JP6710902B2 - Cutting device, cutting method and annular tool - Google Patents

Cutting device, cutting method and annular tool Download PDF

Info

Publication number
JP6710902B2
JP6710902B2 JP2015123064A JP2015123064A JP6710902B2 JP 6710902 B2 JP6710902 B2 JP 6710902B2 JP 2015123064 A JP2015123064 A JP 2015123064A JP 2015123064 A JP2015123064 A JP 2015123064A JP 6710902 B2 JP6710902 B2 JP 6710902B2
Authority
JP
Japan
Prior art keywords
tool
annular tool
annular
workpiece
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015123064A
Other languages
Japanese (ja)
Other versions
JP2017007003A (en
Inventor
孝幸 東
孝幸 東
浩史 渡邉
浩史 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015123064A priority Critical patent/JP6710902B2/en
Publication of JP2017007003A publication Critical patent/JP2017007003A/en
Application granted granted Critical
Publication of JP6710902B2 publication Critical patent/JP6710902B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turning (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、切削装置、切削方法及び環状工具に関する。 The present invention relates to a cutting device, a cutting method and an annular tool.

切削装置では、エンドミル、バイト等の切削工具でチタン合金やインコネル等の難切削材でなる工作物を切削加工すると、切削工具の切れ刃は工作物と大きな切削抵抗力で長時間接触することになるので、切れ刃の接触部分に高温の切削熱が発生し易く、工具寿命が低下するおそれがある。 In cutting equipment, when a workpiece made of difficult-to-cut material such as titanium alloy or Inconel is cut with a cutting tool such as an end mill or a bite, the cutting edge of the cutting tool may contact the workpiece for a long time with a large cutting resistance force. Therefore, high-temperature cutting heat is likely to be generated at the contact portion of the cutting edge, which may shorten the tool life.

そこで、例えば、特許文献1には、回転可能な丸駒形状の切削工具の回転軸線を切削送り方向と平行に配置し、切削工具を回転させながら工具端面をすくい面として工作物を切削加工するロータリー切削方法が提案されている。このロータリー切削方法では、切削工具が回転しているので、切れ刃に発生する切削熱は全周に分散されることになり、工具寿命を向上できる。 Therefore, for example, in Patent Document 1, the rotating axis of a rotatable cutting tool having a round piece shape is arranged in parallel with the cutting feed direction, and a workpiece is cut using the tool end face as a rake face while rotating the cutting tool. A rotary cutting method has been proposed. In this rotary cutting method, since the cutting tool is rotating, the cutting heat generated at the cutting edge is dispersed over the entire circumference, and the tool life can be improved.

特開2006−68831号公報JP, 2006-68831, A

上述のロータリー切削方法では、繋がった切屑が連続的に流出するため、この切屑が主軸や工作物に絡まった場合、切削装置の故障等の問題が発生する。チップブレーカ等を設けた切削工具では、上記問題を解消可能であるが、工具形状が特殊形状となるため工具コストが高くなる傾向にある。また、切削加工中に切屑を切断することが可能な装置が提案されている(特開平5−50301号公報、特開2009−208162号公報参照)が、切削工具としてバイトを用いた切削装置であり、難切削材でなる工作物を切削加工したときは工具寿命が低下するおそれがある。 In the above-described rotary cutting method, the connected chips continuously flow out, so that when the chips are entangled with the spindle or the work, a problem such as a failure of the cutting device occurs. A cutting tool provided with a chip breaker or the like can solve the above problem, but since the tool shape is a special shape, the tool cost tends to increase. Further, a device capable of cutting chips during cutting has been proposed (see Japanese Patent Application Laid-Open Nos. 5-50301 and 2009-208162), but it is a cutting device using a cutting tool as a cutting tool. Therefore, when a workpiece made of a difficult-to-cut material is cut, the tool life may be shortened.

本発明は、このような事情に鑑みてなされたものであり、切削加工中に発生する切屑を分断でき、且つ工具寿命の向上を図ることができる切削装置及び切削方法並びに切削装置及び切削方法に使用される環状工具を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a cutting device, a cutting method, a cutting device, and a cutting method capable of dividing the chips generated during cutting and improving the tool life. The object is to provide an annular tool for use.

(切削装置)
本発明の切削装置は、工具軸線を中心とした連続した円形状の切れ刃を有する環状工具と、前記環状工具を取り付け、前記環状工具を当該環状工具の軸線回りに回転させる工具主軸と、工作物を保持する工作物保持台と、を備え、前記環状工具は、当該環状工具の軸線に直角な方向から見た前記軸線と前記環状工具の外周面との成す角が前記環状工具の回転方向に連続的に変化するように形成され、前記工具主軸及び前記工作物保持台を、加工の際に前記工作物に対して、前記環状工具の外周面がすくい面となり、前記環状工具の端面が逃げ面となる相対位置関係に配置し、前記すくい面の成すすくい角を前記環状工具の回転方向に変化させながら前記環状工具で前記工作物の加工を行う。
(Cutting device)
The cutting device of the present invention includes an annular tool having a continuous circular cutting edge centered on the tool axis, a tool spindle attached with the annular tool, and rotating the annular tool around the axis of the annular tool, and a machining tool. A workpiece holder for holding an object, wherein the annular tool has an angle between the axis of the annular tool and the outer peripheral surface of the annular tool viewed from a direction perpendicular to the axis of the annular tool, and the rotation direction of the annular tool. Is formed so as to continuously change, the tool spindle and the workpiece holder, with respect to the workpiece during machining, the outer peripheral surface of the annular tool is a rake surface, and the end surface of the annular tool is The workpieces are machined by the annular tool while arranging them in a relative positional relationship as a flank and changing the rake angle formed by the rake surface in the rotation direction of the annular tool.

切削加工においては、環状工具のすくい角は、環状工具の回転方向に変化するため、切屑の流出形状、流出方向、流出角度、流出速度は、環状工具の回転中に大きく変化する。よって、切屑は、すくい角の変化のタイミングで分断されて流出し易い。そのため、従来のように繋がった切屑の連続的な流出とはならないので、切屑が工具主軸や工作物に絡まることはない。 In the cutting process, the rake angle of the annular tool changes in the rotation direction of the annular tool, so that the chip outflow shape, the outflow direction, the outflow angle, and the outflow speed greatly change during the rotation of the annular tool. Therefore, the chips are likely to be divided and flow out at the timing of the change of the rake angle. Therefore, since the connected chips do not continuously flow out as in the conventional case, the chips are not entangled with the tool spindle or the workpiece.

(切削方法)
本発明の切削方法は、工具軸線を中心とした連続した円形状の切れ刃を有する環状工具と、前記環状工具を取り付け、前記環状工具を当該環状工具の軸線回りに回転させる工具主軸と、工作物を保持する工作物保持台と、を備え、前記環状工具は、当該環状工具の軸線に直角な方向から見た前記軸線と前記環状工具の外周面との成す角が前記環状工具の回転方向に連続的に変化するように形成される切削装置の切削方法であって、前記工具主軸及び前記工作物保持台を、加工の際に前記工作物に対して、前記環状工具の外周面がすくい面となり、前記環状工具の端面が逃げ面となる相対位置関係に配置する配置工程と、前記すくい面の成すすくい角を前記環状工具の回転方向に変化させながら前記環状工具で前記工作物の加工を行う加工工程と、を備える。本発明の切削方法によれば、上述した切削装置における効果と同様の効果を奏する。
(Cutting method)
The cutting method of the present invention includes an annular tool having a continuous circular cutting edge centered on the tool axis, a tool spindle attached with the annular tool, and rotating the annular tool around the axis of the annular tool, and a machining tool. A workpiece holder for holding an object , wherein the annular tool has an angle between the axis of the annular tool and the outer peripheral surface of the annular tool viewed from a direction perpendicular to the axis of the annular tool, and the rotation direction of the annular tool. to a method of cutting the formed Ru cutting machine as continuously changes, the holding table said tool spindle and said workpiece with respect to the workpiece during processing, the outer peripheral surface of the annular tool rake Surface, and the arranging step of arranging in a relative positional relationship in which the end face of the annular tool is a flank, and machining the workpiece with the annular tool while changing the rake angle formed by the rake face in the rotation direction of the annular tool. And a processing step of performing. According to the cutting method of the present invention, the same effects as the effects of the above-described cutting device can be obtained.

(環状工具)
本発明の環状工具は、工具軸線を中心とした連続した円形状の切れ刃を有し、加工の際に工作物に対して、外周面がすくい面となり端面が逃げ面となる相対位置関係に配置される回転可能な環状工具であって、前記環状工具は、当該環状工具の軸線に直角な方向から見た前記軸線と前記環状工具の外周面との成す角が前記環状工具の回転方向に連続的に変化するように形成され、前記すくい面の成すすくい角を前記環状工具の回転方向に変化させながら前記環状工具で前記工作物の加工を行う。この環状工具による切削加工においては、環状工具のすくい角は、環状工具の回転方向に連続的に変化するため、切屑の流出形状、流出方向、流出角度、流出速度は、環状工具の回転中に大きく変化する。よって、切屑は、すくい角が変化するタイミングで分断されて流出し易くなる。
(Ring tool)
The annular tool of the present invention has a continuous circular cutting edge centered on the tool axis, relative to the workpiece during machining, in a relative positional relationship where the outer peripheral surface is the rake surface and the end surface is the flank surface. A rotatable annular tool to be arranged, the annular tool, the angle between the axis of the annular tool and the outer peripheral surface of the annular tool viewed from a direction perpendicular to the axis of the annular tool is in the rotation direction of the annular tool. The annular tool is formed so as to be continuously changed, and the workpiece is machined by the annular tool while changing the rake angle formed by the rake surface in the rotation direction of the annular tool . In cutting with this annular tool, the rake angle of the annular tool changes continuously in the rotation direction of the annular tool, so the chip outflow shape, outflow direction, outflow angle, and outflow speed are It changes a lot. Therefore, the chips are easily separated and discharged at the timing when the rake angle changes.

本発明の実施の形態に係る切削装置の全体構成を示す図である。It is a figure which shows the whole structure of the cutting device which concerns on embodiment of this invention. 図1の切削装置に用いられる第一形態の環状工具を示す正面図である。It is a front view which shows the annular tool of 1st form used for the cutting device of FIG. 図2Aの環状工具の側面図である。2B is a side view of the annular tool of FIG. 2A. FIG. 第一形態の環状工具による切削加工方法を説明するためのフローチャートである。It is a flow chart for explaining the cutting method by the annular tool of the first form. 第一形態の環状工具によるプランジ方向送りでの円筒切削状態を示す工作物の回転軸線方向から見た図である。It is the figure seen from the rotation axis direction of the workpiece which shows the cylindrical cutting state in plunge direction feed by the annular tool of the first form. 図4Aを工作物の回転軸線に直角な方向から見た図である。It is the figure which looked at Drawing 4A from the direction which intersects perpendicularly at the axis of rotation of a workpiece. 第一形態の環状工具のすくい角が正のときの切屑の流出状態を示す斜視図である。It is a perspective view showing an outflow state of chips when the rake angle of the annular tool of the first embodiment is positive. 図5Aを環状工具の回転軸線に直角であって工作物の回転軸線に平行な方向から見た図である。FIG. 5B is a view of FIG. 5A viewed from a direction perpendicular to the rotation axis of the annular tool and parallel to the rotation axis of the workpiece. 第一形態の環状工具のすくい角が正から負に変わったときの切屑の流出状態を示す斜視図である。It is a perspective view which shows the chip|tip outflow state when the rake angle of the annular tool of 1st form changes from positive to negative. 図6Aを環状工具の回転軸線に直角であって工作物の回転軸線に平行な方向から見た図である。FIG. 6B is a view of FIG. 6A viewed from a direction perpendicular to the rotation axis of the annular tool and parallel to the rotation axis of the workpiece. 第一形態の環状工具のすくい角が負から正に変わったときの切屑の流出状態を示す斜視図である。It is a perspective view which shows the chip|tip outflow state when the rake angle of the annular tool of 1st form changes from negative to positive. 図7Aを環状工具の回転軸線に直角であって工作物の回転軸線に平行な方向から見た図である。FIG. 7B is a view of FIG. 7A viewed from a direction perpendicular to the rotation axis of the annular tool and parallel to the rotation axis of the workpiece. 図1の切削装置に用いられる第一形態の別例の環状工具を示す正面図である。It is a front view which shows the annular tool of another example of the 1st form used for the cutting device of FIG. 図8Aの環状工具のA−A線断面側面図である。It is an AA line sectional side view of the annular tool of FIG. 8A. 図1の切削装置に用いられる第二形態の環状工具を示す正面図である。It is a front view which shows the annular tool of the 2nd form used for the cutting device of FIG. 図9Aの環状工具の側面図である。9B is a side view of the annular tool of FIG. 9A. FIG. 第二形態の環状工具による切削加工方法を説明するためのフローチャートである。It is a flow chart for explaining the cutting method by the annular tool of the second form. 第二形態の環状工具のすくい角が正のときの切屑の流出状態を示す斜視図である。It is a perspective view which shows the chip|tip outflow state when the rake angle of the annular tool of a 2nd form is positive. 図11Aを環状工具の回転軸線に直角であって工作物の回転軸線に平行な方向から見た図である。FIG. 11A is a view of FIG. 11A viewed from a direction that is perpendicular to the rotation axis of the annular tool and is parallel to the rotation axis of the workpiece. 第二形態の環状工具のすくい角が正から負に変わったときの切屑の流出状態を示す斜視図である。It is a perspective view which shows the chip|tip outflow state when the rake angle of the annular tool of a 2nd form changes from positive to negative. 図12Aを環状工具の回転軸線に直角であって工作物の回転軸線に平行な方向から見た図である。FIG. 12B is a view of FIG. 12A viewed from a direction perpendicular to the rotation axis of the annular tool and parallel to the rotation axis of the workpiece. 第二形態の環状工具のすくい角が負から正に変わったときの切屑の流出状態を示す斜視図である。It is a perspective view which shows the chip|tip outflow state when the rake angle of the annular tool of 2nd form changes from negative to positive. 図13Aを環状工具の回転軸線に直角であって工作物の回転軸線に平行な方向から見た図である。FIG. 13B is a view of FIG. 13A viewed from a direction perpendicular to the rotation axis of the annular tool and parallel to the rotation axis of the workpiece. 図2A,図2Bの環状工具によるトラバース方向送りでの円筒切削状態を示す工作物の回転軸線に直角な方向であって環状工具を正面から見た図である。It is the figure which looked at the annular tool from the front in the direction at right angles to the rotation axis of the workpiece which shows the cylindrical cutting state in the traverse direction feed by the annular tool of FIGS. 2A and 2B. 図14Aを工作物の回転軸線に直角な方向であって環状工具を側面から見た図である。FIG. 14B is a side view of the annular tool taken in the direction perpendicular to the rotation axis of the workpiece in FIG. 14A. 図2A,図2Bの環状工具による平面切削状態を示す平面に直角な方向から見た図である。It is the figure seen from the direction orthogonal to the plane which shows the state of plane cutting by the annular tool of Drawing 2A and Drawing 2B. 図15Aを平面に平行な方向から見た図である。It is the figure which looked at FIG. 15A from the direction parallel to a plane.

(1.切削装置の機械構成)
図1に示すように、切削装置1は、工作物保持台10と、ベッド20と、心押し台30と、往復台40と、送り台50と、チルト台60と、刃物台70と、制御装置80等とを備える。なお、以下の説明では、工作物保持台10に設けられている回転主軸11の回転主軸線Rw方向をZ軸線方向、回転主軸11の回転主軸線Rw方向と水平面内で直交する方向をX軸線方向、Z軸線方向及びX軸線方向と直交する方向をY軸線方向と称する。
(1. Mechanical configuration of cutting device)
As shown in FIG. 1, the cutting apparatus 1 includes a workpiece holding table 10, a bed 20, a tailstock 30, a carriage 40, a feed table 50, a tilt table 60, a tool table 70, and a control. The device 80 and the like. In the following description, the rotation spindle Rw direction of the rotation spindle 11 provided on the workpiece holder 10 is the Z-axis direction, and the direction orthogonal to the rotation spindle Rw direction of the rotation spindle 11 in the horizontal plane is the X-axis line. The direction, the Z axis direction, and the direction orthogonal to the X axis direction are referred to as the Y axis direction.

工作物保持台10は、直方体状に形成され、ベッド20上に設置される。工作物保持台10には、回転主軸11が回転主軸線Rw回りに回転可能に設けられる。回転主軸11には、一端側に工作物Wの一端側の周面を把持可能な爪12aを備えたチャック12が取り付けられる。回転主軸11は、工作物保持台10内に収容された主軸モータ13により回転駆動される。 The work holding table 10 is formed in a rectangular parallelepiped shape and is installed on the bed 20. A rotary spindle 11 is provided on the workpiece holder 10 so as to be rotatable around a rotary spindle Rw. A chuck 12 having a pawl 12a capable of gripping the peripheral surface of the workpiece W on one end side is attached to the rotary spindle 11 at one end side. The rotary spindle 11 is rotationally driven by a spindle motor 13 housed in the workpiece holder 10.

ベッド20は、直方体状に形成され、回転主軸11の下方において工作物保持台10からZ軸線方向に延びるように床上に設置される。ベッド20の上面には、心押し台30及び往復台40が摺動可能な一対のZ軸ガイドレール21a,21bが、Z軸線方向に延びるように、且つ、相互に平行に設けられる。さらに、ベッド20には、一対のZ軸ガイドレール21a,21bの間に、往復台40をZ軸線方向に駆動するための、図略のZ軸ボールねじが配置され、このZ軸ボールねじを回転駆動するZ軸モータ22が配置される。 The bed 20 is formed in a rectangular parallelepiped shape, and is installed on the floor so as to extend in the Z-axis direction from the workpiece holding table 10 below the rotary spindle 11. On the upper surface of the bed 20, a pair of Z-axis guide rails 21a and 21b, on which the tailstock 30 and the carriage 40 can slide, are provided so as to extend in the Z-axis direction and parallel to each other. Further, in the bed 20, an unillustrated Z-axis ball screw for driving the carriage 40 in the Z-axis direction is arranged between the pair of Z-axis guide rails 21a and 21b. A Z-axis motor 22 that is rotationally driven is arranged.

心押し台30は、ベッド20に対してZ軸線方向に移動可能なように、一対のZ軸ガイドレール21a,21b上に設けられる。心押し台30には、チャック12に把持された工作物Wの自由端面を支持可能なセンタ31が設けられる。すなわち、センタ31は、センタ31の軸線が回転主軸11の回転主軸線Rwと一致するように心押し台30に設けられる。 The tailstock 30 is provided on the pair of Z-axis guide rails 21a and 21b so as to be movable in the Z-axis direction with respect to the bed 20. The tailstock 30 is provided with a center 31 capable of supporting the free end surface of the workpiece W gripped by the chuck 12. That is, the center 31 is provided on the tailstock 30 so that the axis of the center 31 coincides with the rotation main axis Rw of the rotation main shaft 11.

往復台40は、矩形板状に形成され、ベッド20に対してZ軸線方向に移動可能なように、一対のZ軸ガイドレール21a,21b上の工作物保持台10と心押し台30との間に設けられる。往復台40の上面には、送り台50が摺動可能な一対のX軸ガイドレール41a,41bが、X軸線方向に延びるように、且つ、相互に平行に設けられる。さらに、往復台40には、一対のX軸ガイドレール41a,41bの間に、送り台50をX軸線方向に駆動するための、図略のX軸ボールねじが配置され、このX軸ボールねじを回転駆動するX軸モータ42が配置される。 The carriage 40 is formed in a rectangular plate shape, and is composed of the workpiece holder 10 and the tailstock 30 on the pair of Z-axis guide rails 21a and 21b so as to be movable in the Z-axis direction with respect to the bed 20. It is provided between. On the upper surface of the carriage 40, a pair of X-axis guide rails 41a and 41b on which the feed table 50 can slide are provided so as to extend in the X-axis direction and parallel to each other. Further, on the carriage 40, an X-axis ball screw (not shown) for driving the feed table 50 in the X-axis direction is arranged between the pair of X-axis guide rails 41a and 41b. An X-axis motor 42 for rotating and driving is arranged.

送り台50は、矩形板状に形成され、往復台40に対してX軸線方向に移動可能なように、一対のX軸ガイドレール41a,41b上に設けられる。送り台50の上面には、チルト台60を支持する一対のチルト台支持部61がZ軸線方向に所定間隔をあけて配置される。 The feed table 50 is formed in a rectangular plate shape, and is provided on the pair of X-axis guide rails 41a and 41b so as to be movable in the X-axis direction with respect to the carriage 40. On the upper surface of the feed table 50, a pair of tilt table support portions 61 that support the tilt table 60 are arranged at predetermined intervals in the Z-axis direction.

チルト台60は、クレードル状に形成され、送り台50に対してチルト軸線Rc回りに回転(揺動)可能なように、一対のチルト台支持部61に支持される。チルト台60の上面には、刃物台70が配置される。一方のチルト台支持部61には、チルト台60をチルト軸線Rc回りに回転(揺動)駆動するチルトモータ62が配置される。 The tilt table 60 is formed in a cradle shape, and is supported by a pair of tilt table support portions 61 so as to be rotatable (swingable) about the tilt axis Rc with respect to the feed table 50. A tool rest 70 is arranged on the upper surface of the tilt base 60. A tilt motor 62 that drives the tilt table 60 to rotate (swing) around the tilt axis Rc is arranged on one tilt table support 61.

刃物台70には、工具主軸71が工具軸線Rt回りに回転可能に設けられる。そして、刃物台70には、工具主軸71を工具軸線Rt回りに回転駆動する工具用モータ72が配置される。工具主軸71には、後述する環状工具90A,90B又は90Cがチャッキングされる。また、刃物台70には、環状工具90A,90B又は90Cを冷却するための切削油を供給する図略の切削油供給装置と繋がる供給ノズル73が備えられる。 A tool spindle 71 is provided on the tool rest 70 so as to be rotatable around the tool axis Rt. A tool motor 72 that drives the tool spindle 71 to rotate around the tool axis Rt is disposed on the tool rest 70. An annular tool 90A, 90B, or 90C described later is chucked on the tool spindle 71. Further, the tool rest 70 is provided with a supply nozzle 73 connected to a cutting oil supply device (not shown) for supplying cutting oil for cooling the annular tools 90A, 90B or 90C.

制御装置80は、主軸回転制御部81と、往復台移動制御部82と、送り台移動制御部83と、チルト制御部84と、工具回転制御部85とを備える。ここで、各部81〜85は、それぞれ個別のハードウエアによる構成することもできるし、ソフトウエアによりそれぞれ実現する構成とすることもできる。 The controller 80 includes a spindle rotation controller 81, a carriage movement controller 82, a feed carriage movement controller 83, a tilt controller 84, and a tool rotation controller 85. Here, each of the units 81 to 85 may be configured by individual hardware, or may be implemented by software.

主軸回転制御部81は、主軸モータ13を制御して回転主軸11を所定の回転数で回転駆動させる。
往復台移動制御部82は、Z軸モータ22を制御して往復台40を一対のZ軸ガイドレール21a,21bに沿って往復移動させる。
The spindle rotation control unit 81 controls the spindle motor 13 to drive the rotating spindle 11 to rotate at a predetermined rotation speed.
The carriage movement control unit 82 controls the Z-axis motor 22 to reciprocate the carriage 40 along the pair of Z-axis guide rails 21a and 21b.

送り台移動制御部83は、X軸モータ42を制御して送り台50を一対のX軸ガイドレール41a,41bに沿って往復移動させる。
チルト制御部84は、チルトモータ62を制御してチルト台60を回転(揺動)駆動させる。
工具回転制御部85は、工具用モータ72を制御して環状工具90A,90B又は90Cを工具主軸71とともに回転駆動させる。
The feed base movement control unit 83 controls the X-axis motor 42 to reciprocate the feed base 50 along the pair of X-axis guide rails 41a and 41b.
The tilt control unit 84 controls the tilt motor 62 to rotate (swing) the tilt table 60.
The tool rotation control unit 85 controls the tool motor 72 to rotate the annular tool 90A, 90B or 90C together with the tool spindle 71.

制御装置80は、チルトモータ62を制御して環状工具90A,90B又は90Cを所定角度に傾斜させ、主軸モータ13及び工具用モータ72を制御して、工作物Wを回転させるとともに環状工具90A,90B又は90Cを回転させ、X軸モータ42及びZ軸モータ22を制御して、工作物Wと環状工具90A,90B又は90CとをX軸方向及びZ軸方向に相対移動することにより、環状工具90A,90B又は90Cの外周面を工作物Wに切り込ませて工作物Wの切削加工を行う。 The control device 80 controls the tilt motor 62 to incline the annular tool 90A, 90B or 90C at a predetermined angle, controls the spindle motor 13 and the tool motor 72 to rotate the work W and the annular tool 90A, By rotating 90B or 90C and controlling the X-axis motor 42 and the Z-axis motor 22 to relatively move the workpiece W and the annular tool 90A, 90B or 90C in the X-axis direction and the Z-axis direction, the annular tool The outer peripheral surface of 90A, 90B or 90C is cut into the work W to perform the cutting work of the work W.

(2.第一形態の環状工具の形状)
図2A及び図2Bに示すように、第一形態の環状工具90Aは、斜円錐台状の工具本体91Aと、工具本体91Aの根元側の小径端面91Aaから延び且つ工具軸線Rtを中心軸線とする円柱状の工具軸92Aとで構成される。工具本体91Aの外周面は、斜円錐面状のすくい面91Abとして形成され、工具本体91Aの大径端面は、平坦な逃げ面91Acとして形成される。そして、工具本体91Aのすくい面91Abと逃げ面91Acとの成す稜線は、連続した円形状、すなわち途中で分断されていない円形状の切れ刃91Arとして形成される。
(2. Shape of the annular tool of the first embodiment)
As shown in FIGS. 2A and 2B, an annular tool 90A of the first embodiment extends from a tool body 91A having a truncated cone shape and a small diameter end surface 91Aa on the root side of the tool body 91A, and has a tool axis Rt as a central axis. It is composed of a cylindrical tool shaft 92A. The outer peripheral surface of the tool main body 91A is formed as a rake surface 91Ab having an inclined conical surface shape, and the large-diameter end surface of the tool main body 91A is formed as a flat flank surface 91Ac. The ridgeline formed by the rake face 91Ab and the flank face 91Ac of the tool body 91A is formed as a continuous circular shape, that is, a circular cutting edge 91Ar that is not divided in the middle.

すくい面91Abは、斜円錐面状に形成されているため、工具軸線Rtに対し直角な方向から見たときの工具軸線Rtとすくい面91Abとの成す角βは、逃げ面91Acの円周方向に変化する。換言すると、本例の環状工具90Aでは、工具軸線Rtに対し直角な方向から見たときのすくい面91Abと逃げ面91Acとの成す刃先角αは、逃げ面91Acの円周方向に変化する。具体的には、図2Aに示す工具軸線Rtと小径端面91Aaの中心軸線Raとに直角な直線Hに対し直角な方向から見た図2Bに示すように、最小の刃先角はαs、最大の刃先角はαbとなり、刃先角αは逃げ面91Acの円周方向にαsからαbの間で変化する。最小の刃先角αsは、切れ刃91Arの強度を保持するため、45度以上、好ましくは70度から80度で形成され、最大の刃先角αbは、90度で形成されている。 Since the rake face 91Ab is formed in the shape of an inclined conical surface, the angle β formed between the tool axis Rt and the rake face 91Ab when viewed from the direction perpendicular to the tool axis Rt is the circumferential direction of the flank 91Ac. Changes to. In other words, in the annular tool 90A of this example, the cutting edge angle α formed by the rake face 91Ab and the flank face 91Ac when viewed from the direction perpendicular to the tool axis Rt changes in the circumferential direction of the flank face 91Ac. Specifically, as shown in FIG. 2B when viewed from a direction perpendicular to a straight line H that is perpendicular to the tool axis Rt shown in FIG. 2A and the central axis Ra of the small diameter end surface 91Aa, the minimum cutting edge angle is αs and the maximum cutting edge angle is αs. The cutting edge angle is αb, and the cutting edge angle α changes in the circumferential direction of the flank 91Ac between αs and αb. In order to maintain the strength of the cutting edge 91Ar, the minimum cutting edge angle αs is formed at 45 degrees or more, preferably 70 degrees to 80 degrees, and the maximum cutting edge angle αb is formed at 90 degrees.

(3.第一形態の環状工具を用いた切削加工方法)
次に、第一形態の環状工具90Aを用いた切削方法を、図3のフローチャート、図4A,Bの切削加工開始状態図及び図5A,B−7A,Bの切削加工状態図を参照して円筒状の工作物Wの外周面Wsを周方向に切削加工する場合、すなわちプランジ方向送りで切削加工する場合について説明する。なお、初期状態においては、環状工具90Aの工具軸線RtとX軸線とが平行になるように、チルト台60を位置決めしているとする。
(3. Cutting method using the annular tool of the first embodiment)
Next, the cutting method using the annular tool 90A of the first embodiment will be described with reference to the flowchart of FIG. 3, the cutting start state diagram of FIGS. 4A and 4B, and the cutting process state diagrams of FIGS. 5A, B-7A, and B. A case of cutting the outer peripheral surface Ws of the cylindrical work W in the circumferential direction, that is, a case of cutting by plunge direction feed will be described. In the initial state, the tilt table 60 is positioned so that the tool axis Rt of the annular tool 90A and the X axis are parallel to each other.

先ず、制御装置80は、チルト台60をチルト軸線Rc回りで回転(揺動)させ、環状工具90Aの工具軸線Rtを傾斜させる(図3のステップS1)。具体的には、チルト制御部84は、チルトモータ62を制御してチルト台60をチルト軸線Rc回りで回転(揺動)駆動させ、環状工具90Aの工具軸線Rtを以下の状態になるまで傾斜させる。すなわち、図4A,Bに示すように、工作物Wの回転主軸線Rwと直角であって工作物Wの外周面Wsの切削点Ptを通る直線Ltを、工作物Wの回転主軸線Rwを中心に切削方向Gに所定角度θ傾斜させ、得られる直線Lcと平行になるように、環状工具90Aの工具軸線Rtを傾斜させる。 First, the control device 80 rotates (swings) the tilt table 60 around the tilt axis Rc to incline the tool axis Rt of the annular tool 90A (step S1 in FIG. 3). Specifically, the tilt control unit 84 controls the tilt motor 62 to rotate (swing) the tilt table 60 around the tilt axis Rc, and tilts the tool axis Rt of the annular tool 90A until the following state is achieved. Let That is, as shown in FIGS. 4A and 4B, a straight line Lt that is perpendicular to the rotation main axis Rw of the workpiece W and passes through the cutting point Pt on the outer peripheral surface Ws of the work W is defined as the rotation main axis Rw of the work W. The tool axis Rt of the annular tool 90A is tilted so as to be parallel to the obtained straight line Lc by inclining the cutting direction G by a predetermined angle θ with respect to the center.

次に、制御装置80は、環状工具90Aを工具軸線Rt回りで回転方向rtに回転させるとともに、工作物Wを回転主軸線Rw回りで回転方向rwに回転させる(図3のステップS2)。具体的には、工具回転制御部85は、工具用モータ72を制御して環状工具90Aを工具主軸71とともに回転駆動させ、主軸回転制御部81は、主軸モータ13を制御して回転主軸11を回転駆動させる。 Next, the controller 80 rotates the annular tool 90A in the rotation direction rt around the tool axis Rt, and rotates the workpiece W in the rotation direction rw around the rotation main axis Rw (step S2 in FIG. 3 ). Specifically, the tool rotation control unit 85 controls the tool motor 72 to rotate the annular tool 90A together with the tool spindle 71, and the spindle rotation control unit 81 controls the spindle motor 13 to drive the rotation spindle 11. Drive to rotate.

そして、制御装置80は、工作物Wの外周面Wsの切削点Ptに環状工具90Aの切れ刃91Arを位置決めする(図3のステップS3)。具体的には、往復台移動制御部82は、Z軸モータ22を制御して往復台40を一対のZ軸ガイドレール21a,21bに沿って移動させ、送り台移動制御部83は、X軸モータ42を制御して送り台50を一対のX軸ガイドレール41a,41bに沿って移動させることで、工作物Wの外周面Wsの切削点Ptに環状工具90Aの切れ刃91Arを位置決めする。 Then, the control device 80 positions the cutting edge 91Ar of the annular tool 90A at the cutting point Pt on the outer peripheral surface Ws of the workpiece W (step S3 in FIG. 3 ). Specifically, the carriage movement control unit 82 controls the Z-axis motor 22 to move the carriage 40 along the pair of Z-axis guide rails 21a and 21b, and the feed carriage movement control unit 83 controls the X-axis. By controlling the motor 42 and moving the feed table 50 along the pair of X-axis guide rails 41a and 41b, the cutting edge 91Ar of the annular tool 90A is positioned at the cutting point Pt on the outer peripheral surface Ws of the workpiece W.

そして、制御装置80は、環状工具90Aを工作物Wに対しX軸線方向に移動させて工作物Wの外周面Wsを周方向に切削加工する(図3のステップS4)。具体的には、送り台移動制御部83は、X軸モータ42を制御して送り台50を一対のX軸ガイドレール41a,41bに沿って移動させることで、環状工具90Aで工作物Wの外周面Wsを周方向に切削加工する。 Then, the control device 80 moves the annular tool 90A with respect to the workpiece W in the X-axis direction to cut the outer peripheral surface Ws of the workpiece W in the circumferential direction (step S4 in FIG. 3 ). Specifically, the feed base movement control unit 83 controls the X-axis motor 42 to move the feed base 50 along the pair of X-axis guide rails 41a and 41b, so that the workpiece W is moved by the annular tool 90A. The outer peripheral surface Ws is cut in the circumferential direction.

上述の切削加工においては、環状工具90Aの逃げ面91Acの成す逃げ角δは、環状工具90Aの回転方向rtに一定に保たれ、環状工具90Aのすくい面91Abの成すすくい角φは、環状工具90Aの回転方向rtに連続的に変化する。すなわち、環状工具90Aの一回転の間にすくい角φの正負が入れ替わる。このため、切屑の流出形状、流出方向、流出角度、流出速度は、環状工具90Aの一回転の間で大きく変化する。よって、切屑は、すくい角φの正負が入れ替わるタイミングで分断されて流出し易く、従来のように繋がった切屑の連続的な流出とはならないので、切屑が工具主軸71や工作物Wに絡まることはない。 In the above cutting process, the clearance angle δ formed by the flank surface 91Ac of the annular tool 90A is kept constant in the rotation direction rt of the annular tool 90A, and the rake angle φ formed by the rake surface 91Ab of the annular tool 90A is the annular tool. It continuously changes in the rotation direction rt of 90A. That is, the positive and negative of the rake angle φ are switched during one rotation of the annular tool 90A. Therefore, the outflow shape, the outflow direction, the outflow angle, and the outflow speed of the chips greatly change during one rotation of the annular tool 90A. Therefore, the chips are likely to be divided and flow out at the timing when the positive and negative of the rake angle φ are exchanged, and the connected chips do not continuously flow out as in the conventional case, and the chips are entangled with the tool spindle 71 and the workpiece W. There is no.

具体的には、図5A,Bは、正のすくい角φpのときの切屑K1の流出状態を示し、図6A,Bは、正のすくい角φpから負のすくい角φmになったときの切屑K2の流出状態及び分断された切屑K1の放出状態を示し、図7A,Bは、負のすくい角φmから正のすくい角φpになったときの切屑K3の流出状態及び分断された切屑K2の放出状態を示す。 Specifically, FIGS. 5A and 5B show an outflow state of the chip K1 at a positive rake angle φp, and FIGS. 6A and B show chips at a positive rake angle φp to a negative rake angle φm. 7A and 7B show the outflow state of K2 and the released state of the separated chips K1, and FIGS. 7A and 7B show the outflow state of the chips K3 and the divided chips K2 when the negative rake angle φm changes to the positive rake angle φp. The release state is shown.

図5A,B−図7A,Bから明らかなように、切屑K1,K2,K3の流出形状は、正のすくい角φpのときの切屑K1,K3の流出形状は、負のすくい角φmのときの切屑K2の流出形状と比較して、切れ刃91Arの工作物Wに対する切込み量が大きいため幅広となる。正のすくい角φpのときの切屑K1,K3の流出方向及び流出角度は、負のすくい角φmのときの切屑K2の流出方向及び流出角度と比較してすくい面91Abの傾斜が緩いため、負のすくい角φmのときはX軸線に略平行な方向に流出していたのに対し、正のすくい角φpのときはX軸線に対しすくい面側に傾斜した方向に流出する。正のすくい角φpのときの切屑K1,K3の流出速度は、負のすくい角φmのときの切屑K2の流出速度と比較して、すくい面91Abに接触する部分が多いため高速となる。よって、切屑K1,K2,K3は、正負のすくい角φp、φmが入れ替わるタイミングで分断される。 As is clear from FIGS. 5A, B-FIGS. 7A, B, the outflow shape of the chips K1, K2, K3 is a positive rake angle φp, and the outflow shape of the chips K1, K3 is a negative rake angle φm. Compared with the outflow shape of the chip K2, the cutting amount of the cutting edge 91Ar with respect to the workpiece W is large, and thus the width is wide. The outflow direction and outflow angle of the chips K1 and K3 at a positive rake angle φp are negative because the rake face 91Ab is more inclined than the outflow direction and outflow angle of the chip K2 at a negative rake angle φm. When the rake angle was φm, it flowed out in a direction substantially parallel to the X-axis line, whereas when it was a positive rake angle φp, it flowed out in a direction inclined to the rake face side with respect to the X-axis line. The outflow speed of the chips K1 and K3 at the positive rake angle φp is higher than the outflow speed of the chip K2 at the negative rake angle φm because there are many portions in contact with the rake face 91Ab. Therefore, the chips K1, K2, K3 are divided at the timing when the positive and negative rake angles φp, φm are exchanged.

そして、制御装置80は、切削加工が完了したか否かを判断し(図3のステップS5)、切削加工が完了していないと判断したときは切削加工を継続する。一方、切削加工が完了したと判断したときは次工作物Wの有無を判断し(図3のステップS6)、次工作物Wが有ると判断したときは現工作物Wを次工作物Wと交換し(図3のステップS7)、ステップS1に戻って上述の処理を繰り返す。一方、次工作物Wが無いと判断したときは環状工具の回転を停止し(図3のステップS8)、全ての処理を終了する。 Then, the control device 80 determines whether or not the cutting work is completed (step S5 in FIG. 3 ), and when it is determined that the cutting work is not completed, continues the cutting work. On the other hand, when it is determined that the cutting process is completed, the presence or absence of the next workpiece W is determined (step S6 in FIG. 3), and when it is determined that the next workpiece W is present, the current workpiece W is set as the next workpiece W. Exchange (step S7 of FIG. 3), return to step S1, and repeat the above-mentioned processing. On the other hand, when it is determined that there is no next workpiece W, the rotation of the annular tool is stopped (step S8 in FIG. 3), and all the processes are finished.

(4.第一形態の環状工具の別例の形状)
第一形態の環状工具90Aは、工具本体91Aの外周面を斜円錐面状のすくい面91Abとして形成したが、以下のような形状の環状工具90Cであってもよい。すなわち、図8A,Bに示すように、環状工具90Cは、工具本体91Cの小径端面91Caの輪郭形状cvを複数の波形凹凸状(花弁形状)に形成し、逃げ面91Ccの輪郭形状(切れ刃91Cr)を円形状に形成し、小径端面91Caの輪郭形状cvと逃げ面91Ccの輪郭形状(切れ刃91Cr)とを滑らかな面で繋いだ凹凸曲面状のすくい面91Cbを有する。
(4. Shape of another example of the annular tool of the first embodiment)
In the annular tool 90A of the first embodiment, the outer peripheral surface of the tool body 91A is formed as the rake surface 91Ab having the shape of an oblique cone, but the annular tool 90C having the following shape may be used. That is, as shown in FIGS. 8A and 8B, in the annular tool 90C, the contour shape cv of the small-diameter end surface 91Ca of the tool body 91C is formed into a plurality of corrugated irregularities (petal shape), and the contour shape of the flank surface 91Cc (cutting edge). 91Cr) is formed in a circular shape, and has a concave-convex curved surface-shaped rake surface 91Cb in which the contour shape cv of the small-diameter end surface 91Ca and the contour shape of the flank 91Cc (cutting edge 91Cr) are connected by a smooth surface.

つまり、小径端面91Caの輪郭形状cvは、逃げ面91Ccの輪郭形状(切れ刃91Cr)と、この輪郭形状(切れ刃91Cr)より小径の二点鎖線で示す円形状の輪郭形状ccvとに沿って正弦波状の波形を形成した形状、すなわち最大径が輪郭形状(切れ刃91Cr)の径Dvの6つの円弧状部分911cvと、最小径が輪郭形状ccvの径dvの6つの円弧状部分912cvとが交互に出現する複数の花弁状に形成される。 That is, the contour shape cv of the small-diameter end surface 91Ca follows the contour shape (cutting edge 91Cr) of the flank surface 91Cc and the circular contour shape ccv indicated by a two-dot chain line with a diameter smaller than this contour shape (cutting edge 91Cr). A shape in which a sinusoidal waveform is formed, that is, six arc-shaped portions 911cv whose maximum diameter is the diameter Dv of the contour shape (cutting edge 91Cr) and six arc-shaped portions 912cv whose diameter is the minimum diameter of the contour shape ccv are formed. It is formed into a plurality of petals that appear alternately.

このような形状の環状工具91Cでも、環状工具91Aと同様に刃先角が逃げ面91Ccの円周方向に変化するので、環状工具90Cの一回転の間にすくい角の正負を入れ替えることができ、切屑の流出形状、流出方向、流出角度、流出速度は、環状工具90Cの一回転の間で大きく変化する。よって、切屑は、すくい角の正負が入れ替わるタイミングで分断されて流出し易く、従来のように繋がった切屑の連続的な流出とはならないので、切屑が工具主軸71や工作物Wに絡まることはない。 Even in the annular tool 91C having such a shape, since the cutting edge angle changes in the circumferential direction of the flank 91Cc like the annular tool 91A, the positive and negative of the rake angle can be exchanged during one rotation of the annular tool 90C, The outflow shape, outflow direction, outflow angle, and outflow speed of the chips greatly change during one rotation of the annular tool 90C. Therefore, the chips are likely to be separated and flow out at the timing when the positive and negative of the rake angle are switched, and the connected chips do not continuously flow out as in the conventional case, so that the chips are not entangled with the tool spindle 71 or the workpiece W. Absent.

(5.第二形態の環状工具の形状)
図9A及び図9Bに示すように、第二形態の環状工具90Bは、直円錐台状の工具本体91Bと、工具本体91Bの根元側の小径端面91Baから延びる円柱状の工具軸92Bとで構成される。工具本体91Bの外周面は、直円錐面状のすくい面91Bbとして形成され、工具本体91Bの大径端面は、平坦な逃げ面91Bcとして形成される。そして、工具本体91Bのすくい面91Bbと逃げ面91Bcとの成す稜線は、連続した円形状、すなわち途中で分断されていない円形状の切れ刃91Brとして形成される。工具軸線Rtに対し直角な方向から見たときの環状工具90Bのすくい面91Bbと逃げ面91Bcとの成す環状工具90Bの刃先角αは、切れ刃91Brの強度を保持するため、45度以上、好ましくは70度から80度で形成される。
(5. Shape of the second embodiment annular tool)
As shown in FIGS. 9A and 9B, an annular tool 90B of the second embodiment is configured by a right circular truncated cone-shaped tool main body 91B and a cylindrical tool shaft 92B extending from a small-diameter end surface 91Ba on the root side of the tool main body 91B. To be done. The outer peripheral surface of the tool body 91B is formed as a right conical rake face 91Bb, and the large-diameter end surface of the tool body 91B is formed as a flat flank 91Bc. The ridgeline formed by the rake face 91Bb and the flank face 91Bc of the tool body 91B is formed as a continuous circular shape, that is, a circular cutting edge 91Br that is not divided in the middle. The cutting edge angle α of the annular tool 90B formed by the rake surface 91Bb and the flank surface 91Bc of the annular tool 90B when viewed from the direction perpendicular to the tool axis Rt is 45 degrees or more in order to maintain the strength of the cutting edge 91Br, It is preferably formed at 70 to 80 degrees.

(6.第二形態の環状工具を用いた切削加工方法)
次に、第二形態の環状工具90Bを用いた切削方法を、図10のフローチャート及び図11A,B−図13A,Bの切削加工状態図を参照して円筒状の工作物Wの外周面Wsを周方向に切削加工する場合、すなわちプランジ方向送りで切削加工する場合について説明する。なお、図10におけるステップS1,S2,S3,S5,S6,S7,S8の動作は、図3のステップS1,S2,S3,S5,S6,S7,S8の動作と同一であるので、同一番号を付して詳細な説明は省略する。また、図12A,Bに示すように、制御装置100は、工作物Wの外周面Wsの第1切削点Pt1に対し工作物Wの回転方向rwに外周面Wsに沿って角度εだけ回転した工作物Wの外周面Wsの位置を第2切削点Pt2として予め設定しておく。
(6. Cutting method using the annular tool of the second embodiment)
Next, the cutting method using the annular tool 90B of the second embodiment will be described with reference to the flow chart of FIG. 10 and the cutting processing state diagrams of FIGS. 11A, 11B and 13A, B. A case of cutting in the circumferential direction, that is, a case of cutting by plunge feed will be described. The operations of steps S1, S2, S3, S5, S6, S7 and S8 in FIG. 10 are the same as the operations of steps S1, S2, S3, S5, S6, S7 and S8 of FIG. Is attached and detailed description is omitted. As shown in FIGS. 12A and 12B, the control device 100 rotates the first cutting point Pt1 on the outer peripheral surface Ws of the workpiece W by the angle ε along the outer peripheral surface Ws in the rotation direction rw of the workpiece W. The position of the outer peripheral surface Ws of the workpiece W is preset as the second cutting point Pt2.

先ず、制御装置80は、チルト台60をチルト軸線Rc回りで回転(揺動)させ、環状工具90Bの工具軸線Rtを傾斜させ(図3のステップS1)、環状工具90Bを工具軸線Rt回りで回転方向rtに回転させるとともに、工作物Wを回転主軸線Rw回りで回転方向rwに回転させ(図3のステップS2)、工作物Wの外周面Wsの第1切削点Pt1に環状工具90Bの切れ刃91Brを位置決めする(図3のステップS3)。 First, the control device 80 rotates (swings) the tilt base 60 around the tilt axis Rc to incline the tool axis Rt of the annular tool 90B (step S1 in FIG. 3) and moves the annular tool 90B around the tool axis Rt. While rotating in the rotation direction rt, the workpiece W is rotated in the rotation direction rw around the rotation main axis Rw (step S2 in FIG. 3), and the annular tool 90B is attached to the first cutting point Pt1 on the outer peripheral surface Ws of the workpiece W. The cutting edge 91Br is positioned (step S3 in FIG. 3).

次に、制御装置100は、環状工具90Bを工作物Wに対しX軸線方向及びY軸線方向に相対移動させて工作物Wの外周面Wsを周方向に切削加工する。すなわち、この場合は環状工具90Bを工作物Wの回転主軸線Rw回りに角度εの円弧を描くように時計回り及び反時計回りに旋回させ、工作物Wの外周面Wsを周方向に切削加工する(図3のステップS14)。 Next, the control device 100 relatively moves the annular tool 90B with respect to the workpiece W in the X-axis direction and the Y-axis direction to machine the outer peripheral surface Ws of the workpiece W in the circumferential direction. That is, in this case, the annular tool 90B is turned clockwise and counterclockwise so as to draw an arc of an angle ε around the rotation main axis Rw of the workpiece W, and the outer peripheral surface Ws of the workpiece W is cut in the circumferential direction. (Step S14 in FIG. 3).

具体的には、送り台移動制御部83は、X軸モータ42を制御して送り台50を一対のX軸ガイドレール41a,41bに沿って移動させるとともに、チルト制御部84は、チルトモータ62を制御してチルト台60をチルト軸線Rc回りで回転(揺動)駆動させることで、以下の切削動作を行う。すなわち、送り台移動制御部83及びチルト制御部84は、環状工具90Bが工具軸線Rt回りに1回転する毎に、環状工具90Bの切れ刃91Brを、第1切削点Pt1と第2切削点Pt2との間で工作物Wの外周面Wsに沿って往復するように移動させて工作物Wを切削加工する。 Specifically, the feed base movement control unit 83 controls the X-axis motor 42 to move the feed base 50 along the pair of X-axis guide rails 41a and 41b, and the tilt control unit 84 causes the tilt motor 62 to move. Is controlled to drive the tilt table 60 to rotate (swing) around the tilt axis Rc, thereby performing the following cutting operation. That is, the feed base movement control unit 83 and the tilt control unit 84 cause the cutting edge 91Br of the annular tool 90B to move to the first cutting point Pt1 and the second cutting point Pt2 every time the annular tool 90B makes one revolution around the tool axis Rt. And is moved so as to reciprocate along the outer peripheral surface Ws of the workpiece W to cut the workpiece W.

上述の切削加工においては、環状工具90Bの工具軸線Rtを傾動させているため、環状工具90Bのすくい面91Bbの成すすくい角φp、φm(図11B,12B,13B参照)及び逃げ面91Bcの成す逃げ角δs、δb(図11B,12B,13B参照)は、環状工具90Bの回転方向rtに連続的に変化する。すなわち、環状工具90Bの一回転の間にすくい角φp、φmの正負が入れ替わる。このため、切屑の流出形状、流出方向、流出角度、流出速度は、環状工具90Bの一回転の間で大きく変化する。よって、切屑は、すくい角φp、φmの正負が入れ替わるタイミングで分断されて流出し易く、従来のように繋がった切屑の連続的な流出とはならないので、切屑が工具主軸71や工作物Wに絡まることはない。 In the above-described cutting process, since the tool axis Rt of the annular tool 90B is tilted, the rake angles φp and φm (see FIGS. 11B, 12B and 13B) of the rake face 91Bb of the annular tool 90B and the flank face 91Bc are formed. The clearance angles δs and δb (see FIGS. 11B, 12B and 13B) continuously change in the rotation direction rt of the annular tool 90B. That is, the positive and negative of the rake angles φp and φm are switched during one rotation of the annular tool 90B. Therefore, the outflow shape, the outflow direction, the outflow angle, and the outflow speed of the chips greatly change during one rotation of the annular tool 90B. Therefore, the chips are likely to be divided and flow out at the timing when the positive and negative of the rake angles φp and φm are switched, and the connected chips do not continuously flow out as in the conventional case, so that the chips are liable to reach the tool spindle 71 and the workpiece W. There is no entanglement.

具体的には、図11A,Bは、正のすくい角φpのときの切屑K1の流出状態を示し、図12A,Bは、正のすくい角φpから負のすくい角φmになったときの切屑K2の流出状態及び分断された切屑K1の放出状態を示し、図13A,Bは、負のすくい角φmから正のすくい角φpになったときの切屑K3の流出状態及び分断された切屑K2の放出状態を示す。 Specifically, FIGS. 11A and 11B show an outflow state of the chip K1 at a positive rake angle φp, and FIGS. 12A and 12B show chips at a negative rake angle φm from the positive rake angle φp. FIG. 13A and FIG. 13B show the outflow state of K2 and the released state of the separated chip K1, and FIGS. 13A and 13B show the outflow state of the chip K3 and the divided chip K2 when the negative rake angle φm changes to the positive rake angle φp. The release state is shown.

図11A,B−図13A,Bから明らかなように、切屑K1,K2,K3の流出形状は、正のすくい角φpのときの切屑K1,K3の流出形状は、負のすくい角φmのときの切屑K2の流出形状と比較して、切れ刃91Arの工作物Wに対する切込み量が大きいため幅広となる。正のすくい角φpのときの切屑K1,K3の流出方向及び流出角度は、負のすくい角φmのときの切屑K2の流出方向及び流出角度と比較してすくい面91Abの傾斜が緩いため、負のすくい角φmのときはX軸線に略平行な方向に流出していたのに対し、正のすくい角φpのときはX軸線に対しすくい面側に傾斜した方向に流出する。正のすくい角φpのときの切屑K1,K3の流出速度は、負のすくい角φmのときの切屑K2の流出速度と比較して、すくい面91Abに接触する部分が多いため高速となる。よって、切屑K1,K2,K3は、正負のすくい角φp、φmが入れ替わるタイミングで分断される。 As is clear from FIGS. 11A, B-FIGS. 13A, B, the outflow shape of the chips K1, K2, K3 is a positive rake angle φp, and the outflow shape of the chips K1, K3 is a negative rake angle φm. Compared with the outflow shape of the chip K2, the cutting amount of the cutting edge 91Ar with respect to the workpiece W is large, and thus the width is wide. The outflow direction and outflow angle of the chips K1 and K3 at a positive rake angle φp are negative because the rake face 91Ab is more inclined than the outflow direction and outflow angle of the chip K2 at a negative rake angle φm. When the rake angle was φm, it flowed out in a direction substantially parallel to the X-axis line, whereas when it was a positive rake angle φp, it flowed out in a direction inclined to the rake face side with respect to the X-axis line. The outflow speed of the chips K1 and K3 at the positive rake angle φp is higher than the outflow speed of the chip K2 at the negative rake angle φm because there are many portions in contact with the rake face 91Ab. Therefore, the chips K1, K2, K3 are divided at the timing when the positive and negative rake angles φp, φm are exchanged.

そして、制御装置80は、切削加工が完了したか否かを判断し(図10のステップS5)、切削加工が完了していないと判断したときは切削加工を継続する。一方、切削加工が完了したと判断したときは次工作物Wの有無を判断し(図10のステップS6)、次工作物Wが有ると判断したときは現工作物Wを次工作物Wと交換し(図10のステップS7)、ステップS1に戻って上述の処理を繰り返す。一方、次工作物Wが無いと判断したときは環状工具の回転を停止し(図10のステップS8)、全ての処理を終了する。 Then, the control device 80 determines whether or not the cutting work is completed (step S5 in FIG. 10), and when it is determined that the cutting work is not completed, continues the cutting work. On the other hand, when it is determined that the cutting process is completed, the presence or absence of the next workpiece W is determined (step S6 in FIG. 10), and when it is determined that the next workpiece W is present, the current workpiece W is referred to as the next workpiece W. It exchanges (step S7 of FIG. 10), returns to step S1, and repeats the above-mentioned processing. On the other hand, when it is determined that there is no next workpiece W, the rotation of the annular tool is stopped (step S8 in FIG. 10), and all the processes are finished.

なお、第一形態及び第二形態の環状工具90A,90B,90Cでは、工具本体91A,91B,91Cの工具外周面をすくい面91Ab,91Bb,91Cbが回転しながら工作物Wの外周面Wsに対し切り込んでいく引き切り作用を示す。このため、引き切り作用により切削抵抗力を低減して切れ刃91Ar,91Br,91Crの温度を低減できるので、環状工具90A,90B,90Cの工具寿命の向上を図れる。よって、環状工具90A,90B,90Cを用いた切削加工では、切れ刃91Ar,91Br,91Crの温度が問題となるチタン合金やインコネル等の難切削材の切削において、より高能率な切削が可能となる。 In the annular tools 90A, 90B, 90C of the first and second embodiments, the rake surfaces 91Ab, 91Bb, 91Cb rotate the tool outer peripheral surfaces of the tool bodies 91A, 91B, 91C to the outer peripheral surface Ws of the workpiece W while rotating. It shows the pulling action of cutting into. For this reason, the cutting resistance can be reduced by the pull cutting action to reduce the temperatures of the cutting edges 91Ar, 91Br, 91Cr, and thus the tool life of the annular tools 90A, 90B, 90C can be improved. Therefore, in the cutting process using the annular tools 90A, 90B, and 90C, it is possible to perform more efficient cutting in cutting difficult-to-cut materials such as titanium alloy and Inconel where the temperatures of the cutting edges 91Ar, 91Br, and 91Cr pose a problem. Become.

(7.その他)
上述の実施形態では、斜円錐面状のすくい面91Abを有する環状工具90A及び花弁状のすくい面91Cbを有する環状工具90Cを例に挙げたが、刃先角が切れ刃の円周方向に変化する形状であれば上記環状工具90A,90Cの形状に限定されるものではない。
また、上述の実施形態では、環状工具90A,90B,90Cは、すくい面91Ab,91Bb,91Cbの外周全周に亘って連続的に変化し続ける形態を開示したが、その他の変形例として、連続的変化は上記外周全周ではなく、全周のうち一部の領域のみ(部分的に)連続的に変化し、その他の部分は変化しない形状であってもよい。また、連続的に変化している途中に不連続的に変化する領域、例えば溝が形成されている領域を含んでいてもよい。
(7. Others)
In the above-described embodiment, the annular tool 90A having the inclined conical rake face 91Ab and the annular tool 90C having the petal-shaped rake face 91Cb are taken as examples, but the cutting edge angle changes in the circumferential direction of the cutting edge. The shape is not limited to the shapes of the annular tools 90A and 90C described above.
Further, in the above-described embodiment, the annular tools 90A, 90B, 90C have disclosed a mode in which they continuously change over the entire circumference of the rake faces 91Ab, 91Bb, 91Cb, but as another modification, continuous The change in shape may not be the entire circumference of the outer circumference, but may be a shape in which only a partial region (partially) of the entire circumference continuously changes and the other parts do not change. Further, it may include a region that changes discontinuously while changing continuously, for example, a region where a groove is formed.

また、上述の実施形態では、円筒状の工作物Wの外周面Wsを周方向に切削する場合、すなわちX(プランジ)方向送りでの加工について説明したが、Z(トラバース)方向送りでの加工も同様である。すなわち、図14A及び図14Bに示すように、環状工具90Aの工具軸線Rtが、切削点Ptの法線に平行な状態から切削送り方向Gtに所定角度θ傾斜した状態になるようにセットする。そして、環状工具90Aのすくい面91Abを工具軸線Rt回りで回転方向rtに回転させるとともに、工作物Wを回転軸線Rw回りで回転方向rwに回転させ、環状工具90Aを工作物Wの回転軸線Rwに平行な方向に送ることにより、もしくは環状工具90Aの送りはせずに工作物Wを回転軸線Rwに平行な方向に送ることにより、工作物Wの外周面Wsを切削加工する。なお、環状工具90Cを用いても同様に切削加工可能である。また、環状工具90Bを用いる場合は、工具軸線Rtを傾動させながら環状工具90Bを工作物Wに対し相対送りすることで切削加工可能である。 Further, in the above-described embodiment, the case where the outer peripheral surface Ws of the cylindrical work W is cut in the circumferential direction, that is, the processing in the X (plunge) direction feed is described, but the processing in the Z (traverse) direction feed is described. Is also the same. That is, as shown in FIGS. 14A and 14B, the tool axis Rt of the annular tool 90A is set so as to be inclined from the state parallel to the normal line of the cutting point Pt to the cutting feed direction Gt by a predetermined angle θ. Then, the rake face 91Ab of the annular tool 90A is rotated in the rotation direction rt around the tool axis Rt, and the workpiece W is rotated in the rotation direction rw around the rotation axis Rw to rotate the annular tool 90A in the rotation axis Rw of the workpiece W. The outer peripheral surface Ws of the workpiece W is cut by feeding the workpiece W in a direction parallel to the rotation axis Rw without feeding the annular tool 90A. It should be noted that the same cutting work can be performed using the annular tool 90C. When the annular tool 90B is used, cutting can be performed by feeding the annular tool 90B relative to the workpiece W while inclining the tool axis Rt.

また、上述の実施形態では、円筒研削を例に説明したが、平面研削においても環状工具90Aの適用は可能である。すなわち、図15A及び図15Bに示すように、環状工具90Aの工具軸線Rtが、工作物WWの上平面WWsに対し直角な状態から切削送り方向GGに所定角度θ傾斜した状態になるようにセットする。そして、環状工具90Aのすくい面91Abを工具軸線Rt回りで回転方向rtに回転させるとともに、環状工具90Aを工作物WWの上平面WWsに沿って移動させることにより、もしくは環状工具90Aの移動はせずに工作物WWを上平面WWsに平行な方向に移動させることにより、工作物WWの上平面WWsを切削加工する。なお、環状工具90Cを用いても同様に切削加工可能である。また、環状工具90Bを用いる場合は、工具軸線Rtを傾動させながら環状工具90Bを工作物Wに対し相対移動させることで切削加工可能である。 Further, in the above-described embodiment, the cylindrical grinding has been described as an example, but the annular tool 90A can be applied to the surface grinding as well. That is, as shown in FIGS. 15A and 15B, the annular tool 90A is set such that the tool axis Rt is inclined from the state perpendicular to the upper plane WWs of the workpiece WW by a predetermined angle θ in the cutting feed direction GG. To do. Then, the rake face 91Ab of the annular tool 90A is rotated in the rotation direction rt around the tool axis Rt, and the annular tool 90A is moved along the upper plane WWs of the workpiece WW, or the annular tool 90A is moved. Instead, the upper surface WWs of the workpiece WW is cut by moving the workpiece WW in a direction parallel to the upper surface WWs. It should be noted that the same cutting work can be performed using the annular tool 90C. When the annular tool 90B is used, cutting can be performed by moving the annular tool 90B relative to the workpiece W while tilting the tool axis Rt.

(8.効果)
本実施形態の切削装置1は、環状の切れ刃91Ar,91Br,91Crを有する環状工具90A,90B,90Cと、環状工具90A,90B,90Cを取り付け、環状工具90A,90B,90Cを当該環状工具90A,90B,90Cの工具軸線Rt回りに回転させる工具主軸71と、工作物Wを保持する回転主軸11(工作物保持台)と、を備える。
(8. Effect)
The cutting device 1 of the present embodiment is equipped with annular tools 90A, 90B, 90C having annular cutting edges 91Ar, 91Br, 91Cr and annular tools 90A, 90B, 90C, and attaches the annular tools 90A, 90B, 90C to the annular tool. A tool spindle 71 that rotates around the tool axis Rt of 90A, 90B, and 90C, and a rotary spindle 11 (workpiece holder) that holds the workpiece W are provided.

そして、工具主軸71及び回転主軸11(工作物保持台)を、加工の際に工作物Wに対して、環状工具90A,90B,90Cの外周面がすくい面91Ab,91Bb,91Cbとなり、環状工具90A,90B,90Cの端面が逃げ面91Ac,91Bc,91Ccとなる相対位置関係に配置し、すくい面91Ab,91Bb,91Cbの成すすくい角φを環状工具90A,90B,90Cの回転方向に変化させながら環状工具90A,90B,90Cで工作物Wの加工を行う。 The outer peripheral surfaces of the tool spindle 71 and the rotary spindle 11 (workpiece holder) with respect to the workpiece W during machining are the rake surfaces 91Ab, 91Bb, 91Cb, and the annular tools 90A, 90B, 90C. The end faces of 90A, 90B, 90C are arranged in a relative positional relationship such that they are flanks 91Ac, 91Bc, 91Cc, and the rake angle φ formed by the rake faces 91Ab, 91Bb, 91Cb is changed in the rotation direction of the annular tools 90A, 90B, 90C. Meanwhile, the workpiece W is processed by the annular tools 90A, 90B, 90C.

切削加工においては、環状工具90A,90B,90Cのすくい角φは、環状工具90A,90B,90Cの回転方向rtに変化するため、切屑K1,K2,K3の流出形状、流出方向、流出角度、流出速度は、環状工具90A,90B,90Cの回転中に大きく変化する。よって、切屑K1,K2,K3は、すくい角φの変化のタイミングで分断されて流出し易く、従来のように繋がった切屑の連続的な流出とはならないので、切屑K1,K2,K3が工具主軸71や工作物Wに絡まることはない。 In cutting, since the rake angle φ of the annular tools 90A, 90B, 90C changes in the rotation direction rt of the annular tools 90A, 90B, 90C, the outflow shape, outflow direction, outflow angle of the chips K1, K2, K3, The outflow speed changes greatly during the rotation of the annular tools 90A, 90B, 90C. Therefore, the chips K1, K2, K3 are likely to be divided and flow out at the timing of the change of the rake angle φ, and the connected chips are not continuously flowed out as in the conventional case. There is no entanglement with the spindle 71 or the workpiece W.

また、切削装置1は、すくい面の成すすくい角を環状工具90A,90B,90Cの回転方向に連続的に変化させながら環状工具90A,90B,90Cで工作物Wの加工を行うので、切屑K1,K2,K3を確実に分断できる。
また、環状工具90A,90Bは、当該環状工具90A,90Bの工具軸線Rtに直角な方向から見た工具軸線Rtと環状工具90A,90Bの外周面(すくい面91Ab,91Bb)との成す角βが環状工具90A,90Bの回転方向rtに連続的に変化するように形成される。すなわち、環状工具90A,90Bは、刃先角αが環状工具90A,90Bの回転方向に連続的に変化するように形成され、切削装置1は、逃げ面91Ac,91Bc,91Ccの成す逃げ角δを一定に保ちつつ、すくい角φを連続的に変化させながら工作物Wの加工を行う。これにより、切削加工中は、環状工具90A,90Bの工具軸線Rtを一定に保てるので、切削加工制御を容易に行うことができる。
Further, since the cutting device 1 processes the workpiece W with the annular tools 90A, 90B, 90C while continuously changing the rake angle formed by the rake face in the rotation direction of the annular tools 90A, 90B, 90C, the chips K1 , K2, K3 can be reliably separated.
Further, the annular tools 90A and 90B have an angle β formed by the tool axis Rt viewed from a direction perpendicular to the tool axes Rt of the annular tools 90A and 90B and the outer peripheral surfaces (the rake surfaces 91Ab and 91Bb) of the annular tools 90A and 90B. Is formed so as to continuously change in the rotation direction rt of the annular tools 90A and 90B. That is, the annular tools 90A and 90B are formed so that the cutting edge angle α continuously changes in the rotation direction of the annular tools 90A and 90B, and the cutting device 1 defines the clearance angle δ formed by the flanks 91Ac, 91Bc, and 91Cc. The workpiece W is machined while keeping it constant and continuously changing the rake angle φ. Accordingly, during cutting, the tool axis Rt of the annular tools 90A and 90B can be kept constant, so that cutting control can be easily performed.

また、環状工具90Cの工具軸線Rtを傾動させることにより、すくい角φを環状工具90Cの回転方向rtに連続的に変化させる。すなわち、環状工具90Cは、刃先角αが一定となるように形成され、切削装置1は、すくい角φを連続的に変化させつつ、逃げ面91Ccの成す逃げ角δを連続的に変化させながら、工作物Wの加工を行う。これにより、環状工具90Cは単純形状となり、低コストで環状工具90Cの製作が可能となる。
また、切削装置1は、環状工具90A,90B,90Cの一回転の間にすくい角φp、φmの正負が入れ替わるようにして工作物Wの加工を行うので、切屑K1、K2,K3は、すくい角φp、φmの正負が入れ替わるタイミングで分断されて流出し易くなる。
Further, by tilting the tool axis Rt of the annular tool 90C, the rake angle φ is continuously changed in the rotation direction rt of the annular tool 90C. That is, the annular tool 90C is formed so that the cutting edge angle α is constant, and the cutting device 1 continuously changes the rake angle φ and continuously changes the clearance angle δ formed by the clearance surface 91Cc. , The workpiece W is processed. As a result, the annular tool 90C has a simple shape, and the annular tool 90C can be manufactured at low cost.
Further, since the cutting device 1 processes the workpiece W such that the positive and negative of the rake angles φp and φm are exchanged during one rotation of the annular tools 90A, 90B, and 90C, the chips K1, K2, and K3 are raked. The angles φp and φm are divided at the timing when the positive and negative angles are exchanged, and are easily discharged.

本実施形態の切削方法は、環状の切れ刃91Ar,91Br,91Crを有する環状工具90A,90B,90Cと、環状工具90A,90B,90Cを取り付け、環状工具90A,90B,90Cを当該環状工具90A,90B,90Cの工具軸線Rt回りに回転させる工具主軸71と、工作物Wを保持する回転主軸11(工作物保持台)と、を備える切削装置1の切削方法であって、工具主軸71及び回転主軸11(工作物保持台)を、加工の際に工作物Wに対して、環状工具90A,90B,90Cの外周面がすくい面91Ab,91Bb,91Cbとなり、環状工具90A,90B,90Cの端面が逃げ面91Ac,91Bc,91Ccとなる相対位置関係に配置する配置工程と、すくい面91Ab,91Bb,91Cbの成すすくい角φを環状工具90A,90B,90Cの回転方向rtに変化させながら環状工具90A,90B,90Cで工作物Wの加工を行う加工工程と、を備える。本実施形態の切削方法によれば、上述した切削装置1における効果と同様の効果を奏する。 In the cutting method of the present embodiment, the annular tools 90A, 90B, 90C having annular cutting edges 91Ar, 91Br, 91Cr and the annular tools 90A, 90B, 90C are attached, and the annular tools 90A, 90B, 90C are attached to the annular tool 90A. , 90B, 90C, a tool spindle 71 that is rotated around the tool axis Rt, and a rotary spindle 11 (workpiece holder) that holds the workpiece W. The outer peripheral surface of the annular tools 90A, 90B, 90C becomes the rake faces 91Ab, 91Bb, 91Cb with respect to the workpiece W during machining of the rotary spindle 11 (workpiece holder), and the annular tools 90A, 90B, 90C An arrangement step of arranging the end faces in a relative positional relationship such that they are flanks 91Ac, 91Bc, 91Cc, and an annular shape while changing the rake angle φ formed by the rake faces 91Ab, 91Bb, 91Cb in the rotation direction rt of the annular tools 90A, 90B, 90C. And a machining step of machining the workpiece W with the tools 90A, 90B, and 90C. According to the cutting method of the present embodiment, the same effects as the effects of the above-described cutting device 1 are achieved.

本実施形態の環状工具90A,90B,90Cは、環状の切れ刃91Ar,91Br,91Crを有し、加工の際に工作物Wに対して、外周面がすくい面91Ab,91Bb,91Cbとなり端面が逃げ面91Ac,91Bc,91Ccとなる相対位置関係に配置される回転可能な環状工具90A,90B,90Cであって、環状工具90A,90B,90Cは、工具軸線Rtに直角な方向から見た工具軸線Rtと環状工具90A,90B,90Cの外周面との成す角βが環状工具90A,90B,90Cの回転方向rtに連続的に変化するように形成される。この環状工具90A,90B,90Cによる切削加工においては、環状工具90A,90B,90Cのすくい角φは、環状工具90A,90B,90Cの回転方向rtに変化するため、切屑K1,K2,K3の流出形状、流出方向、流出角度、流出速度は、環状工具90A,90B,90Cの回転中に大きく変化する。よって、切屑K1,K2,K3は、すくい角φが変化するタイミングで分断されて流出し易くなる。 The annular tools 90A, 90B, 90C of the present embodiment have annular cutting edges 91Ar, 91Br, 91Cr, and when machining, the outer peripheral surface is the rake surface 91Ab, 91Bb, 91Cb with respect to the workpiece W, and the end surface is Rotatable annular tools 90A, 90B, 90C that are arranged in relative positional relationship to form flanks 91Ac, 91Bc, 91Cc, and the annular tools 90A, 90B, 90C are tools viewed from a direction perpendicular to the tool axis Rt. The angle β formed by the axis Rt and the outer peripheral surfaces of the annular tools 90A, 90B, 90C is formed so as to continuously change in the rotation direction rt of the annular tools 90A, 90B, 90C. In the cutting work by the annular tools 90A, 90B, 90C, the rake angle φ of the annular tools 90A, 90B, 90C changes in the rotation direction rt of the annular tools 90A, 90B, 90C. The outflow shape, the outflow direction, the outflow angle, and the outflow speed change greatly during the rotation of the annular tools 90A, 90B, 90C. Therefore, the chips K1, K2, K3 are easily divided and discharged at the timing when the rake angle φ changes.

1:切削装置、 7:回転主軸、 71:工具主軸、 80:制御装置、 90A,90B,90C:環状工具、 91Ab,91Bb,91Cb:すくい面、 91Ac,91Bc,91Cc:逃げ面、 91Ar,91Br,91Cr:切れ刃、 W:工作物、φ:すくい角、 δ:逃げ角 1: Cutting device, 7: Spindle spindle, 71: Tool spindle, 80: Control device, 90A, 90B, 90C: Ring tool, 91Ab, 91Bb, 91Cb: Rake face, 91Ac, 91Bc, 91Cc: Flank face, 91Ar, 91Br. , 91Cr: cutting edge, W: workpiece, φ: rake angle, δ: clearance angle

Claims (11)

工具軸線を中心とした連続した円形状の切れ刃を有する環状工具と、
前記環状工具を取り付け、前記環状工具を当該環状工具の軸線回りに回転させる工具主軸と、
工作物を保持する工作物保持台と、
を備え、
前記環状工具は、当該環状工具の軸線に直角な方向から見た前記軸線と前記環状工具の外周面との成す角が前記環状工具の回転方向に連続的に変化するように形成され、
前記工具主軸及び前記工作物保持台を、加工の際に前記工作物に対して、前記環状工具の外周面がすくい面となり、前記環状工具の端面が逃げ面となる相対位置関係に配置し、
前記すくい面の成すすくい角を前記環状工具の回転方向に変化させながら前記環状工具で前記工作物の加工を行う、切削装置。
An annular tool having a continuous circular cutting edge around the tool axis,
Attaching the annular tool, a tool spindle for rotating the annular tool around the axis of the annular tool,
A work holding table for holding a work,
Equipped with
The annular tool is formed so that the angle formed by the axis of the annular tool and the outer peripheral surface of the annular tool viewed from a direction perpendicular to the axis of the annular tool continuously changes in the rotation direction of the annular tool,
The tool spindle and the workpiece holder, with respect to the workpiece during machining, the outer peripheral surface of the annular tool is a rake surface, the end surface of the annular tool is arranged in a relative positional relationship of a flank,
A cutting device for machining the workpiece with the annular tool while changing the rake angle of the rake face in the rotation direction of the annular tool.
前記環状工具は、刃先角が前記環状工具の回転方向に連続的に変化するように形成され、
前記切削装置は、前記逃げ面の成す逃げ角を一定に保ちつつ、前記すくい角を連続的に変化させながら前記工作物の加工を行う、請求項に記載の切削装置。
The annular tool is formed so that the cutting edge angle continuously changes in the rotation direction of the annular tool,
The cutting device according to claim 1 , wherein the cutting device performs machining of the workpiece while continuously changing the rake angle while keeping the clearance angle formed by the flank face constant.
前記切削装置は、前記環状工具の一回転の間に前記すくい角の正負が入れ替わるようにして前記工作物の加工を行う、請求項1又は2に記載の切削装置。 The cutting apparatus, as positive and negative of the rake angle during one rotation of the annular tool interchange for machining of the workpiece, the cutting device according to claim 1 or 2. 工具軸線を中心とした連続した円形状の切れ刃を有する環状工具と、An annular tool having a continuous circular cutting edge around the tool axis,
前記環状工具を取り付け、前記環状工具を当該環状工具の軸線回りに回転させる工具主軸と、 Attaching the annular tool, a tool spindle for rotating the annular tool around the axis of the annular tool,
工作物を保持する工作物保持台と、 A work holding table for holding a work,
を備え、 Equipped with
前記工具主軸及び前記工作物保持台を、加工の際に前記工作物に対して、前記環状工具の外周面がすくい面となり、前記環状工具の端面が逃げ面となる相対位置関係に配置し、 The tool spindle and the workpiece holder, with respect to the workpiece during machining, the outer peripheral surface of the annular tool is a rake surface, the end surface of the annular tool is arranged in a relative positional relationship of a flank,
前記環状工具の一回転の間に前記すくい面の成すすくい角の正負が入れ替わるようにして前記環状工具で前記工作物の加工を行う、切削装置。 A cutting device for machining the workpiece with the annular tool such that the positive and negative of the rake angle formed by the rake surface are switched during one rotation of the annular tool.
前記切削装置は、前記すくい面の成すすくい角を前記環状工具の回転方向に連続的に変化させながら前記環状工具で前記工作物の加工を行う、請求項1−4の何れか一項に記載の切削装置。 The said cutting device processes the said workpiece|work with the said annular tool, changing the rake angle which the said rake surface makes continuously in the rotation direction of the said annular tool, The any one of Claim 1-4 characterized by the above-mentioned. Cutting equipment. 前記環状工具の軸線を傾動させることにより、前記すくい角を前記環状工具の回転方向に連続的に変化させる、請求項に記載の切削装置。 The cutting device according to claim 4 , wherein the rake angle is continuously changed in the rotation direction of the annular tool by tilting the axis of the annular tool. 前記環状工具は、刃先角が一定となるように形成され、
前記切削装置は、前記すくい角を連続的に変化させつつ、前記逃げ面の成す逃げ角を連続的に変化させながら、前記工作物の加工を行う、請求項に記載の切削装置。
The annular tool is formed so that the cutting edge angle is constant,
The cutting device according to claim 6 , wherein the cutting device performs machining of the workpiece while continuously changing the rake angle and continuously changing the clearance angle formed by the flank.
環状の切れ刃を有する環状工具と、
前記環状工具を取り付け、前記環状工具を当該環状工具の軸線回りに回転させる工具主軸と、
工作物を保持する工作物保持台と、
を備え、
前記工具主軸及び前記工作物保持台を、加工の際に前記工作物に対して、前記環状工具の外周面がすくい面となり、前記環状工具の端面が逃げ面となる相対位置関係に配置し、
前記すくい面の成すすくい角を前記環状工具の回転方向に変化させるとともに、前記環状工具の一回転の間に前記すくい角の正負が入れ替わるようにして前記環状工具で前記工作物の加工を行う、切削装置。
An annular tool having an annular cutting edge,
Attaching the annular tool, a tool spindle for rotating the annular tool around the axis of the annular tool,
A work holding table for holding a work,
Equipped with
The tool spindle and the workpiece holder, with respect to the workpiece during machining, the outer peripheral surface of the annular tool is a rake surface, the end surface of the annular tool is arranged in a relative positional relationship of a flank,
While changing the rake angle formed by the rake face in the rotation direction of the annular tool, the workpiece is machined by the annular tool such that the positive and negative of the rake angle are exchanged during one rotation of the annular tool. Cutting equipment.
工具軸線を中心とした連続した円形状の切れ刃を有する環状工具と、前記環状工具を取り付け、前記環状工具を当該環状工具の軸線回りに回転させる工具主軸と、工作物を保持する工作物保持台と、を備え、前記環状工具は、当該環状工具の軸線に直角な方向から見た前記軸線と前記環状工具の外周面との成す角が前記環状工具の回転方向に連続的に変化するように形成される切削装置の切削方法であって、
前記工具主軸及び前記工作物保持台を、加工の際に前記工作物に対して、前記環状工具の外周面がすくい面となり、前記環状工具の端面が逃げ面となる相対位置関係に配置する配置工程と、
前記すくい面の成すすくい角を前記環状工具の回転方向に変化させながら前記環状工具で前記工作物の加工を行う加工工程と、
を備える切削方法。
An annular tool having a continuous circular cutting edge around the tool axis, a tool spindle that attaches the annular tool and rotates the annular tool around the axis of the annular tool, and a workpiece holder that holds a workpiece. A table, and the annular tool is such that the angle formed by the axis of the annular tool and the outer peripheral surface of the annular tool viewed from a direction perpendicular to the axis of the annular tool continuously changes in the rotation direction of the annular tool. a cutting method of the formed Ru cutting device,
An arrangement in which the tool spindle and the workpiece holder are arranged in a relative positional relationship with respect to the workpiece during machining, in which the outer peripheral surface of the annular tool serves as a rake surface and the end surface of the annular tool serves as a flank surface. Process,
A machining step of machining the workpiece with the annular tool while changing the rake angle formed by the rake face in the rotation direction of the annular tool;
A cutting method including.
環状の切れ刃を有する環状工具と、前記環状工具を取り付け、前記環状工具を当該環状工具の軸線回りに回転させる工具主軸と、工作物を保持する工作物保持台と、を備える切削装置の切削方法であって、
前記工具主軸及び前記工作物保持台を、加工の際に前記工作物に対して、前記環状工具の外周面がすくい面となり、前記環状工具の端面が逃げ面となる相対位置関係に配置する配置工程と、
前記すくい面の成すすくい角を前記環状工具の回転方向に変化させるとともに、前記環状工具の一回転の間に前記すくい角の正負が入れ替わるようにして前記環状工具で前記工作物の加工を行う加工工程と、
を備える切削方法。
Cutting of a cutting device including an annular tool having an annular cutting edge, a tool spindle that attaches the annular tool, rotates the annular tool around an axis of the annular tool, and a workpiece holding table that holds a workpiece. Method,
An arrangement in which the tool spindle and the workpiece holder are arranged in a relative positional relationship with respect to the workpiece during machining, in which the outer peripheral surface of the annular tool serves as a rake surface and the end surface of the annular tool serves as a flank surface. Process,
Processing for changing the rake angle of the rake face in the rotation direction of the annular tool and machining the workpiece with the annular tool such that the positive and negative of the rake angle are switched during one rotation of the annular tool. Process,
A cutting method including.
工具軸線を中心とした連続した円形状の切れ刃を有し、加工の際に工作物に対して、外周面がすくい面となり端面が逃げ面となる相対位置関係に配置される回転可能な環状工具であって、
前記環状工具は、当該環状工具の軸線に直角な方向から見た前記軸線と前記環状工具の外周面との成す角が前記環状工具の回転方向に連続的に変化するように形成され
前記すくい面の成すすくい角を前記環状工具の回転方向に変化させながら前記環状工具で前記工作物の加工を行う、環状工具。
It has a continuous circular cutting edge centered around the tool axis, and is a rotatable annular ring that is arranged in a relative positional relationship with respect to the workpiece during machining such that the outer peripheral surface is the rake surface and the end surface is the flank surface. A tool,
The annular tool is formed so that the angle formed by the axis of the annular tool and the outer peripheral surface of the annular tool viewed from a direction perpendicular to the axis of the annular tool continuously changes in the rotation direction of the annular tool ,
An annular tool for machining the workpiece with the annular tool while changing a rake angle of the rake face in a rotation direction of the annular tool.
JP2015123064A 2015-06-18 2015-06-18 Cutting device, cutting method and annular tool Expired - Fee Related JP6710902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015123064A JP6710902B2 (en) 2015-06-18 2015-06-18 Cutting device, cutting method and annular tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015123064A JP6710902B2 (en) 2015-06-18 2015-06-18 Cutting device, cutting method and annular tool

Publications (2)

Publication Number Publication Date
JP2017007003A JP2017007003A (en) 2017-01-12
JP6710902B2 true JP6710902B2 (en) 2020-06-17

Family

ID=57761007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015123064A Expired - Fee Related JP6710902B2 (en) 2015-06-18 2015-06-18 Cutting device, cutting method and annular tool

Country Status (1)

Country Link
JP (1) JP6710902B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7013195B2 (en) * 2017-10-17 2022-01-31 株式会社北川鉄工所 Finishing method
CN107931631B (en) * 2017-12-11 2019-04-16 中国航发南方工业有限公司 The processing method on spout set installation side
JP7087441B2 (en) * 2018-02-27 2022-06-21 株式会社ジェイテクト Cutting method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379623B2 (en) * 2013-05-13 2018-08-29 株式会社ジェイテクト Cutting apparatus and cutting method

Also Published As

Publication number Publication date
JP2017007003A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6810099B2 (en) Equipment and methods for chamfering workpieces with internal teeth
JP4563809B2 (en) Tool holder
JP7224399B2 (en) Work chamfering device, gear machining center equipped with same, and machining method using work chamfering device
JP6710902B2 (en) Cutting device, cutting method and annular tool
JP5968000B2 (en) Gear processing machine
WO2014156571A1 (en) Polygon machining device and polygon machining method
JP6617454B2 (en) Cutting apparatus and cutting method
JPWO2019102808A1 (en) Friction welding method and machine tools
JP2007229849A (en) Endmill, and machining method using the same
JP6379623B2 (en) Cutting apparatus and cutting method
JP6766922B2 (en) Cutting equipment and cutting method
JP2011161542A (en) Machine tool and polygon machining method
WO2015199126A1 (en) Cutting device and cutting method
JP5611691B2 (en) Machine tool and workpiece machining method
JP4712586B2 (en) NC machine tool
JP6565380B2 (en) Cutting device, cutting method and annular tool
JP6645041B2 (en) Cutting device and cutting method
JP2016159388A (en) Milling tool
JP5425570B2 (en) Processing method and apparatus for trunnion of tripod type constant velocity joint
JP5433344B2 (en) Composite tool, machine tool and machining method
JP6561596B2 (en) Cutting apparatus and cutting method
JP7017978B2 (en) Polygon cutter unit and machine tools
JP2004001180A (en) Method of machining workpiece equipped with straight surface recess, grooved part having cross section other than circular shape
JP5310651B2 (en) Screw rotor manufacturing method and manufacturing apparatus
JP2020082319A (en) Tool unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6710902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees