並進方向等に揺動することを鑑みて、台車枠10の端部に設けることが望ましく、応答波形の検出感度を向上させることができる。 The detection sensor 62 detects such a response waveform due to the vibration of the carriage 1. The detection sensor 62 may be provided at any position of the bogie 1, but in view of the bogie 1 swinging in the pitching direction, the vertical translation direction, or the like due to vibration, it is preferably provided at the end of the bogie frame 10. The detection sensitivity of the response waveform can be improved.

台車1からの応答は、変位、角度、速度、角速度、加速度、角加速度、力(荷重)、ひずみ等の物理量として表れる。そのため、その応答波形を検出することができれば、検出センサ62として、いずれのものを用いてもよい。 The response from the trolley 1 is represented as physical quantities such as displacement, angle, speed, angular velocity, acceleration, angular acceleration, force (load), and strain. Therefore, any sensor may be used as the detection sensor 62 as long as the response waveform can be detected.

例えば、台車1の加速度を応答波形として検出する加速度センサ、台車1等の速度の応答波形を検出する速度センサ、台車1の変位の応答波形を検出する変位センサ(例えば、レーザ距離測定センサ等のレーザ変位センサ)等が挙げられる。変位センサは、台車1側に設けてもよいし、軌道3側や軌道脇に設けて、台車1に向けてレーザ等を照射して変位を検出するものであってもよい。検出センサ62では、台車1又は軌道3のいずれの位置又は部品の応答波形を検出してもよい。例えば、一次ばね系の振動の応答波形を検出してもよいし、上下方向又は前後方向の剛性に関わる部品の応答波形を検出してもよいし、軌道3の応答波形を検出してもよい。 For example, an acceleration sensor that detects the acceleration of the carriage 1 as a response waveform, a speed sensor that detects the response waveform of the speed of the carriage 1, etc., a displacement sensor that detects the response waveform of the displacement of the carriage 1 (for example, a laser distance measurement sensor, etc. Laser displacement sensor) and the like. The displacement sensor may be provided on the dolly 1 side, or may be provided on the track 3 side or on the side of the track to irradiate a laser or the like toward the dolly 1 to detect the displacement. The detection sensor 62 may detect the response waveform of any position or part of the truck 1 or the track 3. For example, the response waveform of the vibration of the primary spring system may be detected, the response waveform of the component related to the rigidity in the vertical direction or the front-back direction may be detected, or the response waveform of the track 3 may be detected. ..

また、検出センサ62として、台車1や軌道3に作用する荷重の応答波形を検出する荷重センサ、台車1や軌道3のひずみに対する応答波形を検出するひずみセンサ、台車1や軸箱周りの部品の等の角度、角速度、角加速度等を検出するジャイロセンサ等も挙げられる。荷重センサは、車体に作用する荷重を検出するセンサでもよい。または、車体の振動によって軌道3に作用する荷重を検出するセンサを用い、間接的に台車1の応答波形を検出してもよい。ひずみセンサとしては、例えば、モノリンク53等の連結部材や軌道3のねじれやひずみを応答波形として検出するセンサを用いることができる。また、ジャイロセンサとしては、例えば、台車1のピッチング角、ピッチング角速度、ピッチング角加速度等を応答波形として検出するセンサを用いることができる。 Further, as the detection sensor 62, a load sensor for detecting a response waveform of a load acting on the truck 1 or the track 3, a strain sensor for detecting a response waveform for strain of the truck 1 or the track 3, or a component around the truck 1 or an axle box is used. A gyro sensor for detecting an angle, an angular velocity, an angular acceleration, and the like are also included. The load sensor may be a sensor that detects a load acting on the vehicle body. Alternatively, a sensor that detects the load acting on the track 3 due to the vibration of the vehicle body may be used to indirectly detect the response waveform of the carriage 1. As the strain sensor, for example, a connecting member such as the monolink 53 or a sensor that detects twist or strain of the track 3 as a response waveform can be used. As the gyro sensor, for example, a sensor that detects the pitching angle, the pitching angular velocity, the pitching angular acceleration, etc. of the carriage 1 as a response waveform can be used.

本実施形態では、検出センサ62として、2つの加速度センサ62a,62bを用いている。一方の加速度センサ62a(入力側)は、軸箱40の上面に取り付けられ、軸箱40の上下振動の加速度を検出可能となっている。他方の加速度センサ62b(出力側)は、ばね帽54の上面に取り付けられ、ばね帽54の上下振動の加速度を検出可能となっている。なお、後述の実験例(2)のように加速度を時刻歴で表して状態監視を行う場合等、状態監視の目的に応じて加速度センサ62a,62bのいずれか一つのみを設けるものであってもよい。 In this embodiment, two acceleration sensors 62a and 62b are used as the detection sensor 62. One acceleration sensor 62a (input side) is attached to the upper surface of the axle box 40 and can detect the acceleration of vertical vibration of the axle box 40. The other acceleration sensor 62b (output side) is attached to the upper surface of the spring cap 54 and can detect the acceleration of vertical vibration of the spring cap 54. It should be noted that only one of the acceleration sensors 62a and 62b is provided according to the purpose of state monitoring, such as when performing state monitoring by expressing acceleration as a time history as in Experimental Example (2) described below. Good.

また、検出センサ62は、台車枠10に固定された構成とすることができる。この構成により、作業者が検出センサ62を用意したり取り付けたりする手間を省き、振動励起部材61を軌道3に設置して車両を走行させるだけで状態監視が可能となる。 The detection sensor 62 may be fixed to the bogie frame 10. With this configuration, it is possible to save the labor for the operator to prepare and attach the detection sensor 62, and to monitor the state simply by installing the vibration excitation member 61 on the track 3 and driving the vehicle.

または、検出センサ62は、マグネットや他の取付部材によって、台車枠10に対して着脱自在に構成することもできる。この構成により、1つの検出センサ62で何両もの鉄道車両2の状態監視を行うことができ、可搬性に優れるとともに、低コストの状態監視装置60とすることができる。 Alternatively, the detection sensor 62 can be configured to be attachable to and detachable from the bogie frame 10 by a magnet or another attachment member. With this configuration, one detection sensor 62 can monitor the state of many railway vehicles 2, and thus the state monitoring device 60 can be excellent in portability and low in cost.

制御部63は、CPU、RAM、ROM、ICメモリやハードディスクなどにより実現される記憶装置、外部装置との信号の入出力を制御する通信インターフェース等を備えたコンピュータ(PC)等から構成することができる。制御部63は、ROM等に予め記憶されているプログラムに従って、RAMをワークメモリとして用いて状態監視処理を実行する。 The control unit 63 may be composed of a CPU, a RAM, a ROM, a storage device realized by an IC memory or a hard disk, a computer (PC) having a communication interface for controlling input/output of signals with an external device, and the like. it can. The control unit 63 executes the state monitoring process using the RAM as a work memory according to a program stored in advance in the ROM or the like.

制御部63は、鉄道車両2の車体に設けられ、検出センサ62からの検出値に基づいて、軸箱周りの部品の状態監視を行う。本実施形態では、制御部63は検出値に基づいて各種演算処理を実行し、状態監視結果を数値やグラフとしてPCの画面やプリンタ等に出力する。なお、制御部63は必ずしも車体に設ける必要はなく、他の異なる例として、地上側に設置したPC等であってもよいし、検査を行う作業者が持つノートパソコンやタブレットその他の携帯端末等であってもよい。また、現場で検出センサ62によるデータの取得から制御部63による状態監視まで一貫して行ってもよいし、データ取得を現場で行い、データを会社(事務所)等に転送等した後、グラフ化や状態監視を事務所で行ってもよい。 The control unit 63 is provided on the vehicle body of the railway vehicle 2 and monitors the state of the components around the axle box based on the detection value from the detection sensor 62. In the present embodiment, the control unit 63 executes various arithmetic processes based on the detected value, and outputs the state monitoring result as a numerical value or a graph to a screen of a PC, a printer or the like. Note that the control unit 63 does not necessarily have to be provided on the vehicle body, and as another different example, it may be a PC or the like installed on the ground side, or a notebook computer, tablet, or other portable terminal possessed by the operator who carries out the inspection. May be In addition, from the acquisition of data by the detection sensor 62 to the state monitoring by the control unit 63 may be consistently performed on site, or the data may be acquired onsite and transferred to a company (office), etc. It may be possible to carry out the monitoring and status monitoring at the office.

この状態監視結果のグラフ等を確認することで、作業者等は軸箱周りの部品の状態が正常であるか、または劣化等によって異常が生じているか等を判定することができる。 By checking the graph or the like of the state monitoring result, the worker or the like can determine whether the state of the parts around the axle box is normal, or whether there is an abnormality due to deterioration or the like.

この正常か否かの判定は、例えば、正常値を示すグラフや数値等の基準データを予め記憶部等に記憶しておき、この基準データと今回検出した検出データとを比較して行うことができる。基準データと、検出データとを並べて画面等に表示することにより、状態の変化を明確に把握することができ、作業者等が一目で正常か否かを容易に判定することが可能となる。 The determination as to whether or not this is normal can be made, for example, by preliminarily storing reference data such as graphs and numerical values indicating normal values in a storage unit, and comparing this reference data with the detected data detected this time. it can. By displaying the reference data and the detection data side by side on a screen or the like, the change in the state can be clearly understood, and the operator or the like can easily determine at a glance whether or not the state is normal.

また、制御部63において、基準データと検出データとを比較して正常か否かを自動で判定して結果を出力するように構成してもよい。制御部63により、軸箱周りの部品の状態をより高速かつ、より客観的に判定することが可能となる。また、様々な条件での状態監視データや鉄道車両2に関するデータをデータベースに記憶しておき、これらの情報(さらにはビッグデータ)に基づいて、軸箱周りのいずれの部品に劣化等が生じているかまで判定するように構成することもできる。 Further, the control unit 63 may be configured to compare the reference data and the detected data to automatically determine whether the data is normal and output the result. The control unit 63 makes it possible to determine the state of the components around the axle box faster and more objectively. In addition, the condition monitoring data under various conditions and the data regarding the railway vehicle 2 are stored in a database, and based on these information (further, big data), any parts around the axle box are deteriorated or the like. It can also be configured to determine whether there is any.

図5A〜図5Cに、振動励起部材(振動励起ブロック)の変形例を列挙する。図5Aは、鉄板等の板材に代えて、進行方向に向かって高くなるくさび形の突起物からなる振動励起部材61aを軌道3に設置した例である。なお、突起物がくさび形に限定されることはなく、軌道3上に突出して鉄道車両2に振動を付与できれば、他のいずれの形状であってもよい。図5Bは、軌道3の継ぎ目を振動励起部材61bとした例である。図5Cは、波形ブロックからなる振動励起部材61cを軌道3に設置した例である。 Modification examples of the vibration excitation member (vibration excitation block) are listed in FIGS. 5A to 5C. FIG. 5A is an example in which a vibration exciting member 61a made of a wedge-shaped protrusion that becomes higher in the traveling direction is installed on the track 3 instead of a plate material such as an iron plate. The protrusion is not limited to the wedge shape, and may have any other shape as long as it can project on the track 3 and impart vibration to the railcar 2. FIG. 5B is an example in which the seam of the track 3 is a vibration excitation member 61b. FIG. 5C is an example in which the vibration excitation member 61 c made of a corrugated block is installed on the track 3.

このような振動励起部材61a,61b,61c上を鉄道車両2が通過することで、台車1に振動を生じさせることができ、状態監視装置60を用いた軸箱周りの部品の状態監視を、高精度に行うことができる。また、以上のような本実施形態又は変形例の振動励起部材61,61a,61b,61cでは、鉄道車両2や軸箱周りの部品の耐久性等に影響を与えることなく、精度よく状態監視が可能な適度な振動を与えることができる。 By passing the railway vehicle 2 over such vibration excitation members 61a, 61b, 61c, it is possible to generate vibration in the bogie 1, and to monitor the condition of the components around the axle box using the condition monitoring device 60. It can be performed with high precision. Further, in the vibration excitation members 61, 61a, 61b, 61c of the present embodiment or the modified example as described above, the condition can be accurately monitored without affecting the durability of the railway vehicle 2 and the components around the axle box. It is possible to give a moderate vibration that is possible.

以上、本実施形態によれば、軌道3に配置される振動励起部材61上を、鉄道車両2が走行することで、車輪31が振動励起部材61に乗り上げ、該車輪31が軌道3に着地するときの力により、台車1が振動(応答)する。このときの応答波形を検出センサ62が検出することで、軸箱周りの部品の状態が正常か否か等、状態監視を行うことができる。したがって、軸箱周りの部品の状態監視を、より簡易な構成で効率よく行うことが可能な状態監視装置60を提供することができる。 As described above, according to the present embodiment, the railway vehicle 2 travels on the vibration excitation member 61 arranged on the track 3 so that the wheel 31 rides on the vibration excitation member 61 and the wheel 31 lands on the track 3. The trolley 1 vibrates (responds) by the force. By detecting the response waveform at this time by the detection sensor 62, it is possible to monitor the state such as whether or not the state of the parts around the axle box is normal. Therefore, it is possible to provide the condition monitoring device 60 capable of efficiently monitoring the condition of the components around the axle box with a simpler configuration.

このように部品の取り外しや分解を行うことなく、状態監視ができるため、定期検査をより簡易に行うことができる。例えば、営業終了後毎に、車庫へ帰還する鉄道車両2の状態監視を簡易に行うことができるため、不具合が見つかった際に、部品交換や台車1交換等を、再出庫するまでに行うことができる。また、日々の劣化度合いを確認することができるので、大規模なメンテナンス時期の決定や、部品手配を計画的に行うことができる。そのため、鉄道車両2のメンテナンス性が向上するとともに、日々の円滑な営業が可能となる。 Since the condition can be monitored without removing or disassembling the parts in this way, the periodic inspection can be performed more easily. For example, since it is possible to easily monitor the state of the railway vehicle 2 returning to the garage after each business end, when a defect is found, parts replacement, trolley 1 replacement, etc. must be performed before re-exiting. You can Further, since it is possible to confirm the degree of deterioration on a daily basis, it is possible to determine a large-scale maintenance time and arrange parts in a planned manner. Therefore, the maintainability of the railway vehicle 2 is improved, and daily smooth business becomes possible.

(状態監視実験)
以下、本実施の形態の鉄道車両2を用いて、状態監視装置60による状態監視のシミュレーション実験を試みた。以下、その実験について詳細に説明する。
(Condition monitoring experiment)
Hereinafter, using the railway vehicle 2 of the present embodiment, a simulation experiment of state monitoring by the state monitoring device 60 was tried. Hereinafter, the experiment will be described in detail.

<実験方法>
図1に示すように、振動励起部材61として、鉄板(長さ195mm、幅70mm、厚さ22mm)を軌道3上に設置した。今回は、第7位車輪31の状態監視を行うため、第7位車輪31側の軸箱40の上部に加速度センサ62aを取り付け、ばね帽54の上面に62bを取り付けた。そして、鉄道車両2を約5km/hで低速走行させた。振動励起部材61を車輪31が乗り上げるときと、振動励起部材61から軌道3に車輪31が落下するときの軸箱40とばね帽54の上下振動加速度を、それぞれ加速度センサ62a,62bで検出した。
<Experimental method>
As shown in FIG. 1, an iron plate (length 195 mm, width 70 mm, thickness 22 mm) was installed on the track 3 as the vibration excitation member 61. This time, in order to monitor the state of the seventh wheel 31, the acceleration sensor 62a is attached to the upper part of the axle box 40 on the side of the seventh wheel 31, and 62b is attached to the upper surface of the spring cap 54. Then, the railway vehicle 2 was run at a low speed of about 5 km/h. The vertical vibration accelerations of the axle box 40 and the spring cap 54 when the wheel 31 rides on the vibration excitation member 61 and when the wheel 31 falls from the vibration excitation member 61 to the track 3 are detected by the acceleration sensors 62a and 62b, respectively.

ここでは、以下の3つの条件下で実験を行った。
(1)第1条件:軸箱周りの部品に不具合がない正常(健全)条件
(2)第2条件:前後方向の剛性に不具合を生じた条件
(3)第3条件:一次ばね系に不具合を生じた条件
Here, the experiment was performed under the following three conditions.
(1) First condition: normal (sound) condition in which there is no defect in parts around the axle box (2) Second condition: condition in which rigidity in the front-rear direction is defective (3) Third condition: defect in primary spring system Conditions that caused

上記(2)第2条件の前後方向の剛性に不具合を生じた条件を作り出すため、軸箱40とモノリンク53との間に2mm程度の隙間ができるように、軸箱40の接続部41とモノリンク53とを接続する軸箱締結ボルトを緩めた。また、(3)第3条件の一次ばね系に不具合を生じた条件の具体例として、軸ダンパ52の減衰不足を生じた状態を作り出すべく、第7位車輪31の軸ダンパ52を取り外した。 In order to create the condition (2) in which the rigidity in the front-rear direction of the second condition has a problem, the connecting portion 41 of the axle box 40 and the connecting portion 41 of the axle box 40 are formed so that a gap of about 2 mm is formed between the axle box 40 and the monolink 53. The axle box fastening bolt that connects the monolink 53 is loosened. Further, as a specific example of the condition (3) in which the primary spring system of the third condition has a problem, the shaft damper 52 of the seventh wheel 31 is removed in order to create a state in which the shaft damper 52 has insufficient damping.

上記第1〜第3条件下で、それぞれ5回鉄道車両2を走行させて、合計15回の状態監視実験を行った。それぞれの実験において加速度センサ62a,62bで検出した検出値に基づいて、下記のように応答倍率、時刻歴波形によって、状態を評価(不具合の識別)した。 Under the above-mentioned first to third conditions, the railway vehicle 2 was run 5 times, and a total of 15 times of condition monitoring experiments were performed. Based on the detection values detected by the acceleration sensors 62a and 62b in each experiment, the states were evaluated (identification of defects) by the response magnification and the time history waveform as described below.

<実験結果及び不具合の識別>
(1)応答倍率による不具合の識別
図2に、軸箱40の上下振動の加速度(入力側加速度)とばね帽54の上下振動の加速度(出力側加速度)に基づく応答倍率(出力側加速度/入力側加速度)のシミュレーション実験結果のグラフを示す。なお、図2には、各条件での5回の実験のうち、最も加速度が高かった結果と最も低かった結果の2回をそれぞれの条件で示している。図2では、第1条件の応答倍率を太実線及び細実線で示し、第2条件の応答倍率を太破線及び細波線で示し、第3条件の応答倍率を太一点鎖線及び細一点鎖線で示した。図2のグラフの横軸は周波数(Frequency)であり、縦軸は応答倍率(Transfer function estimate)である。
<Experimental results and identification of defects>
(1) Identification of Defect by Response Magnification FIG. 2 shows a response magnification (output side acceleration/input side) based on acceleration of vertical vibration of the shaft box 40 (input side acceleration) and acceleration of vertical vibration of the spring cap 54 (output side acceleration). The graph of the simulation experiment result of (side acceleration) is shown. Note that, in FIG. 2, out of the five experiments under each condition, the result of the highest acceleration and the result of the lowest acceleration are shown under each condition. In FIG. 2, the response magnification of the first condition is indicated by thick solid lines and thin solid lines, the response magnification of the second condition is indicated by thick broken lines and thin wavy lines, and the response magnification of the third condition is indicated by thick one-dot chain lines and thin one-dot chain lines. It was The horizontal axis of the graph in FIG. 2 represents frequency and the vertical axis represents response function estimate.

この図2からわかるように、軸箱締結ボルトを緩めた第2条件(前後方向の剛性に不具合を生じた条件)での実験では、他の第1、第3条件と異なり、11Hz付近にピークができる。従って、この11Hz付近のピークの有無により、軸箱締結ボルトの緩み等、前後方向の剛性に関わる部品に不具合を生じたことを識別することが可能である。 As can be seen from FIG. 2, in the experiment under the second condition in which the axle box fastening bolt is loosened (the condition in which the rigidity in the front-rear direction has a problem), unlike the other first and third conditions, the peak appears near 11 Hz. You can Therefore, it is possible to identify whether or not there is a defect in the parts relating to the rigidity in the front-rear direction, such as loosening of the fastening bolts for the axle box, by the presence or absence of the peak near 11 Hz.

一方、16Hz付近を観察すると、軸ダンパ52の減衰不足が生じたる第3条件(第1ばね系に不具合を生じた条件)は、第1条件の健全条件よりも応答倍率が低い傾向にある。さらに、双方の周波数を観察すると、第3条件のグラフが、第1条件のグラフよりも1Hz程低い所にピークがある。このような結果が得られたときは、軸ダンパ52の減衰不足等、一次ばね系に不具合を生じたことを識別することが可能である。 On the other hand, when observing around 16 Hz, the third condition in which the damping of the shaft damper 52 is insufficient (the condition in which the first spring system is defective) tends to have a lower response magnification than the sound condition of the first condition. Further, when observing both frequencies, the graph of the third condition has a peak at a place lower by about 1 Hz than the graph of the first condition. When such a result is obtained, it is possible to identify that a failure has occurred in the primary spring system, such as insufficient damping of the shaft damper 52.

(2)時刻歴波形による不具合の識別
図3に、車輪31が振動励起部材61から軌道3に着地する際のばね帽54の上下振動の加速度(加速度センサ62bで検出した加速度)を取得時刻歴で表したシミュレーション実験結果のグラフを示す。図3の各グラフにおいて、横軸は時間(Time)であり、縦軸は振動加速度/最大振動加速度(Acc./Max.Acc.)である。
(2) Identification of Defect by Time History Waveform In FIG. 3, the acceleration of vertical vibration of the spring cap 54 (acceleration detected by the acceleration sensor 62b) when the wheel 31 lands on the track 3 from the vibration excitation member 61 is acquired time history. The graph of the simulation experiment result represented by is shown. In each graph of FIG. 3, the horizontal axis represents time (Time) and the vertical axis represents vibration acceleration/maximum vibration acceleration (Acc./Max.Acc.).

鉄道車両2が振動励起部材61に乗り上げて、軌道3上に着地する際の衝撃の大きさは、鉄道車両2の走行速度などの実験条件のばらつきにより異なる。そこで本実験では、最大加速度(着地時の第1波の振動加速度の振幅)で加速度データを無次元化することで、実験条件のばらつきの影響を抑えた。また、図3では、台車1の並進運動やピッチング運動が分かり易くなるよう、振動加速度波形にフィルタをかけた。 The magnitude of the impact when the railway vehicle 2 rides on the vibration excitation member 61 and lands on the track 3 varies depending on variations in experimental conditions such as the traveling speed of the railway vehicle 2. Therefore, in this experiment, the influence of variations in experimental conditions was suppressed by making the acceleration data dimensionless at the maximum acceleration (the amplitude of the vibration acceleration of the first wave when landing). Further, in FIG. 3, the vibration acceleration waveform is filtered so that the translational motion and the pitching motion of the carriage 1 can be easily understood.

上記第1〜第3条件で、それぞれ5回の試験を行ったが、同じ実験条件では同様の傾向を示したので、図3では、5回の実験のうち、1実験での結果のみを示した。 Each of the above-mentioned first to third conditions was tested five times, but the same experimental condition showed a similar tendency. Therefore, in FIG. 3, only the result of one experiment is shown among the five experiments. It was

図3上段のグラフに示すように、健全条件である第1条件では、波形が自然に減衰していく。これに対して、図3中段のグラフに示すように、軸箱締結ボルトを緩めた第2条件では、5波目(図3中段のグラフに矢印で示した部分)で振幅が非常に低くなり、6波目で再び振幅が高くなる。その後、3波目と同程度の高さの振幅がある波形が現れた後、振幅は減衰する。 As shown in the graph in the upper part of FIG. 3, the waveform naturally attenuates under the first condition, which is a sound condition. On the other hand, as shown in the graph in the middle part of FIG. 3, under the second condition in which the axle box fastening bolts are loosened, the amplitude becomes extremely low at the fifth wave (the part indicated by the arrow in the graph in the middle part of FIG. 3). , The amplitude increases again at the 6th wave. After that, after a waveform having an amplitude similar to that of the third wave appears, the amplitude attenuates.

これは、軸箱締結ボルトが緩んでいるため、軸箱40と台車枠10が前後方向に相対運動をし、互いの運動を打ち消しあう時刻があるためと考えられる。したがって、このような状態監視結果が得られたときは、前後方向の剛性に関わる部品に不具合を生じたことを識別することができる。 It is considered that this is because the axle box fastening bolts are loose and the axle box 40 and the bogie frame 10 make relative movements in the front-rear direction, and there is a time when the movements cancel each other out. Therefore, when such a state monitoring result is obtained, it is possible to identify that a defect has occurred in a component relating to the rigidity in the front-rear direction.

また、図3下段のグラフに示すように、軸ダンパ52の減衰不足を生じた第3条件では、4、5、6波目(図3下段のグラフに矢印で示した部分)で振幅がほぼ等しく減衰しない状態が続き、その後急激に振幅が減衰する。第1条件である健全条件に比べ、6波目の振幅が大きく、振動がより長く続いている。これは軸ダンパ52の減衰が不足しているために、台車1の運動が健全時より長く継続するためと考えられる。したがって、このような状態監視結果が得られたときは、一次ばね系に不具合を生じたことを識別することができる。 Further, as shown in the lower graph of FIG. 3, under the third condition in which the damping of the shaft damper 52 is insufficient, the amplitude is almost equal at the fourth, fifth, and sixth waves (portions indicated by arrows in the lower graph of FIG. 3 ). The state where the amplitudes are not equally attenuated continues, and then the amplitude is rapidly attenuated. The amplitude of the sixth wave is larger and the vibration continues longer than in the sound condition, which is the first condition. It is considered that this is because the movement of the truck 1 continues longer than when the vehicle is healthy because the damping of the shaft damper 52 is insufficient. Therefore, when such a state monitoring result is obtained, it is possible to identify that a failure has occurred in the primary spring system.

次に、各波間の対数減衰率のグラフを図4に示す。図4のグラフの横軸は加速度の減衰番号(Number of acceleration decrement)であり、縦軸は対数減衰率(Logarithmic decrement ratio)である。図4では、第1条件の対数減衰率を実線で示し、第2条件の対数減衰率を破線で示し、第3条件の対数減衰率を一点鎖線で示した。健全条件である第1条件では、波形が自然に減衰して小さくなっていくため、グラフの値はすべてプラスになる。これに対して、軸箱締結ボルトを緩めた第2条件では、5波目の振幅が小さく6波目の振幅が大きくなるので(図3参照)、この2波間の対数減衰率(図4の横軸5)はマイナスになる。軸ダンパ52の減衰不足を生じた第3条件では、4、5、6波目の各波間の対数減衰率(図4中の横軸3、4、5)は連続的に小さくなり、6波目から7波目の対数減衰率(図4中の横軸6)が他の条件よりも大きくなる。 Next, a graph of the logarithmic attenuation rate between each wave is shown in FIG. The horizontal axis of the graph of FIG. 4 is the acceleration decrement number, and the vertical axis is the logarithmic decrement ratio. In FIG. 4, the logarithmic decay rate of the first condition is shown by a solid line, the logarithmic decay rate of the second condition is shown by a broken line, and the logarithmic decay rate of the third condition is shown by a dashed line. Under the first condition, which is a sound condition, the waveform naturally attenuates and becomes smaller, so all the values in the graph are positive. On the other hand, under the second condition in which the axle box fastening bolt is loosened, the amplitude of the fifth wave is small and the amplitude of the sixth wave is large (see FIG. 3). The horizontal axis 5) becomes negative. Under the third condition in which the damping of the shaft damper 52 is insufficient, the logarithmic attenuation rate between the 4th, 5th, and 6th waves (horizontal axis 3, 4, 5 in FIG. 4) continuously decreases, and 6th wave is generated. The logarithmic decay rate (horizontal axis 6 in FIG. 4) of the seventh to seventh waves is larger than other conditions.

これらの性質を利用すれば、健全であるか、締結ボルトの緩み等の前後方向の剛性に関わる部品に不具合を生じたのか、軸ダンパ52の減衰不足等の一次ばね系に不具合を生じたのかを識別することが可能である。特に、図3の波形のグラフに比べて、図4のグラフは、応答波形の変化を定量的に把握できるので、コンピュータ(制御部63)が各データを比較して、正常か否かを評価したり、不具合を生じた部品を特定したりするとき等に用いるのに有効なデータである。なお、図3のグラフは、表示部等に表示することで、作業者等が目視によって容易に状態監視をすることができるので、人間が正常か否か等の判定をするときに用いるのに有効なデータである。 If these properties are used, is it sound, is there a problem with the parts related to the rigidity in the front-rear direction such as loosening of the fastening bolts, or is there a problem with the primary spring system such as insufficient damping of the shaft damper 52? Can be identified. In particular, in the graph of FIG. 4, the change of the response waveform can be grasped quantitatively as compared with the graph of the waveform of FIG. 3, so the computer (control unit 63) compares each data and evaluates whether it is normal or not. This is effective data for use in identifying a defective component or the like. By displaying the graph of FIG. 3 on the display unit or the like, an operator or the like can easily monitor the state visually, and thus can be used when determining whether a person is normal or not. This is valid data.

以上の実験結果より、本実施形態の状態監視装置60では、一次ばね系や前後方向の剛性に関わる部品の不具合を識別することができ、軸箱周りの部品の状態監視を、簡易な構成で効率よく行えることがわかった。 From the above experimental results, in the condition monitoring device 60 of the present embodiment, it is possible to identify defects in the components related to the primary spring system and the rigidity in the front-rear direction, and to monitor the condition of the components around the axle box with a simple configuration. It turns out that it can be done efficiently.

1 台車
2 鉄道車両(車両)
3 軌道
10 台車枠
40 軸箱
50 軸箱支持装置
60 状態監視装置
61,61a,61b,61c 振動励起部材
62 検出センサ(検出部)
62a,62b 加速度センサ(検出部)
1 bogie 2 railway vehicle (vehicle)
3 track 10 bogie frame 40 axle box 50 axle box support device 60 state monitoring device 61, 61a, 61b, 61c vibration excitation member 62 detection sensor (detection unit)
62a, 62b Acceleration sensor (detection unit)

Claims (7)

車両の台車に取り付けられた軸箱周りの部品の状態を監視する状態監視装置であって、
軌道に形成される振動励起部材と、
台車枠の端部に設けられた検出部と、を備え、
前記振動励起部材によって振動する前記台車の応答波形を前記検出部によって検出し、前記応答波形に基づく応答倍率のピーク値、時刻歴の振幅の変化、及び前記時刻歴の振幅から算出した対数減衰率の何れかに基づいて、前記軸箱周りの部品の状態監視を行うことを特徴とする状態監視装置。
A state monitoring device for monitoring the state of parts around an axle box attached to a bogie of a vehicle,
A vibration excitation member formed on the track,
A detection unit provided at the end of the bogie frame;
The response waveform of the carriage vibrated by the vibration excitation member is detected by the detection unit, the peak value of the response magnification based on the response waveform, the change in the amplitude of the time history, and the logarithmic decay rate calculated from the amplitude of the time history. A condition monitoring device for monitoring the condition of parts around the axle box based on any one of the above.
前記検出部が、軸箱の上部に設けられた第1の検出部と、前記台車枠の上部に設けられた第2の検出部とからなり、前記第1の検出部で検出した前記応答波形を入力側応答波形とし、前記第2の検出部で検出した前記応答波形を出力側応答波形としたとき、前記応答倍率を、出力側応答波形/入力側応答波形により算出することを特徴とする請求項1に記載の状態監視装置。The detection unit includes a first detection unit provided on an upper part of the axle box and a second detection unit provided on an upper part of the bogie frame, and the response waveform detected by the first detection unit. Is an input side response waveform, and the response waveform detected by the second detector is an output side response waveform, the response magnification is calculated by an output side response waveform/an input side response waveform. The condition monitoring device according to claim 1. 車両の台車に取り付けられた軸箱周りの部品の状態を監視する状態監視装置であって、
軌道に形成される振動励起部材と、
前記台車又は前記軌道からの変位、荷重及びひずみから選択される少なくとも何れかの応答波形を検出する検出部と、を備え、
前記検出部は、前記軌道側又は軌道脇に配置されており、
前記検出部で検出した前記応答波形に基づく時刻歴の振幅の変化、及び前記時刻歴の振幅から算出した対数減衰率の何れかに基づいて、前記軸箱周りの部品の状態監視を行うことを特徴とする状態監視装置。
A state monitoring device for monitoring the state of parts around an axle box attached to a bogie of a vehicle,
A vibration excitation member formed on the track,
Displacement from the truck or the track, a detection unit that detects at least one response waveform selected from the load and strain ,
The detection unit is arranged on the side of the track or the side of the track,
Based on any one of the change in the amplitude of the time history based on the response waveform detected by the detection unit and the logarithmic attenuation rate calculated from the amplitude of the time history, it is possible to monitor the state of parts around the axle box. Characteristic condition monitoring device.
前記検出部によって検出された前記応答波形を、前記台車の正常時の応答波形と比較することで、前記軸箱周りの部品の状態監視を行う構成であることを特徴とする請求項1〜3のいずれか一項に記載の状態監視装置。 The response waveform detected by the detecting unit, by comparing the response waveform during normal of the carriage, according to claim 1 to 3, characterized in that a configuration in which part of the condition monitoring of around the axle box The condition monitoring device according to any one of 1 . 前記検出部は、変位、角度、速度、角速度、加速度、角加速度、荷重、ひずみから選択される少なくとも何れかの応答波形を検出することを特徴とする請求項1又は2に記載の状態監視装置。 Wherein the detection unit is a displacement, angle, velocity, angular velocity, acceleration, angular acceleration, load, condition monitoring apparatus according to claim 1 or 2, wherein the detecting at least one of the response waveform is selected from the strain .. 前記検出部が、前記台車枠に対して着脱自在であることを特徴とする請求項1又は2に記載の状態監視装置。 Wherein the detection unit, the state monitoring device according to claim 1 or 2, characterized in that it is removably attached to the bogie frame. 前記振動励起部材が、前記軌道に配置される板材、突起物、継ぎ目、又は波形ブロックから選択される振動励起ブロックであることを特徴とする請求項1〜のいずれか一項に記載の状態監視装置。 The vibrational excitation member, the plate member disposed on said track, the state of any one of claim 1 to 6, wherein the projection is a vibrational excitation block selected from the seam, or waveform block Monitoring equipment.
JP2016237003A 2016-12-06 2016-12-06 Condition monitoring device Expired - Fee Related JP6722573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237003A JP6722573B2 (en) 2016-12-06 2016-12-06 Condition monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237003A JP6722573B2 (en) 2016-12-06 2016-12-06 Condition monitoring device

Publications (2)

Publication Number Publication Date
JP2018090171A JP2018090171A (en) 2018-06-14
JP6722573B2 true JP6722573B2 (en) 2020-07-15

Family

ID=62564269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237003A Expired - Fee Related JP6722573B2 (en) 2016-12-06 2016-12-06 Condition monitoring device

Country Status (1)

Country Link
JP (1) JP6722573B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024874B6 (en) * 2018-07-31 2023-12-15 日本製鉄株式会社 Inspection systems, inspection methods, and programs
CN109878545B (en) * 2019-03-22 2020-04-17 通号轨道车辆有限公司 Tramcar and bogie
JP7328779B2 (en) * 2019-03-29 2023-08-17 川崎車両株式会社 Abnormality detection device for beam type bogie
CN113607442A (en) * 2021-09-10 2021-11-05 中车大同电力机车有限公司 Motion state monitoring system and locomotive

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3437661C2 (en) * 1984-10-13 1986-08-14 Fried. Krupp Gmbh, 4300 Essen Method for determining components of a vehicle unit in need of repair
JP4118780B2 (en) * 2003-10-10 2008-07-16 日立交通テクノロジー株式会社 Vehicle abnormality detection system and abnormality detection method
KR101381226B1 (en) * 2012-12-28 2014-04-04 송영천 System for monitering vibration of electric train
CO7080240A1 (en) * 2013-04-01 2014-10-10 Univ Eafit System to detect defects in the roundness of the wheels of a railway vehicle
JP6199063B2 (en) * 2013-04-19 2017-09-20 公益財団法人鉄道総合技術研究所 Multifunctional abnormality detection device equipped on the cart
JP2016055840A (en) * 2014-09-12 2016-04-21 Ntn株式会社 Bearing abnormality detection device for railway vehicle
JP6498102B2 (en) * 2015-11-16 2019-04-10 公益財団法人鉄道総合技術研究所 Primary spring system diagnostic device for vehicle

Also Published As

Publication number Publication date
JP2018090171A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6722573B2 (en) Condition monitoring device
RU2460658C2 (en) Device and method for fault control of rolling stock unit running gear
RU2540362C2 (en) Control over railway vehicle bogie with at least one mounted axle
CN108593315B (en) Wheel polygon detection method based on axle box vibration frequency domain characteristics and terminal equipment
Melnik et al. Rail vehicle suspension condition monitoring-approach and implementation
CN108562446B (en) Wheel polygon detection method based on axle box vibration time-frequency domain characteristics and terminal equipment
RU2494902C2 (en) Device to control faults of railway car running gear elements
JP4527585B2 (en) Bearing monitoring system and bearing monitoring program
JP2014530347A (en) Defect diagnosis method and apparatus for component parts in automobile chassis system
JP2009250649A (en) Model experiment device for railway vehicle
Liu et al. Full-scale test and numerical simulation of wheelset-gear box vibration excited by wheel polygon wear and track irregularity
US20050241366A1 (en) Method for testing vibration dampers in motor vehicle
JP6509548B2 (en) Rail vehicle condition monitoring device
Dižo et al. Vibration analysis of a coach with the wheel-flat due to suspension parameters changes
CN110126625A (en) A kind of novel high speed pantograph and its lightweight dynamic design approach
JP2011051518A (en) Condition monitoring system of railway vehicle
CN105651473A (en) Method for automatic determination of dynamic stiffness of object
JP6833434B2 (en) Railway vehicle anomaly detection method
JP2011213183A (en) Device and method for detecting abnormality of variable damping shaft damper
Kang Influence of train length on the lateral vibration of a high-speed train equipped with articulated bogies
JP3993593B2 (en) Anti-vibration evaluation device
Prażnowski et al. Problems in assessing pneumatic wheel unbalance of a passenger car determined with test road in normal conditions
Liu et al. A validation study of ACS-SSI for online condition monitoring of vehicle suspension systems
JP6979898B2 (en) Condition monitoring device for railroad vehicles
Kojima et al. Fault detection of vertical dampers of railway vehicle based on phase difference of vibrations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6722573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees