JP6715327B2 - air compressor - Google Patents

air compressor Download PDF

Info

Publication number
JP6715327B2
JP6715327B2 JP2018522267A JP2018522267A JP6715327B2 JP 6715327 B2 JP6715327 B2 JP 6715327B2 JP 2018522267 A JP2018522267 A JP 2018522267A JP 2018522267 A JP2018522267 A JP 2018522267A JP 6715327 B2 JP6715327 B2 JP 6715327B2
Authority
JP
Japan
Prior art keywords
oil
temperature
air
lubricating oil
suction air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018522267A
Other languages
Japanese (ja)
Other versions
JPWO2017212623A1 (en
Inventor
良二 河井
良二 河井
小谷 正直
正直 小谷
土屋 豪
豪 土屋
紘太郎 千葉
紘太郎 千葉
美奈子 金田
美奈子 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2017212623A1 publication Critical patent/JPWO2017212623A1/en
Application granted granted Critical
Publication of JP6715327B2 publication Critical patent/JP6715327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0207Lubrication with lubrication control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • F04B39/0292Lubrication of pistons or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/062Cooling by injecting a liquid in the gas to be compressed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/0626Details of the lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/006Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by influencing fluid temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/007Conjoint control of two or more different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5826Cooling at least part of the working fluid in a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/04Carter parameters
    • F04B2201/0402Lubricating oil temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/08Cylinder or housing parameters
    • F04B2201/0801Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/10Inlet temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、空気圧縮機に関する。 The present invention relates to an air compressor.

油冷式空気圧縮機の従来技術には、例えば特開2014−88876号公報(特許文献1)がある。特許文献1の要約欄には、「圧縮機要素部の圧縮室に注入弁から液体が注入される液体注入式圧縮機要素部の冷却方法であって、この圧縮機要素部の圧縮室に注入される液体の量を、他の可能な調整装置に関係なく、特定の制御パラメータに応じて制御するステップを含むことを特徴とする方法」が開示されている。 As a conventional technique of the oil-cooled air compressor, there is, for example, JP-A-2014-88876 (Patent Document 1). In the summary column of Patent Document 1, "A cooling method for a liquid injection type compressor element part in which a liquid is injected into a compression chamber of the compressor element part from an injection valve, and the liquid is injected into the compression chamber of the compressor element part The method is characterized in that it comprises the step of controlling the amount of liquid dispensed, irrespective of other possible regulating devices, according to a particular control parameter.

特開2014−88876号公報JP, 2014-88876, A

一般に、圧縮室内の空気は、圧縮作用により圧力が上昇し、それに伴って温度が上昇するだけでなく、空気中の水分が凝縮する温度である露点温度も上昇する。このため、露点温度以下の潤滑油を圧縮室に供給すると、圧縮空気中の水分が凝縮し、潤滑油の信頼性を低下させる原因になる。 In general, the pressure of the air in the compression chamber rises due to the compression action, so that not only the temperature rises, but also the dew point temperature, which is the temperature at which water in the air condenses, rises. Therefore, when lubricating oil having a dew point temperature or lower is supplied to the compression chamber, moisture in the compressed air is condensed, which causes a decrease in reliability of the lubricating oil.

特許文献1に開示の空気圧縮機では、圧縮空気出口温度を低温に保つことはできるものの、圧縮室に供給する油温に対する配慮がなされていないために、圧縮室内における水分の凝縮に起因する錆の発生、油膜破断、潤滑油の酸化劣化等によって、例えば圧縮機の軸受の信頼性上の問題が生じることがあった。 In the air compressor disclosed in Patent Document 1, although the compressed air outlet temperature can be kept at a low temperature, no consideration is given to the temperature of the oil supplied to the compression chamber, so rust caused by condensation of water in the compression chamber Occurrence of oil, rupture of oil film, oxidative deterioration of lubricating oil, etc. may cause a problem in reliability of the bearing of the compressor, for example.

本発明は、上記課題に鑑みてなされたものであり、圧縮空気中の水分の凝縮に配慮することにより信頼性の高い空気圧縮機を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an air compressor having high reliability by considering condensation of water in compressed air.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、圧縮機本体と、吸込空気を圧縮する前記圧縮機本体の圧縮室と、該圧縮室に潤滑油を供給する給油口と、前記圧縮室から吐出された圧縮空気と潤滑油を分離する油分離器と、前記給油口に供給する潤滑油の温度を調節する油温度調節手段と、前記吸込空気の温度を検知する吸込空気温度検知手段と、前記吸込空気の湿度を検知する吸込空気湿度検知手段と、前記吸込空気温度検知手段と前記吸込空気湿度検知手段の検知情報に基づいて前記油温度調節手段を制御する制御手段とを備え、前記油温度調節手段は、前記圧縮機本体を含むことを特徴とする。 In order to solve the above problems, for example, the configurations described in the claims are adopted. The present application includes a plurality of means for solving the above problems. To give an example thereof, a compressor body, a compression chamber of the compressor body that compresses intake air, and a lubricating oil are supplied to the compression chamber. and oil supply port, and an oil separator for separating the compressed air and lubricating oil discharged from the compression chamber, and the oil temperature adjusting means for adjusting the temperature of the supplied lubricating oil to the fuel supply port, a temperature before Symbol suction air Suction air temperature detecting means for detecting, suction air humidity detecting means for detecting the humidity of the suction air, and controlling the oil temperature adjusting means based on the detection information of the suction air temperature detecting means and the suction air humidity detecting means And a control unit for controlling the oil temperature , the oil temperature adjusting unit including the compressor main body .

本発明によれば、吸引空気の温湿度に基づいて空気圧縮機を運転するので、圧縮空気中の水分の凝縮を抑制または低減でき、信頼性の高い空気圧縮機を提供することができる。 According to the present invention, the air compressor is operated based on the temperature and humidity of the sucked air, so that condensation of water in the compressed air can be suppressed or reduced, and a highly reliable air compressor can be provided.

本発明の実施形態に係る空気圧縮機の構成を表す図である。It is a figure showing the composition of the air compressor concerning the embodiment of the present invention. 本発明の実施形態に係る空気圧縮機の制御を表すフローチャートである。It is a flow chart showing control of an air compressor concerning an embodiment of the present invention. 本発明の実施形態に係る空気圧縮機の運転モードを表す図である。It is a figure showing the driving mode of the air compressor concerning the embodiment of the present invention. 本発明の実施形態に係る空気圧縮機の制御状態を表すタイムチャートである。It is a time chart showing the control state of the air compressor concerning the embodiment of the present invention. 圧縮空気の露点温度と圧力の関係を表す図である。It is a figure showing the relationship between the dew point temperature of compressed air and pressure. 本発明の第二の実施形態に係る空気圧縮機の構成を表す図である。It is a figure showing the structure of the air compressor which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る空気圧縮機の制御を表すフローチャートである。It is a flow chart showing control of an air compressor concerning a second embodiment of the present invention. 本発明の第三の実施形態に係る空気圧縮機の構成を表す図である。It is a figure showing the structure of the air compressor which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る空気圧縮機の制御を表すフローチャートである。It is a flow chart showing control of an air compressor concerning a third embodiment of the present invention. 本発明の第四の実施形態例に係る空気圧縮機の構成を表す図である。It is a figure showing the structure of the air compressor which concerns on the example of 4th Embodiment of this invention. 本発明の第四の実施形態例に係る空気圧縮機の潤滑油温度制御を表すフローチャートである。It is a flowchart showing the lubricating oil temperature control of the air compressor which concerns on the example of 4th Embodiment of this invention.

以下、本発明に係る実施形態例について適宜図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate.

以下、本発明に係る第一の実施形態例について図1〜図5を参照しながら説明する。
図1は本実施形態例の空気圧縮機の構成図である。図1に示す通り空気圧縮機1は、圧縮機本体10、油分を分離する油分離器20、吐出空気を冷却する吐出空気冷却用熱交換器21、潤滑油を冷却する油冷却用熱交換器22、吐出空気冷却用熱交換器21と油冷却用熱交換器22に通風する回転数可変の送風機23を備えている。
The first embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a configuration diagram of an air compressor of the present embodiment. As shown in FIG. 1, an air compressor 1 includes a compressor body 10, an oil separator 20 for separating oil, a discharge air cooling heat exchanger 21 for cooling discharge air, and an oil cooling heat exchanger for cooling lubricating oil. 22, a blower 23 having a variable rotation speed, which ventilates the heat exchanger 21 for discharging air cooling and the heat exchanger 22 for oil cooling.

空気圧縮機1は、圧縮機本体10の圧縮室10a内に大気を吸引して圧縮し、高温高圧空気(例えば、80℃、0.8MPa程度)を生成する。圧縮機本体10は、回転数可変のモータ10bと、モータ10bの動力を伝達する軸の軸受部10cを備えている。軸受部10cには軸受部給油口10dが、圧縮室10aには圧縮室給油口10eがそれぞれ備えられており、潤滑油が供給される。圧縮空気は潤滑油とともに吐出され、吐出流路24(図1中に太い実線で示す流路)を介して油分離器20に至り、空気と油に分離される。なお、空気と油は必ずしも完全に分離されている必要はなく、空気に所定値以下の油が混ざっていても良い。油分が分離された空気は、空気流路25(図1中に細い実線で示す流路)に入り、吐出空気冷却用熱交換器21に至る。圧縮空気は、吐出空気冷却用熱交換器21において、送風機23の駆動により形成される気流50(図1中に矢印で示す気流)によって大気と熱交換して使用温度域まで冷却され、空気圧縮機1の機外へ送られる。 The air compressor 1 sucks atmospheric air into the compression chamber 10a of the compressor body 10 and compresses it to generate high-temperature high-pressure air (for example, 80° C. and 0.8 MPa). The compressor body 10 includes a motor 10b having a variable rotation speed and a shaft bearing portion 10c for transmitting the power of the motor 10b. The bearing portion 10c is provided with a bearing portion oil supply port 10d, and the compression chamber 10a is provided with a compression chamber oil supply port 10e to supply lubricating oil. The compressed air is discharged together with the lubricating oil, reaches the oil separator 20 via the discharge flow path 24 (flow path indicated by a thick solid line in FIG. 1), and is separated into air and oil. It should be noted that the air and the oil do not necessarily have to be completely separated, and the oil may have a predetermined value or less mixed with the air. The air from which the oil has been separated enters the air flow path 25 (flow path indicated by a thin solid line in FIG. 1) and reaches the discharge air cooling heat exchanger 21. In the heat exchanger 21 for cooling the discharged air, the compressed air is heat-exchanged with the atmosphere by the air flow 50 (the air flow shown by the arrow in FIG. 1) formed by the drive of the blower 23 to be cooled to the operating temperature range. It is sent to the outside of machine 1.

一方、油分離器20で分離された潤滑油(本実施例では、一般的な圧縮機用の油を用いる)は、油流路26(図1中に一点鎖線で示す流路)に入り、油冷却用熱交換器22に至る。潤滑油は、油冷却用熱交換器2において、送風機23の駆動により形成される気流によって大気と熱交換して冷却された後に、軸受部給油口10d、圧縮室給油口10eから軸受部10cと圧縮室10aに給油される。
On the other hand, the lubricating oil separated by the oil separator 20 (in this embodiment, a general compressor oil is used) enters the oil passage 26 (the passage indicated by the alternate long and short dash line in FIG. 1), It reaches the heat exchanger 22 for oil cooling. Lubricating oil in the oil cooling heat exchanger 2 2, after being cooled by air and the heat exchanger by the air flow formed by the driving of the blower 23, the bearing portion 10c bearing part filler opening 10d, from the compression chamber oil supply port 10e And the compression chamber 10a is refueled.

本実施形態例の空気圧縮機1は、吸込空気の温度(T1)を検知する吸込空気温度センサ31、吸込空気の湿度(H1)を検知する吸込空気湿度センサ32を備えており、CPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した図示しない制御基板(制御手段)と接続されている。圧縮機本体10のモータ10bのON/OFFや回転速度制御、送風機23のON/OFFや回転速度制御はROMに予め搭載されたプログラムにより制御手段から行われる。 The air compressor 1 according to the present embodiment includes a suction air temperature sensor 31 that detects the temperature (T1) of the suction air, and a suction air humidity sensor 32 that detects the humidity (H1) of the suction air. It is connected to a control board (control means) (not shown) having a memory such as a RAM or RAM, an interface circuit, and the like. ON/OFF and rotation speed control of the motor 10b of the compressor body 10 and ON/OFF and rotation speed control of the blower 23 are performed from the control means by a program loaded in the ROM in advance.

図2は本実施形態例の空気圧縮機の潤滑油温度制御を表すフローチャートである。このフローチャートは、空気圧縮機1全体の動作を制御するメインプログラム(不図示)のサブルーチンとして実行されるものである。 FIG. 2 is a flowchart showing the lubricating oil temperature control of the air compressor of this embodiment. This flowchart is executed as a subroutine of a main program (not shown) that controls the overall operation of the air compressor 1.

本実施形態例の空気圧縮機1では、図2に示す制御フローにより圧縮室給油口10eに供給する潤滑油の温度が制御される。具体的には、まず吸込空気温度T1と、吸込空気湿度H1を検知し(ステップS101)、続いて検知した吸込空気温度T1と、吸込空気湿度H1に基づいて運転モード(後述)が選定される(ステップS102)。次に現在の運転モードと選定された運転モードが一致しているか否かが判定される(ステップS103)。運転モードが一致している場合(Yes)、潤滑油温度制御処理を終了しメインプログラムに戻る。一方、運転モードが一致していない場合(No)、ステップS102で選定された運転モードにモードが変更され、潤滑油温度制御処理を終了しメインプログラムに戻る。 In the air compressor 1 of the present embodiment example, the temperature of the lubricating oil supplied to the compression chamber oil supply port 10e is controlled by the control flow shown in FIG. Specifically, first, the intake air temperature T1 and the intake air humidity H1 are detected (step S101), and then the operation mode (described later) is selected based on the detected intake air temperature T1 and the intake air humidity H1. (Step S102). Next, it is determined whether or not the current operation mode and the selected operation mode match (step S103). When the operation modes match (Yes), the lubricating oil temperature control process is terminated and the process returns to the main program. On the other hand, when the operation modes do not match (No), the mode is changed to the operation mode selected in step S102, the lubricating oil temperature control process is terminated, and the process returns to the main program.

図3は本実施形態例の空気圧縮機の運転モードを表す図である。図3に示す通り、本実施形態例の空気圧縮機1は、吸込空気温度T1と吸込空気湿度H1に基づいて運転モードが選定される。吸込空気温度T1、吸込空気湿度H1がそれぞれ高温、高湿の場合は、圧縮機本体1を低速、送風機23を低速で駆動する「モード1」が選定される。吸込空気温度T1と吸込空気湿度H1がそれぞれ低温、高湿の場合は、圧縮機本体1を高速、送風機23を低速で駆動する「モード2」が選定される。また、吸込空気温度T1によらず吸込空気湿度H1が低湿の場合は圧縮機本体1を高速、送風機23を高速で駆動する「モード3」が選定される。
FIG. 3 is a diagram showing operation modes of the air compressor of the present embodiment. As shown in FIG. 3, the operation mode of the air compressor 1 of the present embodiment is selected based on the intake air temperature T1 and the intake air humidity H1. Suction air temperature T1, the suction air humidity H1 is a high temperature, respectively, in the case of high humidity, the compressor body 1 0 slow, the "mode 1" for driving the blower 23 at low speed is selected. Low suction air temperature T1 and the suction air humidity H1 is respectively in the case of high humidity, high-speed compressor body 1 0, is the "mode 2" for driving the blower 23 at low speed is selected. Also, high-speed compressor body 1 0 If the suction air humidity H1 is the humidity regardless of the suction air temperature T1, the "mode 3" to drive the blower 23 at a high speed is selected.

なお、本実施形態例の空気圧縮機1においては、吸込空気温度T1が30℃以上を高温、30℃未満を低温、吸込空気湿度H1が相対湿度80%以上を高湿、相対湿度80%未満を低湿としている。また、圧縮機本体10(モータ10b)は高速時6000min−1、低速時4000min−1、送風機23は高速時2000min−1、低速時1000min−1で駆動される。なお、吸込空気の温度として30℃、湿度として80%を基準としたのは、実使用環境を考慮して設定した一例であり、必ずしもこれに限定されるものではない。In the air compressor 1 of the present embodiment, the suction air temperature T1 is high at 30° C. or higher, low at less than 30° C., and suction air humidity H1 is high relative humidity 80% or higher, relative humidity less than 80%. Is low humidity. Further, the compressor main body 10 (the motor 10b) is fast at 6000 min -1, low speed 4000 min -1, the blower 23 is driven at a high speed during 2000 min -1, low speed 1000min -1. Note that the temperature of the intake air is set to 30° C. and the humidity is set to 80%, which is an example set in consideration of the actual use environment, and is not necessarily limited thereto.

図4は本実施形態例の空気圧縮機の制御状態を表すタイムチャートである。図4に示す通り、時間t1以前においては、吸込空気温度T1が閾値Tth(本実施形態例の空気圧縮機1ではTth=30℃)より高い高温の状態、吸込空気湿度H1が閾値Hth(本実施形態例の空気圧縮機1ではHth=80%(相対湿度))より低い低湿の状態となっているので、運転は「モード3」が選定され、潤滑油温度は低い温度で保たれている。時間t1において、吸込空気温度T1は高温状態で維持されているが、湿度がHthに達しているので、吸込空気温度T1が高温、吸込空気湿度H1が高湿状態における運転モード「モード2」が選定され(図2のステップS102)、「モード2」による運転に切り替わる(ステップ103、ステップ104)。「モード2」による運転に切り替わったことにより図4上段に示すように、油冷却用熱交換器22における熱交換量が低下するので潤滑油温度が上昇する。 FIG. 4 is a time chart showing the control state of the air compressor of this embodiment. As shown in FIG. 4, before the time t1, the intake air temperature T1 is higher than the threshold value Tth (Tth=30° C. in the air compressor 1 of the embodiment), and the intake air humidity H1 is equal to the threshold value Hth (main value). Since the air compressor 1 of the example embodiment is in a low humidity state lower than Hth=80% (relative humidity), “mode 3” is selected for the operation, and the lubricating oil temperature is kept at a low temperature. .. At time t1, the suction air temperature T1 is maintained in a high temperature state, but the humidity reaches Hth, so the suction air temperature T1 is high, and the operation mode “mode 2” in the high humidity state of the suction air humidity H1 is The operation is selected (step S102 in FIG. 2), and the operation is switched to the "mode 2" (step 103, step 104). As shown in the upper part of FIG. 4, the amount of heat exchange in the oil-cooling heat exchanger 22 decreases due to the switching to the “mode 2” operation, so that the lubricating oil temperature rises.

圧縮機本体10に給油された潤滑油は、圧縮機本体10における圧縮機構の摩擦熱や、圧縮により温度が上昇する空気からの熱で加熱されることで、温度が上昇して吐出される。潤滑油の温度上昇の度合いは圧縮機本体10の回転速度(回転数)に依存し、給油状態が同等であれば高速(高回転)であるほど温度上昇が大きくなる。一方、圧縮機本体1で温度が上昇した潤滑油は、油分離器20で分離された後に、油冷却用熱交換器22で冷却されるが、この冷却の度合いは、送風機23の回転速度(回転数)、換言すると送風量に依存し、高速(高回転)であるほど冷却(温度の低下)が促進される。すなわち、圧縮室10から圧縮機本体1に給油される潤滑油の温度は、圧縮機本体(第一の油温度調節手段)10と、油冷却用熱交換器22に送風する送風機(第二の油温度調節手段)23により制御される。なお、送風機23を一定速とした場合、圧縮機本体1への導入空気量を弁等で制御することで、送風量を調整する構成であっても良い。
The lubricating oil supplied to the compressor body 10 is heated by the frictional heat of the compression mechanism in the compressor body 10 and the heat from the air whose temperature rises due to compression, so that the temperature rises and is discharged. The degree of temperature increase of the lubricating oil depends on the rotation speed (rotation speed) of the compressor body 10, and if the oil supply state is the same, the higher the speed (high rotation), the greater the temperature increase. On the other hand, the lubricating oil temperature rises by the compressor main body 1 0, after being separated in the oil separator 20, but is cooled by the oil cooling heat exchanger 22, the degree of cooling, the rotational speed of the blower 23 (Rotation speed), in other words, depending on the amount of air blown, the higher the speed (higher speed), the faster the cooling (lowering of temperature). That is, the temperature of the lubricating oil to be fed between the compressor body 1 0 from the compression chamber 10 a includes a compressor main body (the first oil temperature adjusting means) 10, a blower for blowing air to the oil cooling heat exchanger 22 (second Second oil temperature adjusting means) 23. Incidentally, when the blower 23 is constant speed, the introduction amount of air to the compressor body 1 0 by controlling a valve or the like, may be configured to adjust the air volume.

図5は、吸込空気(ここでは大気圧下で30℃の空気)が断熱圧縮された場合の温度変化と、露点温度の変化を示す図である。図5中に破線で示すように、大気圧下(0.1MPa)で30℃の空気を0.8MPaまで断熱圧縮すると温度は約275℃まで上昇する。このとき、露点温度も同時に上昇する。例えば、図5中に示すように、大気圧下で30℃、相対湿度50%の空気は、露点温度が約18℃から約57℃に上昇し、30℃、相対湿度95%の空気は、露点温度が約29℃から約71℃に上昇する。このように吸込空気の温度が同じであっても湿度が高いほど圧縮過程における露点も高くなるため、圧縮室10aに露点温度以下の潤滑油を供給すると、圧縮空気中の水分が凝縮し、錆の発生、油膜破断、潤滑油の酸化劣化等の信頼性低下の要因になる。 FIG. 5 is a diagram showing a change in temperature and a change in dew point temperature when aspirated air (here, air at 30° C. under atmospheric pressure) is adiabatically compressed. As indicated by a broken line in FIG. 5, when air at 30° C. is adiabatically compressed to 0.8 MPa under atmospheric pressure (0.1 MPa), the temperature rises to about 275° C. At this time, the dew point temperature also rises at the same time. For example, as shown in FIG. 5, air having an atmospheric pressure of 30° C. and a relative humidity of 50% has a dew point temperature rising from about 18° C. to about 57° C. The dew point temperature rises from about 29°C to about 71°C. Thus, even if the temperature of the intake air is the same, the higher the humidity is, the higher the dew point in the compression process is. Therefore, when the lubricating oil having the dew point temperature or lower is supplied to the compression chamber 10a, the moisture in the compressed air is condensed and rust is generated. May cause deterioration of reliability such as occurrence of oil, breakage of oil film, and oxidation deterioration of lubricating oil.

したがって本実施形態例の空気圧縮機1では、吸込空気温度T1と吸込空気湿度H1を検知して、その検知情報に基づいて油温調節手段(本実施例では圧縮機本体1の回転数と送風機23の送風量)を制御するようにしている。これにより、圧縮空気中における水分の凝縮による信頼性低下が起こりやすい状態を見極めて、油温調節手段を制御することができるため、錆の発生、油膜破断、潤滑油の酸化劣化等が起こり難い信頼性が高い空気圧縮機を提供できる。
Thus the air compressor 1 in the present embodiment, by detecting the intake air temperature T1 and the suction air humidity H1, the rotation speed of the compressor body 1 0 in the oil temperature adjusting means (the embodiment on the basis of the detection information The amount of air blown by the blower 23) is controlled. As a result, it is possible to control the oil temperature adjusting means by observing the state where reliability is likely to decrease due to the condensation of water in the compressed air, and therefore rusting, oil film breakage, and oxidative deterioration of lubricating oil are unlikely to occur It is possible to provide a highly reliable air compressor.

本実施形態例の空気圧縮機1では、圧縮機本体(第一の油温度調節手段)10と、油冷却用熱交換器22に通風する送風機(第二の油温度調節手段)23と、の二つの油温調節手段を備えている。これにより、よりきめ細かい制御が実現でき、錆の発生、油膜破断、潤滑油の酸化劣化等が起こり難い信頼性が高い空気圧縮機を提供できる。 In the air compressor 1 of the present embodiment, a compressor body (first oil temperature adjusting means) 10 and a blower (second oil temperature adjusting means) 23 that ventilates the oil cooling heat exchanger 22 are provided. It is equipped with two oil temperature control means. As a result, it is possible to provide a highly reliable air compressor in which finer control can be realized and rusting, oil film breakage, oxidative deterioration of lubricating oil, etc. are less likely to occur.

また、本実施形態例の空気圧縮機1では、吸込空気温度T1がほぼ一定の場合、吸込空気湿度H1の上昇に伴って、 潤滑油の温度が上昇するように油温調節手段(圧縮機本体1の回転速度と送風機23の回転速度)を制御する(モード3からモード1、または、モード3からモード2に運転モードを切り替える)。これにより、圧縮空気中における水分の凝縮に起因する錆の発生、油膜破断、潤滑油の酸化劣化等が起こり難い信頼性が高い空気圧縮機としている。
Further, in the air compressor 1 of the present embodiment example, when the suction air temperature T1 is substantially constant, the oil temperature adjusting means (compressor body) is adjusted so that the temperature of the lubricating oil rises as the suction air humidity H1 rises. controls one 0 rotational speeds of the blower 23) (mode from the mode 3 1, or switches the operation mode from the mode 3 to mode 2). As a result, the air compressor has a high reliability in which rust generation, oil film breakage, oxidative deterioration of lubricating oil, etc. are unlikely to occur due to condensation of water in compressed air.

また、本実施形態例の空気圧縮機1では、吸込空気湿度(相対湿度)H1がほぼ一定の場合、吸込空気温度T1の上昇に伴って、潤滑油の温度が上昇するように油温調節手段(圧縮機本体1の回転速度と送風機23の回転速度)を制御する(モード2からモード1に運転モードを切り替える)。これにより、圧縮空気中における水分の凝縮に起因する錆の発生、油膜破断、潤滑油の酸化劣化等が起こり難い信頼性が高い空気圧縮機となる。
Further, in the air compressor 1 of the present embodiment example, when the suction air humidity (relative humidity) H1 is substantially constant, the oil temperature adjusting means is arranged so that the temperature of the lubricating oil rises as the suction air temperature T1 rises. controlling the (rotational speed of the compressor body 1 0 of the rotational speed and the blower 23) (switching the operation mode to the mode 1 from the mode 2). As a result, an air compressor with high reliability in which rusting due to condensation of water in compressed air, oil film breakage, oxidative deterioration of lubricating oil, etc., is unlikely to occur.

以下、本発明に係る第二の実施形態例について図6及び図7を参照しながら説明する。第一の実施形態例と同一機能部品については、同一符号を付すことで重複説明を省略する。 Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. 6 and 7. The same functional components as those of the first embodiment are designated by the same reference numerals and the duplicate description is omitted.

図6は、第二の実施形態例の空気圧縮機の構成を表す図である。図6に示す通り、本実施形態例の空気圧縮機1は、油冷却用熱交換器22から圧縮室給油口10eに至る経路に油温度センサ34を備えている。また、吐出空気冷却用熱交換器21への通風用の回転数可変の送風機23aと、油冷却用熱交換器22に通風する回転数可変の送風機23b(油温調節手段)をそれぞれ備えており、それぞれ独立に制御できるようにしている。吐出空気冷却用熱交換器21には送風機23aの駆動により気流50a(図6中の右から上に向かう矢印で示す気流)が形成され、油冷却用熱交換器22には送風機23bの駆動により気流50b(図6中の右から下に向かう矢印で示す気流)が形成される。 FIG. 6 is a diagram showing the configuration of the air compressor of the second embodiment. As shown in FIG. 6, the air compressor 1 of the present embodiment is equipped with an oil temperature sensor 34 in the path from the oil cooling heat exchanger 22 to the compression chamber oil supply port 10e. Further, a variable speed fan 23a for ventilation to the discharge air cooling heat exchanger 21 and a variable speed fan 23b (oil temperature adjusting means) for ventilating the oil cooling heat exchanger 22 are respectively provided. , Each of them can be controlled independently. An airflow 50a (an airflow indicated by an arrow from the right to the upper side in FIG. 6) is formed in the discharge air cooling heat exchanger 21 by driving the blower 23a, and the oil cooling heat exchanger 22 is driven by the blower 23b. An airflow 50b (airflow indicated by an arrow from the right to the bottom in FIG. 6) is formed.

図7は、第二の実施形態例の空気圧縮機の潤滑油温度制御を表すフローチャートである。このフローチャートは、空気圧縮機1全体の動作を制御するメインプログラム(不図示)のサブルーチンとして実行されるものである。 FIG. 7 is a flowchart showing the lubricating oil temperature control of the air compressor of the second embodiment. This flowchart is executed as a subroutine of a main program (not shown) that controls the overall operation of the air compressor 1.

本実施形態例の空気圧縮機1は、図7に示す制御フローにより圧縮室給油口10eに供給する潤滑油の温度を制御する。図7に示す通り、本実施形態例の空気圧縮機1は、吸込空気温度T1と、吸込空気湿度H1を検知し(ステップS201)、その検知情報に基づいて、潤滑油目標温度Tgoalを算出する(ステップS202)。なお、本実施形態例の空気圧縮機1では、圧縮室給油口10eが設置される位置の圧力における露点温度(Tsat)を算出(推定)して潤滑油目標温度Tgoalとする。例えば、Tgoal=Tsat+ΔTとして、安全定数(ΔT)を加えて潤滑油目標温度Tgoalを算出する。 The air compressor 1 of the present embodiment controls the temperature of the lubricating oil supplied to the compression chamber oil supply port 10e according to the control flow shown in FIG. As shown in FIG. 7, the air compressor 1 of the present embodiment detects the intake air temperature T1 and the intake air humidity H1 (step S201), and calculates the lubricating oil target temperature Tgoal based on the detection information. (Step S202). In the air compressor 1 of the present embodiment, the dew point temperature (Tsat) at the pressure at the position where the compression chamber oil supply port 10e is installed is calculated (estimated) to be the lubricating oil target temperature Tgoal. For example, assuming that Tgoal=Tsat+ΔT, the safety constant (ΔT) is added to calculate the lubricating oil target temperature Tgoal.

次に潤滑油温度T3と目標温度Tgoalの差が5℃より小さいか否かが判定される(ステップS203)。ステップS203が成立している場合(Yes)、続いて潤滑油温度T3と目標温度Tgoalの差が2℃より大きいか否かが判定される(ステップS204)。ステップS204が成立している場合(Yes)は潤滑油温度制御処理を終了しメインプログラムに戻る。なお、ステップS203の5℃、ステップS204の2℃の基準温度は一例であって、特にこれに限定するものではない。 Next, it is determined whether the difference between the lubricating oil temperature T3 and the target temperature Tgoal is less than 5° C. (step S203). When step S203 is established (Yes), it is subsequently determined whether the difference between the lubricating oil temperature T3 and the target temperature Tgoal is larger than 2° C. (step S204). When step S204 is established (Yes), the lubricating oil temperature control process is terminated and the process returns to the main program. Note that the reference temperatures of 5° C. in step S203 and 2° C. in step S204 are examples and are not particularly limited thereto.

ステップS203が成立していない場合(No)は、続いて送風機23bの回転数が上限回転数に到達しているか否かが判定される(ステップS250)。ちなみに、本実施形態例の空気圧縮機1では、送風機23bの上限回転数は3000min−1である。ステップS250で送風機23bの回転数が上限に達していると判定された場合(Yes)、続いて、圧縮機本体10(モータ10b)の回転数が下限回転数に到達しているか否かが判定される(ステップS251)。ちなみに、本実施形態例の空気圧縮機1では、圧縮機本体10の下限回転数は2000min−1である。ステップS251で圧縮機本体10の回転数が下限回転数に到達していると判定された場合(Yes)、空気圧縮機1は運転を停止(圧縮機本体10、送風機23a、23bを停止)して(ステップS252)、潤滑油温度制御処理を終了しメインプログラムに戻る。この場合、外気温度が高温であること等が想定されるので、異常の報知等を行う。なお、上述の送風機23bの上限回転数3000min−1、圧縮機本体10(モータ10b)の下限回転数2000min−1は一例であって、特にこれに限定するものではない。If step S203 is not established (No), it is subsequently determined whether or not the rotation speed of the blower 23b has reached the upper limit rotation speed (step S250). Incidentally, in the air compressor 1 of the present embodiment example, the upper limit rotation speed of the blower 23b is 3000 min −1 . When it is determined in step S250 that the rotation speed of the blower 23b has reached the upper limit (Yes), it is subsequently determined whether the rotation speed of the compressor body 10 (motor 10b) has reached the lower limit rotation speed. (Step S251). By the way, in the air compressor 1 of the present embodiment, the lower limit rotation speed of the compressor body 10 is 2000 min −1 . When it is determined in step S251 that the rotation speed of the compressor body 10 has reached the lower limit rotation speed (Yes), the air compressor 1 stops the operation (stops the compressor body 10 and the blowers 23a and 23b). (Step S252), the lubricating oil temperature control process is terminated and the process returns to the main program. In this case, since it is assumed that the outside air temperature is high, etc., the abnormality is notified. Incidentally, an example lower limit rotation speed 2000 min -1 is the upper limit rotation speed 3000 min -1 blower 23b described above, the compressor main body 10 (motor 10b), not particularly limited thereto.

ステップS251で圧縮機本体10の回転数が下限回転数に到達していないと判定された場合(No)、圧縮機本体10の回転数が低減され(ステップS253)、ステップS203に戻る。ステップS250で送風機23bの回転数が上限に達していないと判定された場合(No)、送風機23bの回転数が増加され(ステップS254)、ステップS203に戻る。 When it is determined in step S251 that the rotation speed of the compressor body 10 has not reached the lower limit rotation speed (No), the rotation speed of the compressor body 10 is reduced (step S253), and the process returns to step S203. When it is determined in step S250 that the rotation speed of the blower 23b has not reached the upper limit (No), the rotation speed of the blower 23b is increased (step S254), and the process returns to step S203.

ステップS204が成立していない場合(No)、続いて送風機23bが停止しているか否かが判定される(ステップS260)。ステップS260が成立している場合(Yes)、潤滑油温度制御処理を終了しメインプログラムに戻る。ステップS260が成立していない場合(No)、送風機23bの回転数が低減され(ステップS261)、ステップS204に戻る。ちなみに、本実施形態例の空気圧縮機1では、送風機23bの下限回転数は500min−1であり、ステップS260において500min−1であった場合には、ステップS261で送風機23bは停止する。なお、送風機23bの下限回転数500min−1は一例であり、これに限定されるものではない。When step S204 is not established (No), it is subsequently determined whether or not the blower 23b is stopped (step S260). When step S260 is established (Yes), the lubricating oil temperature control process is terminated and the process returns to the main program. When step S260 is not materialized (No), the rotation speed of the blower 23b is reduced (step S261), and it returns to step S204. Incidentally, in the air compressor 1 in the present embodiment, the lower limit rotation speed of the blower 23b is 500 min -1, in the case was 500 min -1 in step S260, the blower 23b in step S261 is stopped. The lower limit rotation speed of the blower 23b, 500 min −1, is an example, and the present invention is not limited to this.

なお、本実施形態例の空気圧縮機1ではステップS253、S254、S261における操作量は、潤滑油温度T3と目標温度Tgoalの偏差と、潤滑油温度T3と目標温度Tgoalの偏差の時間積分にあらかじめ定めた定数を乗ずることにより求める。 In the air compressor 1 of the present embodiment, the manipulated variables in steps S253, S254, and S261 are calculated in advance by the time integration of the deviation between the lubricating oil temperature T3 and the target temperature Tgoal and the deviation between the lubricating oil temperature T3 and the target temperature Tgoal. It is calculated by multiplying by a fixed constant.

以上のように、本実施形態例の空気圧縮機1は、吸込空気温度T1と吸込空気湿度H1とともに、潤滑油温度T3を検知して潤滑油の温度制御を行っている。これにより、よりきめ細かく潤滑油温度T3を制御できるようになるので、圧縮空気中における水分の凝縮に起因する錆の発生、油膜破断、潤滑油の酸化劣化等が起こり難い信頼性が高い空気圧縮機を提供することができる。 As described above, the air compressor 1 of the present embodiment controls the temperature of the lubricating oil by detecting the lubricating oil temperature T3 as well as the suction air temperature T1 and the suction air humidity H1. As a result, the lubricating oil temperature T3 can be controlled more finely, and therefore a highly reliable air compressor in which rust generation, oil film breakage, oxidative deterioration of lubricating oil, etc. due to condensation of water in compressed air are unlikely to occur. Can be provided.

本実施形態例の空気圧縮機1は、吐出空気冷却用熱交換器21への通風用の送風機23aと、油冷却用熱交換器22に通風する送風機23b(油温調節手段)をそれぞれ備えており、吐出空気冷却用熱交換器21と油冷却用熱交換器22への送風を独立に制御できるようにしている。これにより、吐出空気を所望の温度域に冷却するための温度制御と、潤滑油の温度制御を両立しやすくなるので、圧縮空気中における水分の凝縮に起因する錆の発生、油膜破断、潤滑油の酸化劣化等が起こり難い信頼性が高い空気圧縮機となる。 The air compressor 1 of the present embodiment includes a blower 23a for ventilation to the heat exchanger 21 for discharging air cooling, and a blower 23b (oil temperature adjusting means) for ventilation to the heat exchanger 22 for oil cooling. Therefore, the blowing air to the discharge air cooling heat exchanger 21 and the oil cooling heat exchanger 22 can be controlled independently. As a result, it becomes easy to achieve both temperature control for cooling the discharge air to a desired temperature range and temperature control of the lubricating oil, so that the occurrence of rust due to the condensation of moisture in the compressed air, the oil film breakage, and the lubricating oil. A highly reliable air compressor in which oxidative deterioration and the like hardly occur.

本実施形態例の空気圧縮機1は、吸込空気温度T1と吸込空気湿度H1に基づいて潤滑油目標温度Tgoalを算出するステップ(ステップS202)と、潤滑油温度T3と潤滑油目標温度Tgoalを比較するステップ(ステップS203、S204)と、潤滑油温度T3と潤滑油目標温度Tgoalの偏差を解消するように潤滑油温度制御手段を制御するステップ(ステップS252、S253、S254、S261)を備えている。これにより、吸込空気温度T1と吸込空気湿度H1が変化した場合に、よりきめ細かく潤滑油温度T3を追従させることができ、圧縮空気中における水分の凝縮に起因する錆の発生、油膜破断、潤滑油の酸化劣化等が起こり難い信頼性が高い空気圧縮機となる。 The air compressor 1 of the present embodiment compares the lubricating oil temperature T3 and the lubricating oil target temperature Tgoal with the step of calculating the lubricating oil target temperature Tgoal based on the suction air temperature T1 and the suction air humidity H1 (step S202). Steps (Steps S203, S204) and Steps (Steps S252, S253, S254, S261) for controlling the lubricating oil temperature control means so as to eliminate the deviation between the lubricating oil temperature T3 and the lubricating oil target temperature Tgoal. .. As a result, when the intake air temperature T1 and the intake air humidity H1 change, the lubricating oil temperature T3 can be made to follow more finely, and the generation of rust due to the condensation of moisture in the compressed air, the oil film breakage, and the lubricating oil. A highly reliable air compressor in which oxidative deterioration and the like hardly occur.

本実施形態例の空気圧縮機1は、潤滑油温度T3が潤滑油目標温度Tgoalに対して所定値以上高い場合に(ステップS203)、送風機23bの回転数を上げる(ステップS254)、あるいは、圧縮機本体10の回転数を下げる(ステップS253)ように制御する。これにより潤滑油温度を低下させることができるので、水分の凝縮を抑制または低減して信頼性を確保しつつ、圧縮過程における空気の冷却を促進でき圧縮機の効率を高めることができる。 When the lubricating oil temperature T3 is higher than the lubricating oil target temperature Tgoal by a predetermined value or more (step S203), the air compressor 1 of the present embodiment increases the rotation speed of the blower 23b (step S254) or compresses it. The rotation speed of the machine body 10 is controlled to be lowered (step S253). As a result, the temperature of the lubricating oil can be lowered, so that the cooling of air in the compression process can be promoted and the efficiency of the compressor can be improved while suppressing or reducing the condensation of water to ensure reliability.

本実施形態例の空気圧縮機1は、圧縮室給油口10eが設置される位置の圧力における露点温度を潤滑油目標温度Tgoalとしている。図5に示す通り圧縮過程で空気の露点温度は上昇するので、圧縮室給油口が設置さられる位置の圧力によって露点温度は異なる。そこで、本実施形態例の空気圧縮機1では、圧縮室給油口10eが設置される位置における露点温度を算出(推定)し、潤滑油目標温度Tgoalとすることで、より確実に水分の凝縮を抑制でき、錆の発生、油膜破断、潤滑油の酸化劣化等が起こり難い信頼性が高い空気圧縮機となる。 In the air compressor 1 of this embodiment, the dew point temperature at the pressure at the position where the compression chamber oil supply port 10e is installed is the lubricating oil target temperature Tgoal. As shown in FIG. 5, since the dew point temperature of air rises during the compression process, the dew point temperature varies depending on the pressure at the position where the compression chamber oil supply port is installed. Therefore, in the air compressor 1 of the present embodiment example, the dew point temperature at the position where the compression chamber oil supply port 10e is installed is calculated (estimated) and set as the lubricating oil target temperature Tgoal, so that the moisture is more reliably condensed. An air compressor that can be suppressed and has high reliability in which rusting, oil film breakage, and oxidative deterioration of lubricating oil are unlikely to occur.

以下、本発明に係る第三の実施形態例について図8及び図9を参照しながら説明する。第一及び第二の実施形態例と同一機能部品については、同一符号を付すことで重複説明を省略する。 Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. 8 and 9. The same functional parts as those of the first and second embodiments are designated by the same reference numerals, and the duplicated description will be omitted.

図8は、第三の実施形態例の空気圧縮機の構成を表す図である。図8に示す通り、本実施形態例の空気圧縮機1は、油分離器20の下流側で、油冷却用熱交換器22に向かう流路26aと、油冷却用熱交換器22を流れないバイパス流路26bに分岐している。流路26aに入った潤滑油は、油冷却用熱交換器22で冷却された後に、バイパス流路26bを流れる油冷却用熱交換器22で冷却されていない潤滑油と合流する。バイパス流路26bには潤滑油の流量を制御する油流量制御弁51が備えられており、油流量制御弁51の開度によって、バイパス流路26bを流れる流量と、油冷却用熱交換器22を流れる流量の比率が制御される。なお、油冷却用熱交換器22と、吐出空気冷却用熱交換器21には、送風機23の駆動によって気流が形成される。なお、油流量制御弁51以外にも、ポンプ等で潤滑油の流量を制御する構成であっても良い。 FIG. 8: is a figure showing the structure of the air compressor of 3rd embodiment. As shown in FIG. 8, the air compressor 1 of the present embodiment does not flow on the downstream side of the oil separator 20 toward the oil cooling heat exchanger 22 and the oil cooling heat exchanger 22. It branches into the bypass flow path 26b. The lubricating oil that has entered the flow passage 26a is cooled by the oil cooling heat exchanger 22 and then merges with the lubricating oil that has not been cooled by the oil cooling heat exchanger 22 that flows through the bypass passage 26b. The bypass flow passage 26b is provided with an oil flow rate control valve 51 for controlling the flow rate of the lubricating oil. Depending on the opening degree of the oil flow rate control valve 51, the flow rate flowing through the bypass flow passage 26b and the oil cooling heat exchanger 22 The ratio of the flow rates flowing through is controlled. An air flow is formed in the oil cooling heat exchanger 22 and the discharge air cooling heat exchanger 21 by driving the blower 23. Instead of the oil flow rate control valve 51, a pump or the like may be used to control the flow rate of the lubricating oil.

以上の構成とすることで、油冷却用熱交換器22における潤滑油の冷却量は、圧縮機本体(第一の油温度制御手段)10、送風機(第二の油温度制御手段)23の送風量によって制御されるとともに、油流量制御弁(第三の油温度制御手段)51の開度によっても制御可能となる。油流量制御弁51の開度が大きいと、バイパス流路26bを流れる流量が増え、相対的に油冷却用熱交換器22を流れる流量が少なくなることで熱交換量が減少し、合流後の潤滑油温度T3(油温度センサ34での検出値)が上昇する。なお、本実施形態例の空気圧縮機1における流量制御弁51は、ステッピングモータにより開度を自在に調節できるバタフライ弁である。なお、これ以外にも、油流量制御弁51はニードル式弁、電磁弁等、流量を調整可能な構成であれば、あらゆる公知の弁を採用することができる。 With the above configuration, the cooling amount of the lubricating oil in the oil cooling heat exchanger 22 is determined by the compressor main body (first oil temperature control means) 10 and the blower (second oil temperature control means) 23. In addition to being controlled by the air flow rate, it can also be controlled by the opening degree of the oil flow rate control valve (third oil temperature control means) 51. When the opening degree of the oil flow rate control valve 51 is large, the flow rate flowing through the bypass flow passage 26b is increased, and the flow rate flowing through the oil cooling heat exchanger 22 is relatively decreased, so that the heat exchange amount is reduced, and after the merging. The lubricating oil temperature T3 (value detected by the oil temperature sensor 34) rises. The flow control valve 51 in the air compressor 1 of the present embodiment is a butterfly valve whose opening can be freely adjusted by a stepping motor. Other than this, the oil flow rate control valve 51 may be any known valve such as a needle valve or a solenoid valve as long as the flow rate can be adjusted.

図9は、第三の実施形態例の空気圧縮機の潤滑油温度制御を表すフローチャートである。このフローチャートは、空気圧縮機1全体の動作を制御するメインプログラム(不図示)のサブルーチンとして実行されるものである。 FIG. 9 is a flowchart showing the lubricating oil temperature control of the air compressor of the third embodiment. This flowchart is executed as a subroutine of a main program (not shown) that controls the overall operation of the air compressor 1.

本実施形態例の空気圧縮機1は、図9に示す制御フローにより圧縮室給油口10eに供給する潤滑油の温度を制御する。図9に示す通り、本実施形態例の空気圧縮機1は、吸込空気温度T1と、吸込空気湿度H1を検知し(ステップS301)、その検知情報に基づいて、潤滑油目標温度Tgoalを算出する(ステップS302)。本実施形態例の空気圧縮機1では断熱圧縮を仮定した場合の圧縮機本体10の吐出圧における露点温度を算出して潤滑油目標温度Tgoalとする。次に潤滑油温度T3と目標温度Tgoalの差が5℃より小さいか否かが判定される(ステップS303)。ステップS303が成立している場合(Yes)は、続いて潤滑油温度T3と目標温度Tgoalの差が2℃より大きいか否かが判定される(ステップS304)。ステップS304が成立している場合(Yes)は潤滑油温度制御処理を終了しメインプログラムに戻る。 The air compressor 1 of the present embodiment controls the temperature of the lubricating oil supplied to the compression chamber oil supply port 10e according to the control flow shown in FIG. As shown in FIG. 9, the air compressor 1 of the present embodiment example detects the intake air temperature T1 and the intake air humidity H1 (step S301), and calculates the lubricating oil target temperature Tgoal based on the detection information. (Step S302). In the air compressor 1 of the present embodiment example, the dew point temperature at the discharge pressure of the compressor body 10 under the assumption of adiabatic compression is calculated as the lubricating oil target temperature Tgoal. Next, it is determined whether the difference between the lubricating oil temperature T3 and the target temperature Tgoal is less than 5° C. (step S303). If step S303 is established (Yes), it is subsequently determined whether the difference between the lubricating oil temperature T3 and the target temperature Tgoal is greater than 2° C. (step S304). When step S304 is established (Yes), the lubricating oil temperature control process is terminated and the process returns to the main program.

ステップS303が成立していない場合(No)は、続いて弁51が全閉か否かが判定される(ステップS350)。ステップS350が成立している場合(Yes)、続いて、送風機23の回転数が上限回転数に到達しているか否かが判定される(ステップS351)。ちなみに、本実施形態例の空気圧縮機1では、送風機23の上限回転数は3000min−1である。ステップS351が成立している場合(Yes)、潤滑油温度制御処理を終了しメインプログラムに戻る。なお、送風機23の送風量を制御すると、油冷却用熱交換器22だけでなく吐出空気冷却用熱交換器21の熱交換量、すなわち吐出空気温度にも影響が出ることがある。そこで、本実施例では、弁51の開度を調整した後、送風機23の送風量を調整している。
If step S303 is not established (No), it is subsequently determined whether or not the valve 51 is fully closed (step S350). When step S350 is established (Yes), it is subsequently determined whether or not the rotation speed of the blower 23 has reached the upper limit rotation speed (step S351). Incidentally, in the air compressor 1 of the present embodiment example, the upper limit rotation speed of the blower 23 is 3000 min −1 . When step S351 is established (Yes), the lubricating oil temperature control process is terminated and the process returns to the main program. Controlling the amount of air blown by the blower 23 may affect not only the heat exchanger 22 for cooling the oil but also the heat exchange amount of the heat exchanger 21 for discharging air, that is, the discharge air temperature. Therefore, in the present embodiment, after adjusting the opening degree of the valve 51, which adjusts the air volume of feed air blower 23.

ステップS351で送風機23の回転数が上限回転数に到達していないと判定された場合(No)、送風機23の回転数が増加され(ステップS352)、ステップS303に戻る。ステップS350で弁51が全閉ではないと判定された場合(No)、弁51の開度が縮小され(ステップS353)、ステップS303に戻る。 When it is determined in step S351 that the rotation speed of the blower 23 has not reached the upper limit rotation speed (No), the rotation speed of the blower 23 is increased (step S352), and the process returns to step S303. When it is determined in step S350 that the valve 51 is not fully closed (No), the opening degree of the valve 51 is reduced (step S353), and the process returns to step S303.

ステップS304が成立していない場合(No)、続いて弁51が全開か否かが判定される(ステップS360)。ステップS360が成立している場合(Yes)、続いて、送風機23の回転数が下限回転数に到達しているか否かが判定される(ステップS361)。ちなみに、本実施形態例の空気圧縮機1では、送風機23の下限回転数は500min−1である。ステップS361が成立している場合(Yes)、潤滑油温度制御処理を終了しメインプログラムに戻る。If step S304 is not satisfied (No), then it is determined whether the valve 51 is fully opened (step S360). When step S360 is satisfied (Yes), it is subsequently determined whether or not the rotation speed of the blower 23 has reached the lower limit rotation speed (step S361). By the way, in the air compressor 1 of the present embodiment, the lower limit rotation speed of the blower 23 is 500 min −1 . If step S361 is satisfied (Yes), the lubricating oil temperature control process is terminated and the process returns to the main program.

ステップS361で送風機23の回転数が下限回転数に到達していないと判定された場合(No)、送風機23の回転数が低減され(ステップS362)、ステップS304に戻る。ステップS360で弁51が全開ではないと判定された場合(No)、弁51の開度が増加され(ステップS363)、ステップS304に戻る。 When it is determined in step S361 that the rotation speed of the blower 23 has not reached the lower limit rotation speed (No), the rotation speed of the blower 23 is reduced (step S362), and the process returns to step S304. When it is determined that the valve 51 is not fully opened in step S360 (No), the opening degree of the valve 51 is increased (step S363), and the process returns to step S304.

なお、本実施形態例の空気圧縮機1ではステップS352、S353、S362、S363における操作量は、潤滑油温度T3と目標温度Tgoalの偏差と、潤滑油温度T3と目標温度Tgoalの偏差の時間積分にあらかじめ定めた定数を乗ずることにより求める。 In the air compressor 1 of the present embodiment, the manipulated variables in steps S352, S353, S362, and S363 are the time integration of the deviation between the lubricating oil temperature T3 and the target temperature Tgoal and the deviation between the lubricating oil temperature T3 and the target temperature Tgoal. It is obtained by multiplying by a predetermined constant.

以上のように本実施形態例の空気圧縮機1では、油冷却用熱交換器22を流れる油量を増減することで潤滑油温度T3を制御している。これにより、油冷却用熱交換器22の熱交換能力を容易に調整でき、所望の潤滑油温度が得られやすくなるので、より確実に水分の凝縮を抑制でき、錆の発生、油膜破断、潤滑油の酸化劣化等が起こり難い信頼性が高い空気圧縮機となる。 As described above, in the air compressor 1 of the present embodiment, the lubricating oil temperature T3 is controlled by increasing or decreasing the amount of oil flowing through the oil cooling heat exchanger 22. As a result, the heat exchange capacity of the oil-cooling heat exchanger 22 can be easily adjusted, and the desired lubricating oil temperature can be easily obtained, so that the condensation of water can be suppressed more reliably, rusting, oil film breakage, and lubrication It becomes a highly reliable air compressor in which oxidative deterioration of oil does not easily occur.

以下、本発明に係る第四の実施形態例について図10及び図11を参照しながら説明する。第一乃至第三の実施形態例と同一機能部品については、同一符号を付すことで重複説明を省略する。 Hereinafter, a fourth exemplary embodiment according to the present invention will be described with reference to FIGS. 10 and 11. The same functional parts as those of the first to third embodiments are designated by the same reference numerals, and a duplicate description will be omitted.

図10は、第四の実施形態例の空気圧縮機の構成を表す図である。図10に示す通り、本実施形態例の空気圧縮機1は、油分離器20の下流側に油流量制御弁51を備えている。油流量制御弁51は、入口51aと出口51bと51cを備えた三方弁であり、出口51bと出口51cをともに開放状態(状態A)、出口51bを開放状態として、出口51cを閉鎖状態(状態B)、出口51bを閉鎖状態として、出口51cを開放状態(状態C)、に制御可能な弁である。油流量制御弁51の出口51と51は、それぞれ流路26aと流路26bに接続され、流路26aと流路26bは、油冷却用熱交換器22の一部22aを流れる流路と残りの部分22bを流れる流路にそれぞれ接続される。油冷却用熱交換器22の一部22aの空気側の伝熱面積は油冷却用熱交換器22の残りの部分22bより大きくしてある。また、油冷却用熱交換器22の一部22aと残りの部分22bの出口は、それぞれ流路26cと流路26dに接続され、接続部26eで合流する。
FIG. 10 is a diagram showing the configuration of the air compressor of the fourth embodiment. As shown in FIG. 10, the air compressor 1 of the present embodiment example includes an oil flow rate control valve 51 on the downstream side of the oil separator 20. The oil flow control valve 51 is a three-way valve having an inlet 51a, outlets 51b and 51c, both the outlet 51b and the outlet 51c in an open state (state A), the outlet 51b in an open state, and the outlet 51c in a closed state (state). B) is a valve that can be controlled so that the outlet 51b is closed and the outlet 51c is opened (state C). The outlets 51 b and 51 c of the oil flow rate control valve 51 are connected to the flow paths 26a and 26b, respectively, and the flow paths 26a and 26b flow through the part 22a of the oil cooling heat exchanger 22. And the remaining portions 22b are respectively connected to the flow paths. The air-side heat transfer area of a part 22a of the oil cooling heat exchanger 22 is larger than that of the remaining part 22b of the oil cooling heat exchanger 22. Further, the outlets of the part 22a and the remaining part 22b of the oil cooling heat exchanger 22 are connected to the flow passage 26c and the flow passage 26d, respectively, and join at the connecting portion 26e.

油流量制御弁51が状態Aに制御される場合、潤滑油は油冷却用熱交換器22の一部22aと残りの部分22bの両方を流れるので、油冷却用熱交換器22の全体で空気と熱交換して温度が低下する。また、油流量制御弁51が状態Bに制御される場合、潤滑油は油冷却用熱交換器22の一部22aのみに流れる。さらに、油流量制御弁51が状態Cに制御される場合、潤滑油は油冷却用熱交換器22の残りの部分22bのみに流れる。状態B及び状態Cでは、油冷却用熱交換器22の全体で空気と熱交換する状態Aより熱交換量が小さくなるため、潤滑油の温度低下は小さくなる。また、油冷却用熱交換器22の一部22aの空気側の伝熱面積は、油冷却用熱交換器22の残りの部分22bより大きいので、状態Bの方が、状態Cより熱交換量が大きくなる(温度低下が大きくなる)。 When the oil flow control valve 51 is controlled to the state A, the lubricating oil flows through both the part 22a and the remaining part 22b of the oil cooling heat exchanger 22, so that the entire oil cooling heat exchanger 22 is air-cooled. Exchanges heat with the temperature drop. When the oil flow rate control valve 51 is controlled to the state B, the lubricating oil flows only in the part 22a of the oil cooling heat exchanger 22. Further, when the oil flow control valve 51 is controlled to the state C, the lubricating oil flows only to the remaining portion 22b of the oil cooling heat exchanger 22. In states B and C, the amount of heat exchange is smaller than in state A in which the heat exchanger 22 for oil cooling as a whole exchanges heat with air, so the temperature drop of the lubricating oil is small. Further, since the air-side heat transfer area of the part 22a of the oil cooling heat exchanger 22 is larger than the remaining part 22b of the oil cooling heat exchanger 22, the heat exchange amount in the state B is larger than that in the state C. Becomes larger (the temperature drop becomes larger).

以上から、油流量制御弁51の制御状態と熱交換量の大小関係は、状態A>状態B>状態Cとなり、同等の送風条件下では、潤滑油温度T3は状態Aが最も低く、状態Cが最も高くなる。 From the above, the magnitude relationship between the control state of the oil flow rate control valve 51 and the heat exchange amount is State A>State B>State C, and under the same blowing condition, the lubricating oil temperature T3 is the lowest in the state A and the state C. Is the highest.

図11は、第四の実施形態例の空気圧縮機の潤滑油温度制御を表すフローチャートである。このフローチャートは、空気圧縮機1全体の動作を制御するメインプログラム(不図示)のサブルーチンとして実行されるものである。 FIG. 11 is a flowchart showing the lubricating oil temperature control of the air compressor of the fourth embodiment. This flowchart is executed as a subroutine of a main program (not shown) that controls the overall operation of the air compressor 1.

本実施形態例の空気圧縮機1は、図11に示す制御フローにより、圧縮室給油口10eに供給する潤滑油の温度を制御する。図11に示す通り、本実施形態例の空気圧縮機1は、吸込空気温度T1と、吸込空気湿度H1を検知し(ステップS401)、その検知情報に基づいて、潤滑油目標温度Tgoalを算出する(ステップS402)。本実施形態例の空気圧縮機1では、断熱圧縮を仮定した場合の圧縮機本体10の吐出圧における露点温度を算出して潤滑油目標温度Tgoalとする。次に、潤滑油温度T3と目標温度Tgoalの差が5℃より小さいか否かが判定される(ステップS403)。ステップS403が成立している場合(Yes)は、続いて潤滑油温度T3と目標温度Tgoalの差が2℃より大きいか否かが判定される(ステップS404)。ステップS404が成立している場合(Yes)は潤滑油温度制御処理を終了しメインプログラムに戻る。 The air compressor 1 of the present embodiment controls the temperature of the lubricating oil supplied to the compression chamber oil supply port 10e according to the control flow shown in FIG. As shown in FIG. 11, the air compressor 1 of the present embodiment example detects the intake air temperature T1 and the intake air humidity H1 (step S401), and calculates the lubricating oil target temperature Tgoal based on the detection information. (Step S402). In the air compressor 1 of the present embodiment example, the dew point temperature at the discharge pressure of the compressor body 10 under the assumption of adiabatic compression is calculated as the lubricating oil target temperature Tgoal. Next, it is determined whether the difference between the lubricating oil temperature T3 and the target temperature Tgoal is smaller than 5° C. (step S403). If step S403 is established (Yes), then it is determined whether the difference between the lubricating oil temperature T3 and the target temperature Tgoal is greater than 2° C. (step S404). When step S404 is established (Yes), the lubricating oil temperature control process is terminated and the process returns to the main program.

ステップS403が成立していない場合(No)は、続いて弁51が状態A(出口51b開放状態、出口51c開放状態)か否かが判定される(ステップS450)。ステップS450が成立している場合(Yes)、続いて、送風機23の回転数が上限回転数に到達しているか否かが判定される(ステップS451)。ステップS451が成立している場合(Yes)、潤滑油温度制御処理を終了しメインプログラムに戻る。 When step S403 is not established (No), it is subsequently determined whether or not the valve 51 is in the state A (outlet 51b open state, outlet 51c open state) (step S450). When step S450 is established (Yes), it is subsequently determined whether or not the rotation speed of the blower 23 has reached the upper limit rotation speed (step S451). When step S451 is established (Yes), the lubricating oil temperature control process is terminated and the process returns to the main program.

ステップS451で送風機23の回転数が上限回転数に到達していないと判定された場合(No)、送風機23の回転数が増加され(ステップS452)、ステップS403に戻る。ステップS450で弁51が状態Aではないと判定された場合(No)、続いて弁51が状態B(出口51b開放状態、出口51c閉鎖状態)か否かが判定され(ステップS453)、ステップS453が成立している場合(Yes)、弁51は状態Aに制御され(ステップS454)、ステップS403に戻る。ステップS453が成立していない場合(No)、弁51は状態Bに制御され(ステップS455)、ステップS403に戻る。 When it is determined in step S451 that the rotation speed of the blower 23 has not reached the upper limit rotation speed (No), the rotation speed of the blower 23 is increased (step S452), and the process returns to step S403. When it is determined in step S450 that the valve 51 is not in the state A (No), it is subsequently determined whether or not the valve 51 is in the state B (the outlet 51b open state, the outlet 51c closed state) (step S453), and step S453. When is satisfied (Yes), the valve 51 is controlled to the state A (step S454), and the process returns to step S403. When step S453 is not satisfied (No), the valve 51 is controlled to the state B (step S455), and the process returns to step S403.

ステップS04が成立していない場合(No)、続いて弁51が状態C(出口51b閉鎖状態、出口51c開放状態)か否かが判定される(ステップS460)。ステップS460が成立している場合(Yes)、続いて、送風機23の回転数が下限回転数に到達しているか否かが判定される(ステップS461)。ステップS461が成立している場合(Yes)、潤滑油温度制御処理を終了しメインプログラムに戻る。
If step S 4 04 is not satisfied (No), then the valve 51 the state C (outlet 51b closed, the outlet 51c open) it is determined whether or not the (step S460). When step S460 is established (Yes), it is subsequently determined whether or not the rotation speed of the blower 23 has reached the lower limit rotation speed (step S461). If step S461 is satisfied (Yes), the lubricating oil temperature control process is terminated and the process returns to the main program.

ステップS461で送風機23の回転数が下限回転数に到達していないと判定された場合(No)、送風機23の回転数が低減され(ステップS462)、ステップS404に戻る。ステップS460で弁51が状態Cではないと判定された場合(No)、続いて弁51が状態Bか否かが判定され(ステップS463)、ステップS463が成立している場合(Yes)、弁51は状態Cに制御され(ステップS464)、ステップS40に戻る。ステップS463が成立していない場合(No)、弁51は状態Bに制御され(ステップS465)、ステップS40に戻る。
If the rotational speed of the blower 23 is determined not to have reached the lower limit rotation speed in Step S 46 1 (No), the rotational speed of the blower 23 is reduced (step S462), the flow returns to step S404. If it is determined in step S460 that the valve 51 is not in the state C (No), then it is determined whether the valve 51 is in the state B (step S463). If step S463 is established (Yes), the valve is 51 is controlled to the state C (step S464), the flow returns to step S40 4. If step S463 is not satisfied (No), the valve 51 is controlled to the state B (step S465), the flow returns to step S40 4.

以上のように本実施形態例の空気圧縮機1では、油冷却用熱交換器22内を流れる潤滑油の状態を制御することで潤滑油温度T3を制御している。これにより、油冷却用熱交換器22の熱交換能力を容易に調整でき、所望の潤滑油温度が得られやすくなるので、より確実に水分の凝縮を抑制でき、錆の発生、油膜破断、潤滑油の酸化劣化等が起こり難い信頼性が高い空気圧縮機となる。 As described above, in the air compressor 1 of the present embodiment, the lubricating oil temperature T3 is controlled by controlling the state of the lubricating oil flowing in the oil cooling heat exchanger 22. As a result, the heat exchange capacity of the oil-cooling heat exchanger 22 can be easily adjusted, and the desired lubricating oil temperature can be easily obtained, so that the condensation of water can be suppressed more reliably, rusting, oil film breakage, and lubrication It becomes a highly reliable air compressor in which oxidative deterioration of oil does not easily occur.

なお、本実施形態例では油流量制御弁51として2つの出口を開閉可能な三方弁を用いているが、複数の開閉弁を組み合わせて流量制御弁51を構成したり、開度を多段階で切り替え可能な弁を用いてよりきめ細かく制御したりしても良い。 Although the three-way valve capable of opening and closing the two outlets is used as the oil flow rate control valve 51 in the present embodiment, the flow rate control valve 51 is configured by combining a plurality of on-off valves, and the opening degree is set in multiple stages. Finer control may be performed using a switchable valve.

以上で本発明の実施形態例を説明したが、本発明は上記した各実施形態例に限定されるものではなく、様々な変形例が含まれる。例えば、第一の実施形態例の空気圧縮機では、3つの運転モードを切り替えるように制御するが、複数の運転モード(少なくとも2つの運転モード)を吸込空気温度T1と吸込空気湿度H1に基づいて切り替える他の実施形態としてもよい。また、各実施形態例の温度センサや湿度センサは、その目的を満たすことができれば設置位置は変えてもよい。すなわち、上記した実施例は本発明を分かりやすく説明したものであり、必ずしも説明した構成を備えるものに限定されるものではない。 Although the exemplary embodiments of the present invention have been described above, the present invention is not limited to the above-described exemplary embodiments and includes various modifications. For example, in the air compressor of the first embodiment, control is performed so as to switch between three operation modes, but a plurality of operation modes (at least two operation modes) are performed based on the intake air temperature T1 and the intake air humidity H1. Other embodiments may be used for switching. Further, the temperature sensor and the humidity sensor of each embodiment may be installed at different positions as long as the purpose can be satisfied. That is, the above-described embodiments are provided to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having the described configuration.

1 空気圧縮機
10 圧縮機本体(第一の油温度調節手段)
10a 圧縮室
10b モータ
10c 軸受部
10d 軸受部給油口
10e、10f 圧縮室給油口
20 油分離器
21 吐出空気冷却用熱交換器
22 油冷却用熱交換器
23 送風機(第二の油温度調節手段)
31 吸込空気温度センサ(吸込空気温度検知手段)
32 吸込空気湿度センサ(吸込空気湿度検知手段)
34 油温度センサ
50 気流
51 油流量制御弁(第三の油温度調節手段)
1 Air compressor 10 Compressor body (first oil temperature adjusting means)
10a compression chamber 10b motor 10c bearing part 10d bearing part oil supply port 10e, 10f compression chamber oil supply port 20 oil separator 21 discharge air cooling heat exchanger 22 oil cooling heat exchanger 23 blower (second oil temperature adjusting means)
31 Suction air temperature sensor (suction air temperature detection means)
32 Suction air humidity sensor (suction air humidity detection means)
34 oil temperature sensor 50 air flow 51 oil flow control valve (third oil temperature adjusting means)

Claims (5)

圧縮機本体と、吸込空気を圧縮する前記圧縮機本体の圧縮室と、該圧縮室に潤滑油を供給する給油口と、前記圧縮室から吐出された圧縮空気と潤滑油を分離する油分離器と、前記給油口に供給する潤滑油の温度を調節する油温度調節手段と、前記吸込空気の温度を検知する吸込空気温度検知手段と、前記吸込空気の湿度を検知する吸込空気湿度検知手段と、前記吸込空気温度検知手段と前記吸込空気湿度検知手段の検知情報に基づいて前記油温度調節手段を制御する制御手段とを備え、前記油温度調節手段は、前記圧縮機本体を含むことを特徴とする空気圧縮機。 Compressor main body, compression chamber of the compressor main body for compressing intake air, oil supply port for supplying lubricating oil to the compression chamber, oil separator for separating compressed air discharged from the compression chamber and lubricating oil When an oil temperature adjusting means for adjusting the temperature of the supplied lubricating oil to the fuel supply port, a suction air temperature detecting means for detecting the temperature of the pre-Symbol suction air, the suction air humidity detector that detects humidity of the suction air And a control means for controlling the oil temperature adjusting means based on the detection information of the suction air temperature detecting means and the suction air humidity detecting means , wherein the oil temperature adjusting means includes the compressor body. Characteristic air compressor. 前記吸込空気温度検知手段により検知される吸込空気の温度が略一定で、前記吸込空気湿度検知手段により検知される吸込空気の湿度が上昇した場合に、前記給油口に供給する潤滑油の温度が上昇するように前記油温度調節手段を制御することを特徴とする、請求項1に記載の空気圧縮機。 When the temperature of the suction air detected by the suction air temperature detection means is substantially constant and the humidity of the suction air detected by the suction air humidity detection means rises, the temperature of the lubricating oil supplied to the oil supply port is The air compressor according to claim 1, wherein the oil temperature adjusting means is controlled so as to rise. 潤滑油を冷却する油冷却用熱交換器と、該油冷却用熱交換器に通風する送風機と、を備え、
前記油温度調節手段は、前記送風機を含むことを特徴とする、請求項1または2に記載の空気圧縮機。
An oil cooling heat exchanger for cooling the lubricating oil; and a blower for ventilating the oil cooling heat exchanger,
The oil temperature adjustment means, characterized in that it comprises a pre-Symbol blower, an air compressor according to claim 1 or 2.
前記油分離器の下流側で、前記油冷却用熱交換器に向かう流路と、前記油冷却用熱交換器をバイパスした後に前記流路と合流するバイパス流路と、を備え、
該バイパス流路に潤滑油の流量を制御する油流量制御弁を備えたことを特徴とする、請求項1乃至の何れかに記載の空気圧縮機。
On the downstream side of the oil separator, a flow path toward the oil cooling heat exchanger, and a bypass flow path that merges with the flow path after bypassing the oil cooling heat exchanger,
The air compressor according to any one of claims 1 to 3 , wherein an oil flow rate control valve for controlling a flow rate of the lubricating oil is provided in the bypass passage.
前記給油口に供給する潤滑油の温度を検知する油温度検知手段を備え、該油温度検知手段により検知される潤滑油温度と、前記吸込空気温度検知手段により検知される吸込空気温度と前記吸込空気湿度検知手段により検知される吸込空気湿度とから目標温度を算出し、前記潤滑油温度と前記目標温度との差異を縮小するように、前記油温度調節手段を制御することを特徴とする、請求項1乃至3の何れかに記載の空気圧縮機。 An oil temperature detection means for detecting the temperature of the lubricating oil supplied to the oil supply port is provided, and the lubricating oil temperature detected by the oil temperature detection means, the suction air temperature detected by the suction air temperature detection means, and the suction A target temperature is calculated from the intake air humidity detected by the air humidity detecting means, and the oil temperature adjusting means is controlled so as to reduce the difference between the lubricating oil temperature and the target temperature. The air compressor according to any one of claims 1 to 3.
JP2018522267A 2016-06-10 2016-06-10 air compressor Active JP6715327B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067304 WO2017212623A1 (en) 2016-06-10 2016-06-10 Air compressor

Publications (2)

Publication Number Publication Date
JPWO2017212623A1 JPWO2017212623A1 (en) 2019-04-11
JP6715327B2 true JP6715327B2 (en) 2020-07-01

Family

ID=60578433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018522267A Active JP6715327B2 (en) 2016-06-10 2016-06-10 air compressor

Country Status (4)

Country Link
US (1) US20190136843A1 (en)
JP (1) JP6715327B2 (en)
CN (1) CN109312733B (en)
WO (1) WO2017212623A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1024700B1 (en) * 2016-10-25 2018-06-01 Atlas Copco Airpower Naamloze Vennootschap Controller for controlling the speed of a motor that drives an oil-injected compressor and method for controlling that speed
JP6964545B2 (en) * 2018-03-26 2021-11-10 株式会社日立産機システム Gas compressor
CN112302909B (en) * 2019-07-23 2021-09-14 珠海格力电器股份有限公司 Compressor moisture-proof control method, device and equipment and air conditioner
CN112963332B (en) * 2021-02-25 2023-08-18 胡红婷 Lubricating oil cooling system of air compressor and control method thereof
CN113007071B (en) * 2021-02-25 2023-04-07 杰豹机械有限公司 Energy-saving air compressor system and control method thereof
EP4273399A1 (en) * 2022-05-06 2023-11-08 Volvo Truck Corporation A method of controlling an air compressor of a vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3238241A1 (en) * 1981-12-17 1983-07-21 Gebrüder Sulzer AG, 8401 Winterthur DEVICE FOR THE OIL SUPPLY OF A SCREW COMPRESSOR
JP3456090B2 (en) * 1996-05-14 2003-10-14 北越工業株式会社 Oil-cooled screw compressor
JP3891844B2 (en) * 2002-01-10 2007-03-14 株式会社神戸製鋼所 Oil-cooled compressor
JP4214013B2 (en) * 2003-07-29 2009-01-28 株式会社日立産機システム Oil-cooled air compressor
CN100383388C (en) * 2003-07-30 2008-04-23 株式会社神户制钢所 Compressor
CN103541889B (en) * 2012-07-17 2016-08-31 北越工业株式会社 The suction unit structure of compressor
CN104343683B (en) * 2013-07-31 2017-05-24 株式会社神户制钢所 Oil-cooled air compressor and control method thereof
CN203730251U (en) * 2014-01-22 2014-07-23 美意(浙江)空调设备有限公司 Machine oil cooling system for compressor

Also Published As

Publication number Publication date
WO2017212623A1 (en) 2017-12-14
JPWO2017212623A1 (en) 2019-04-11
CN109312733A (en) 2019-02-05
CN109312733B (en) 2020-04-07
US20190136843A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP6715327B2 (en) air compressor
KR102217500B1 (en) Refrigerant cooling for variable speed drive
CN108139107B (en) Air conditioner and operation method thereof
JP6713439B2 (en) Refueling air compressor
JP6170334B2 (en) Oil-cooled compressor
US10544957B2 (en) Air conditioner and control method therefor
WO2018082282A1 (en) Multi-split system and liquid return prevention control method thereof during defrosting of multi-split system
US10128516B2 (en) Fuel cell system
JP5264365B2 (en) Cooling tower and heat source system
JP5084460B2 (en) Oil-cooled air compressor
KR102023829B1 (en) Air conditioning system
JP2016114286A (en) Air conditioner
CN105387658B (en) Water-cooling cold air type air conditioning equipment and operation method based on equipment
US10995756B2 (en) Air compressor
JP6191490B2 (en) Air conditioner
JP5362311B2 (en) Heat source system
JP2017020722A (en) Air conditioning device
CN205066251U (en) Water-cooling cold air type air conditioning equipment
CN204329388U (en) Air-conditioner
JP2015014372A (en) Air conditioner
CN103649659A (en) Refrigeration appliance having a plurality of chambers
JP2005147541A (en) Multi-chamber type air conditioner
JP2007247936A (en) Air conditioner
JP4169521B2 (en) Air conditioner
JP2009222345A (en) Temperature control device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200608

R150 Certificate of patent or registration of utility model

Ref document number: 6715327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150