JP6718364B2 - Light-transmissive conductive material - Google Patents

Light-transmissive conductive material Download PDF

Info

Publication number
JP6718364B2
JP6718364B2 JP2016219844A JP2016219844A JP6718364B2 JP 6718364 B2 JP6718364 B2 JP 6718364B2 JP 2016219844 A JP2016219844 A JP 2016219844A JP 2016219844 A JP2016219844 A JP 2016219844A JP 6718364 B2 JP6718364 B2 JP 6718364B2
Authority
JP
Japan
Prior art keywords
conductive layer
light
reduced
unit area
quadrangle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016219844A
Other languages
Japanese (ja)
Other versions
JP2017097865A (en
Inventor
和彦 砂田
和彦 砂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Publication of JP2017097865A publication Critical patent/JP2017097865A/en
Application granted granted Critical
Publication of JP6718364B2 publication Critical patent/JP6718364B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Position Input By Displaying (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、主にタッチパネルに用いられる光透過性導電材料に関し、投影型静電容量方式のタッチパネルのタッチセンサーに好適に用いられる光透過性導電材料に関するものである。 The present invention relates to a light-transmitting conductive material mainly used for a touch panel, and relates to a light-transmitting conductive material preferably used for a touch sensor of a projected capacitive touch panel.

PDA(パーソナル・デジタル・アシスタント)、ノートPC、スマートフォン、タブレット等のスマートデバイス、OA機器、医療機器、あるいはカーナビゲーションシステム等の電子機器、更には家電製品等においても、これらのディスプレイに入力手段としてタッチパネルが広く用いられている。 In PDA (personal digital assistant), smart devices such as notebook PCs, smartphones, tablets, OA devices, medical devices, electronic devices such as car navigation systems, and even home electric appliances, these displays are used as input means. Touch panels are widely used.

タッチパネルには、位置検出の方法により、光学方式、超音波方式、抵抗膜方式、表面型静電容量方式、投影型静電容量方式などがある。抵抗膜方式のタッチパネルでは、タッチセンサーとして、光透過性導電材料と光透過性導電層付ガラスとがスペーサーを介して対向配置されており、光透過性導電材料に電流を流し光透過性導電層付ガラスにおける電圧を計測するような構造となっている。一方、静電容量方式のタッチパネルでは、タッチセンサーとして、光透過性支持体上に光透過性導電層を有する光透過性導電材料を基本的構成とし、可動部分が無いことを特徴とすることから、高い耐久性、高い光透過率を有するため、様々な用途において適用されている。更に、投影型静電容量方式の中でも相互静電容量方式のタッチパネルは、多点を同時に検出することが可能であるため、スマートフォンやタブレットPC等に幅広く用いられている。 For the touch panel, there are an optical method, an ultrasonic method, a resistive film method, a surface electrostatic capacity method, a projection electrostatic capacity method, etc., depending on the position detection method. In a resistive film type touch panel, as a touch sensor, a light-transmissive conductive material and a glass with a light-transmissive conductive layer are arranged to face each other through a spacer, and an electric current is passed through the light-transmissive conductive material to transmit the light-transmissive conductive layer. The structure is such that the voltage on the attached glass is measured. On the other hand, in a capacitance type touch panel, as a touch sensor, a light-transmissive conductive material having a light-transmissive conductive layer on a light-transmissive support is used as a basic configuration, and there is no movable part. Since it has high durability and high light transmittance, it is applied in various applications. Further, among the projected capacitive type, a mutual capacitive type touch panel is capable of detecting multiple points at the same time, and is therefore widely used in smartphones, tablet PCs and the like.

従来、タッチパネルのタッチセンサーに用いられる光透過性導電材料としては、光透過性支持体上にITO(インジウム−錫酸化物)導電膜からなる光透過性導電層が形成されたものが使用されてきた。しかしながら、ITO導電膜は屈折率が大きく、光の表面反射が大きいため、光透過性導電材料の光透過性が低下する問題があった。またITO導電膜は可撓性が低いため、光透過性導電材料を屈曲させた際にITO導電膜に亀裂が生じて光透過性導電材料の電気抵抗値が高くなる問題があった。 Conventionally, as a light-transmissive conductive material used for a touch sensor of a touch panel, a light-transmissive conductive layer having an ITO (indium-tin oxide) conductive film formed on a light-transmissive support has been used. It was However, since the ITO conductive film has a large refractive index and large surface reflection of light, there is a problem that the light transmissive property of the light transmissive conductive material is lowered. Further, since the ITO conductive film has low flexibility, there is a problem that when the light transmissive conductive material is bent, cracks are generated in the ITO conductive film and the electric resistance value of the light transmissive conductive material increases.

ITO導電膜からなる光透過性導電層を有する光透過性導電材料に代わる材料として、光透過性支持体上に光透過性導電層として金属細線パターンを、例えば、その線幅やピッチ、パターン形状などを調整して、網目形状に形成した光透過性導電材料が知られている。この技術により、高い光透過性を維持し、高い導電性を有する光透過性導電材料が得られる。金属細線パターン(以下、金属パターンとも記載)の網目形状に関しては、各種形状の繰り返し単位を利用できることが知られており、繰り返し単位の形状として、例えば正三角形、二等辺三角形、直角三角形などの三角形、正方形、長方形、菱形、平行四辺形、台形などの四角形、正六角形、正八角形、正十二角形、正二十角形などの正n角形、円、楕円、星形等の繰り返し単位、及びこれらの2種類以上を組み合わせたパターンが知られている。 As a material that replaces the light-transmitting conductive material having a light-transmitting conductive layer made of an ITO conductive film, a thin metal wire pattern is formed as a light-transmitting conductive layer on a light-transmitting support, for example, its line width, pitch, pattern shape. A light-transmitting conductive material formed into a mesh shape by adjusting the above is known. With this technique, a light-transmissive conductive material that maintains high light-transmissivity and has high conductivity can be obtained. Regarding the mesh shape of the fine metal wire pattern (hereinafter, also referred to as a metal pattern), it is known that repeating units of various shapes can be used. As the repeating unit shape, for example, a triangle such as an equilateral triangle, an isosceles triangle, or a right triangle. , Squares, rectangles, rhombuses, parallelograms, trapezoids and other squares, regular hexagons, regular octagons, regular dodecagons, regular decagons and other regular n-gons, and repeating units such as circles, ellipses, and stars, and these A pattern in which two or more types are combined is known.

上記した網目形状の金属パターンを有する光透過性導電材料の製造方法としては、下地金属層を有する支持体上に薄い触媒層を形成し、その上に感光性レジストを用いたパターンを形成した後、めっき法によりレジスト開口部に金属層を積層し、最後にレジスト層及びレジスト層で保護された下地金属を除去することにより、金属パターンを形成するセミアディティブ方法が提案されている。 As a method for producing the light-transmissive conductive material having the above-mentioned mesh-shaped metal pattern, a thin catalyst layer is formed on a support having a base metal layer, and a pattern using a photosensitive resist is formed thereon. A semi-additive method has been proposed in which a metal layer is laminated on a resist opening by a plating method, and finally a resist layer and a base metal protected by the resist layer are removed to form a metal pattern.

また近年、銀塩拡散転写法による画像形成に用いられる銀塩写真感光材料を導電性材料前駆体として用いる方法が知られている。この方法では、支持体上に物理現像核層とハロゲン化銀乳剤層を少なくともこの順に有する銀塩写真感光材料(導電性材料前駆体)にパターン露光を行った後、可溶性銀塩形成剤及び還元剤をアルカリ液中で作用させて、金属(銀)パターンを形成させる。この方法によるパターニングでは、均一な線幅で金属細線を形成できることに加え、銀は金属の中で最も導電性が高いため、他の方法に比べ、より細い線幅で高い導電性を得ることができる。更に、この方法で得られた金属パターンを有する層は可撓性が高く、ITO導電膜よりも折り曲げに強いという利点がある。 Further, in recent years, a method has been known in which a silver salt photographic light-sensitive material used for image formation by a silver salt diffusion transfer method is used as a conductive material precursor. In this method, a silver salt photographic light-sensitive material (conductive material precursor) having at least a physical development nucleus layer and a silver halide emulsion layer on a support in this order is subjected to pattern exposure, and then a soluble silver salt forming agent and a reducing agent are reduced. The agent is allowed to act in an alkaline solution to form a metal (silver) pattern. Patterning by this method can form fine metal wires with a uniform line width, and since silver has the highest conductivity among metals, it is possible to obtain higher conductivity with a thinner line width than other methods. it can. Furthermore, the layer having a metal pattern obtained by this method has advantages that it has high flexibility and is more resistant to bending than the ITO conductive film.

光透過性支持体上にこれらの金属パターンを有する光透過性導電材料をタッチパネルのタッチセンサーに利用する場合、該光透過性導電材料は液晶ディスプレイ上に重ねて配置されるため、金属パターンの周期と液晶ディスプレイの素子の周期とが干渉し合い、モアレが発生するという問題があった。近年における様々な解像度の液晶ディスプレイの使用は、このモアレ発生の問題を更に複雑にしている。 When the light-transmissive conductive material having these metal patterns on the light-transmissive support is used for a touch sensor of a touch panel, the light-transmissive conductive material is arranged on the liquid crystal display so that the periodicity of the metal patterns is increased. However, there is a problem that moire occurs due to interference between the liquid crystal display element and the cycle of the element. The use of liquid crystal displays of various resolutions in recent years further complicates the problem of moire generation.

この問題に対し、例えば特開2011−216377号公報(特許文献1)、特開2013−37683号公報(特許文献2)、特開2014−17519号公報(特許文献3)、特開2013−93014号公報(特許文献4)、特表2013−540331号公報(特許文献5)などでは、金属細線のパターンとして、例えば「なわばりの数理モデル ボロノイ図からの数理工学入門」(非特許文献1)などに記載された、古くから知られているランダムパターンを用いることで、干渉を抑制する方法が提案されている。 To solve this problem, for example, JP 2011-216377 A (Patent Document 1), JP 2013-37683 A (Patent Document 2), JP 2014-17519 A (Patent Document 3), and JP 2013-93014 A. In Japanese Patent Publication (Patent Document 4), Japanese Patent Publication No. 2013-540331 (Patent Document 5) and the like, as a pattern of a metal thin wire, for example, “mathematical model of territory, introduction to mathematical engineering from Voronoi diagram” (Non-Patent Document 1). There has been proposed a method of suppressing interference by using a long-known random pattern described in, for example.

特開2011−216377号公報JP, 2011-216377, A 特開2013−37683号公報JP, 2013-37683, A 特開2014−17519号公報JP, 2014-17519, A 特開2013−93014号公報JP, 2013-93014, A 特表2013−540331号公報Special table 2013-540331 gazette

なわばりの数理モデル ボロノイ図からの数理工学入門 (共立出版 2009年2月)Mathematical model of Nawabari Introduction to mathematical engineering from Voronoi diagram (Kyoritsu Publishing February 2009)

光透過性導電材料を投影型静電容量方式のタッチパネルのタッチセンサーに用いる場合には、列電極の形状にパターニングされた部分を含む光透過性の導電層の2層を、絶縁層を介して、一方の導電層の列電極と他方の導電層の列電極が交差するように積層することにより、上方の導電層と下方の導電層を有する光透過性導電材料を構成して用いる。従って、上方の導電層が有する列電極(以下、上方列電極とも記載)と下方の導電層が有する列電極(以下、下方列電極とも記載)は、絶縁層を介して複数箇所で対向する。各々の対向箇所には静電容量が生じ、タッチパネルに指が接触するとその静電容量が変化する。投影型静電容量方式のタッチパネルの内、相互静電容量方式のタッチパネルでは、一方の電極を送信電極(Tx)、他方の電極を受信電極(Rx)とし、それぞれスキャン、センシングすることにより、上方列電極と下方列電極の各交差部分(ノード位置)の個々の静電容量の変化を検知することができる。ここで、導電層の金属細線のパターンとしてランダムパターンを用いた場合には、各ノード位置を構成する金属パターンが一様ではないため、各ノード位置の静電容量にバラツキが生じ、その結果、検出感度が低下したり、静電容量のバラツキが著しい場合には、検出回路などによってもその差が補正できず、使用できなくなる問題があった。特にセンシングの際には、複数のノード位置における微妙な静電容量変化から、より詳細なノード位置間の指接触位置を計算する場合があり、この場合には、部分的な感度低下は大きな問題となることがあった。一方、同じランダムパターンをノード位置毎に繰り返すことで、各ノード位置の静電容量を一律にすることが可能になるが、この場合には、隣接するノード位置間の距離に相当する一定の間隔で金属細線の粗密に起因する特異なパターンムラが視認される問題があった。 When the light-transmissive conductive material is used for a touch sensor of a projected capacitive touch panel, two light-transmissive conductive layers including a portion patterned in the shape of a column electrode are interposed via an insulating layer. A light-transmissive conductive material having an upper conductive layer and a lower conductive layer is formed by stacking the column electrodes of one conductive layer and the column electrodes of the other conductive layer so as to intersect with each other. Therefore, the column electrode included in the upper conductive layer (hereinafter, also referred to as an upper column electrode) and the column electrode included in the lower conductive layer (hereinafter, also referred to as a lower column electrode) face each other at a plurality of positions with the insulating layer interposed therebetween. Capacitance is generated at each facing portion, and the capacitance changes when the finger touches the touch panel. Among the projected capacitive touch panels, in the mutual capacitive touch panel, one electrode is used as a transmission electrode (Tx) and the other electrode is used as a reception electrode (Rx). It is possible to detect a change in individual capacitance at each intersection (node position) of the column electrode and the lower column electrode. Here, when a random pattern is used as the pattern of the metal thin wires of the conductive layer, the metal pattern forming each node position is not uniform, so that the capacitance at each node position varies, and as a result, When the detection sensitivity is lowered or the variation in electrostatic capacitance is significant, there is a problem that the difference cannot be corrected even by the detection circuit and the device cannot be used. In particular, when sensing, there are cases where more detailed finger contact positions between node positions are calculated from subtle capacitance changes at multiple node positions. In this case, partial reduction in sensitivity is a major problem. Was sometimes. On the other hand, by repeating the same random pattern for each node position, it is possible to make the capacitance at each node uniform, but in this case, a fixed interval corresponding to the distance between adjacent node positions is used. However, there is a problem in that peculiar pattern unevenness due to the density of the fine metal wires is visually recognized.

本発明の課題は、液晶ディスプレイに重ねてもモアレやパターンムラが発生せず、ノード位置毎における静電容量のバラツキが少ない光透過性導電材料を提供することである。 An object of the present invention is to provide a light-transmissive conductive material that does not cause moire or pattern unevenness even when superposed on a liquid crystal display and has a small variation in capacitance between node positions.

上記の課題は、絶縁層を介して上方導電層と下方導電層からなる少なくとも2層の導電層が積層された構成を有する光透過性導電材料であって、
上方導電層及び下方導電層はそれぞれ、端子部に電気的に接続されるセンサー部と、端子部に電気的に接続されないダミー部を少なくとも有し、センサー部及びダミー部は、網目形状を有する不規則な金属細線パターンによって構成され、
下方導電層のセンサー部は、第一の方向に伸びた列電極がダミー部を挟んで第一の方向に対し垂直な第二の方向に対し周期Lにて複数列並ぶことで構成され、上方導電層のセンサー部は、第三の方向に伸びた列電極がダミー部を挟んで第三の方向に対し垂直な第四の方向に周期Mにて並ぶことで構成され、
導電層面に対し垂直な方向から俯瞰した場合に、上方導電層が有する列電極の中心線と下方導電層が有する列電極の中心線との交点(ノード)を重心とし、かつ上記下方導電層が有する列電極の中心線を上記第二の方向に周期Lに等しい長さの1/2だけずらした直線と、上記上方導電層が有する列電極の中心線を上記第四の方向に周期Mに等しい長さの1/2だけずらした直線により導電層面を四角形に分割することで得られた区域をノード単位区域とし、ノード単位区域内で、その区域の対角線長さに対し対角線長さを80%とした四角形を縮小四角形Aとし、隣接ノード単位区域内で、その区域の対角線長さに対し対角線長さを80%とした四角形を縮小四角形Bとした場合に、
上方導電層及び下方導電層のそれぞれにおいて、縮小四角形A内の金属細線パターンの網目形状と、縮小四角形B内の金属細線パターンの網目形状が同一ではなく、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの95〜105%であることを特徴とする、光透過性導電材料によって、基本的に解決される。
The above-mentioned problem is a light-transmissive conductive material having a structure in which at least two conductive layers composed of an upper conductive layer and a lower conductive layer are laminated with an insulating layer interposed therebetween,
Each of the upper conductive layer and the lower conductive layer has at least a sensor part electrically connected to the terminal part and a dummy part not electrically connected to the terminal part, and the sensor part and the dummy part each have a mesh shape. Composed of a regular fine metal wire pattern,
The sensor part of the lower conductive layer is formed by arranging a plurality of column electrodes extending in the first direction in a row at a cycle L in the second direction perpendicular to the first direction with the dummy part interposed therebetween. The sensor portion of the conductive layer is formed by arranging column electrodes extending in the third direction in a fourth direction perpendicular to the third direction with a period M sandwiching the dummy portion,
When viewed from a direction perpendicular to the surface of the conductive layer, the center of intersection (node) between the center line of the column electrode of the upper conductive layer and the center line of the column electrode of the lower conductive layer is the center of gravity, and the lower conductive layer is A straight line obtained by shifting the center line of the column electrode in the second direction by 1/2 of the length equal to the period L, and the center line of the column electrode in the upper conductive layer in the fourth direction at the period M. An area obtained by dividing the conductive layer surface into a quadrangle by a straight line shifted by ½ of the equal length is defined as a node unit area, and within the node unit area, the diagonal length is 80 with respect to the diagonal length of the area. In the case where a quadrangle with% is a reduced quadrangle A, and a quadrangle having a diagonal length of 80% with respect to the diagonal length of the adjacent node unit area is a reduced quadrangle B,
In each of the upper conductive layer and the lower conductive layer, the mesh shape of the metal thin wire pattern in the reduced rectangle A and the mesh shape of the metal thin wire pattern in the reduced rectangle B are not the same, and the total length of the metal thin lines in the reduced rectangle A is not equal. Is basically 95-105% of the total length of the thin metal wires in the reduced rectangle B, which is basically solved by the light-transmissive conductive material.

ここで、ノード単位区域と、そのノード単位区域内にある縮小四角形が重心を共有することが好ましい。縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの97.5〜102.5%であることが好ましい。一つの導電層内のセンサー部とダミー部で、金属細線パターンの線幅が同じであることが好ましい。上方導電層が有する列電極の中心線と下方導電層が有する列電極の中心線が直交していることが好ましい。金属細線パターンの網目形状が、母点に基づき作図されるボロノイ辺からなる網目形状、または、母点に基づき作図されるボロノイ辺からなる網目形状を一方向に引き伸ばした網目形状であることが好ましい。 Here, it is preferable that the node unit area and the reduced quadrangle in the node unit area share the center of gravity. It is preferable that the total length of the thin metal wires in the reduced quadrangle A is 97.5 to 102.5% of the total length of the thin metal wires in the reduced quadrangle B. It is preferable that the sensor section and the dummy section in one conductive layer have the same line width of the thin metal wire pattern. It is preferable that the center line of the column electrode of the upper conductive layer and the center line of the column electrode of the lower conductive layer are orthogonal to each other. It is preferable that the mesh shape of the metal thin line pattern is a mesh shape composed of Voronoi sides drawn based on the generating points, or a mesh shape formed by stretching the mesh shape composed of Voronoi sides drawn based on the generating points in one direction. ..

本発明により、液晶ディスプレイに重ねてもモアレやパターンムラが発生せず、ノード位置毎における静電容量のバラツキが少ない光透過性導電材料を提供することができる。 According to the present invention, it is possible to provide a light-transmissive conductive material that does not cause moire or pattern unevenness even when superposed on a liquid crystal display and has a small variation in capacitance between node positions.

本発明の光透過性導電材料を構成する上方導電層と下方導電層の位置関係を示す概略図である。FIG. 3 is a schematic view showing a positional relationship between an upper conductive layer and a lower conductive layer which form the light transmissive conductive material of the present invention. 本発明の下方導電層の一例を示す概略図である。It is a schematic diagram showing an example of a lower conductive layer of the present invention. 上方導電層と下方導電層を積層した本発明の光透過性導電材料の平面概略図である。FIG. 3 is a schematic plan view of a light-transmitting conductive material of the present invention in which an upper conductive layer and a lower conductive layer are laminated. ノード単位区域を説明するための図である。It is a figure for demonstrating a node unit area. 下方導電層のセンサー部の金属細線パターンの一例を示す図である。It is a figure which shows an example of the metal thin wire pattern of the sensor part of a lower electroconductive layer. ボロノイ図形を説明するための図である。It is a figure for explaining a Voronoi figure. 下方導電層におけるノード単位区域と縮小四角形を説明するための図である。It is a figure for demonstrating the node unit area|region in a lower conductive layer, and a contraction rectangle. 図6の図形をノード単位区域とした場合の縮小四角形内の細線の長さの求め方を説明するための図である。FIG. 7 is a diagram for explaining how to obtain the length of a thin line in a reduced quadrangle when the figure of FIG. 6 is used as a node unit area. ボロノイ図形を作成する方法を示す概略図である。It is a schematic diagram showing a method of creating a Voronoi figure. 実施例の内容を説明するための図である。It is a figure for explaining the contents of an example. 実施例の内容を説明するための図である。It is a figure for explaining the contents of an example. 実施例の内容を説明するための図である。It is a figure for explaining the contents of an example. 実施例の内容を説明するための図である。It is a figure for explaining the contents of an example. 実施例の内容を説明するための図である。It is a figure for explaining the contents of an example. 実施例の内容を説明するための図である。It is a figure for explaining the contents of an example. 実施例の内容を説明するための図である。It is a figure for explaining the contents of an example.

以下、本発明について詳細に説明するにあたり、図面を用いて説明するが、本発明はその技術的範囲を逸脱しない限り様々な変形や修正が可能であり、以下の実施形態に限定されないことは言うまでもない。また、使われる用語は、実施形態での機能を考慮して選択された用語であって、本明細書で使われる用語の意味は、本明細書に具体的に定義された場合には、その定義に従い、具体的な定義がない場合は、当業者が一般的に認識する意味として解釈せねばならない。 Hereinafter, the present invention will be described in detail with reference to the drawings, but it goes without saying that the present invention can be variously modified and modified without departing from the technical scope thereof and is not limited to the following embodiments. Yes. In addition, the terms used are terms selected in consideration of the functions in the embodiments, and the meaning of the terms used in the present specification, when specifically defined in the present specification, means that the term is used. According to the definition, when there is no specific definition, it should be construed as a meaning generally recognized by those skilled in the art.

図1は本発明の光透過性導電材料を構成する少なくとも2層の導電層である上方導電層と下方導電層の位置関係を示す概略図であって、説明の便宜上、上方導電層と下方導電層の間に隙間を空けた図示となっているが、実際は、上方導電層と下方導電層は絶縁層を介して積層されている。また、上方導電層と下方導電層は共に網目形状の金属細線パターンによって構成されるために光透過性であるが、便宜上、それらが有するセンサー部の領域を黒い帯状で模式的に示している。 FIG. 1 is a schematic view showing a positional relationship between an upper conductive layer and a lower conductive layer which are at least two conductive layers constituting the light-transmitting conductive material of the present invention. For convenience of explanation, the upper conductive layer and the lower conductive layer are shown. Although it is shown that there is a gap between the layers, the upper conductive layer and the lower conductive layer are actually stacked with an insulating layer interposed therebetween. Further, both the upper conductive layer and the lower conductive layer are light-transmissive because they are composed of a mesh-shaped thin metal wire pattern, but for convenience, the regions of the sensor portions that they have are schematically shown as black bands.

本発明の光透過性導電材料は、光透過性支持体を絶縁層とし、その一方の面上に上方導電層、他方の面上に下方導電層を設けても良く、図1のように、上方導電層と下方導電層をそれぞれ別の光透過性支持体上に設け、上方導電層1を有する光透過性支持体の導電層を有さない側の面と、下方導電層2を有する光透過性支持体の導電層を有する側の面を光学粘着テープ(Optical Clear Adhesive:OCA)で貼合し(この場合は、上方導電層1の光透過性支持体とOCAで絶縁層を構成する。)、本発明の光透過性導電材料3としても良い。また、導電層同士を対向させてOCAで貼合した構成(この場合は、OCA単独で絶縁層を構成する。)であっても良い。図1ではOCAや、上方導電層1及び下方導電層2が有するセンサー部以外の構成(ダミー部や、配線部、端子部等)は省略している。 In the light-transmissive conductive material of the present invention, the light-transmissive support may be used as an insulating layer, and an upper conductive layer may be provided on one surface and a lower conductive layer may be provided on the other surface thereof. An upper conductive layer and a lower conductive layer are provided on different light-transmitting supports, and a surface of the light-transmitting support having the upper conductive layer 1 on the side not having the conductive layer and a light having the lower conductive layer 2 are provided. The surface of the transparent support on the side having the conductive layer is attached by an optical adhesive tape (Optical Clear Adhesive: OCA) (in this case, the light-transmitting support of the upper conductive layer 1 and the OCA form an insulating layer). .) and the light-transmissive conductive material 3 of the present invention. Alternatively, the conductive layers may be opposed to each other and bonded by OCA (in this case, the OCA alone constitutes the insulating layer). In FIG. 1, the components other than the OCA and the sensor part of the upper conductive layer 1 and the lower conductive layer 2 (dummy part, wiring part, terminal part, etc.) are omitted.

図2は、本発明の下方導電層の一例を示す概略図である。図2において、下方導電層は、光透過性支持体4上に、網目形状の金属細線パターンによって構成されるセンサー部21とダミー部22、周辺配線部23、及び端子部24を有する。ここで、センサー部21及びダミー部22は網目形状の金属細線パターンから構成されるが、便宜上、それらの範囲を仮の輪郭線a(実在しない線)で示している。 FIG. 2 is a schematic view showing an example of the lower conductive layer of the present invention. In FIG. 2, the lower conductive layer has a sensor portion 21, a dummy portion 22, a peripheral wiring portion 23, and a terminal portion 24, which are formed by a mesh-shaped thin metal wire pattern, on the light transmissive support 4. Here, the sensor portion 21 and the dummy portion 22 are composed of a mesh-shaped thin metal wire pattern, but for the sake of convenience, their range is shown by a provisional contour line a (a non-existing line).

センサー部21は周辺配線部23を介して端子部24に電気的に接続しており、この端子部24を通して外部に電気的に接続することで、センサー部21で感知した静電容量の変化を捉えることができる。一方、仮の輪郭線aと金属細線が交差する位置に断線部を設けることにより、端子部24との導通が絶たれたダミー部22が形成される。このような、端子部24に電気的に接続していない網目形状の金属細線パターンは、本発明では全てダミー部22となる。本発明において周辺配線部23、端子部24は特に光透過性を有する必要はないためベタパターン(光透過性を有さない塗り潰しの金属パターン)でも良く、あるいはセンサー部21やダミー部22などのように光透過性を有する網目形状の金属細線パターンであっても良い。 The sensor section 21 is electrically connected to the terminal section 24 through the peripheral wiring section 23. By electrically connecting the sensor section 21 to the outside through the terminal section 24, a change in the capacitance sensed by the sensor section 21 can be detected. I can catch it. On the other hand, by providing the disconnection portion at the position where the provisional contour line a and the thin metal wire intersect, the dummy portion 22 that is disconnected from the terminal portion 24 is formed. In the present invention, all such mesh-shaped metal thin wire patterns that are not electrically connected to the terminal portions 24 are the dummy portions 22. In the present invention, the peripheral wiring part 23 and the terminal part 24 do not need to have a light-transmitting property in particular, and therefore may be a solid pattern (filled metal pattern having no light-transmitting property), or the sensor part 21, the dummy part 22 or the like. As described above, a mesh-shaped metal thin wire pattern having light transmittance may be used.

図2において下方導電層が有するセンサー部21は、導電層面内において第一の方向(図中x方向)に伸びた列電極(下方列電極)からなる。図2に示されるように、下方列電極は導電層面内において、ダミー部22を挟んで、第一の方向に対して垂直な第二の方向(図中y方向)に一定の周期Lをもって複数並んでいる。センサー部21の周期Lは、タッチセンサーとしての分解能を保つ範囲で任意の長さを設定することができる。センサー部21の列電極の形状は、図2のように一定の幅であっても良いが、第一の方向(x方向)にパターン周期を有することもできる(例えば、ダイヤモンドパターンと呼ばれる、菱形が一定の周期で連なった形状など)。また、センサー部21の列電極の幅も、タッチセンサーとしての分解能を保つ範囲で任意に設定することができ、それに応じてダミー部22の形状や幅も任意に設定することができる。 In FIG. 2, the sensor unit 21 included in the lower conductive layer is composed of a column electrode (lower column electrode) extending in the first direction (x direction in the drawing) in the plane of the conductive layer. As shown in FIG. 2, a plurality of lower column electrodes are arranged in a plane of the conductive layer with a constant period L in a second direction (y direction in the drawing) perpendicular to the first direction with the dummy part 22 interposed therebetween. Lined up. The cycle L of the sensor unit 21 can be set to any length within a range in which the resolution as a touch sensor is maintained. The shape of the column electrodes of the sensor unit 21 may have a constant width as shown in FIG. 2, but may have a pattern period in the first direction (x direction) (for example, a diamond shape called a diamond pattern). , Such as a shape that has a fixed cycle). In addition, the width of the column electrode of the sensor unit 21 can be arbitrarily set within a range in which the resolution as the touch sensor is maintained, and accordingly, the shape and width of the dummy unit 22 can be arbitrarily set.

一方、本発明の上方導電層は、図1に示されるように、それが有するセンサー部の列電極が下方導電層のセンサー部の列電極と交差するように設けられる以外は、前記した下方導電層と同様に構成される。即ち、上方導電層が有するセンサー部は、光透過性導電層面内において第三の方向に伸びた列電極(上方列電極)からなる。上方列電極は光透過性導電層面内において、ダミー部を挟んで、第三の方向に対し垂直な第四の方向に一定の周期Mをもって複数並んでいる。センサー部の周期Mは、タッチセンサーとしての分解能を保つ範囲で任意の長さを設定することができる。列電極の形状は一定の幅であっても良いが、第三の方向にパターン周期を有することもできる(例えば前述したダイヤモンドパターンなど)。また、列電極の幅も、タッチセンサーとしての分解能を保つ範囲で任意に設定することができ、それに応じてダミー部の形状や幅も任意に設定することができる。なお、導電層面に対し垂直な方向から俯瞰した場合に、上方列電極と下方列電極が交差する角度(後述する、上方列電極の中心線と下方列電極の中心線が交差する角度)は、図1に示されるように90度(この場合、第一の方向と第四の方向が一致し、第二の方向と第三の方向が一致する)が最も好ましく用いられるが、60度以上120度以下の範囲内の任意の角度でも良く、更には45度以上135度以下の範囲内の任意の角度を用いることも可能である。 On the other hand, as shown in FIG. 1, the upper conductive layer of the present invention has the above-mentioned lower conductive layer except that the column electrode of the sensor section of the upper conductive layer is provided so as to intersect with the column electrode of the sensor section of the lower conductive layer. It is constructed similar to layers. That is, the sensor part included in the upper conductive layer is composed of the column electrode (upper column electrode) extending in the third direction within the surface of the light transmissive conductive layer. A plurality of upper column electrodes are arranged in the plane of the light-transmitting conductive layer with a constant period M in the fourth direction perpendicular to the third direction with the dummy part interposed therebetween. The cycle M of the sensor unit can be set to any length within a range in which the resolution of the touch sensor is maintained. The shape of the column electrodes may have a constant width, but may have a pattern period in the third direction (for example, the diamond pattern described above). Further, the width of the column electrode can be arbitrarily set within a range in which the resolution as the touch sensor is maintained, and accordingly, the shape and width of the dummy portion can be arbitrarily set. When viewed from a direction perpendicular to the conductive layer surface, the angle at which the upper row electrode and the lower row electrode intersect (the angle at which the center line of the upper column electrode and the center line of the lower column electrode intersect, which will be described later) is As shown in FIG. 1, 90 degrees (in this case, the first direction and the fourth direction match and the second direction and the third direction match) are most preferably used, but 60 degrees or more 120 Any angle in the range of 45 degrees or less may be used, and it is also possible to use any angle in the range of 45 degrees or more and 135 degrees or less.

図3は、このように上方導電層と下方導電層を積層して形成された本発明の光透過性導電材料を、導電層面に対し垂直な方向から俯瞰した場合の平面概略図である。図3ではダミー部の金属細線パターンや周辺配線部等は省略し、センサー部の金属細線パターン及び、センサー部の金属細線パターンと周辺配線部との接続部を示している。図3において、上方導電層のセンサー部及び下方導電層のセンサー部は、それぞれ10本の列電極を有している。上方列電極としては受信電極Rx1〜Rx10がこれに相当し、下方列電極としては送信電極Tx1〜Tx10がこれに相当し、図3ではこれら列電極の中心線は互いに直交している(上方列電極の中心線と下方列電極の中心線が交差する角度は90度)。受信電極Rx1〜Rx10と送信電極Tx1〜Tx10の交差する箇所(網目形状の金属細線パターンが重複している箇所)は10×10の2次元配列を形成しており100ヶ所ある。相互静電容量方式のタッチパネルにおいては、列電極が交差する箇所やその近傍に指が触れた場合の、列電極が交差する箇所における静電容量の変化を検知し、その2次元座標から指のタッチ(接触)位置情報を得る。なお、上方列電極を送信電極Txとし、下方列電極を受信電極Rxとして用いても良いが、以降、本明細書においては、下方列電極を送信電極Txとし、上方導電層を受信電極Rxとして用いるものとして説明する。 FIG. 3 is a schematic plan view of the light-transmitting conductive material of the present invention formed by stacking the upper conductive layer and the lower conductive layer in this manner, as viewed from a direction perpendicular to the conductive layer surface. In FIG. 3, the metal thin wire pattern of the dummy portion and the peripheral wiring portion are omitted, and the metal thin wire pattern of the sensor portion and the connection portion between the metal thin wire pattern of the sensor portion and the peripheral wiring portion are shown. In FIG. 3, the sensor portion of the upper conductive layer and the sensor portion of the lower conductive layer each have ten column electrodes. The upper row electrodes correspond to the receiving electrodes Rx1 to Rx10, and the lower row electrodes correspond to the transmitting electrodes Tx1 to Tx10. In FIG. 3, the center lines of these column electrodes are orthogonal to each other (upper row). The angle between the center line of the electrodes and the center line of the lower row electrodes is 90 degrees. The intersections of the reception electrodes Rx1 to Rx10 and the transmission electrodes Tx1 to Tx10 (the portions where the mesh-shaped metal fine wire patterns overlap) form a 10×10 two-dimensional array, and there are 100 locations. In a mutual capacitance type touch panel, when a finger touches a position where column electrodes intersect or the vicinity thereof, a change in capacitance at a position where column electrodes intersect is detected, and the two-dimensional coordinates of the fingers are used to detect the change. Obtain touch (contact) position information. The upper column electrode may be used as the transmission electrode Tx and the lower column electrode may be used as the reception electrode Rx. However, in the present specification, the lower column electrode will be referred to as the transmission electrode Tx and the upper conductive layer will be referred to as the reception electrode Rx. It will be described as being used.

本発明では、上方導電層と下方導電層を積層して形成された光透過性導電材料を、導電層面に対し垂直な方向から俯瞰した場合に、上方導電層が有する列電極の中心線と下方導電層が有する列電極の中心線との交点(ノード)を重心とし、かつ、上記下方導電層が有する列電極の中心線を上記第二の方向に周期Lに等しい長さの1/2だけずらした直線と、上記上方導電層が有する列電極の中心線を上記第四の方向に周期Mに等しい長さの1/2だけずらした直線により分割することで得られた四角形の区域をノード単位区域とする。列電極が一定の幅を有さない場合は、列電極が伸びる方向に平行な直線であって、列電極の領域の面積を二等分する直線を、列電極の中心線とする。
In the present invention, when the light-transmissive conductive material formed by stacking the upper conductive layer and the lower conductive layer is viewed from a direction perpendicular to the conductive layer surface, the center line of the column electrode and the lower part of the column electrode of the upper conductive layer are The intersection (node) with the center line of the column electrode of the conductive layer is the center of gravity, and the center line of the column electrode of the lower conductive layer is ½ of the length equal to the cycle L in the second direction. A square area obtained by dividing the shifted straight line and the straight line obtained by shifting the center line of the column electrode included in the upper conductive layer by 1/2 of the length equal to the period M in the fourth direction is defined as a node. The unit area. When the column electrode does not have a constant width, a straight line parallel to the extending direction of the column electrode and dividing the area of the region of the column electrode into two equal parts is set as the center line of the column electrode.

図4は本発明のノード単位区域を説明するための図であり、図3の左上の部分の拡大図である。ノード単位区域は、下方導電層の列電極の中心線41と上方導電層の列電極の中心線42の交点411(図4では、下方列電極である送信電極Tx1と上方列電極である受信電極Rx1の中心線の交点のみを図示している。)を重心(密度を一定とした場合の図面上の質量中心)とする。またノード単位区域は、下方列電極の中心線41を第二の方向(周期Lの方向である図中のy方向)に、周期Lに等しい長さの1/2だけずらした直線(境界線43)と、上方列電極の中心線42を第四の方向(周期のM方向である図中のx方向)に、周期Mに等しい長さの1/2だけずらした直線(境界線44)により分割された四角形で区切られる区域である。即ち、図4では境界線43と境界線44で区切られる区域がノード単位区域に相当し、図4においてA〜Iで示される区域のそれぞれが全てノード単位区域となる。このように、ノード単位区域の四角形は二組の平行な等長の対辺からなるので、正方形、長方形、菱形を含む広義の平行四辺形である。従って、下方導電層の列電極の中心線と上方導電層の列電極の中心線の交点は、下方導電層及び上方導電層のそれぞれのノード単位区域の対角線の交点である。 FIG. 4 is a diagram for explaining the node unit area of the present invention, and is an enlarged view of the upper left portion of FIG. The node unit area includes an intersection 411 of the center line 41 of the column electrode of the lower conductive layer and the center line 42 of the column electrode of the upper conductive layer (in FIG. 4, the transmission electrode Tx1 that is the lower column electrode and the reception electrode that is the upper column electrode). Only the intersection of the center lines of Rx1 is shown) as the center of gravity (the center of mass in the drawing when the density is constant). The node unit area is a straight line (boundary line) obtained by displacing the center line 41 of the lower column electrode in the second direction (the y direction in the drawing, which is the direction of the cycle L) by half the length equal to the cycle L. 43) and a straight line (boundary line 44) obtained by shifting the center line 42 of the upper column electrode in the fourth direction (the M direction of the period, the x direction in the drawing) by 1/2 of the length equal to the period M. It is an area divided by a rectangle divided by. That is, in FIG. 4, the area delimited by the boundary line 43 and the boundary line 44 corresponds to a node unit area, and each of the areas indicated by A to I in FIG. 4 is a node unit area. As described above, the quadrangle of the node unit area is composed of two sets of parallel parallel opposite sides, and thus is a broad parallelogram including a square, a rectangle, and a rhombus. Therefore, the intersection of the center line of the column electrode of the lower conductive layer and the center line of the column electrode of the upper conductive layer is the intersection of the diagonal lines of the respective node unit areas of the lower conductive layer and the upper conductive layer.

図5は、下方導電層のセンサー部の金属細線パターンの一例を示す図である。図5において、導電層全体の角部分に位置するノード単位区域である区域Aと四角形の辺を共有する区域は、区域Bと区域Dの2ヶ所であるから、区域Bと区域Dは、区域Aの隣接ノード単位区域となる。また、導電層全体の辺部分に位置するノード単位区域である区域Bと四角形の辺を共有する区域は、区域A、区域C及び区域Eの3ヶ所であるから、区域Aと区域Cと区域Eは区域Bの隣接ノード単位区域となる。更に、導電層全体の内部に位置するノード単位区域である区域Eと四角形の辺を共有する、区域B、区域D、区域F及び区域Hの4ヶ所は、区域Eの隣接ノード単位区域である。 FIG. 5 is a diagram showing an example of a metal thin wire pattern of the sensor portion of the lower conductive layer. In FIG. 5, since there are two areas, the area B and the area D, which share the sides of the quadrangle with the area A which is the node unit area located in the corner portion of the entire conductive layer, the areas B and D are the areas. It becomes the adjacent node unit area of A. In addition, since there are three areas, area A, area C, and area E, that share a rectangular side with area B, which is a node unit area located on the side of the entire conductive layer, there are three areas A, C, and E is an adjacent node unit area of the area B. Further, four locations of the area B, the area D, the area F, and the area H, which share the sides of the rectangle with the area E which is the node unit area located inside the entire conductive layer, are the adjacent node unit areas of the area E. ..

次に、本発明においてセンサー部及びダミー部を構成する不規則な金属細線パターンについて説明する。前述した上方導電層及び下方導電層が有するセンサー部及びダミー部は、網目形状を有する不規則な金属細線パターンによって構成される。網目形状を呈する不規則な図形としては、例えばボロノイ図形やドロネー図形、ペンローズ・タイル図形などに代表される不規則幾何学形状によって得られた図形を例示することができるが、本発明では母点に基づき作図されるボロノイ辺からなる網目形状(以下、ボロノイ図形と記載)が好ましく用いられる。また、ボロノイ図形を一方向に引き伸ばした網目形状も好ましく用いられる。ボロノイ図形、または、ボロノイ図形を一方向に引き伸ばした網目形状を用いることで、視認性に優れたタッチパネルを構成することが可能な光透過性導電材料を得ることができる。ボロノイ図形とは、情報処理などの様々な分野で応用されている公知の図形である。図6はボロノイ図形を説明するための図である。図6の(6−a)において、平面60上に複数の母点611が配置されている時、一つの任意の母点611に最も近い領域61と、他の母点に最も近い領域61とを境界線62で区切ることで、平面60を分割した場合に、各領域61の境界線62をボロノイ辺と呼ぶ。また、ボロノイ辺は任意の母点と近接する母点とを結んだ直線の垂直二等分線の一部になる。ボロノイ辺を集めてできる図形をボロノイ図形と呼ぶ。 Next, in the present invention, an irregular thin metal wire pattern forming the sensor part and the dummy part will be described. The sensor part and the dummy part included in the upper conductive layer and the lower conductive layer described above are formed by an irregular metal thin wire pattern having a mesh shape. As the irregular figure exhibiting a mesh shape, for example, a figure obtained by an irregular geometrical shape represented by a Voronoi figure, a Delaunay figure, a Penrose tile figure, etc. can be exemplified. A mesh shape composed of Voronoi sides (hereinafter referred to as Voronoi figure) drawn based on is preferably used. A mesh shape obtained by stretching a Voronoi figure in one direction is also preferably used. By using the Voronoi figure or the mesh shape obtained by stretching the Voronoi figure in one direction, it is possible to obtain a light-transmissive conductive material capable of forming a touch panel having excellent visibility. The Voronoi figure is a known figure that is applied in various fields such as information processing. FIG. 6 is a diagram for explaining the Voronoi figure. In (6-a) of FIG. 6, when a plurality of generating points 611 are arranged on the plane 60, an area 61 that is closest to one arbitrary generating point 611 and an area 61 that is closest to another generating point 611. When the plane 60 is divided by dividing the area by the boundary line 62, the boundary line 62 of each region 61 is called a Voronoi side. In addition, the Voronoi side becomes a part of a vertical bisector of a straight line connecting an arbitrary generating point and an adjacent generating point. A figure formed by collecting Voronoi edges is called a Voronoi figure.

母点を配置する方法について、図6の(6−b)を用いて説明する。本発明においては、平面60を多角形で区切り、その区切りの中にランダムに母点611を配置する方法が好ましく用いられる。平面60を区切る方法としては例えば、単一形状あるいは2種以上の形状の複数の多角形(以降、原多角形と称する)によって平面60を平面充填し、原多角形の重心と原多角形の各頂点を結んだ直線上の、重心から原多角形の各頂点までの距離の任意の位置を頂点とする縮小多角形を作成し、この縮小多角形にて平面60を区切る方法が用いられる。このようにして平面60を区切った後、縮小多角形の中にランダムに、母点を1つ配置する。図6の(6−b)においては、正方形である原多角形63により平面60を平面充填し、次にその原多角形63の重心64と原多角形の各頂点を結んだ直線上で、重心64から原多角形63の各頂点までの距離の90%の位置を頂点とし、それらを結んでできる縮小多角形65を作成し、最後に縮小多角形65の中に母点611をランダムに各々1つ配置している。 A method of arranging the mother points will be described with reference to (6-b) of FIG. In the present invention, a method in which the plane 60 is divided into polygons and the generating points 611 are randomly arranged in the divisions is preferably used. As a method of dividing the plane 60, for example, the plane 60 is plane-filled with a plurality of polygons having a single shape or two or more shapes (hereinafter referred to as an original polygon), and the center of gravity of the original polygon and the original polygon are separated. A method is used in which a reduced polygon whose vertex is an arbitrary position on the straight line connecting the vertices from the center of gravity to each vertex of the original polygon is used, and the plane 60 is divided by this reduced polygon. After dividing the plane 60 in this way, one generating point is randomly arranged in the reduced polygon. In (6-b) of FIG. 6, the plane 60 is plane-filled with the square original polygon 63, and then, on the straight line connecting the center of gravity 64 of the original polygon 63 and each vertex of the original polygon, 90% of the distance from the center of gravity 64 to each vertex of the original polygon 63 is used as a vertex, and a reduced polygon 65 formed by connecting them is created. Finally, a generating point 611 is randomly generated in the reduced polygon 65. One is arranged for each.

本発明においては不規則なパターンを利用した際に生じる「砂目」を予防するために(6−b)のように単一の形状及び大きさの原多角形63で平面充填することが好ましい。なお、「砂目」とはランダム図形の中に、特異的に図形の密度の高い部分と低い部分が現れる現象である。また、前記の原多角形の重心と原多角形の各頂点を結んだ直線上で、縮小多角形の頂点となる位置は、重心から原多角形の各頂点の距離に対して10〜90%の位置であることが好ましい。この距離が90%を超えると砂目現象が現れる場合があり、10%未満では、ボロノイ図形に高い繰り返し規則性が現れることがあり、液晶ディスプレイと重ねた時にモアレが生じる場合がある。 In the present invention, in order to prevent "grains" generated when an irregular pattern is used, it is preferable to perform plane filling with an original polygon 63 having a single shape and size as shown in (6-b). .. The "grain pattern" is a phenomenon in which a high density portion and a low density portion appear specifically in a random figure. Further, on the straight line connecting the center of gravity of the original polygon and each vertex of the original polygon, the position of the vertex of the reduced polygon is 10 to 90% with respect to the distance from the center of gravity to each vertex of the original polygon. It is preferable to be the position. If this distance exceeds 90%, the grain phenomenon may appear, and if it is less than 10%, high repeating regularity may appear in the Voronoi figure, and moiré may occur when it is overlapped with the liquid crystal display.

原多角形の形状は正方形、長方形、菱形などの四角形や、三角形、六角形が好ましく、中でも砂目現象を予防する観点から四角形が好ましく、更に好ましい形状は、長辺と短辺の長さの比が1:0.8〜1:1の範囲内の長方形及び正方形である。原多角形の一辺の長さは100〜2000μmであることが好ましく、120〜800μmであることがより好ましい。なお、本発明においてボロノイ辺は直線であることが最も好ましいが、曲線、波線、ジグザグ線などを用いることもできる。 The shape of the original polygon is preferably a quadrangle such as a square, a rectangle, a rhombus, a triangle, or a hexagon. Among them, a quadrangle is preferable from the viewpoint of preventing the grain phenomenon, and a more preferable shape is a long side and a short side. Rectangles and squares with ratios ranging from 1:0.8 to 1:1. The length of one side of the original polygon is preferably 100 to 2000 μm, and more preferably 120 to 800 μm. In the present invention, the Voronoi side is most preferably a straight line, but a curved line, a wavy line, a zigzag line, or the like can also be used.

本発明では、ノード単位区域内で、その区域の対角線長さに対し対角線長さを80%とした四角形を縮小四角形Aとし、隣接ノード単位区域内で、その区域の対角線長さに対し対角線長さを80%とした四角形を縮小四角形Bとした場合に、前記した上方導電層及び下方導電層のそれぞれにおいて、縮小四角形A内の金属細線パターンの網目形状と、縮小四角形B内の金属細線パターンの網目形状が同一ではなく、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの95〜105%とする。 In the present invention, in a node unit area, a quadrangle having a diagonal length of 80% with respect to the diagonal length of the area is referred to as a reduced quadrangle A, and in an adjacent node unit area, a diagonal line length with respect to the diagonal length of the area. When the quadrangle having a length of 80% is a reduced quadrangle B, the mesh shape of the metal thin line pattern in the reduced quadrangle A and the metal thin line pattern in the reduced quadrangle B in each of the upper conductive layer and the lower conductive layer described above. The mesh shapes are not the same, and the total length of the thin metal wires in the reduced quadrangle A is 95 to 105% of the total length of the thin metal wires in the reduced quadrangle B.

図7は下方導電層におけるノード単位区域と縮小四角形を説明するための図であって、図示していない上方列電極の中心線は下方列電極の中心線と直交している。図7は、下方導電層の金属細線パターンの網目形状の一例であって、列電極の形状のセンサー部に加え、その間を埋めるダミー部も図示している。図7において、ノード単位区域である区域71は、前述の通り、下方列電極の中心線と上方列電極の中心線の交点を重心とし、下方列電極の中心線を第二の方向(図中y方向)に周期Lに等しい長さの1/2だけずらした直線と、上方列電極の中心線を第四の方向(図中x方向)に周期Mに等しい長さの1/2だけずらした直線からなる四角形で区切られる区域である。また、縮小四角形72は、ノード単位区域71の対角線長さに対し対角線長さを80%とし重心を共有する縮小四角形である。本発明において、該縮小四角形はノード単位区域と重心を共有することが好ましい。 FIG. 7 is a diagram for explaining the node unit area and the reduced quadrangle in the lower conductive layer, and the center line of the upper column electrode (not shown) is orthogonal to the center line of the lower column electrode. FIG. 7 shows an example of the mesh shape of the thin metal wire pattern of the lower conductive layer, and shows not only the sensor portion in the shape of the column electrode but also a dummy portion filling the gap between them. In FIG. 7, the area 71 which is a node unit area has the center of intersection of the center line of the lower row electrode and the center line of the upper row electrode as the center of gravity and the center line of the lower row electrode in the second direction (in the figure) as described above. A straight line shifted by ½ of the length equal to the period L in the y direction) and a center line of the upper row electrode are shifted by ½ of the length equal to the period M in the fourth direction (x direction in the drawing). It is an area that is divided by a rectangle composed of straight lines. The reduced quadrangle 72 is a reduced quadrangle having a diagonal length of 80% with respect to the diagonal length of the node unit area 71 and sharing the center of gravity. In the present invention, it is preferable that the reduced quadrangle shares the center of gravity with the node unit area.

そして本発明では、前記した上方導電層及び下方導電層のそれぞれにおいて、任意のノード単位区域の縮小四角形A内の金属細線パターンの網目形状と、2〜4ヶ所あるそれぞれの隣接ノード単位区域の縮小四角形B内の金属細線パターンの網目形状を同一ではなくすることで、液晶ディスプレイに重ねてもモアレやパターンムラが発生しない。更に、縮小四角形A内の網目形状を有する金属細線の合計長さを、2〜4ヶ所あるそれぞれの隣接ノード単位区域の縮小四角形B内の金属細線の合計長さの95%以上105%以下とすることで、ノード位置毎における静電容量のバラツキが少なくなり、検出感度に優れたタッチパネルを構成することが可能な光透過性導電材料を得ることができる。縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの97.5〜102.5%であると、ノード位置毎における静電容量のバラツキがより少なくなるため好ましい。縮小四角形A内の網目形状を有する金属細線の合計長さが、隣接ノード単位区域の縮小四角形B内の金属細線の合計長さの95%を下回った場合、静電容量のバラツキを十分に少なくすることはできない。また縮小四角形A内の網目形状を有する金属細線の合計長さが、ノード単位区域の四角形の辺を共有する隣接ノード単位区域の縮小四角形B内の金属細線の合計長さの105%を上回った場合も、静電容量のバラツキを十分に少なくすることはできない。 In the present invention, in each of the above-mentioned upper conductive layer and lower conductive layer, the mesh shape of the metal thin wire pattern in the quadrangle A of any node unit area and the size of each adjacent node unit area in 2 to 4 locations are reduced. By making the mesh shapes of the metal fine line patterns in the quadrangle B different from each other, moire and pattern unevenness do not occur even when they are superimposed on the liquid crystal display. Further, the total length of the metal thin wires having the mesh shape in the reduced quadrangle A is set to 95% or more and 105% or less of the total length of the metal thin wires in the reduced quadrangle B of each of the adjacent node unit areas at 2 to 4 places. By doing so, it is possible to obtain a light-transmissive conductive material capable of forming a touch panel having excellent detection sensitivity, with less variation in electrostatic capacitance at each node position. When the total length of the thin metal wires in the reduced quadrangle A is 97.5 to 102.5% of the total length of the thin metal wires in the reduced quadrangle B, the variation in the capacitance between the node positions becomes smaller. Therefore, it is preferable. When the total length of the metal thin wires having the mesh shape in the reduced quadrangle A is less than 95% of the total length of the metal thin wires in the reduced quadrangle B of the adjacent node unit area, the variation in capacitance is sufficiently reduced. You cannot do it. Further, the total length of the metal thin wires having the mesh shape in the reduced quadrangle A exceeds 105% of the total length of the metal thin wires in the reduced quadrangle B of the adjacent node unit area sharing the side of the quadrangle of the node unit area. Also in this case, the variation in capacitance cannot be sufficiently reduced.

前述した通り、相互静電容量方式のタッチパネルにおいては、列電極が交差する箇所の静電容量の変化を検知し、その2次元座標から指のタッチ(接触)位置情報を得る。ランダムな金属細線からなる導電材料では、静電容量はノード単位区域内のダミー部を含む金属細線パターンの形状の影響を受ける。特に、列電極の中心線の交点からノード単位区域の外縁までの距離の80%の領域に存在する金属細線パターンの影響が大きい。本発明では、特にこの部分の金属細線パターンを特定の条件の形状とすることにより、タッチパネルとした時に、静電容量のバラツキが抑制され高い検出感度を達成することができる。即ち本発明は、金属細線パターンが実質的に同じ線幅の金属細線で構成される場合、ノード単位区域に含まれる金属細線の合計長さを制御することにより、ノード単位区域毎に形状が不規則に異なる金属細線パターンであっても静電容量のバラツキを少なくできることを見出したものである。また、検出回路によっては、ノイズ対策等のため、各ノード単位区域と隣接ノード単位区域との静電容量の差を監視し、その差の変化から指の接触位置を検知する場合がある。この場合には、例えば各ノード単位区域の静電容量と全ノード単位区域の静電容量の平均値との差分にバラツキがある場合よりも、各ノード単位区域の静電容量と隣接ノード単位区域の静電容量との差分にバラツキがあることが問題になる。本発明ではこの差分のバラツキも抑制できることにより、高い検出感度を達成することができる。 As described above, in the mutual capacitance type touch panel, the change in the capacitance at the intersection of the column electrodes is detected, and the touch (contact) position information of the finger is obtained from the two-dimensional coordinates. In a conductive material composed of random metal fine wires, the capacitance is affected by the shape of the metal fine wire pattern including the dummy part in the node unit area. In particular, the influence of the metal thin wire pattern existing in a region of 80% of the distance from the intersection of the center lines of the column electrodes to the outer edge of the node unit area is large. According to the present invention, in particular, by forming the thin metal wire pattern of this portion under the shape of a specific condition, it is possible to achieve high detection sensitivity by suppressing the variation in capacitance when the touch panel is used. That is, according to the present invention, when the metal thin wire pattern is composed of the metal thin wires having substantially the same line width, the shape of each of the node unit areas is not controlled by controlling the total length of the metal thin wires included in the node unit area. The inventors have found that even with fine metal wire patterns that differ in rule, variations in capacitance can be reduced. Further, depending on the detection circuit, there is a case where a difference in electrostatic capacitance between each node unit area and an adjacent node unit area is monitored and a contact position of a finger is detected from a change in the difference in order to prevent noise. In this case, for example, rather than when the difference between the capacitance of each node unit area and the average value of the capacitance of all node unit areas is different, the capacitance of each node unit area and the adjacent node unit area There is a problem in that there is variation in the difference with the electrostatic capacitance of. In the present invention, it is possible to achieve high detection sensitivity because the variation in the difference can be suppressed.

前記した縮小四角形内の金属細線の合計長さを制御した金属細線パターンの作成方法として、例えば以下の手順を挙げることができる。図4に示したノード単位区域(あるいは隣接ノード単位区域)の四角形の辺長さ(L、M)をそれぞれ任意の10以上の整数(n1、n2)で除した長さ(L/n1とM/n2)の辺を有する四角形をボロノイ図形作成の原多角形とする。前述した図6の(6−b)全体が一つのノード単位区域である場合、(6−b)はn1=n2=10とした一例と見ることができる。図8は、(6−b)の図形をノード単位区域とした場合の縮小四角形内の細線(以降、金属細線製造時に用いるパターン露光用マスク原稿では線分とも言う)の長さの求め方を説明する図である。(8−a)において縮小四角形83はノード単位区域である四角形81と重心82を共有し、該縮小四角形83の対角線長さ85は、ノード単位区域である四角形81の対角線長さ84の80%である。(8−b)は(8−a)の縮小四角形83内のボロノイ図形のみを記載した図である。この図の線分の長さの合計を計測する。計測はCADソフトの機能を用いてPC上で容易に行うことが可能である。得られた計測値から、図面内に含まれるセンサー部とダミー部の境界に設けられる断線部(センサー部とダミー部の境界を表す点線86(前述の仮の輪郭線a)が交差する金属細線部位に存在する。)の長さ及びダミー部内に断線部を設ける場合はその長さを除く。ノード単位区域内のランダムな母点発生からここまでの作業を、後述の作業で必要となる回数以上繰り返して行い、ノード単位区域の母点群と、その母点群から生成されるボロノイ図形の縮小四角形内の線分の合計長さのデータを複数組得る。線分の長さの合計はランダムに配置される母点の位置により異なるため、基本的に母点群毎に異なった値となる。 As a method of creating a metal thin wire pattern in which the total length of the metal thin wires in the above-described reduced quadrangle is controlled, the following procedure can be given, for example. Lengths (L/n1 and M) obtained by dividing the side lengths (L, M) of the quadrangle of the node unit area (or adjacent node unit area) shown in FIG. 4 by arbitrary integers (n1, n2) of 10 or more, respectively. A quadrangle having a side of /n2) is an original polygon for creating a Voronoi figure. When the whole (6-b) of FIG. 6 described above is one node unit area, (6-b) can be regarded as an example in which n1=n2=10. FIG. 8 shows how to determine the length of a thin line (hereinafter also referred to as a line segment in a pattern exposure mask original used when manufacturing a metal thin line) in a reduced quadrangle when the figure (6-b) is used as a node unit area. It is a figure explaining. In (8-a), the reduced quadrangle 83 shares the center of gravity 82 with the quadrangle 81 that is the node unit area, and the diagonal length 85 of the reduced quadrangle 83 is 80% of the diagonal length 84 of the quadrangle 81 that is the node unit area. Is. (8-b) is a diagram in which only Voronoi figures in the reduced quadrangle 83 of (8-a) are described. Measure the total length of the line segments in this figure. The measurement can be easily performed on a PC using the function of CAD software. From the obtained measured value, a thin metal line intersecting with a disconnection portion (a dotted line 86 (the above-mentioned temporary contour line a) representing the boundary between the sensor part and the dummy part) provided at the boundary between the sensor part and the dummy part included in the drawing. Existing in the part) and the disconnection part in the dummy part is excluded. Repeat the work from random generation of generatrix points in the node unit area to the number of times required in the work described below, and generate the generatrix group of the node unit area and the Voronoi figure generated from the generatrix group. Multiple sets of data of the total length of line segments in the reduced rectangle can be obtained. The total length of the line segments differs depending on the positions of the randomly arranged mother points, and thus basically has a different value for each mother point group.

次に、前述の手順で求めた複数の縮小四角形内の線分の合計長さの値から、一つのノード単位区域と隣接ノード単位区域の縮小四角形内の線分の合計長さが95%以上105%以下の関係となる、ノード単位区域の母点群の組み合わせを選択し、導電層全面の各ノード位置への配置を決定する。例えば、前記した図3の場合では、上方導電層及び下方導電層のそれぞれにおいて、ノード単位区域100ヶ所全てにおいてこの条件を満たす組み合わせを選択している。ここで、一つのノード単位区域の母点群を複数回選択することもできるが、隣接したノード位置に同じ母点群を選択した場合は、下記の通り、隣接したノード単位区域で縮小四角形内のボロノイ図形が基本的に同一となることから、パターンムラが発生しやすくなる。よって本発明では、任意の一つのノード単位区域の縮小四角形内の金属細線パターンの網目形状と、その隣接ノード単位区域の縮小四角形内の金属細線パターンの網目形状が同一とならないよう、隣接したノード位置には異なった母点群を配置する。次に、決定した組み合わせに従って配置した母点群を、改めて導電層全体のセンサー部/ダミー部を得るための母点(例えば前述の図3に示した上方導電層の受信電極Rx1〜10とその間を埋めるダミー部を得るための母点、あるいは、下方導電層の送信電極Tx1〜10とその間を埋めるダミー部を得るための母点)として、ボロノイ図形を再作図する。 Next, based on the value of the total length of the line segments in the plurality of reduced rectangles obtained by the above-mentioned procedure, the total length of the line segments in the reduced rectangle of one node unit area and the adjacent node unit area is 95% or more. A combination of generatrix groups in the node unit area having a relationship of 105% or less is selected, and the arrangement at each node position on the entire surface of the conductive layer is determined. For example, in the case of FIG. 3 described above, a combination satisfying this condition is selected in all 100 node unit areas in each of the upper conductive layer and the lower conductive layer. Here, although it is possible to select the generatrix group of one node unit area multiple times, if the same generatrix group is selected for the adjacent node positions, as shown below, within the reduced rectangle in the adjacent node unit area. Since the Voronoi figures of are basically the same, pattern unevenness is likely to occur. Therefore, in the present invention, the mesh shape of the metal thin line pattern in the reduced square of any one node unit area and the mesh shape of the metal thin line pattern in the reduced square of the adjacent node unit area do not become the same, Different mother point groups are arranged at the positions. Next, the mother points arranged according to the determined combination are used as mother points for obtaining the sensor part/dummy part of the entire conductive layer again (for example, the reception electrodes Rx1 to Rx10 of the upper conductive layer shown in FIG. Voronoi figure is redrawn as a generating point for obtaining a dummy portion for filling the area (1) or a transmitting point for obtaining the dummy portion for filling the space between the transmission electrodes Tx1 to Tx10 of the lower conductive layer).

上記手順に従って、センサー部/ダミー部のボロノイ図形を得るが、事前にノード単位区域単独で計測した縮小四角形内の線分の長さは、ボロノイ図形を再作図することにより基本的に変わることはない。このことを、図9を用いて説明する。図9はボロノイ図形を再作図する方法を示す図である。(9−a)にはノード単位区域単独でのボロノイ図形を点線で示している。この状態で縮小四角形91内の線分の合計長さを計測する。(9−b)は(9−a)の右側の隣接ノード単位区域に別の母点群を貼り付け、ボロノイ図形を作図後、図中点線枠で示した部分を拡大した図である。(9−b)では、(9−a)の母点群のみで作図したボロノイ図形を点線で示し、(9−a)の右側の隣接ノード単位区域に別の母点群92を貼り付け、再作図したボロノイ図形を実線で示している。(9−b)において、ノード単位区域中の最も外側に位置する原多角形93(斜線部のない多角形)内のボロノイ辺は、(9−a)のノード単位区域単独で作図したボロノイ辺(点線)と一部形状が異なっている。しかしながら、斜線部で示した縮小四角形内(ノード単位区域の対角線長さを80%とした縮小四角形A内)のボロノイ辺は、隣接ノード単位区域の母点の影響を受けないため変わらない。即ち、最終図形における縮小四角形内のボロノイ図形は、上記した母点群作成時(線分長さ計測時)の縮小四角形内のボロノイ図形と同一になる。このことから、最終図形において縮小四角形内の線分の合計長さは維持されることになる。 According to the above procedure, the Voronoi figure of the sensor part/dummy part is obtained, but the length of the line segment in the reduced quadrangle measured in advance in the node unit area alone is basically changed by redrawing the Voronoi figure. Absent. This will be described with reference to FIG. FIG. 9 is a diagram showing a method for redrawing a Voronoi figure. In (9-a), the Voronoi figure in the node unit area alone is indicated by a dotted line. In this state, the total length of the line segments in the reduced rectangle 91 is measured. (9-b) is a diagram in which another mother point group is attached to the adjacent node unit area on the right side of (9-a), a Voronoi figure is drawn, and then a portion indicated by a dotted line frame in the drawing is enlarged. In (9-b), the Voronoi figure drawn only by the mother point group of (9-a) is shown by a dotted line, and another mother point group 92 is pasted to the adjacent node unit area on the right side of (9-a). The reconstructed Voronoi figure is shown by a solid line. In (9-b), the Voronoi side in the outermost polygon 93 (polygon without hatched portion) located in the outermost node unit area is the Voronoi side drawn by the single node unit area in (9-a). Some shapes are different from (dotted line). However, the Voronoi sides in the reduced quadrilateral shown by the hatched portion (in the reduced quadrilateral A in which the diagonal length of the node unit area is 80%) do not change because they are not affected by the generating points of the adjacent node unit areas. That is, the Voronoi figure in the reduced quadrangle in the final figure becomes the same as the Voronoi figure in the reduced quadrangle at the time of creating the mother point group (when measuring the line segment length). Therefore, the total length of the line segments in the reduced rectangle is maintained in the final figure.

本発明において、前述したセンサー部21とダミー部22は網目形状の金属細線パターンにより形成される。かかる金属としては金、銀、銅、ニッケル、アルミニウム、及びこれらの複合材からなることが好ましい。また周辺配線部24及び端子部25もセンサー部21やダミー部22と同じ組成の金属により形成されることが、生産効率の観点から好ましい。これら金属パターンを形成する方法としては、銀塩写真感光材料を用いる方法、同方法を用い更に得られた銀画像に無電解めっきや電解めっきを施す方法、スクリーン印刷法を用いて銀ペースト、銅ペーストなどの導電性インキを印刷する方法、銀インクや銅インクなどの導電性インクをインクジェット法で印刷する方法、あるいは蒸着やスパッタなどで導電性層を形成し、その上にレジスト膜を形成し、露光、現像、エッチング、レジスト層除去することで得る方法、銅箔などの金属箔を貼り、更にその上にレジスト膜を形成し、露光、現像、エッチング、レジスト層除去することで得る方法など、公知の方法を用いることができる。中でも製造される金属細線パターンの厚みが薄くでき、更に極微細なパターンも容易に形成できる銀塩拡散転写法を用いることが好ましい。 In the present invention, the sensor part 21 and the dummy part 22 described above are formed by a mesh-shaped metal thin wire pattern. The metal is preferably gold, silver, copper, nickel, aluminum, or a composite material thereof. Further, it is preferable from the viewpoint of production efficiency that the peripheral wiring portion 24 and the terminal portion 25 are also formed of a metal having the same composition as that of the sensor portion 21 and the dummy portion 22. As a method of forming these metal patterns, a method of using a silver salt photographic light-sensitive material, a method of subjecting a silver image obtained by the same method to electroless plating or electrolytic plating, a silver paste using a screen printing method, copper A conductive ink such as a paste is printed, a conductive ink such as a silver ink or a copper ink is printed by an inkjet method, or a conductive layer is formed by vapor deposition or sputtering, and a resist film is formed thereon. , A method obtained by exposing, developing, etching, removing the resist layer, a method of sticking a metal foil such as a copper foil and further forming a resist film thereon, exposing, developing, etching, removing the resist layer, etc. Well-known methods can be used. Above all, it is preferable to use the silver salt diffusion transfer method, which can reduce the thickness of the metal thin wire pattern to be produced and can easily form an extremely fine pattern.

上記した手法により作製された金属細線パターンの線幅は、一つの導電層内のセンサー部とダミー部で同じであることが好ましく、導電性と光透過性を両立する観点から1〜20μmであることが好ましく、2〜7μmであることがより好ましい。金属細線パターンの厚みは、厚すぎると後工程(例えば他部材との貼合等)が困難になる場合があり、また薄すぎるとタッチパネルとして必要な導電性を確保し難くなる。よって、その厚みは0.01〜5μmであることが好ましく、0.05〜1μmであることがより好ましい。 The line width of the thin metal wire pattern produced by the above method is preferably the same in the sensor part and the dummy part in one conductive layer, and is 1 to 20 μm from the viewpoint of achieving both conductivity and light transmittance. It is preferable that the thickness is 2 to 7 μm. If the thickness of the thin metal wire pattern is too thick, it may be difficult to perform a subsequent step (for example, bonding with another member), and if it is too thin, it becomes difficult to secure the conductivity required for the touch panel. Therefore, the thickness is preferably 0.01 to 5 μm, and more preferably 0.05 to 1 μm.

本発明の光透過性導電材料における光透過性とは、センサー部及びダミー部の部位の全光線透過率が60%以上であることを意味し、センサー部及びダミー部の部位の全光線透過率は80%以上であることが好ましく、82.5%以上であることがより好ましく、85%以上であることが特に好ましい。また、センサー部の全光線透過率とダミー部の全光線透過率の差は0.5%以内であることが好ましく、0.1%以内であることがより好ましく、同じであることが特に好ましい。本発明の光透過性導電材料において、センサー部及びダミー部の部位のヘイズ値は2以下であることが好ましい。更に、センサー部及びダミー部の部位の色相は、CIELABにおけるb値が2以下であることが好ましく、1以下であることがより好ましい。 The light transmittance of the light-transmitting conductive material of the present invention means that the total light transmittance of the sensor part and the dummy part is 60% or more. The total light transmittance of the sensor part and the dummy part is Is preferably 80% or more, more preferably 82.5% or more, and particularly preferably 85% or more. The difference between the total light transmittance of the sensor part and the total light transmittance of the dummy part is preferably 0.5% or less, more preferably 0.1% or less, and particularly preferably the same. .. In the light-transmitting conductive material of the present invention, the haze value of the sensor portion and the dummy portion is preferably 2 or less. Further, the hue of the sensor portion and the dummy portion has a b * value in CIELAB of preferably 2 or less, more preferably 1 or less.

本発明の光透過性導電材料が有する光透過性支持体としては、ガラス、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)等のポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ポリカーボネート樹脂、ジアセテート樹脂、トリアセテート樹脂、ポリアリレート樹脂、ポリ塩化ビニル、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂、環状ポリオレフィン樹脂などの絶縁性能を有する公知の材質からなり、光透過性を有する支持体を好ましく用いることができる。ここで光透過性とは全光線透過率が60%以上であることを意味し、全光線透過率は80%以上であることが好ましい。光透過性支持体の厚みは50μm〜5mmであることが好ましい。また光透過性支持体には指紋防汚層、ハードコート層、反射防止層、防眩層などの公知の層を付与することもできる。 Examples of the light-transmitting support of the light-transmitting conductive material of the present invention include glass, polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), acrylic resins, epoxy resins, fluororesins, silicone resins, polycarbonates. Resin, diacetate resin, triacetate resin, polyarylate resin, polyvinyl chloride, polysulfone resin, polyether sulfone resin, polyimide resin, polyamide resin, polyolefin resin, a known material having insulating performance such as cyclic polyolefin resin, A support having optical transparency can be preferably used. Here, the light transmittance means that the total light transmittance is 60% or more, and the total light transmittance is preferably 80% or more. The thickness of the light transmissive support is preferably 50 μm to 5 mm. Further, known layers such as a fingerprint antifouling layer, a hard coat layer, an antireflection layer and an antiglare layer can be provided on the light transmissive support.

本発明において、図1のように上方導電層1の光透過性支持体側と下方導電層2の導電層を有する側の面を貼合する場合、あるいは導電層同士を対向させて貼合する場合などに使用されるOCAとしては、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤などの絶縁性能を有する公知のもので、貼合後に光透過性である粘着剤を好ましく用いることができる。 In the present invention, when the surface of the upper conductive layer 1 on the light-transmissive support side and the surface of the lower conductive layer 2 on the side having the conductive layer are bonded, or when the conductive layers are bonded so as to face each other in the present invention. As the OCA used for the above, for example, a known adhesive having an insulating property such as a rubber-based adhesive, an acrylic-based adhesive, a silicone-based adhesive, and a urethane-based adhesive, which is light-transmissive after bonding Agents can be preferably used.

以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

<下方導電層1の作製>
光透過性支持体として、厚み100μmのポリエチレンテレフタレートフィルムを用いた。なおこの光透過性支持体の全光線透過率は92%であった。
<Preparation of lower conductive layer 1>
A polyethylene terephthalate film having a thickness of 100 μm was used as the light transmissive support. The total light transmittance of this light transmissive support was 92%.

次に下記処方に従い、物理現像核層塗液を作製し、上記光透過性支持体上に塗布、乾燥して物理現像核層を設けた。 Next, according to the following formulation, a physical development nucleus layer coating liquid was prepared, coated on the above-mentioned light transmissive support and dried to provide a physical development nucleus layer.

<硫化パラジウムゾルの調製>
A液 塩化パラジウム 5g
塩酸 40ml
蒸留水 1000ml
B液 硫化ソーダ 8.6g
蒸留水 1000ml
A液とB液を撹拌しながら混合し、30分後にイオン交換樹脂の充填されたカラムに通し硫化パラジウムゾルを得た。
<Preparation of palladium sulfide sol>
Liquid A Palladium chloride 5g
40 ml hydrochloric acid
1000 ml of distilled water
Liquid B Sodium sulfide 8.6g
1000 ml of distilled water
The liquid A and the liquid B were mixed with stirring, and after 30 minutes, they were passed through a column filled with an ion exchange resin to obtain a palladium sulfide sol.

<物理現像核層塗液組成>銀塩感光材料の1mあたりの量
前記硫化パラジウムゾル 0.4mg
グリオキザール水溶液(濃度2質量%) 0.2ml
界面活性剤(S−1) 4mg
デナコールEX−830 50mg
(ポリエチレングリコールジグリシジルエーテル、ナガセケムテックス社製)
SP−200水溶液(濃度10質量%) 0.5mg
(ポリエチレンイミン、平均分子量10,000、日本触媒社製)
<Physical Development Nuclear Layer Coating Solution Composition> Amount of Silver Salt Photosensitive Material per 1 m 2 Palladium Sulfide Sol 0.4 mg
Glyoxal aqueous solution (concentration 2% by mass) 0.2 ml
Surfactant (S-1) 4mg
Denacol EX-830 50 mg
(Polyethylene glycol diglycidyl ether, manufactured by Nagase Chemtex)
SP-200 aqueous solution (concentration 10% by mass) 0.5 mg
(Polyethyleneimine, average molecular weight 10,000, manufactured by Nippon Shokubai Co., Ltd.)

続いて、光透過性支持体に近い方から順に下記組成の中間層、ハロゲン化銀乳剤層及び保護層の各層を形成するための塗液を上記物理現像核液層の上に塗布、乾燥して、銀塩感光材料を得た。ハロゲン化銀乳剤は、写真用ハロゲン化銀乳剤の一般的なダブルジェット混合法で製造した。このハロゲン化銀乳剤のハロゲン化銀粒子は、組成が塩化銀95モル%と臭化銀5モル%で、平均粒径が0.15μmになるように調製した。このようにして得られたハロゲン化銀乳剤を定法に従いチオ硫酸ナトリウムと塩化金酸を用い、金イオウ増感を施した。こうして得られたハロゲン化銀乳剤は銀1gあたり0.5gのゼラチンを含む。 Then, a coating solution for forming each of the intermediate layer, the silver halide emulsion layer and the protective layer having the following composition in order from the side closer to the light transmissive support is applied on the physical development nucleation solution layer and dried. To obtain a silver salt light-sensitive material. The silver halide emulsion was produced by a general double jet mixing method for silver halide emulsions for photography. The silver halide grains of this silver halide emulsion were prepared so that the composition was 95 mol% of silver chloride and 5 mol% of silver bromide, and the average grain size was 0.15 μm. The silver halide emulsion thus obtained was subjected to gold sulfur sensitization using sodium thiosulfate and chloroauric acid according to a conventional method. The silver halide emulsion thus obtained contains 0.5 g of gelatin per 1 g of silver.

<中間層組成>銀塩感光材料の1mあたりの量
ゼラチン 0.5g
界面活性剤(S−1) 5mg
染料1 5mg
<Intermediate layer composition> Amount of silver salt light-sensitive material per 1 m 2 Gelatin 0.5 g
Surfactant (S-1) 5mg
Dye 1 5mg

<ハロゲン化銀乳剤層組成>銀塩感光材料の1mあたりの量
ゼラチン 0.5g
ハロゲン化銀乳剤 3.0g銀相当
1−フェニル−5−メルカプトテトラゾール 3mg
界面活性剤(S−1) 20mg
<Silver halide emulsion layer composition> Amount of silver salt photosensitive material per 1 m 2 Gelatin 0.5 g
Silver halide emulsion 3.0 g Silver equivalent 1-phenyl-5-mercaptotetrazole 3 mg
Surfactant (S-1) 20mg

<保護層組成>銀塩感光材料の1mあたりの量
ゼラチン 1g
不定形シリカマット剤(平均粒径3.5μm) 10mg
界面活性剤(S−1) 10mg
<Protective layer composition> Amount of silver salt photosensitive material per 1 m 2 Gelatin 1 g
Amorphous silica matting agent (average particle size 3.5 μm) 10 mg
Surfactant (S-1) 10mg

このようにして得た銀塩感光材料に、図2のパターンの画像を有する透過原稿(下方)1を密着し、水銀灯を光源とする密着プリンターで、400nm以下の光をカットする樹脂フィルターを介して露光した。なお透過原稿(下方)1におけるセンサー部21の、y方向の周期Lは6.95mmである。 The transparent original (lower side) 1 having the image of the pattern of FIG. 2 is brought into close contact with the silver salt light-sensitive material thus obtained, and a contact printer using a mercury lamp as a light source passes through a resin filter for cutting light of 400 nm or less. Exposed. The cycle L of the sensor section 21 in the transparent original (lower side) 1 in the y direction is 6.95 mm.

図2のパターンの画像を有する透過原稿(下方)1において、センサー部21並びにダミー部22が有する金属細線パターンは以下の手順で作成した。x方向の一辺の長さが0.695mm、y方向の一辺の長さが0.695mmである正方形を原多角形とし、この原多角形を図6の(6−b)に示したようにx方向、y方向に10個並べ、上方導電層と下方導電層を重ね合せた際に生じるノード単位区域に相当する区域を該原多角形で充填した。ボロノイ図形は原多角形の重心から各頂点までの距離の90%の位置を結んでできる縮小多角形の中に母点を1つランダムに配置し、任意の母点に最も近い領域と、他の母点に最も近い領域とを輪郭線で区切る作業を全ての母点に対して繰り返し行い作成した。センサー部分とダミー部分との境界に該当する部分には幅10μmの断線部を設けた。次に、図8に示したように、ノード単位区域の対角線長さを80%とした縮小四角形内における線分の合計長さを測定した。ノード単位区域と縮小四角形は重心を共有している。上記操作を16回行い、網目形状がそれぞれ異なる16個のボロノイ図形を得た。それぞれの図形の縮小四角形内における線分の合計長さの測定結果を表1に示す。表1の測定結果から、ノード単位区域と、その隣接ノード単位区域における網目形状が同一でなく、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の長さの95〜105%になるように、ボロノイ図形を選択し、その母点を改めてセンサー部/ダミー部全面(図3に示した下方導電層の送信電極Tx1〜10及びそれらの間に存在するダミー部を得るための母点)として再配置した。 In the transparent original (lower) 1 having the image of the pattern of FIG. 2, the metal thin line patterns of the sensor section 21 and the dummy section 22 were created by the following procedure. A square whose one side in the x direction is 0.695 mm and whose one side in the y direction is 0.695 mm is defined as an original polygon, and this original polygon is as shown in (6-b) of FIG. Ten pieces were arranged in the x direction and the y direction, and a region corresponding to a node unit region generated when the upper conductive layer and the lower conductive layer were superposed was filled with the original polygon. In the Voronoi figure, one generating point is randomly arranged in the reduced polygon formed by connecting the position of 90% of the distance from the center of gravity of the original polygon to each vertex, and the area closest to any generating point and the other The work of dividing the area closest to the mother point of the above with the contour line was repeated for all the mother points. A disconnection portion having a width of 10 μm was provided in a portion corresponding to a boundary between the sensor portion and the dummy portion. Next, as shown in FIG. 8, the total length of the line segments in the reduced quadrangle with the diagonal length of the node unit area set to 80% was measured. The node unit area and the reduced rectangle share the center of gravity. The above operation was repeated 16 times to obtain 16 Voronoi figures having different mesh shapes. Table 1 shows the measurement results of the total length of the line segments in the reduced rectangle of each figure. From the measurement results of Table 1, the mesh shapes in the node unit area and the adjacent node unit area are not the same, and the total length of the metal thin wires in the reduced rectangle A is 95 times the length of the metal thin wires in the reduced rectangle B. The Voronoi figure is selected so that the ratio becomes about 105%, and the mother point is selected again and the entire sensor part/dummy part (the transmitting electrodes Tx1 to Tx10 of the lower conductive layer shown in FIG. Rearrangement as a mother point for obtaining).

得られた全面の母点から、ボロノイ図を作成した。ボロノイ図形の線幅は、センサー部分、ダミー部分共に5μmとし、センサー部分とダミー部分との境界には長さ10μmの断線部を設けた。この時の、下方導電層1に用いた透過原稿(下方)1における、上記で作成したボロノイ図形(該ボロノイ図形を得るための母点)の配置を表2に示す。表2では10×10の領域にボロノイ図形を配置しており、各領域の数字は、表1に示したボロノイ図形の番号(1〜16)に対応している。なお、表2では、ボロノイ図形が配置された位置を送信電極の位置と対応させるため、対応する送信電極の位置をTx1〜Tx10としている。更に、対向する上方導電層が有する受信電極の位置もRx1〜Rx10として記載する(ただし、下方導電層が有するものではないため括弧書きとしている)。なお、該透過原稿(下方)1は図2のパターンにおいて、列電極がx方向に伸び、該列電極が周期Lをもってy方向に10本並んだセンサー部を有する透過原稿であり、センサー部の周期Lは6.95mmである。また、図10に、各ノード単位区域の位置の中心に該区域における縮小四角形内の線分の合計長さ(mm)を記載し、また該合計長さの周囲に、その方向にて辺を共有する隣接ノード単位区域における縮小四角形内の線分の合計長さに対する当該区域における縮小四角形内の線分長さの割合(%)を記載した。なお、図10にも、表2と同様に、対応する受信電極及び送信電極の位置を記載している。以上の手順で上記した透過原稿(下方)1のパターンを作成した。 A Voronoi diagram was created from the generated mother points of the entire surface. The line width of the Voronoi pattern was 5 μm for both the sensor portion and the dummy portion, and a disconnection portion having a length of 10 μm was provided at the boundary between the sensor portion and the dummy portion. Table 2 shows the arrangement of the Voronoi figures (generic points for obtaining the Voronoi figures) created above in the transparent original (lower side) 1 used for the lower conductive layer 1 at this time. In Table 2, Voronoi figures are arranged in 10×10 areas, and the numbers in each area correspond to the numbers (1 to 16) of the Voronoi figures shown in Table 1. In Table 2, the positions of the corresponding transmission electrodes are set to Tx1 to Tx10 in order to make the positions where the Voronoi figures are arranged correspond to the positions of the transmission electrodes. Further, the positions of the receiving electrodes of the upper conductive layers facing each other are also described as Rx1 to Rx10 (however, they are not shown in the lower conductive layers and therefore are shown in parentheses). In the pattern of FIG. 2, the transparent original (lower) 1 is a transparent original having column electrodes extending in the x direction and having 10 sensor units arranged in the y direction with a period L. The period L is 6.95 mm. Further, in FIG. 10, the total length (mm) of the line segments in the reduced quadrangle in the area is shown in the center of the position of each node unit area, and a side in that direction is provided around the total length. The ratio (%) of the line segment length in the reduced rectangle in the area to the total length of the line segments in the reduced rectangle in the shared adjacent node unit area is described. Note that, similarly to Table 2, the positions of the corresponding receiving electrodes and transmitting electrodes are also shown in FIG. The pattern of the transparent original (lower side) 1 described above was created by the above procedure.

その後、下記拡散転写現像液中に20℃で60秒間浸漬した後、続いてハロゲン化銀乳剤層、中間層、及び保護層を40℃の温水で水洗除去し、乾燥処理した。以上の処理により、図2の形状を有し金属銀からなる配線パターン(以下、金属銀画像とも言う)を有する下方導電層1を得た。得られた下方導電層1の金属銀画像は、図2の形状を有する透過原稿(下方)1のパターンと同じ形状、同じ線幅であった。また金属銀画像の膜厚は共焦点顕微鏡で調べ、0.1μmであった。 Then, after immersing in the following diffusion transfer developer at 20° C. for 60 seconds, the silver halide emulsion layer, the intermediate layer and the protective layer were washed with warm water of 40° C. to remove, and dried. Through the above process, the lower conductive layer 1 having the wiring pattern made of metallic silver (hereinafter, also referred to as metallic silver image) having the shape shown in FIG. 2 was obtained. The obtained metallic silver image of the lower conductive layer 1 had the same shape and the same line width as the pattern of the transparent original (lower) 1 having the shape of FIG. Further, the film thickness of the metallic silver image was examined by a confocal microscope and found to be 0.1 μm.

<拡散転写現像液組成>
水酸化カリウム 25g
ハイドロキノン 18g
1−フェニル−3−ピラゾリドン 2g
亜硫酸カリウム 80g
N−メチルエタノールアミン 15g
臭化カリウム 1.2g
水で、全量を1000mlに調整した。拡散転写現像液のpHは12.2であった。
<Diffusion transfer developer composition>
25 g of potassium hydroxide
Hydroquinone 18g
1-phenyl-3-pyrazolidone 2 g
80g potassium sulfite
N-methylethanolamine 15g
1.2 g of potassium bromide
The total volume was adjusted to 1000 ml with water. The pH of the diffusion transfer developer was 12.2.

<上方導電層1の作製>
下方導電層1と同様であるが、表1に示したボロノイ図形は表3に、表2に示したボロノイ図の配置は表4に変更し、光透過性導電材料とした時の、導電層面に対し垂直な方向から俯瞰した場合に、列電極の中心線が下方導電層の列電極の中心線と直交するように、上方導電層1の作製に用いる透過原稿(上方)1のパターンを作成した。表4中の数字は、表3に示したボロノイ図形の番号(17〜32)に対応している。表4では、ボロノイ図形が配置された位置を受信電極の位置と対応させるため、対応する受信電極の位置をRx1〜Rx10としている。更に、対向する下方導電層が有する送信電極の位置もTx1〜Tx10として記載する(ただし、上方導電層が有するものではないため括弧書きとしている)。なお、該透過原稿(上方)1は図2のパターンにおいて、列電極がy方向に伸び、該列電極が周期Mをもってx方向に10本並んだセンサー部を有する透過原稿であり、センサー部の周期Mは6.95mmである。図11は図10と同様に、透過原稿(上方)1における縮小四角形内の線分の合計長さとその割合の状況である。得られた上方導電層1の金属銀画像は、透過原稿(上方)1のパターンと同じ形状、同じ線幅であった。また金属銀画像の膜厚は共焦点顕微鏡で調べ、0.1μmであった。
<Preparation of upper conductive layer 1>
Same as the lower conductive layer 1, except that the Voronoi figure shown in Table 1 is changed to Table 3 and the arrangement of the Voronoi diagram shown in Table 2 is changed to Table 4, and the conductive layer surface when a light-transmitting conductive material is used. A pattern of the transparent original (upper) 1 used for producing the upper conductive layer 1 is formed so that the center line of the column electrode is orthogonal to the center line of the column electrode of the lower conductive layer when viewed from a direction perpendicular to did. The numbers in Table 4 correspond to the numbers (17 to 32) of the Voronoi figures shown in Table 3. In Table 4, in order to make the position where the Voronoi figure is arranged correspond to the position of the receiving electrode, the positions of the corresponding receiving electrodes are Rx1 to Rx10. Further, the positions of the transmission electrodes of the lower conductive layers facing each other are also described as Tx1 to Tx10 (however, they are not shown in the upper conductive layers and therefore are shown in parentheses). In the pattern of FIG. 2, the transparent original (upper) 1 is a transparent original in which the column electrodes extend in the y direction, and the column electrodes have ten sensor units arranged in the x direction with a cycle M. The period M is 6.95 mm. Similar to FIG. 10, FIG. 11 shows the total length and the ratio of the line segments in the reduced rectangle in the transparent original (upper) 1. The obtained metallic silver image of the upper conductive layer 1 had the same shape and the same line width as the pattern of the transparent original (upper) 1. Further, the film thickness of the metallic silver image was examined by a confocal microscope and found to be 0.1 μm.

<光透過性導電材料1(本発明)の作製>
上記のようにして得られた下方導電層1、上方導電層1と厚さ2mmポリカーボネート板(三菱ガス化学社製、以下単にPC板と略)を、各々の導電層面をPC板側へ向け、OCA(MHN−FWD100、日栄化工社製)を用い、四隅のアライメントマーク(+印)が一致するようにして、貼合順がPC板/OCA/上方導電層1/OCA/下方導電層1となるよう貼合し、光透過性導電材料1を作製した。光透過性導電材料1は、上方導電層、下方導電層共に、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの95〜105%となっている。得られた光透過性導電材料1及び、下記で得られた光透過性導電材料2〜8のセンサー部及びダミー部の部位の全光線透過率は、85%以上であった。
<Production of Light-Transmissive Conductive Material 1 (Invention)>
The lower conductive layer 1, the upper conductive layer 1 and the 2 mm-thick polycarbonate plate (manufactured by Mitsubishi Gas Chemical Co., Inc., hereinafter simply abbreviated as PC plate) obtained as described above are each directed to the PC plate side, Using OCA (MHN-FWD100, manufactured by Nieei Kako Co., Ltd.), the alignment marks (+ marks) at the four corners are aligned so that the bonding order is PC plate/OCA/upper conductive layer 1/OCA/lower conductive layer 1. Then, the light-transmissive conductive material 1 was produced by laminating the layers. In the light-transmissive conductive material 1, both the upper conductive layer and the lower conductive layer have a total length of the thin metal wires in the reduced rectangle A that is 95 to 105% of the total length of the thin metal wires in the reduced rectangle B. .. The total light transmittance of the obtained light-transmitting conductive material 1 and the light-transmitting conductive materials 2 to 8 obtained below in the sensor portion and the dummy portion was 85% or more.

<下方導電層2の作製>
下方導電層1と同様であるが、表2に示したボロノイ図形の配置を表5に変更して、下方導電層2の作製に用いる透過原稿(下方)2のパターンを作成した。図12は図10と同様に、透過原稿(下方)2における線分長さとその割合の状況である。得られた下方導電層2の金属銀画像は、透過原稿(下方)2のパターンと同じ形状、同じ線幅であった。また金属銀画像の膜厚は共焦点顕微鏡で調べ、0.1μmであった。
<Preparation of lower conductive layer 2>
Although the same as the lower conductive layer 1, the arrangement of the Voronoi diagram shown in Table 2 was changed to Table 5, and the pattern of the transparent original (lower) 2 used for manufacturing the lower conductive layer 2 was created. Similar to FIG. 10, FIG. 12 shows the situation of the line segment length and its ratio in the transparent original (lower side) 2. The obtained metallic silver image of the lower conductive layer 2 had the same shape and the same line width as the pattern of the transparent original (lower) 2. Further, the film thickness of the metallic silver image was examined by a confocal microscope and found to be 0.1 μm.

<上方導電層2の作製>
上方導電層1と同様であるが、表4に示したボロノイ図形の配置を表6に変更して、上方導電層2の作製に用いる透過原稿(上方)2のパターンを作成した。図13は図10と同様に、透過原稿(上方)2における線分長さとその割合の状況である。得られた上方導電層2の金属銀画像は、透過原稿(上方)2のパターンと同じ形状、同じ線幅であった。また金属銀画像の膜厚は共焦点顕微鏡で調べ、0.1μmであった。
<Preparation of upper conductive layer 2>
Although the same as the upper conductive layer 1, the arrangement of the Voronoi pattern shown in Table 4 was changed to Table 6, and a pattern of the transparent original (upper) 2 used for manufacturing the upper conductive layer 2 was created. Similar to FIG. 10, FIG. 13 shows the situation of the line segment length and its ratio in the transparent original (upper) 2. The obtained metallic silver image of the upper conductive layer 2 had the same shape and the same line width as the pattern of the transparent original (upper) 2. Further, the film thickness of the metallic silver image was examined by a confocal microscope and found to be 0.1 μm.

<光透過性導電材料2(実施例)の作製>
上記のようにして得られた下方導電層2、上方導電層1と厚さ2mmPC板を、各々の導電層面をPC板側へ向け、OCAを用い、四隅のアライメントマーク(+印)が一致するようにして、貼合順がPC板/OCA/上方導電層1/OCA/下方導電層2となるよう貼合し、光透過性導電材料2を作製した。光透過性導電材料2は、上方導電層において、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの95〜105%となっており、下方導電層において、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの97.5〜102.5%となっている。
<Production of Light-Transmissive Conductive Material 2 (Example)>
The lower conductive layer 2 and the upper conductive layer 1 obtained as described above and the PC plate having a thickness of 2 mm are oriented with their conductive layer surfaces facing the PC plate side, and OCA is used to align the alignment marks (+ marks) at the four corners. In this way, the light-transmissive conductive material 2 was manufactured by bonding in such a manner that the bonding order was PC plate/OCA/upper conductive layer 1/OCA/lower conductive layer 2. In the light-transmissive conductive material 2, in the upper conductive layer, the total length of the thin metal wires in the reduced quadrangle A is 95 to 105% of the total length of the thin metal wires in the reduced quadrangle B. In, the total length of the thin metal wires in the reduced quadrangle A is 97.5 to 102.5% of the total length of the thin metal wires in the reduced quadrangle B.

<光透過性導電材料3(実施例)の作製>
前記の下方導電層1、上方導電層2と厚さ2mmPC板を、各々の導電層面をPC板側へ向け、OCAを用い、四隅のアライメントマーク(+印)が一致するようにして、貼合順がPC板/OCA/上方導電層2/OCA/下方導電層1となるよう貼合し、光透過性導電材料3を作製した。光透過性導電材料3は、上方導電層において、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの97.5〜102.5%となっており、下方導電層において、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの95〜105%となっている。
<Production of Light-Transmissive Conductive Material 3 (Example)>
The lower conductive layer 1 and the upper conductive layer 2 and a 2 mm-thick PC plate were pasted together with their conductive layer surfaces facing the PC plate side and using OCA so that the alignment marks (+ marks) at the four corners were aligned. Light-transmissive electrically conductive material 3 was produced by laminating in order of PC plate/OCA/upper conductive layer 2/OCA/lower conductive layer 1. In the upper conductive layer of the light-transmissive conductive material 3, the total length of the thin metal wires in the reduced square A is 97.5 to 102.5% of the total length of the thin metal wires in the reduced square B. In the lower conductive layer, the total length of the thin metal wires in the reduced rectangle A is 95 to 105% of the total length of the thin metal wires in the reduced rectangle B.

<光透過性導電材料4(実施例)の作製>
前記の下方導電層2、上方導電層2と厚さ2mmPC板を、各々の導電層面をPC板側へ向け、OCAを用い、四隅のアライメントマーク(+印)が一致するようにして、貼合順がPC板/OCA/上方導電層2/OCA/下方導電層2となるよう貼合し、光透過性導電材料4を作製した。光透過性導電材料4は、上方導電層、下方導電層共に、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの97.5〜102.5%となっている。
<Production of Light-Transmissive Conductive Material 4 (Example)>
The lower conductive layer 2 and the upper conductive layer 2 and a 2 mm-thick PC plate are pasted together with their conductive layer surfaces facing the PC plate side and using OCA so that the alignment marks (+ marks) at the four corners are aligned. Light-transmissive electrically conductive material 4 was produced by laminating in order of PC plate/OCA/upper conductive layer 2/OCA/lower conductive layer 2. In both the upper conductive layer and the lower conductive layer of the light-transmissive conductive material 4, the total length of the thin metal wires in the reduced rectangle A is 97.5 to 102.5% of the total length of the thin metal wires in the reduced rectangle B. Has become.

<下方導電層3の作製>
下方導電層1と同様であるが、表2に示したボロノイ図形の配置を表7に変更して、下方導電層3の作製に用いる透過原稿(下方)3のパターンを作成した。図14は図10と同様に、透過原稿(下方)3における線分長さとその割合の状況である。得られた下方導電層3の金属銀画像は、透過原稿(下方)3のパターンと同じ形状、同じ線幅であった。また金属銀画像の膜厚は共焦点顕微鏡で調べ、0.1μmであった。表7に示す透過原稿(下方)3は、領域(Rx4:Tx8)における縮小四角形A内における細線の合計長さが、これと辺を共有する領域(Rx4:Tx9)における縮小四角形B内における細線の合計長さの105.7%であると共に、領域(Rx4:Tx9)における縮小四角形A内における細線の合計長さが、領域(Rx4:Tx8)における縮小四角形B内における細線の合計長さの94.6%である。また、領域(Rx9:Tx3)における縮小四角形A内における細線の合計長さが、これと辺を共有する領域(Rx9:Tx2)及び領域(Rx8:Tx3)における縮小四角形B内における細線の合計長さの94.6%であると共に、領域(Rx9:Tx2)及び領域(Rx8:Tx3)における縮小四角形A内における細線の合計長さが、領域(Rx9:Tx3)における縮小四角形B内における細線の合計長さの105.7%である。
<Production of lower conductive layer 3>
Although the same as the lower conductive layer 1, the arrangement of the Voronoi diagram shown in Table 2 was changed to Table 7, and the pattern of the transparent original (lower) 3 used for manufacturing the lower conductive layer 3 was created. Similar to FIG. 10, FIG. 14 shows the situation of the line segment length and its ratio in the transparent original (lower side) 3. The obtained metallic silver image of the lower conductive layer 3 had the same shape and the same line width as the pattern of the transparent original (lower) 3. Further, the film thickness of the metallic silver image was examined by a confocal microscope and found to be 0.1 μm. In the transparent original (lower) 3 shown in Table 7, the total length of the thin lines in the reduced rectangle A in the area (Rx4:Tx8) is the thin line in the reduced rectangle B in the area (Rx4:Tx9) that shares a side with this. 105.7% of the total length of the thin lines in the reduced rectangle A in the area (Rx4:Tx9), and the total length of the thin lines in the reduced rectangle B in the area (Rx4:Tx8). It is 94.6%. Further, the total length of the thin lines in the reduced rectangle A in the area (Rx9:Tx3) is the total length of the thin lines in the reduced rectangle B in the area (Rx9:Tx2) and the area (Rx8:Tx3) that share a side with this. The total length of the thin lines in the reduced rectangle A in the area (Rx9:Tx2) and the area (Rx8:Tx3) is 94.6% of that of the thin line in the reduced rectangle B in the area (Rx9:Tx3). It is 105.7% of the total length.

<上方導電層3の作製>
上方導電層1と同様であるが、表4に示したボロノイ図形の配置を表8に変更して、上方導電層3の作製に用いる透過原稿(上方)3のパターンを作成した。図15は図10と同様に、透過原稿(上方)3における線分長さとその割合の状況である。得られた上方導電層3の金属銀画像は、透過原稿(上方)3のパターンと同じ形状、同じ線幅であった。また金属銀画像の膜厚は共焦点顕微鏡で調べ、0.1μmであった。表8に示す透過原稿(上方)3は、領域(Rx3:Tx1)における縮小四角形A内における細線の合計長さが、これと辺を共有する領域(Rx3:Tx2)における縮小四角形B内における細線の合計長さの105.3%であり、領域(Rx9:Tx2)における縮小四角形A内における細線の合計長さが、これと辺を共有する領域(Rx9:Tx3)における縮小四角形B内における細線の合計長さの105.3%である。また、領域(Rx7:Tx10)における縮小四角形A内における細線の合計長さが、これと辺を共有する領域(Rx7:Tx9)における縮小四角形B内における細線の合計長さの94.8%であると共に、領域(Rx7:Tx9)における縮小四角形A内における細線の合計長さが、領域(Rx7:Tx10)における縮小四角形B内における細線の合計長さの105.5%であり、領域(Rx6:Tx10)における縮小四角形A内における細線の合計長さが、領域(Rx7:Tx10)における縮小四角形B内における細線の合計長さの105.3%である。
<Preparation of upper conductive layer 3>
Although the same as the upper conductive layer 1, the arrangement of the Voronoi pattern shown in Table 4 was changed to Table 8 to create a pattern of the transparent original (upper) 3 used for manufacturing the upper conductive layer 3. Similar to FIG. 10, FIG. 15 shows the situation of the line segment length and its ratio in the transparent original (upper) 3. The obtained metallic silver image of the upper conductive layer 3 had the same shape and the same line width as the pattern of the transparent original (upper) 3. Further, the film thickness of the metallic silver image was examined by a confocal microscope and found to be 0.1 μm. In the transparent original (upper) 3 shown in Table 8, the total length of the thin lines in the reduced rectangle A in the area (Rx3:Tx1) is equal to the thin line in the reduced rectangle B in the area (Rx3:Tx2) sharing the same side. Is 105.3% of the total length, and the total length of the thin lines in the reduced rectangle A in the area (Rx9:Tx2) is the thin line in the reduced rectangle B in the area (Rx9:Tx3) that shares a side with this. Is 105.3% of the total length. Further, the total length of the thin lines in the reduced rectangle A in the area (Rx7:Tx10) is 94.8% of the total length of the thin lines in the reduced rectangle B in the area (Rx7:Tx9) that shares the same side. In addition, the total length of the thin lines in the reduced rectangle A in the area (Rx7:Tx9) is 105.5% of the total length of the thin lines in the reduced rectangle B in the area (Rx7:Tx10), and the area (Rx6 : Tx10), the total length of the fine lines in the reduced rectangle A is 105.3% of the total length of the fine lines in the reduced rectangle B in the region (Rx7:Tx10).

<光透過性導電材料5(比較例)の作製>
上記のようにして得られた下方導電層3、上方導電層3と厚さ2mmPC板を、各々の導電層面をPC板側へ向け、OCAを用い、四隅のアライメントマーク(+印)が一致するようにして、貼合順がPC板/OCA/上方導電層3/OCA/下方導電層3となるよう貼合し、光透過性導電材料5を作製した。光透過性導電材料5には、上方導電層、下方導電層共に、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの95〜105%ではない部分が存在する。
<Production of Light-Transmissive Conductive Material 5 (Comparative Example)>
The lower conductive layer 3 and the upper conductive layer 3 obtained as described above and the PC plate having a thickness of 2 mm are oriented with their conductive layer surfaces facing the PC plate, and the OCA is used to align the alignment marks (+ marks) at the four corners. In this manner, the light-transmitting conductive material 5 was manufactured by bonding in the order of PC plate/OCA/upper conductive layer 3/OCA/lower conductive layer 3. In the light-transmissive conductive material 5, both the upper conductive layer and the lower conductive layer are such that the total length of the thin metal wires in the reduced rectangle A is not 95 to 105% of the total length of the thin metal wires in the reduced rectangle B. Exists.

<光透過性導電材料6(比較例)の作製>
前記の下方導電層3、上方導電層1と厚さ2mmPC板を、各々の導電層面をPC板側へ向け、OCAを用い、四隅のアライメントマーク(+印)が一致するようにして、貼合順がPC板/OCA/上方導電層1/OCA/下方導電層3となるよう貼合し、光透過性導電材料6を作製した。光透過性導電材料6には、下方導電層に、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの95〜105%ではない部分が存在する。
<Production of Light-Transmissive Conductive Material 6 (Comparative Example)>
The lower conductive layer 3 and the upper conductive layer 1 and the 2 mm-thick PC plate were pasted together with their conductive layer surfaces facing the PC plate side and using OCA so that the alignment marks (+ marks) at the four corners were aligned. Light-transmissive electrically conductive material 6 was produced by laminating in order of PC plate/OCA/upper conductive layer 1/OCA/lower conductive layer 3. In the light-transmissive conductive material 6, the lower conductive layer has a portion in which the total length of the thin metal wires in the reduced square A is not 95 to 105% of the total length of the thin metal wires in the reduced square B.

<光透過性導電材料7(比較例)の作製>
前記の下方導電層1、上方導電層3と厚さ2mmPC板を、各々の導電層面をPC板側へ向け、OCAを用い、四隅のアライメントマーク(+印)が一致するようにして、貼合順がPC板/OCA/上方導電層3/OCA/下方導電層1となるよう貼合し、光透過性導電材料7を作製した。光透過性導電材料7には、上方導電層に、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの95〜105%ではない部分が存在する。
<Production of Light-Transmissive Conductive Material 7 (Comparative Example)>
The lower conductive layer 1 and the upper conductive layer 3 and a 2 mm-thick PC plate are pasted together with their conductive layer surfaces facing the PC plate side and using OCA so that the alignment marks (+ marks) at the four corners are aligned. Light-transmissive electrically conductive material 7 was produced by laminating in order of PC plate/OCA/upper conductive layer 3/OCA/lower conductive layer 1. In the light-transmissive conductive material 7, the upper conductive layer has a portion in which the total length of the thin metal wires in the reduced quadrangle A is not 95 to 105% of the total length of the thin metal wires in the reduced quadrangle B.

<下方導電層4の作製>
下方導電層1と同様であるが、表2に示したボロノイ図の配置を表9に変更して、下方導電層4の作製に用いる透過原稿(下方)4のパターンを作成した。図16は図10と同様に、透過原稿(下方)4における線分長さとその割合の状況である。得られた下方導電層4の金属銀画像は、透過原稿(下方)4のパターンと同じ形状、同じ線幅であった。また金属銀画像の膜厚は共焦点顕微鏡で調べ、0.1μmであった。表9に示す透過原稿(下方)4は、領域(Rx7:Tx6)のボロノイ図形と、これと辺を共有する領域(Rx7:Tx5)及び領域(Rx8:Tx6)のボロノイ図形に全て、表1に示すボロノイ図形の15を採用しており、縮小四角形内の網目形状が同一である。
<Preparation of lower conductive layer 4>
Although the same as the lower conductive layer 1, the arrangement of the Voronoi diagram shown in Table 2 was changed to Table 9 to form a pattern of the transparent original (lower) 4 used for manufacturing the lower conductive layer 4. Similar to FIG. 10, FIG. 16 shows the situation of the line segment length and its ratio in the transparent original (lower side) 4. The obtained metallic silver image of the lower conductive layer 4 had the same shape and the same line width as the pattern of the transparent original (lower) 4. Further, the film thickness of the metallic silver image was examined by a confocal microscope and found to be 0.1 μm. The transparent manuscript (lower) 4 shown in Table 9 is the Voronoi figure of the area (Rx7:Tx6) and the Voronoi figure of the area (Rx7:Tx5) and the area (Rx8:Tx6) that share a side with the Voronoi figure. The Voronoi figure 15 shown in is adopted, and the mesh shape in the reduced quadrangle is the same.

<光透過性導電材料8(比較例)の作製>
上記のようにして得られた下方導電層4、前記の上方導電層1と厚さ2mmPC板を、各々の光透過性導電層面をPC板側へ向け、OCAを用い、四隅のアライメントマーク(+印)が一致するようにして、貼合順がPC板/OCA/上方導電層1/OCA/下方導電層4となるよう貼合し、光透過性導電材料8を作製した。光透過性導電材料8には、下方導電層に、縮小四角形A内の金属細線パターンの網目形状と、縮小四角形B内の金属細線パターンの網目形状が同一である部分が存在する。
<Production of Light-Transmissive Conductive Material 8 (Comparative Example)>
The lower conductive layer 4, the upper conductive layer 1 and the PC plate having a thickness of 2 mm obtained as described above are directed to the PC plate side with each light-transmissive conductive layer surface facing the PC plate, and the alignment marks (+) of the four corners are used by using OCA. The light-transmitting conductive material 8 was produced by bonding so that the markings would match and the bonding order would be PC plate/OCA/upper conductive layer 1/OCA/lower conductive layer 4. In the light-transmitting conductive material 8, the lower conductive layer has a portion in which the mesh shape of the metal thin wire pattern in the reduced quadrangle A and the mesh shape of the metal thin wire pattern in the reduced quadrangle B are the same.

得られた光透過性導電材料1〜8について、以下の手順に従って視認性、及びノード静電容量のバラツキについて評価した。 The obtained light-transmitting conductive materials 1 to 8 were evaluated for visibility and variation in node capacitance according to the following procedures.

<視認性>
得られた光透過性導電材料1〜8のそれぞれを、全面白画像を表示した21.5型ワイド液晶モニター(I2267FWH、AOC社製)の上に載せ、モアレ、あるいはパターンムラがはっきり出ているものを×、全くわからないものを○とした。
<Visibility>
Each of the obtained light-transmissive conductive materials 1 to 8 was placed on a 21.5 type wide liquid crystal monitor (I2267FWH, manufactured by AOC Co., Ltd.) displaying a white image on the entire surface, and moire or pattern unevenness was clearly observed. The ones were evaluated as x, and those not understood at all were evaluated as o.

<ノード静電容量のバラツキ>
得られた光透過性導電材料1〜5のそれぞれを絶縁シート上に設置し、各ノード位置の静電容量を測定した。100ヶ所のノード位置の静電容量を比較して、バラツキが大きいものを×、やや大きいものを△、少ないものを○、ほとんど無いものを◎として、<視認性>の結果と共に表10に示した。
<Variation of node capacitance>
Each of the obtained light-transmissive conductive materials 1 to 5 was placed on an insulating sheet, and the capacitance at each node position was measured. Comparing the electrostatic capacities at 100 node positions, those with large variations are shown as X, those with slightly large variations as Δ, those with few variations as ○, and those with almost no variation as ◎, and the results of <Visibility> are shown in Table 10. It was

表10の結果から、本発明によって、液晶ディスプレイに重ねてもモアレが発生せず、パターン視認性の問題がなく、ノードの静電容量のバラツキが少ない光透過性導電材料が得られることがわかる。一方、ノード単位区域の縮小四角形A内の金属細線の合計長さが、隣接ノード単位区域の縮小四角形B内の金属細線の合計長さの95〜105%ではない、下方導電層3及び/または上方導電層3を用いた光透過性導電材料5〜7は、静電容量のバラツキが大きいことがわかった。更に、ノード単位区域と隣接ノード単位区域における網目形状が同一である表9に示すボロノイ図形を配置した下方導電層4を用いた光透過性導電材料8は、視認性に劣ることがわかった。 From the results of Table 10, it can be seen that the present invention can provide a light-transmissive conductive material in which moire does not occur even when it is stacked on a liquid crystal display, there is no problem of pattern visibility, and variation in electrostatic capacitance of nodes is small. .. On the other hand, the total length of the thin metal wires in the reduced rectangle A of the node unit area is not 95 to 105% of the total length of the thin metal wires in the reduced rectangle B of the adjacent node unit area, and the lower conductive layer 3 and/or It was found that the light-transmitting conductive materials 5 to 7 using the upper conductive layer 3 have large variations in capacitance. Further, it was found that the light-transmissive conductive material 8 using the lower conductive layer 4 in which the Voronoi figure shown in Table 9 in which the mesh shapes in the node unit area and the adjacent node unit area are the same is arranged is inferior in visibility.

1 上方導電層
2 下方導電層
3 光透過性導電材料
21 センサー部
22 ダミー部
23 周辺配線部
24 端子部
41、42 中心線
411 交点
43、44 境界線
60 平面
61 領域
611 母点
62 領域の境界線
63 原多角形
64 原多角形の重心
65 縮小多角形
71、81 ノード単位区域
72、83、91 縮小四角形
83 ノード単位区域及び縮小四角形の重心
84 ノード単位区域の対角線長さ
85 縮小四角形の対角線長さ
86、a センサー部とダミー部の境界を表す仮の輪郭線
92 隣接ノード単位区域の母点群
93 ノード単位区域中の最も外側に位置する原多角形
1 Upper Conductive Layer 2 Lower Conductive Layer 3 Light Transmissive Conductive Material 21 Sensor Part 22 Dummy Part 23 Peripheral Wiring Part 24 Terminal Parts 41, 42 Center Line 411 Intersection Points 43, 44 Border Line 60 Plane 61 Area 611 Mother Point 62 Area Boundary Line 63 Original polygon 64 Center of gravity 65 of original polygon Reduced polygon 71, 81 Node unit area 72, 83, 91 Reduced rectangle 83 Center of gravity of node unit area and reduced rectangle 84 Diagonal length of node unit area 85 Diagonal line of reduced rectangle Length 86, a Temporary contour line 92 representing the boundary between the sensor part and the dummy part 92 Generating point group of adjacent node unit area 93 Original polygon located at the outermost side in the node unit area

Claims (6)

絶縁層を介して上方導電層と下方導電層からなる少なくとも2層の導電層が積層された構成を有する光透過性導電材料であって、
前記上方導電層及び前記下方導電層はそれぞれ、端子部に電気的に接続されるセンサー部と、端子部に電気的に接続されないダミー部を少なくとも有し、センサー部及びダミー部は、網目形状を有する不規則な金属細線パターンによって構成され、
前記下方導電層のセンサー部は、第一の方向に伸びた列電極がダミー部を挟んで前記第一の方向に対し垂直な第二の方向に対し周期Lにて複数列並ぶことで構成され、前記上方導電層のセンサー部は、第三の方向に伸びた列電極がダミー部を挟んで前記第三の方向に対し垂直な第四の方向に周期Mにて並ぶことで構成され、
導電層面に対し垂直な方向から俯瞰した場合に、前記上方導電層が有する列電極の中心線と前記下方導電層が有する列電極の中心線との交点(ノード)を重心とし、かつ前記下方導電層が有する列電極の中心線を前記第二の方向に周期Lに等しい長さの1/2だけずらした直線と、前記上方導電層が有する列電極の中心線を前記第四の方向に周期Mに等しい長さの1/2だけずらした直線により導電層面を四角形に分割することで得られた区域をノード単位区域とし、任意の一つのノード単位区域に対して、それが有する四角形の辺を共有するノード単位区域を隣接ノード単位区域とし、ノード単位区域内で、その区域の対角線長さに対し対角線長さを80%とした四角形を縮小四角形Aとし、隣接ノード単位区域内で、その区域の対角線長さに対し対角線長さを80%とした四角形を縮小四角形Bとした場合に、
前記上方導電層及び前記下方導電層のそれぞれにおいて、縮小四角形A内の金属細線パターンの網目形状と、縮小四角形B内の金属細線パターンの網目形状が同一ではなく、縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの95〜105%であることを特徴とする、光透過性導電材料。
A light-transmissive conductive material having a structure in which at least two conductive layers including an upper conductive layer and a lower conductive layer are stacked with an insulating layer interposed therebetween,
Each of the upper conductive layer and the lower conductive layer has at least a sensor part electrically connected to the terminal part and a dummy part not electrically connected to the terminal part, and the sensor part and the dummy part have a mesh shape. Is composed of an irregular metal wire pattern,
The sensor part of the lower conductive layer is formed by arranging a plurality of column electrodes extending in the first direction in a row with a period L in the second direction perpendicular to the first direction with the dummy part interposed therebetween. The sensor portion of the upper conductive layer is configured by arranging column electrodes extending in a third direction in a fourth direction perpendicular to the third direction with a period M, with a dummy portion interposed therebetween.
When viewed from the direction perpendicular to the surface of the conductive layer, the center of intersection (node) between the center line of the column electrode of the upper conductive layer and the center line of the column electrode of the lower conductive layer is set as the center of gravity, and the lower conductive layer is formed. A straight line obtained by shifting the center line of the column electrode included in the layer in the second direction by ½ of the length equal to the period L, and the center line of the column electrode included in the upper conductive layer in the fourth direction. An area obtained by dividing the conductive layer surface into a quadrangle by a straight line shifted by 1/2 of the length equal to M is a node unit area, and for any one node unit area, the side of the quadrangle The node unit area that shares the same as the adjacent node unit area, and within the node unit area, a quadrangle having a diagonal length of 80% with respect to the diagonal length of the area is defined as a reduced quadrangle A. When a quadrangle having a diagonal length of 80% with respect to the diagonal length of the area is a reduced quadrangle B,
In each of the upper conductive layer and the lower conductive layer, the mesh shape of the metal thin wire pattern in the reduced quadrangle A and the mesh shape of the metal thin wire pattern in the reduced quadrangle B are not the same. The light-transmissive conductive material, wherein the total length is 95 to 105% of the total length of the thin metal wires in the reduced rectangle B.
ノード単位区域と、そのノード単位区域内にある縮小四角形が重心を共有する請求項1に記載の光透過性導電材料。 The light-transmissive conductive material according to claim 1, wherein the node unit area and the reduced squares in the node unit area share a center of gravity. 縮小四角形A内における金属細線の合計長さが、縮小四角形B内における金属細線の合計長さの97.5〜102.5%である請求項1または2に記載の光透過性導電材料。 The light-transmissive conductive material according to claim 1 or 2, wherein the total length of the thin metal wires in the reduced square A is 97.5 to 102.5% of the total length of the thin metal wires in the reduced square B. 一つの導電層内のセンサー部とダミー部で、金属細線パターンの線幅が同じである請求項1〜3のいずれか1項に記載の光透過性導電材料。 The light transmissive conductive material according to any one of claims 1 to 3, wherein the sensor section and the dummy section in one conductive layer have the same line width of the thin metal wire pattern. 上方導電層が有する列電極の中心線と下方導電層が有する列電極の中心線が直交している請求項1〜4のいずれか1項に記載の光透過性導電材料。 The light-transmissive conductive material according to any one of claims 1 to 4, wherein a center line of a column electrode included in the upper conductive layer and a center line of a column electrode included in the lower conductive layer are orthogonal to each other. 金属細線パターンの網目形状が、母点に基づき作図されるボロノイ辺からなる網目形状、または、母点に基づき作図されるボロノイ辺からなる網目形状を一方向に引き伸ばした網目形状である請求項1〜5のいずれか1項に記載の光透過性導電材料。 The mesh shape of the thin metal wire pattern is a mesh shape composed of Voronoi sides drawn based on the generating points, or a mesh shape obtained by stretching the mesh shape composed of Voronoi sides drawn based on the generating points in one direction. 5. The light-transmissive conductive material according to any one of items 5 to 5.
JP2016219844A 2015-11-17 2016-11-10 Light-transmissive conductive material Expired - Fee Related JP6718364B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015224761 2015-11-17
JP2015224761 2015-11-17

Publications (2)

Publication Number Publication Date
JP2017097865A JP2017097865A (en) 2017-06-01
JP6718364B2 true JP6718364B2 (en) 2020-07-08

Family

ID=58718781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016219844A Expired - Fee Related JP6718364B2 (en) 2015-11-17 2016-11-10 Light-transmissive conductive material

Country Status (6)

Country Link
US (1) US10359895B2 (en)
JP (1) JP6718364B2 (en)
KR (1) KR101991213B1 (en)
CN (1) CN108292185B (en)
TW (1) TWI598892B (en)
WO (1) WO2017086216A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168325A1 (en) * 2017-03-17 2018-09-20 東レ株式会社 Method for manufacturing substrate equipped with wiring electrode, and substrate equipped with wiring electrode
CN107515698B (en) * 2017-09-11 2020-04-07 友达光电(苏州)有限公司 Touch panel
KR20210085958A (en) * 2019-12-31 2021-07-08 미래나노텍(주) Screen apparatus
US11157122B1 (en) * 2020-06-03 2021-10-26 Futuretech Capital, Inc. Method to design low visibility metal mesh touch sensor
CN113760126A (en) * 2021-08-18 2021-12-07 烟台正海科技股份有限公司 Design method of random grid and application thereof

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412079B (en) 2006-07-28 2013-10-11 Semiconductor Energy Lab Method for manufacturing display device
CN107272978B (en) * 2008-02-28 2020-09-15 3M创新有限公司 Touch screen sensor
US8717332B2 (en) * 2008-07-31 2014-05-06 Gunze Limited Planar element, and touch switch
JP5474097B2 (en) 2009-02-06 2014-04-16 エルジー・ケム・リミテッド Touch screen and manufacturing method thereof
WO2010090487A2 (en) * 2009-02-06 2010-08-12 주식회사 엘지화학 Touch screen and manufacturing method thereof
JP5726869B2 (en) 2009-07-16 2015-06-03 エルジー・ケム・リミテッド Conductor and manufacturing method thereof
US8599150B2 (en) * 2009-10-29 2013-12-03 Atmel Corporation Touchscreen electrode configuration
JP5398623B2 (en) 2010-03-31 2014-01-29 富士フイルム株式会社 Method for producing transparent conductive film, conductive film and program
JP5984310B2 (en) 2010-10-19 2016-09-06 エルジー・ケム・リミテッド Structure, touch panel, and display including conductive pattern
EP2615528B1 (en) * 2011-02-07 2016-04-06 Dexerials Corporation Transparent conductive element, input device, electronic device, and master for fabrication of transparent conductive element
JP5681674B2 (en) 2011-07-11 2015-03-11 富士フイルム株式会社 Conductive sheet, touch panel and display device
JP5734243B2 (en) * 2011-07-11 2015-06-17 富士フイルム株式会社 Conductive sheet, touch panel and display device
KR101742108B1 (en) * 2011-07-11 2017-06-15 후지필름 가부시키가이샤 Conductive sheet, touch panel, display device, and method for producing said conductive sheet
WO2013018549A1 (en) * 2011-07-29 2013-02-07 三菱製紙株式会社 Translucent electrode
JP5991554B2 (en) * 2011-09-27 2016-09-14 エルジー・ケム・リミテッド Manufacturing method of transparent substrate
JP5781886B2 (en) * 2011-10-05 2015-09-24 富士フイルム株式会社 Conductive sheet, touch panel and display device
JP5809117B2 (en) * 2011-10-05 2015-11-10 富士フイルム株式会社 Conductive sheet, touch panel, display device
US8773393B2 (en) * 2012-02-28 2014-07-08 Eastman Kodak Company Touch screen with dummy micro-wires
CN102722279A (en) * 2012-05-09 2012-10-10 崔铮 Metal grid conducting layer and touch panel equipped with the conducting layer
JP5224203B1 (en) * 2012-07-11 2013-07-03 大日本印刷株式会社 Touch panel sensor, touch panel device, and display device
TWM478869U (en) * 2013-09-14 2014-05-21 Wintek Corp Touch panel
JP6230476B2 (en) 2014-04-25 2017-11-15 三菱製紙株式会社 Pattern forming method for light transmissive conductive material
US9946426B2 (en) * 2014-11-25 2018-04-17 Interface Optoelectronics Corporation Method for forming metal mesh pattern and touch panel
JP6422762B2 (en) * 2014-12-16 2018-11-14 三菱製紙株式会社 Light transmissive conductive material

Also Published As

Publication number Publication date
US10359895B2 (en) 2019-07-23
JP2017097865A (en) 2017-06-01
WO2017086216A1 (en) 2017-05-26
KR20180063287A (en) 2018-06-11
CN108292185B (en) 2021-05-28
TW201719681A (en) 2017-06-01
CN108292185A (en) 2018-07-17
TWI598892B (en) 2017-09-11
US20180341349A1 (en) 2018-11-29
KR101991213B1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
CN106233234B (en) Light-transmitting conductive material
JP6718364B2 (en) Light-transmissive conductive material
KR101867972B1 (en) Light-transmitting conductive material
KR101990841B1 (en) Pattern formation method
TWI600536B (en) Transparent conductive material
CN107003760B (en) Light-transmitting conductive material
JP6571594B2 (en) Light transmissive conductive material
JP6165693B2 (en) Light transmissive conductive material
JP2019179462A (en) Light-transmitting conductive material
JP2019101981A (en) Light transmissive conductive material
JP6815300B2 (en) Light-transmitting conductive material
JP6401127B2 (en) Light transmissive conductive material
JP2019105955A (en) Light transmitting conductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6718364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees