JP6702137B2 - Method for manufacturing all-solid-state lithium battery - Google Patents

Method for manufacturing all-solid-state lithium battery Download PDF

Info

Publication number
JP6702137B2
JP6702137B2 JP2016212176A JP2016212176A JP6702137B2 JP 6702137 B2 JP6702137 B2 JP 6702137B2 JP 2016212176 A JP2016212176 A JP 2016212176A JP 2016212176 A JP2016212176 A JP 2016212176A JP 6702137 B2 JP6702137 B2 JP 6702137B2
Authority
JP
Japan
Prior art keywords
electrode layer
positive electrode
active material
negative electrode
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016212176A
Other languages
Japanese (ja)
Other versions
JP2018073629A (en
Inventor
啓太 二井谷
啓太 二井谷
洋平 進藤
洋平 進藤
正人 穂積
正人 穂積
大地 小坂
大地 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016212176A priority Critical patent/JP6702137B2/en
Publication of JP2018073629A publication Critical patent/JP2018073629A/en
Application granted granted Critical
Publication of JP6702137B2 publication Critical patent/JP6702137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、全固体リチウム電池に関する。   The present invention relates to all-solid-state lithium batteries.

リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車用やハイブリッド自動車用等、大型の動力用としての需要も高まっている。   The lithium ion secondary battery has a feature that it has a higher energy density than other secondary batteries and can operate at a high voltage. Therefore, it is used in information devices such as mobile phones as a secondary battery that can be easily reduced in size and weight, and in recent years, there is an increasing demand for large power sources such as electric vehicles and hybrid vehicles.

従来のリチウムイオン二次電池に広く用いられている電解液は、可燃性の有機溶媒であるため、短絡時の温度上昇を抑える安全装置などの、安全性を確保するためのシステムを搭載する必要がある。一方、液体電解質を固体電解質に変更した固体電池は、電池内に可燃性の有機溶媒を用いないので、上記システムを簡素化できる。それゆえ、固体電池の開発が進められている。   The electrolyte widely used in conventional lithium-ion secondary batteries is a flammable organic solvent, so it is necessary to install a system to ensure safety, such as a safety device that suppresses the temperature rise during a short circuit. There is. On the other hand, the solid battery in which the liquid electrolyte is changed to the solid electrolyte does not use a flammable organic solvent in the battery, so that the system can be simplified. Therefore, solid-state batteries are being developed.

このような固体電池の分野において、電解質が固体であるため、液体電解質とは異なり、電解質が電極層の内部まで浸透しにくい。そのため、活物質と電解質との界面の面積が低減し、電池性能が低下してしまう。そこで、固体電池の電池性能を向上させるために、活物質及び固体電解質の接触状態を良好にする試みがある。例えば、特許文献1では、正極活物質層と、負極活物質層と、正極活物質層と負極活物質層の間に形成された固体電解質層とを有する電池素子に、拘束部材を用いて拘束圧を与えることが開示されている。   In the field of such a solid battery, since the electrolyte is solid, unlike the liquid electrolyte, the electrolyte does not easily penetrate into the electrode layer. Therefore, the area of the interface between the active material and the electrolyte is reduced and the battery performance is deteriorated. Therefore, there is an attempt to improve the contact state between the active material and the solid electrolyte in order to improve the battery performance of the solid battery. For example, in Patent Document 1, a restraint member is used to restrain a battery element having a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer. Applying pressure is disclosed.

特開2011−159534号公報JP, 2011-159534, A

しかしながら、特許文献1のように、拘束部材を有していても、活物質の材料によっては、充放電に伴う活物質の膨張収縮で、活物質と固体電解質との接触状態が低下してしまう。その場合、リチウムイオン伝導抵抗が上昇して、電池性能が低下してしまう。   However, even if the restraint member is provided as in Patent Document 1, depending on the material of the active material, the contact state between the active material and the solid electrolyte deteriorates due to the expansion and contraction of the active material due to charging and discharging. .. In that case, the lithium ion conduction resistance increases and the battery performance deteriorates.

本発明は、上記課題を鑑みてなされたものであり、活物質と固体電解質との接触性を向上させることができる全固体リチウム電池の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an all-solid-state lithium battery that can improve contact between an active material and a solid electrolyte.

上記課題を解決するために、本発明の製造方法においては、LiAxMny(AはNi、Co、Feから選択される元素、0≦x≦1、1≦y≦2、1.9≦x+y≦2.1)を正極活物質として有する正極層と、Li Ti(4.5≦s≦5.5、11.5≦t≦12.5)を負極活物質として有する負極層と、前記正極層と前記負極層の間に配置された固体電解質層とが積層された積層体を形成する積層工程と、前記積層体を拘束部材によって積層方向から拘束する拘束工程と、拘束された前記積層体を充電する充電工程と、充電された前記積層体を積層方向から再拘束する再拘束工程と、を含む。
In order to solve the above problem, in the manufacturing method of the present invention, LiA x Mn y O 4 ( A is an element selected Ni, Co, from Fe, 0 ≦ x ≦ 1,1 ≦ y ≦ 2,1. the 9 ≦ x + y ≦ 2.1) and a positive electrode layer having a cathode active material, Li 4 Ti s O t a (4.5 ≦ s ≦ 5.5,11.5 ≦ t ≦ 12.5) as a negative electrode active material A laminating step of forming a laminated body in which the negative electrode layer having the positive electrode layer and the solid electrolyte layer arranged between the positive electrode layer and the negative electrode layer are laminated, and a constraining step of constraining the laminated body from the stacking direction by a constraining member. A charging step of charging the constrained laminated body, and a reconstraining step of reconstraining the charged laminated body from the stacking direction.

本発明によれば、充電により体積収縮する正極活物質と、充電により体積変化が殆どない負極活物質とを有する全固体リチウム電池において、充電後に正極活物質が収縮した状態で再拘束することで、全固体リチウム電池の拘束圧の低下に伴う活物質と固体電解質の接触性の低下を抑制できる。   According to the present invention, in an all-solid-state lithium battery having a positive electrode active material that contracts in volume by charging and a negative electrode active material that hardly changes in volume in charging, by reconstraining the positive electrode active material in a contracted state after charging. It is possible to suppress a decrease in contact between the active material and the solid electrolyte that accompanies a decrease in binding pressure of the all-solid-state lithium battery.

本発明は、活物質と固体電解質との接触性を向上させることができる全固体リチウム電池の製造方法を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a method for manufacturing an all-solid-state lithium battery that can improve the contact between the active material and the solid electrolyte.

本発明の実施形態の全固体リチウム電池の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the all-solid-state lithium battery of embodiment of this invention. 本発明の実施形態の全固体リチウム電池における積層体を示す図である。It is a figure which shows the laminated body in the all-solid-state lithium battery of embodiment of this invention. 本発明の実施形態の全固体リチウム電池における充電に伴う体積変化を示す模式図である。It is a schematic diagram which shows the volume change accompanying charge in the all-solid-state lithium battery of embodiment of this invention. 本発明の実施形態の全固体リチウム電池の一例を示す図である。It is a figure which shows an example of the all-solid-state lithium battery of embodiment of this invention.

以下、本発明の実施形態である全固体リチウム電池の製造方法について説明する。   Hereinafter, a method for manufacturing an all-solid-state lithium battery that is an embodiment of the present invention will be described.

本発明の全固体リチウム電池の製造方法は、LiAxMny(AはNi、Co、Feから選択される元素、0≦x≦1、1≦y≦2、1.9≦x+y≦2.1)を正極活物質として有する正極層と、Li Ti(4.5≦s≦5.5、11.5≦t≦12.5)を負極活物質として有する負極層と、前記正極層と前記負極層の間に配置された固体電解質層とが積層された積層体を形成する積層工程と、前記積層体を拘束部材によって積層方向から拘束する拘束工程と、拘束された前記積層体を充電する充電工程と、充電された前記積層体を積層方向から再拘束する再拘束工程とを含む。
Method for manufacturing an all-solid lithium battery of the present invention, LiA x Mn y O 4 ( A is Ni, Co, an element selected from Fe, 0 ≦ x ≦ 1,1 ≦ y ≦ 2,1.9 ≦ x + y ≦ a positive electrode layer having a 2.1) as a positive electrode active material, a negative electrode layer having Li 4 Ti s O t a (4.5 ≦ s ≦ 5.5,11.5 ≦ t ≦ 12.5) as a negative electrode active material A layering step of forming a layered body in which a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer is laminated; It includes a charging step of charging the laminated body and a re-constraining step of re-constraining the charged laminated body from the stacking direction.

本発明において、積層方向とは、積層体を構成する正極層、負極層、及び固体電解質層が積層されている方向である。本発明における積層方向は、図2に例示される。   In the present invention, the stacking direction is the direction in which the positive electrode layer, the negative electrode layer, and the solid electrolyte layer forming the stacked body are stacked. The stacking direction in the present invention is illustrated in FIG.

特許文献1のような従来の全固体リチウム電池では、電極層(正極層及び負極層)材料として、充電により体積膨張し、放電により元の体積に戻る材料を用いることを前提としているため、充電前(電池素子の体積が最小の時)電池素子に拘束圧を印加し、そのまま拘束状態を変化させずに充放電を行っている。しかし、本願のように、電極層材料として、充電により体積収縮する正極活物質と、充電により体積変化が殆どない負極活物質とを用いる場合、図3に示すように、電極層材料を積層した積層体に拘束圧を印加し、そのまま拘束状態を変化させずに充電すると、正極活物質の体積収縮に伴い拘束圧が低下してしまう。それによって、電極層中の活物質粒子と固体電解質粒子との接触性、又は電極層と固体電解質層との接触性が低下してしまう。活物質と固体電解質の接触性が低下、すなわち、活物質と固体電解質の接触面積が低減すると、リチウムイオン伝導性が低下し、電池の内部抵抗が上昇してしまい、電池性能が低下する。   In the conventional all-solid-state lithium battery as in Patent Document 1, since it is premised that a material that expands in volume by charging and returns to the original volume by discharging is used as a material for the electrode layer (positive electrode layer and negative electrode layer), Before (when the volume of the battery element is the minimum), a constraint pressure is applied to the battery element, and charging/discharging is performed without changing the constraint state. However, as in the present application, when a positive electrode active material that contracts in volume by charging and a negative electrode active material that hardly changes in volume by charging are used as the electrode layer materials, the electrode layer materials are laminated as shown in FIG. If a constraining pressure is applied to the laminate and charging is performed without changing the constrained state as it is, the constraining pressure will decrease as the positive electrode active material contracts in volume. As a result, the contact between the active material particles in the electrode layer and the solid electrolyte particles, or the contact between the electrode layer and the solid electrolyte layer is reduced. When the contact between the active material and the solid electrolyte is reduced, that is, when the contact area between the active material and the solid electrolyte is reduced, the lithium ion conductivity is reduced, the internal resistance of the battery is increased, and the battery performance is decreased.

そのため、充電終了時に全固体リチウム電池の体積が収縮した状態で、充電終了時に積層体に印加されている拘束圧よりも高い拘束圧を印加するために再度拘束することで、接触性が低下した活物質と固体電解質の界面の接触性を再度向上させることができる。つまり、リチウムイオン伝導性を再度良好にすることができるため、電池性能の低下を抑制できる。   Therefore, in the state where the volume of the all-solid-state lithium battery contracted at the end of charging, the contact property was lowered by re-restraining to apply a higher constraining pressure than the constraining pressure applied to the laminate at the end of charging. The contact property at the interface between the active material and the solid electrolyte can be improved again. That is, since the lithium ion conductivity can be made good again, the deterioration of the battery performance can be suppressed.

以下、本発明の実施形態における各構成について詳細に説明する。   Hereinafter, each configuration in the embodiment of the present invention will be described in detail.

図1は、本発明の実施形態のプロセスを示している。正極層と負極層と固体電解質層とが積層された積層体を形成(積層工程)し、該積層体を拘束(拘束工程)し、続いて積層体を充電(充電工程)し、充電終了後に拘束圧が低下した積層体に再度拘束圧を印加(再拘束工程)する。   FIG. 1 illustrates the process of an embodiment of the invention. A laminated body in which the positive electrode layer, the negative electrode layer, and the solid electrolyte layer are laminated is formed (laminating step), the laminated body is constrained (constraining step), the laminated body is subsequently charged (charging step), and after the charging is completed. The constraining pressure is applied again to the laminated body with the constraining pressure lowered (reconstraining step).

A.積層工程
本工程は、正極層と、負極層と、正極層と負極層の間に配置される固体電解質層とが積層して、積層体を形成する工程である。本工程で形成される積層体20の例を図2に示す。図2に示した積層体20は、正極層22と、負極層24と、正極層22及び負極層24の間に配置された固体電解質層23と、を有している。通常、正極層22と負極層24は、それぞれ正極集電体と負極集電体を有している。また、正極集電体や負極集電体には、不図示の端子が接続されており、積層体20は不図示の外装体に収容されている。
A. Laminating Step This step is a step of forming a laminate by laminating the positive electrode layer, the negative electrode layer, and the solid electrolyte layer arranged between the positive electrode layer and the negative electrode layer. An example of the laminate 20 formed in this step is shown in FIG. The laminated body 20 shown in FIG. 2 has a positive electrode layer 22, a negative electrode layer 24, and a solid electrolyte layer 23 arranged between the positive electrode layer 22 and the negative electrode layer 24. Usually, the positive electrode layer 22 and the negative electrode layer 24 have a positive electrode current collector and a negative electrode current collector, respectively. Further, a terminal (not shown) is connected to the positive electrode current collector and the negative electrode current collector, and the laminate 20 is housed in an exterior body (not shown).

<積層体>
本工程により得られる積層体は、正極層と、負極層と、正極層と負極層の間に配置される固体電解質層とが積層されている。
<Laminate>
The laminate obtained by this step has a positive electrode layer, a negative electrode layer, and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, which are laminated.

<正極層>
本発明の実施形態における正極層は、正極活物質と正極集電体とを有する。また、正極層は必要に応じて固体電解質、導電剤、結着剤を有していても良い。
<Cathode layer>
The positive electrode layer in the embodiment of the present invention includes a positive electrode active material and a positive electrode current collector. Further, the positive electrode layer may have a solid electrolyte, a conductive agent, and a binder, if necessary.

正極活物質の材料は、LiAxMny(AはNi、Co、Feから選択される元素、0≦x≦1、1≦y≦2、1.9≦x+y≦2.1)である。これらの材料は、全固体リチウム電池の正極活物質として使用したときに、充電によって体積が収縮する。中でも、収縮量が大きく、再拘束による効果が得やすいという観点からLiMnが好ましい。 Material of the positive electrode active material, LiA x Mn y O 4 ( A is Ni, Co, an element selected from Fe, 0 ≦ x ≦ 1,1 ≦ y ≦ 2,1.9 ≦ x + y ≦ 2.1) at is there. When these materials are used as a positive electrode active material of an all-solid-state lithium battery, their volume shrinks due to charging. Among them, LiMn 2 O 4 is preferable from the viewpoint that the amount of shrinkage is large and the effect of reconstraining is easily obtained.

正極活物質の形状は、特に限定されるものではないが、例えば、粒子状であることが好ましい。粒子の形状としては、例えば、真球状、楕円球状等を挙げることができる。また、活物質の平均粒径は、例えば500nm〜100μmの範囲内であることが好ましく、1μm〜20μmの範囲内であることがより好ましい。 The shape of the positive electrode active material is not particularly limited, but is preferably, for example, a particle shape. Examples of the shape of the particles include a true sphere and an ellipsoid. Further, the average particle size of the active material is, for example, preferably in the range of 500 nm to 100 μm, and more preferably in the range of 1 μm to 20 μm.

本発明の実施形態における正極層に含有される固体電解質は、例えば、後述する固体電解質層に用いる固体電解質材料と同様の材料を適用することができる。   As the solid electrolyte contained in the positive electrode layer in the embodiment of the present invention, for example, the same material as the solid electrolyte material used for the solid electrolyte layer described later can be applied.

正極層中の正極活物質と固体電解質の割合は、例えば、正極合材100質量%中において、正極活物質が25〜90質量%、30〜80質量%、50〜80質量%が好ましく、固体電解質が10〜75質量%、10〜50質量%、15〜50質量%が好ましい。   The proportion of the positive electrode active material and the solid electrolyte in the positive electrode layer is, for example, preferably 25 to 90% by mass, 30 to 80% by mass, and 50 to 80% by mass of the positive electrode active material in 100% by mass of the positive electrode mixture. The electrolyte is preferably 10 to 75% by mass, 10 to 50% by mass, and 15 to 50% by mass.

正極層中の導電剤としては、一般的にリチウム電池に用いられる導電剤であれば、特に限定はされないが、例えば、アセチレンブラック、ケッチェンブラック、カーボンファイバー、カーボンナノチューブ等のカーボン材料や、金属材料等を挙げることができる。   The conductive agent in the positive electrode layer is not particularly limited as long as it is a conductive agent generally used in lithium batteries, for example, acetylene black, Ketjen black, carbon fibers, carbon materials such as carbon nanotubes, and metal. The material etc. can be mentioned.

正極層中の結着剤としては、一般的にリチウム電池に用いられる結着剤であれば、特に限定はされないが、例えば、アクリル系バインダー、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等)を挙げることができる。   The binder in the positive electrode layer is not particularly limited as long as it is a binder generally used in lithium batteries, and examples thereof include an acrylic binder, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE). ) Etc.) can be mentioned.

正極層中の導電剤と結着剤の割合は、正極層100質量%中、例えば、導電剤が0〜10質量%、1〜10質量%が好ましく、結着剤は0〜10質量%、1〜10質量%が好ましい。   The proportion of the conductive agent and the binder in the positive electrode layer is, for example, 0 to 10 mass% of the conductive agent, preferably 1 to 10 mass%, and the binder of 0 to 10 mass% in 100 mass% of the positive electrode layer. 1 to 10 mass% is preferable.

本発明の実施形態における正極集電体の材料としては、一般にリチウム電池に用いられる正極集電体の材料であれば、特に限定されないが、例えば、SUS、Ni、Al、Fe、Pt等を用いることができる。厚さは、1μm〜15μm程度が好ましい。 The material of the positive electrode current collector in the embodiment of the present invention is not particularly limited as long as it is a material of the positive electrode current collector generally used in lithium batteries, but, for example, SUS, Ni, Al, Fe, Pt and the like are used. be able to. The thickness is preferably about 1 μm to 15 μm.

<負極層>
本発明の実施形態における負極層は、負極活物質と負極集電体とを有する。また、負極層は必要に応じて固体電解質、導電剤、結着剤を有していても良い。
<Negative electrode layer>
The negative electrode layer in the embodiment of the present invention includes a negative electrode active material and a negative electrode current collector. Further, the negative electrode layer may have a solid electrolyte, a conductive agent, and a binder, if necessary.

負極活物質の材料は、Li Ti(4.5≦s≦5.5、11.5≦t≦12.5)である。Li Ti(4.5≦s≦5.5、11.5≦t≦12.5)は全固体リチウム電池の負極活物質として使用したときに、充電によって殆ど体積変化がない。 The material of the negative electrode active material is Li 4 Ti s O t (4.5 ≦ s ≦ 5.5,11.5 ≦ t ≦ 12.5). Li 4 Ti s O t (4.5 ≦ s ≦ 5.5,11.5 ≦ t ≦ 12.5) is when used as a negative electrode active material of the all-solid lithium battery, there is almost no volume change by charging.

負極活物質の形状は、特に限定されるものではないが、例えば、粒子状であることが好ましい。粒子の形状としては、例えば、真球状、楕円球状等を挙げることができる。また、活物質の平均粒径は、例えば500nm〜100μmの範囲内であることが好ましく、1μm〜20μmの範囲内であることがより好ましい。 The shape of the negative electrode active material is not particularly limited, but it is preferably, for example, in the form of particles. Examples of the shape of the particles include a true sphere and an ellipsoid. Further, the average particle size of the active material is, for example, preferably in the range of 500 nm to 100 μm, and more preferably in the range of 1 μm to 20 μm.

本発明の実施形態における負極層に含有される固体電解質は、例えば、後述する固体電解質層に用いる固体電解質材料を適用することができる。   As the solid electrolyte contained in the negative electrode layer in the embodiment of the present invention, for example, the solid electrolyte material used for the solid electrolyte layer described later can be applied.

負極層中の負極活物質と固体電解質の割合は、例えば、負極合材100質量%中において、負極活物質が25〜90質量%、30〜80質量%、50〜80質量%が好ましく、固体電解質が10〜75質量%、10〜50質量%、15〜50質量%が好ましい。   The ratio of the negative electrode active material and the solid electrolyte in the negative electrode layer is, for example, preferably 25 to 90% by mass, 30 to 80% by mass, and 50 to 80% by mass of the negative electrode active material in 100% by mass of the negative electrode mixture, and the solid. The electrolyte is preferably 10 to 75% by mass, 10 to 50% by mass, and 15 to 50% by mass.

本発明の実施形態における負極層における導電剤と結着剤の材料は、上述した正極層で用いられる同様の材料を用いることができる。また、それらの含有割合も、上述した正極層と同様とすることができる。   As the materials of the conductive agent and the binder in the negative electrode layer in the embodiment of the present invention, the same materials as those used in the positive electrode layer described above can be used. Further, the content ratio thereof may be the same as that of the positive electrode layer described above.

本発明の実施形態における負極集電体の材料としては、一般にリチウム電池に用いられる負極集電体の材料であれば、特に限定されないが、例えば、SUS、Cu、Ni、Al、Fe、Pt等を用いることができる。厚さは、1μm〜15μm程度が好ましい。   The material of the negative electrode current collector in the embodiment of the present invention is not particularly limited as long as it is a material of the negative electrode current collector generally used in lithium batteries, and for example, SUS, Cu, Ni, Al, Fe, Pt Can be used. The thickness is preferably about 1 μm to 15 μm.

<固体電解質層>
本発明の実施形態における固体電解質層は、固体電解質を有し、正極層と負極層の間に配置され、正極層と負極層の両方に接する。
<Solid electrolyte layer>
The solid electrolyte layer in the embodiment of the present invention has a solid electrolyte, is disposed between the positive electrode layer and the negative electrode layer, and is in contact with both the positive electrode layer and the negative electrode layer.

固体電解質は、一般に固体電池に用いられる固体電解質であれば、特に限定はされないが、硫化物、酸化物、窒化物、ハロゲン化物が挙げられる。中でも、硫化物固体電解質が好ましい。硫化物固体電解質としては、例えば、LiS−P、LiS−P−LiI、LiS−P−LiI−LiBr、LiS−P−LiO、LiS−P−LiO−LiI、LiS−SiS、LiS−SiS−LiI、LiS−SiS−LiBr、LiS−SiS−LiCl、LiS−SiS−B−LiI、LiS−SiS−P−LiI等を挙げることができる。中でも、リチウムイオン伝導性が高いという観点から、LiS−Pを含むものであることが好ましい。また、固体電解質は結晶、非結晶あるいはガラスセラミックのいずれでであって良い。 The solid electrolyte is not particularly limited as long as it is a solid electrolyte generally used in solid batteries, and examples thereof include sulfides, oxides, nitrides, and halides. Of these, a sulfide solid electrolyte is preferable. The sulfide solid electrolyte, for example, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiI-LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S- P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, mention may be made of Li 2 S-SiS 2 -P 2 S 5 -LiI like. Among them, those containing Li 2 S-P 2 S 5 are preferable from the viewpoint of high lithium ion conductivity. The solid electrolyte may be crystalline, amorphous or glass ceramic.

固体電解質層における固体電解質材料の含有量は、質量%で、例えば60%以上、中でも70%以上、特に80%以上であることが好ましい。   The content of the solid electrolyte material in the solid electrolyte layer is, by mass %, for example, 60% or more, preferably 70% or more, and particularly preferably 80% or more.

固体電解質材料の平均粒径が、1nm〜100μmの範囲内、中でも10nm〜50μmの範囲内、特に100nm〜30μmの範囲内であることが好ましい。より確実に、活物質/固体電解質材料間の抵抗を低減させた所望の全固体リチウム二次電池を得ることができるからである。   The average particle size of the solid electrolyte material is preferably in the range of 1 nm to 100 μm, particularly in the range of 10 nm to 50 μm, and particularly preferably in the range of 100 nm to 30 μm. This is because a desired all-solid-state lithium secondary battery with reduced resistance between the active material/solid electrolyte material can be obtained more reliably.

固体電解質層の厚さは、電池の構成によって大きく異なるが、例えば、0.1μm以上1mm以下であることが好ましく、1μm以上100μm以下であることがより好ましい。 Although the thickness of the solid electrolyte layer varies greatly depending on the configuration of the battery, it is preferably 0.1 μm or more and 1 mm or less, and more preferably 1 μm or more and 100 μm or less.

積層体は、一般に、正極集電体と正極合材を有する正極層、固体電解質層、及び負極集電体と負極合材を有する負極活性物質がこの順で積層され、その全体がフィルム状のパッケージ又はケースで包装されたものであってよい。このようなフィルム状のパッケージ又はケースは、ポリマーフィルム、特にアルミニウム等の金属箔を積層されたポリマーフィルムで形成されていてよい。包装の方法としては、任意の方法でよく、例えば、アルミラミネート封止などを挙げることができる。   The laminate is generally a positive electrode layer having a positive electrode current collector and a positive electrode mixture, a solid electrolyte layer, and a negative electrode active material having a negative electrode current collector and a negative electrode mixture, which are laminated in this order, and the whole is film-shaped It may be packaged in a package or a case. Such a film-shaped package or case may be formed of a polymer film, particularly a polymer film laminated with a metal foil such as aluminum. The packaging method may be any method, and examples thereof include aluminum laminate sealing.

B.拘束工程
本工程は、拘束部材によって積層体を積層方向から拘束する工程である。本工程によって、積層体における正極層及び負極層内の活物質粒子と固体電解質粒子との接触、又は正極層及び負極層と固体電解質層との接触性を向上させることができる。
B. Restraining Step This step is a step of restraining the stacked body from the stacking direction by the restraining member. By this step, contact between the active material particles in the positive electrode layer and the negative electrode layer in the laminate and the solid electrolyte particles, or contact between the positive electrode layer and the negative electrode layer and the solid electrolyte layer can be improved.

拘束部材による拘束方法は、積層体を積層方向に拘束できれば、特に限定されない。例えば、図4で示されるように、積層体を挟持する第一及び第二の拘束板と、第一の拘束板及び第二の拘束板を積層方向で拘束する一又は複数のボルト及びナットを有する形態がある。   The restraint method by the restraint member is not particularly limited as long as the laminate can be restrained in the stacking direction. For example, as shown in FIG. 4, first and second constraining plates that sandwich the laminated body, and one or a plurality of bolts and nuts that constrain the first constraining plate and the second constraining plate in the stacking direction are provided. There is a form to have.

ナットは、ボルトと組み合わさって、第一及び第二の拘束板を拘束し、それによって複数の積層体に拘束荷重をかけることができるものであれば、任意の部材でよい。   The nut may be any member as long as it can be combined with the bolt to constrain the first and second constraining plates and thereby exert a constraining load on the plurality of laminated bodies.

拘束の形態としては、例えば、ボルトを挿通させるため、第一及び第二の拘束板の、互いに対向する位置に開口部を設け、両端に雄ネジ部を有するボルトを第一及び第二の拘束板の開口部に挿通させた後、雌ねじ部を有するナットをボルトに螺合させて、第一及び第二の拘束板を拘束する形態等を挙げることができる。 As a form of the restraint, for example, in order to insert the bolt, the first and second restraint plates are provided with openings at positions facing each other, and bolts having male screw portions at both ends are used as the first and second restraint. After inserting the plate into the opening of the plate, a nut having a female screw portion may be screwed into a bolt to restrain the first and second restraint plates.

第一及び第二の拘束板の形状は、独立に、例えば、三角形、四角形などの多角形、円形又は半円形など、種々の形状が可能である。更に、第一及び第二の拘束板の積層方向に平行及び垂直な長さ、即ち、厚さ並びに横幅及び縦幅は、積層されている複数の全固体単電池を適切に拘束可能であれば、任意に選択することができる。   The shapes of the first and second constraining plates can be various shapes, such as a polygon such as a triangle and a quadrangle, a circle, or a semicircle, independently of each other. Furthermore, the lengths of the first and second constraining plates that are parallel and perpendicular to the stacking direction, that is, the thickness and the lateral width and the vertical width are such that the plurality of all-solid-state cells stacked can be restrained appropriately. , Can be arbitrarily selected.

第一及び第二の拘束板の構成材料として、特に限定はされないが、例えば、ステンレス鋼(SUS410)、鉄、チタン、ニッケル、金、炭素鋼、炭化ケイ素、クロム、コバルト、タングステン、高炭素クロム軸受鋼(SUJ2)、及びダイス鋼(SKD11)などの各種金属材料、各種有機材料、各種樹脂材料、シリコンなどの各種セラミックス材料、各種ガラス材料、金属と各種樹脂を有するコンポジット材料などを挙げることができる。 The constituent material of the first and second constraining plates is not particularly limited, but for example, stainless steel (SUS410), iron, titanium, nickel, gold, carbon steel, silicon carbide, chromium, cobalt, tungsten, high carbon chromium. Examples include various metal materials such as bearing steel (SUJ2) and die steel (SKD11), various organic materials, various resin materials, various ceramic materials such as silicon, various glass materials, and composite materials containing metals and various resins. it can.

拘束圧は、積層体を構成する電極層同士の密着性を高めることができるという観点から、例えば、0.1MPa以上、1.5MPa以上、又は5MPa以上であることが好ましい。   The binding pressure is preferably, for example, 0.1 MPa or more, 1.5 MPa or more, or 5 MPa or more from the viewpoint that the adhesion between the electrode layers forming the laminate can be improved.

C.充電工程
本工程は、積層された積層体20に定電流定電圧充電を行う工程である。定電流定電圧充電は、従来の電池と同様に、積層体20から取り出す電気量(可逆容量分)を充電することを目的として行なわれる。充電工程は、可逆容量分の充電を目的として定電流定電圧充電を行う工程であれば、その形態は特に限定されない。所定の電圧に達するまで定電流充電を行った後、引き続き、電流値を低減しながら定電圧充電を行う工程であり、定電圧充電を終了する際の電流値は、例えば0.01Cとすることができる。
C. Charging Step This step is a step of performing constant current/constant voltage charging on the stacked body 20. The constant-current constant-voltage charging is performed for the purpose of charging the amount of electricity (reversible capacity) extracted from the stacked body 20, as in the conventional battery. The form of the charging step is not particularly limited as long as it is a step of performing constant current constant voltage charging for the purpose of charging a reversible capacity. After performing constant current charging until reaching a predetermined voltage, it is a step of continuously performing constant voltage charging while reducing the current value, and the current value at the time of ending constant voltage charging is, for example, 0.01C. You can

本発明の実施形態における全固体リチウム電池では、充電工程により、正極活物質は体積収縮し、負極活物質は体積変化が殆どないため、積層体の体積が小さくなる。すなわち、積層方向の厚みが薄くなる。それによって積層体の積層方向にかかる拘束圧が低下する。 In the all-solid-state lithium battery according to the embodiment of the present invention, the volume of the positive electrode active material shrinks and the volume of the negative electrode active material hardly changes due to the charging process, so that the volume of the laminated body becomes small. That is, the thickness in the stacking direction becomes thin. As a result, the constraint pressure applied in the stacking direction of the stack is reduced.

D.再拘束工程
本工程は、充電によって体積収縮し拘束圧が低下した積層体を、拘束部材で積層方向に再度拘束圧を印加する。それによって、接触性が低下した活物質と固体電解質の界面において、再度接触性を向上させることができる。拘束方法は、上述した拘束工程と同様の方法で行うことができる。再拘束工程における拘束圧は、拘束工程と同様の拘束圧とすることができる。例えば、例えば、0.1MPa以上、1.5MPa以上、又は5MPa以上であることが好ましい。
D. Reconstraining Step In this step, the constraining member applies a constraining pressure again in the stacking direction to the laminated body that has contracted in volume due to charging and whose constraining pressure has decreased. Thereby, the contact property can be improved again at the interface between the active material and the solid electrolyte whose contact property is lowered. The restraint method can be performed by the same method as the restraint step described above. The restraint pressure in the re-restraint step can be the same restraint pressure as in the restraint step. For example, it is preferably 0.1 MPa or more, 1.5 MPa or more, or 5 MPa or more.

20 … 積層体
22 … 正極層
23 … 固体電解質層
24 … 負極層
30 … 拘束部材
32 … ナット
34 … ボルト
100 … 全固体リチウム電池

20... Laminated body 22... Positive electrode layer 23... Solid electrolyte layer 24... Negative electrode layer 30... Restraint member 32... Nut 34... Bolt 100... All-solid-state lithium battery

Claims (1)

LiAxMny(AはNi、Co、Feから選択される元素、0≦x≦1、1≦y≦2、1.9≦x+y≦2.1)を正極活物質として有する正極層と、Li Ti(4.5≦s≦5.5、11.5≦t≦12.5)を負極活物質として有する負極層と、前記正極層と前記負極層の間に配置された固体電解質層とが積層された積層体を形成する積層工程と、
前記積層体を拘束部材によって積層方向から拘束する拘束工程と、
拘束された前記積層体を充電する充電工程と、
充電され体積収縮した前記積層体を積層方向から再拘束する再拘束工程と、
を含む、全固体リチウム電池の製造方法。
LiA x Mn y O 4 (A is an element selected Ni, Co, from Fe, 0 ≦ x ≦ 1,1 ≦ y ≦ 2,1.9 ≦ x + y ≦ 2.1) the positive electrode layer having a positive electrode active material If, disposed between the Li 4 Ti s O t (4.5 ≦ s ≦ 5.5,11.5 ≦ t ≦ 12.5) and a negative electrode layer having a negative electrode active material, the positive electrode layer and the negative electrode layer A laminating step of forming a laminated body in which the solid electrolyte layer is laminated,
A restraint step of restraining the laminate from the stacking direction by a restraint member,
A charging step of charging the constrained laminated body,
A reconstraining step of reconstraining the charged and volume-shrinked laminate from the stacking direction,
A method for manufacturing an all-solid-state lithium battery, including:
JP2016212176A 2016-10-28 2016-10-28 Method for manufacturing all-solid-state lithium battery Active JP6702137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016212176A JP6702137B2 (en) 2016-10-28 2016-10-28 Method for manufacturing all-solid-state lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212176A JP6702137B2 (en) 2016-10-28 2016-10-28 Method for manufacturing all-solid-state lithium battery

Publications (2)

Publication Number Publication Date
JP2018073629A JP2018073629A (en) 2018-05-10
JP6702137B2 true JP6702137B2 (en) 2020-05-27

Family

ID=62114421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212176A Active JP6702137B2 (en) 2016-10-28 2016-10-28 Method for manufacturing all-solid-state lithium battery

Country Status (1)

Country Link
JP (1) JP6702137B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272788B2 (en) * 2018-12-25 2023-05-12 株式会社Soken Method for manufacturing all-solid-state battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355767A (en) * 1989-07-24 1991-03-11 Matsushita Electric Ind Co Ltd Manufacture of solid secondary battery
JP2000331684A (en) * 1999-05-24 2000-11-30 Kyocera Corp Laminated solid secondary battery
JP2006012426A (en) * 2004-06-22 2006-01-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US7267908B2 (en) * 2004-08-30 2007-09-11 Toyota Technical Center Usa, Inc. In cycling stability of Li-ion battery with molten salt electrolyte
JP5321196B2 (en) * 2009-03-31 2013-10-23 トヨタ自動車株式会社 Manufacturing method of all-solid lithium secondary battery
JP6074989B2 (en) * 2012-10-01 2017-02-08 トヨタ自動車株式会社 Solid battery manufacturing method
JP2015015087A (en) * 2013-07-03 2015-01-22 石原産業株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2016081790A (en) * 2014-10-20 2016-05-16 トヨタ自動車株式会社 Method for manufacturing all-solid type secondary battery

Also Published As

Publication number Publication date
JP2018073629A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US11114687B2 (en) Battery
JP6136027B2 (en) Electrode assembly, battery cell and device including the same
KR101577881B1 (en) Bipolar all-solid-state battery
JP6538023B2 (en) Electrochemical cell comprising a folded electrode, its components, a battery comprising said electrochemical cell, and a method of forming such a cell etc
JP6394057B2 (en) Solid electrolyte structure and all solid state battery
JP6547768B2 (en) Method of manufacturing all solid lithium ion battery
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
US20130017425A1 (en) Storage Battery Cell, Assembled Battery, Assembled Battery Setup Method, Electrode Group, and Production Method of Electrode Group
US10707534B2 (en) Battery
JP2011159635A (en) Solid lithium secondary battery and method for manufacturing the same
US11101502B2 (en) Battery
JP5413129B2 (en) Solid battery manufacturing method
US10553858B2 (en) Lithium electrode for a rechargeable lithium-ion battery and method for the manufacture thereof
JP2015018670A (en) Bipolar battery
JP6702137B2 (en) Method for manufacturing all-solid-state lithium battery
KR102108113B1 (en) Electrode Assembly Comprising Separator Having Folded Edge
CN110858662A (en) Lithium ion battery of sandwich construction and method for producing same
TW201508978A (en) Electrode structure and secondary battery
JP2014086213A (en) Method of manufacturing all-solid-state battery
CN113224376A (en) Solid-state battery
JP2006134697A (en) Lithium-ion rechargeable battery
JP2020107389A (en) Method for manufacturing all-solid battery
CN106784643B (en) Lithium ion secondary battery
JP6697155B2 (en) All solid state battery
KR101368226B1 (en) Electrode structure comprising the electrode materialand secondary battery comprising the electrodestructure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R151 Written notification of patent or utility model registration

Ref document number: 6702137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151