JP6701666B2 - Biaxially oriented polyester film and magnetic recording medium - Google Patents

Biaxially oriented polyester film and magnetic recording medium Download PDF

Info

Publication number
JP6701666B2
JP6701666B2 JP2015205424A JP2015205424A JP6701666B2 JP 6701666 B2 JP6701666 B2 JP 6701666B2 JP 2015205424 A JP2015205424 A JP 2015205424A JP 2015205424 A JP2015205424 A JP 2015205424A JP 6701666 B2 JP6701666 B2 JP 6701666B2
Authority
JP
Japan
Prior art keywords
particles
polyester film
biaxially oriented
oriented polyester
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015205424A
Other languages
Japanese (ja)
Other versions
JP2016079410A (en
Inventor
中森 ゆか里
ゆか里 中森
東大路 卓司
卓司 東大路
堀江 将人
将人 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2016079410A publication Critical patent/JP2016079410A/en
Application granted granted Critical
Publication of JP6701666B2 publication Critical patent/JP6701666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Magnetic Record Carriers (AREA)

Description

本発明は、走行性やスリット性、寸法安定性および表面性に優れた二軸配向ポリエステルフィルムに関するものであり、高精細な表面性が必要な光学用や各種離型フィルム、次世代熱転写リボン用フィルム、データストレージなどの塗布型磁気記録媒体のベースフィルムに好適に用いることができる二軸配向ポリエステルフィルムに関するものである。   The present invention relates to a biaxially oriented polyester film excellent in running property, slit property, dimensional stability and surface property, for optical and various release films that require high-definition surface property, for next-generation thermal transfer ribbons. The present invention relates to a biaxially oriented polyester film which can be suitably used as a base film of a coating type magnetic recording medium such as a film and data storage.

二軸配向ポリエステルフィルムはその優れた熱特性、寸法安定性、機械特性および表面形態の制御のし易さから各種用途に使用されており、特に磁気記録媒体などの支持体としての有用性がよく知られている。磁気記録媒体には常に高密度記録化が要求され、更なる高密度記録を達成するためには、磁性層の薄膜化や微粒子磁性体を使用し磁性層表面の平滑性をさらに向上させることは有効である。   Biaxially oriented polyester films are used in various applications because of their excellent thermal properties, dimensional stability, mechanical properties, and ease of controlling the surface morphology, and are particularly useful as supports for magnetic recording media. Are known. High density recording is always required for the magnetic recording medium, and in order to achieve higher density recording, it is not possible to make the magnetic layer thin and to improve the smoothness of the magnetic layer surface by using a fine particle magnetic material. It is valid.

近年の強磁性六方晶フェライト粉末を用いてなる磁気記録媒体用支持体においては、磁性層や非磁性層、バックコート層、さらには支持体自体の薄膜化に伴い平滑面のみならず走行面の粗面化が制約されている。製造過程で磁気記録媒体としてロール状態で保存する場合、走行面に形成されている突起が磁性面に転写し、平滑な磁性層表面に窪みを形成させたり、支持体の薄膜化に伴い支持体に含有している大きな粒子が平滑面に突き上げられ磁性層表面になだらかな凸状のウネリを発生させ磁性層表面の平滑性が低下するといった問題がある。磁性層表面の平滑性を高めるために支持体に含有する粒子の小径化を図り、超高精細な表面として平滑性を向上させると、走行性や巻き取り、さらには表面の耐久性が不十分となる。   In a magnetic recording medium support made of a ferromagnetic hexagonal ferrite powder in recent years, a magnetic layer, a non-magnetic layer, a back coat layer, and further thinning of the support itself not only results in a smooth surface but also a running surface. Roughening is restricted. When stored in a roll state as a magnetic recording medium in the manufacturing process, the protrusions formed on the running surface are transferred to the magnetic surface, forming dents on the smooth magnetic layer surface, or as the support becomes thinner However, there is a problem that the large particles contained in the surface of the magnetic layer are pushed up to the smooth surface to generate smooth convex swelling on the surface of the magnetic layer, which deteriorates the smoothness of the surface of the magnetic layer. If the diameter of the particles contained in the support is reduced in order to improve the smoothness of the magnetic layer surface and the smoothness is improved as an ultra-high-definition surface, runnability, winding, and surface durability are insufficient. Becomes

したがって、スリット性と表面の平滑性の両立といった特性の改善に対する要求は高密度記録化のためには常に発生する課題といえる。   Therefore, it can be said that a demand for improvement of characteristics such as compatibility of slitting property and surface smoothness is always generated for high density recording.

上記課題を解決するために、微細な粒子を含有させて、フィルム表面の粗さや突起高さと個数を制御し磁性層表面への転写を抑制したポリエステルフィルム(例えば特許文献1)が検討されている。しかしながら、バックコート層側のベースフィルム表面に形成された特定の高さや大きさの突起を規定しても磁性層やバックコート層が薄く高精細な表面を有する強磁性六方晶フェライト粉末を用いてなる磁気記録媒体用支持体に用いる場合には、依然として粗大突起の低減には至らず、転写による磁性面の平滑性の低下を解消できないのが実情である。また、磁性層を形成しない側の積層厚みが厚いため、表面突起による反対面(磁性層側)への突き上げにより磁性層側の平滑性の欠陥は依然として解消できない。さらには、含有粒子の小径化に伴い突起が低くなったことにより走行性に寄与する高さを有する突起が減少し走行性や巻き取り性、表面の耐摩耗性に問題が残る。また、ポリエステルフィルム表面のうねりを特定の範囲内に制御することで優れた巻き取り性と電磁変換特性を両立したポリエステルフィルム(例えば特許文献2〜4)やポリエステルフィルムの走行性と平滑性を両立させるために、ポリエステルフィルムの両面もしくは片面にプライマーを塗設するなどの方法が検討されている(例えば特許文献5)。しかし、高精細な表面が要求される強磁性六方晶フェライト粉末を用いてなる磁気記録媒体用支持体に用いる場合には、支持体中の粒子による突き上げやバックコート層表面の突起による磁性層表面への転写痕により、磁性層表面の平滑性は未だ不十分である。また、プライマー層の走行耐久性が不十分で含有粒子の脱落による工程内汚染の問題があるのが現状である。   In order to solve the above problems, a polyester film (for example, Patent Document 1) in which fine particles are contained to control the roughness of the film surface and the height and number of protrusions to suppress transfer to the magnetic layer surface has been studied. .. However, even if the protrusion of a specific height or size formed on the surface of the base film on the back coat layer side is specified, the magnetic layer or the back coat layer is thin and a ferromagnetic hexagonal ferrite powder having a fine surface is used. When it is used as a support for a magnetic recording medium, the number of coarse protrusions is still not reduced, and the fact that the reduction in the smoothness of the magnetic surface due to transfer cannot be eliminated is the reality. Further, since the laminated thickness on the side where the magnetic layer is not formed is large, the defect of smoothness on the magnetic layer side cannot be eliminated by pushing up to the opposite surface (magnetic layer side) by the surface protrusion. Further, as the diameter of the contained particles becomes smaller, the projections become lower, so that the projections having a height that contributes to the running property decrease, and problems remain in the running property, the winding property, and the surface abrasion resistance. Further, by controlling the waviness of the surface of the polyester film within a specific range, both the runnability and the smoothness of the polyester film (for example, Patent Documents 2 to 4) and the polyester film that have both excellent windability and electromagnetic conversion characteristics are achieved. In order to achieve this, a method of applying a primer on both sides or one side of a polyester film has been studied (for example, Patent Document 5). However, when it is used as a support for a magnetic recording medium that uses a ferromagnetic hexagonal ferrite powder that requires a high-definition surface, it is pushed up by particles in the support or the surface of the magnetic layer due to protrusions on the backcoat layer surface. The smoothness of the surface of the magnetic layer is still insufficient due to the transfer mark to the magnetic recording medium. Further, the running durability of the primer layer is insufficient, and there is a problem of contamination in the process due to falling of contained particles.

特開2012−153100号公報JP, 2012-153100, A 特開2012−153099号公報JP2012-153099A 特開2003−191414号公報JP, 2003-191414, A 特開2004−299057号公報JP, 2004-299057, A 特開2001−341265号公報JP 2001-341265 A

本発明者らは上記目的を解決するために鋭意検討を重ねた結果、磁性面への転写や突起の突き上げによる磁性層表面の平滑性の低下を抑制するために走行面の粗さや表面突起の高さと個数を制御するだけでは必ずしも磁性層表面の欠陥を低減できず、走行性を高いレベルで両立するには限界があると判断した。さらに検討を重ねた結果、全突起数に対する高さ60nm以上の突起の割合と電磁変換特性の低下および巻き取り性との間に相関性が見られることを見出し、本発明に到達した。   The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, in order to suppress the deterioration of the smoothness of the magnetic layer surface due to the transfer to the magnetic surface and the protrusion of the protrusion, the roughness of the running surface and the surface protrusion are suppressed. It was judged that the defects on the surface of the magnetic layer could not always be reduced only by controlling the height and the number, and there was a limit to achieving a high level of running performance. As a result of further studies, the inventors have found that there is a correlation between the ratio of protrusions having a height of 60 nm or more to the total number of protrusions and the deterioration of the electromagnetic conversion characteristics and the winding property, and arrived at the present invention.

本発明の目的は、上記の問題を解決した、走行性やスリット性、寸法安定性に優れた二軸配向ポリエステルフィルムであって、磁気記録媒体とした際に平滑な磁性層を有すると共に温度や湿度の環境変化や保存による寸法変化が小さく、ドロップアウトが少ない電磁変換特性に優れた高密度磁気記録媒体となる二軸配向ポリエステルフィルムを安定に提供することにある。   An object of the present invention is to solve the above problems, a biaxially oriented polyester film excellent in running property, slit property, and dimensional stability, and having a smooth magnetic layer when used as a magnetic recording medium, and temperature and It is intended to stably provide a biaxially oriented polyester film which is a high-density magnetic recording medium excellent in electromagnetic conversion characteristics with little dropout due to dimensional change due to environmental change of humidity and storage.

上記課題を解決するための本発明は、次の各構成を特徴とするものである。   The present invention for solving the above-mentioned problems is characterized by the following respective configurations.

(1)ポリエステル樹脂を含むA層と、ポリエステル樹脂、平均粒子径0.3〜0.5μmの粒子Lを0.005〜0.3質量%(但し、粒子Lの平均粒子径が0.4μmを超える場合の含有量は0.005〜0.02質量%)、平均粒子径0.05〜0.3μmの粒子Mを0.01〜0.2の配合比(L/M)(但し、粒子Lの平均粒子径が0.4μm以下の場合の上限は1以下)で含むB層とを有し(ただし、粒子Lは粒子Mよりも平均粒子径が大きい粒子)、厚みが3.5〜4.5μmであり、B層の積層厚み(t)と該層に含有される粒子の最大粒子径(d)の比(t/d)が1〜5であり、少なくとも片面の三次元表面粗さ計により測定した粗さ曲線において、基準面から10nm間隔にスライスレベルを設定したときの突起密度が以下の関係を満足する二軸配向ポリエステルフィルム。 (1) 0.005 to 0.3% by mass of the layer A containing the polyester resin, the polyester resin, and the particles L having an average particle diameter of 0.3 to 0.5 μm (however, the average particle diameter of the particles L is 0.4 μm Content of 0.005 to 0.02% by mass), particles M having an average particle diameter of 0.05 to 0.3 μm are mixed at a compounding ratio (L/M) of 0.01 to 0.2 (however, Particle B has an upper limit of 1 or less when the average particle diameter of the particle L is 0.4 μm or less (provided that the particle L has a larger average particle diameter than the particle M) and has a thickness of 3.5. To 4.5 μm, the ratio (t/d) of the laminated thickness (t) of the B layer and the maximum particle diameter (d) of the particles contained in the layer is 1 to 5, and at least one three-dimensional surface. A biaxially oriented polyester film in which the protrusion density when the slice level is set at 10 nm intervals from the reference plane on the roughness curve measured by a roughness meter satisfies the following relationship.

0.4≦(M60/M10)×100≦3
M100≦5
(但し、M10(個/mm):高さ10nmのスライスレベルにおける突起密度、
M60(個/mm):高さ60nmのスライスレベルにおける突起密度、
M100(個/mm):高さ100nmのスライスレベルにおける突起密度、である。)
(2)少なくとも片面の三次元表面粗さ計により測定した粗さ曲線において、基準面から10nm間隔にスライスレベルを設定したときの突起密度が以下の関係を満足する上記(1)に記載の二軸配向ポリエステルフィルム。
0.4≦(M60/M10)×100≦3
M100≦5
(However, M10 (pieces/mm 2 ): protrusion density at a slice level with a height of 10 nm,
M60 (pieces/mm 2 ): protrusion density at a slice level with a height of 60 nm,
M100 (pieces/mm 2 ): protrusion density at a slice level with a height of 100 nm. )
(2) In the roughness curve measured by a three-dimensional surface roughness meter on at least one side, the protrusion density when the slice level is set at 10 nm intervals from the reference plane satisfies the following relationship. Axial oriented polyester film.

1≦M10/M0≦10
(但し、M0(個/mm):高さ0nmのスライスレベル(基準面)における突起密度である。)
(3)高さ10nmのスライスレベル(基準面)における突起密度(M10)が0.6万〜2万個/mmである、上記(1)または(2)に記載の二軸配向ポリエステルフィルム。
1≤M10/M0≤10
(However, M0 (pieces/mm 2 ): projection density at a slice level (reference plane) with a height of 0 nm.)
(3) The biaxially oriented polyester film as described in (1) or (2) above, wherein the protrusion density (M10) at a slice level (reference plane) with a height of 10 nm is from 60,000 to 20,000 pieces/mm 2. ..

(4)高さ0nmのスライスレベル(基準面)における突起密度(M0)が0.1万〜1万個/mmである、上記(1)〜(3)のいずれかに記載の二軸配向ポリエステルフィルム。 (4) The biaxial according to any one of the above (1) to (3), wherein the protrusion density (M0) at a slice level (reference plane) with a height of 0 nm is 10 to 10 000 pieces/mm 2. Oriented polyester film.

(5)高さ0nmのスライスレベル(基準面)における突起の平均直径(P0)が2〜25μmである、上記(1)〜(4)のいずれかに記載の二軸配向ポリエステルフィルム。 (5) The biaxially oriented polyester film as described in any of (1) to (4) above, wherein the average diameter (P 0 ) of the protrusions at a slice level (reference plane) having a height of 0 nm is 2 to 25 μm.

(6)高さ10nmのスライスレベルにおける突起の平均直径(P10)が1〜5μmである、上記(1)〜(5)のいずれかに記載の二軸配向ポリエステルフィルム。 (6) The biaxially oriented polyester film as described in any one of (1) to (5) above, wherein the average diameter (P 10 ) of the protrusions at a slice level of 10 nm is 1 to 5 μm.

(7)幅方向の湿度膨張係数が0〜6ppm/%RHである、上記(1)〜(6)のいずれかに記載の二軸配向ポリエステルフィルム。   (7) The biaxially oriented polyester film according to any one of (1) to (6), which has a humidity expansion coefficient in the width direction of 0 to 6 ppm/% RH.

)塗布型デジタル記録方式の磁気記録媒体用ベースフィルム用である、上記(1)〜()のいずれかに記載の二軸配向ポリエステルフィルム。 ( 8 ) The biaxially oriented polyester film according to any one of (1) to ( 7 ) above, which is for a base film for a magnetic recording medium of a coating type digital recording system.

)ヘイズが1%以下である、上記(1)〜()のいずれかに記載の二軸配向ポリエステルフィルム。 ( 9 ) The biaxially oriented polyester film as described in any of (1) to ( 8 ) above, which has a haze of 1% or less.

10)上記(1)〜()のいずれかに記載の二軸配向ポリエステルフィルムをベースフィルムとして用いた磁気記録媒体。 ( 10 ) A magnetic recording medium using the biaxially oriented polyester film according to any one of (1) to ( 9 ) as a base film.

11)光学用として用いられる、上記(1)〜()のいずれかに記載の二軸配向ポリエステルフィルム。
( 11 ) The biaxially oriented polyester film as described in any one of (1) to ( 9 ) above, which is used for optics.

本発明の二軸配向ポリエステルフィルムは走行性やスリット性、寸法安定性に優れた二軸配向ポリエステルフィルムであって、磁気記録媒体とした際に平滑な磁性層を有すると共に温度や湿度の環境変化や保存による寸法変化が小さい、ドロップアウトが少なく電磁変換特性に優れた高密度磁気記録媒体となる二軸配向ポリエステルフィルムを得ることができるほか、光学用や各種離型フィルムとして好適に用いることができる。   The biaxially oriented polyester film of the present invention is a biaxially oriented polyester film excellent in running property, slit property, and dimensional stability, and has a smooth magnetic layer when used as a magnetic recording medium, and changes in environment of temperature and humidity. It is possible to obtain a biaxially oriented polyester film that is a high-density magnetic recording medium with small dimensional changes due to storage and storage, less dropout, and excellent electromagnetic conversion characteristics, and is also suitable for use as optical and various release films. it can.

本発明において用いるポリエステルとしては、例えば、芳香族ジカルボン酸、脂環族ジカルボン酸または脂肪族ジカルボン酸などの酸成分やジオール成分を構成単位(重合単位)とするポリマーで構成されたものを用いることができる。   As the polyester used in the present invention, for example, one composed of a polymer having an acid component such as an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid or an aliphatic dicarboxylic acid or a diol component as a constitutional unit (polymerized unit) is used. You can

芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸等を用いることができ、なかでも好ましくは、テレフタル酸、フタル酸、2,6−ナフタレンジカルボン酸を用いることができる。脂環族ジカルボン酸成分としては、例えば、シクロヘキサンジカルボン酸等を用いることができる。脂肪族ジカルボン酸成分としては、例えば、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸等を用いることができる。これらの酸成分は一種のみを用いてもよく、二種以上を併用してもよい。   Examples of the aromatic dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and 4,4′-diphenyldicarboxylic acid. Acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenyl sulfone dicarboxylic acid and the like can be used, and among them, terephthalic acid, phthalic acid and 2,6-naphthalenedicarboxylic acid can be preferably used. .. As the alicyclic dicarboxylic acid component, for example, cyclohexanedicarboxylic acid or the like can be used. As the aliphatic dicarboxylic acid component, for example, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, etc. can be used. These acid components may be used alone or in combination of two or more.

ジオール成分としては、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ネオペンチルグリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2’−ビス(4’−β−ヒドロキシエトキシフェニル)プロパン等を用いることができ、なかでも、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、ジエチレングリコール等を好ましく用いることができ、特に好ましくは、エチレングリコール等を用いることができる。これらのジオール成分は一種のみを用いてもよく、二種以上を併用してもよい。   Examples of the diol component include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1 ,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2′-bis(4′- β-hydroxyethoxyphenyl)propane and the like can be used, and among them, ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, diethylene glycol and the like can be preferably used, and ethylene glycol is particularly preferable. Etc. can be used. These diol components may be used alone or in combination of two or more.

ポリエステルには、ラウリルアルコール、イソシアン酸フェニル等の単官能化合物が共重合されていてもよいし、トリメリット酸、ピロメリット酸、グリセロール、ペンタエリスリトール、2,4−ジオキシ安息香酸、等の3官能化合物などが、過度に分枝や架橋をせずポリマーが実質的に線状である範囲内で共重合されていてもよい。さらに酸成分、ジオール成分以外に、p−ヒドロキシ安息香酸、m−ヒドロキシ安息香酸、2,6−ヒドロキシナフトエ酸などの芳香族ヒドロキシカルボン酸およびp−アミノフェノール、p−アミノ安息香酸などを本発明の効果が損なわれない程度の少量であればさらに共重合せしめることができる。   The polyester may be copolymerized with a monofunctional compound such as lauryl alcohol and phenyl isocyanate, or may be trifunctional such as trimellitic acid, pyromellitic acid, glycerol, pentaerythritol, and 2,4-dioxybenzoic acid. The compound or the like may be copolymerized within a range in which the polymer is substantially linear without excessive branching or crosslinking. In addition to the acid component and the diol component, aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid, m-hydroxybenzoic acid and 2,6-hydroxynaphthoic acid, and p-aminophenol and p-aminobenzoic acid are also included in the present invention. If the amount is small enough not to impair the effect of, the copolymerization can be further performed.

ポリマーの共重合割合はNMR法(核磁気共鳴法)や顕微FT−IR法(フーリエ変換顕微赤外分光法)を用いて調べることができる。   The copolymerization ratio of the polymer can be examined by using the NMR method (nuclear magnetic resonance method) or the microscopic FT-IR method (Fourier transform microscopic infrared spectroscopy).

ポリエステルは、二軸延伸を施せること、および、寸法安定性などの本発明の効果を発現するために、ガラス転移温度が150℃未満のものを好適に使用できる。本発明において用いるポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート(ポリエチレン−2,6−ナフタレート)が好ましく、また、これらの共重合体や変性体でもよく、他の熱可塑性樹脂とのポリマーアロイでもよい。ここでいうポリマーアロイとは高分子多成分系のことであり、共重合によるブロックコポリマーであってもよいし、混合などによるポリマーブレンドでもよい。本発明で用いるポリエステルとしては特に、結晶子サイズや結晶配向度を高めるプロセスが適用しやすいことから主成分がポリエチレンテレフタレートであることがより好ましい。ここで、主成分とはフィルム組成中80質量%以上であることをいう。   As the polyester, those having a glass transition temperature of less than 150° C. can be preferably used in order to perform biaxial stretching and to exhibit the effects of the present invention such as dimensional stability. The polyester used in the present invention is preferably polyethylene terephthalate or polyethylene naphthalate (polyethylene-2,6-naphthalate), and may be a copolymer or modified product thereof or a polymer alloy with another thermoplastic resin. . The polymer alloy referred to here is a multi-component polymer system, and may be a block copolymer formed by copolymerization or a polymer blend formed by mixing. Especially as the polyester used in the present invention, it is more preferable that the main component is polyethylene terephthalate because a process for increasing the crystallite size and the crystal orientation is easy to apply. Here, the main component means that it is 80% by mass or more in the film composition.

本発明で用いるポリエチレンテレフタレートをポリマーアロイとする場合、他の熱可塑性樹脂は、ポリエステルと相溶するポリマーが好ましく、ポリエーテルイミド樹脂などがより好ましい。ポリエーテルイミド樹脂としては、例えば以下で示すものを用いることができる。   When polyethylene terephthalate used in the present invention is used as the polymer alloy, the other thermoplastic resin is preferably a polymer compatible with polyester, more preferably a polyetherimide resin or the like. As the polyetherimide resin, for example, the ones shown below can be used.

Figure 0006701666
Figure 0006701666

(ただし、上記式中Rは、6〜30個の炭素原子を有する2価の芳香族または脂肪族残基、Rは6〜30個の炭素原子を有する2価の芳香族残基、2〜20個の炭素原子を有するアルキレン基、2〜20個の炭素原子を有するシクロアルキレン基、および2〜8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。)
上記R、Rとしては、例えば、下記式群に示される芳香族残基を挙げることができる。
(Wherein R 1 is a divalent aromatic or aliphatic residue having 6 to 30 carbon atoms, R 2 is a divalent aromatic residue having 6 to 30 carbon atoms, From the group consisting of alkylene groups having 2 to 20 carbon atoms, cycloalkylene groups having 2 to 20 carbon atoms, and polydiorganosiloxane groups chain-terminated with alkylene groups having 2 to 8 carbon atoms. It is a selected divalent organic group.)
Examples of R 1 and R 2 include aromatic residues represented by the following formula group.

Figure 0006701666
Figure 0006701666

本発明では、ポリエステルとの親和性、コスト、溶融成形性等の観点から、2,2−ビス[4−(2,3−ジカルボキシフェノキシ)フェニル]プロパン二無水物とm−フェニレンジアミン、またはp−フェニレンジアミンとの縮合物である、下記式で示される繰り返し単位を有するポリマーが好ましい。   In the present invention, 2,2-bis[4-(2,3-dicarboxyphenoxy)phenyl]propane dianhydride and m-phenylenediamine, or from the viewpoint of affinity with polyester, cost, melt moldability, and the like, or A polymer having a repeating unit represented by the following formula, which is a condensation product with p-phenylenediamine, is preferable.

Figure 0006701666
Figure 0006701666

または Or

Figure 0006701666
Figure 0006701666

(nは2以上の整数、好ましくは20〜50の整数である。)
このポリエーテルイミドは、“ウルテム”の商品名で、SABICイノベーティブプラスチック社より入手可能であり、「Ultem(登録商標)1000」、「Ultem(登録商標)1010」、「Ultem(登録商標)1040」、「Ultem(登録商標)5000」、「Ultem(登録商標)6000」および「Ultem(登録商標)XH6050」シリーズや「Extem(登録商標) XH」および「Extem(登録商標) UH」の登録商標名等で知られているものである。
(N is an integer of 2 or more, preferably 20 to 50.)
This polyetherimide is available from SABIC Innovative Plastics under the trade name of "Ultem", and is "Ultem (registered trademark) 1000", "Ultem (registered trademark) 1010", "Ultem (registered trademark) 1040". , "Ultem (registered trademark) 5000", "Ultem (registered trademark) 6000" and "Ultem (registered trademark) XH6050" series and "Extem (registered trademark) XH" and "Extem (registered trademark) UH" registered trademark names Etc. are known.

本発明の二軸配向ポリエステルフィルムは、平均粒径が0.050〜0.50μmの不活性粒子を含有する層(B層)を少なくとも1層有する2層以上の積層構成を有することが好ましい。この場合、B層は走行性を担う層として機能し、フィルムの一方の最外層として設けられる。もう一方の最外層には平滑性を担う層(A層)が設けられている少なくとも2層以上の積層構成が本発明の効果を得るためには好ましい。   The biaxially oriented polyester film of the present invention preferably has a laminated structure of two or more layers having at least one layer (B layer) containing inert particles having an average particle diameter of 0.050 to 0.50 μm. In this case, the layer B functions as a layer having a running property and is provided as one outermost layer of the film. In order to obtain the effects of the present invention, it is preferable that the other outermost layer has a layered structure of at least two layers in which a layer having smoothness (A layer) is provided.

本発明の二軸配向ポリエステルフィルムは、少なくとも片面の三次元表面粗さ計により測定した粗さ曲線において、基準面から10nm間隔にスライスレベルを設定したときの突起密度について、高さ60nmのスライスレベルにおける突起密度(M60(個/mm))と高さ10nmのスライスレベルにおける突起密度(M10(個/mm))の関係が0.4≦(M60/M10)×100≦3である。好ましくは(M60/M10)×100の値は0.4〜2.8であり、さらに好ましくは0.5〜2.5である。下限値は小さければ小さい方が転写の抑制につながり好ましいが、小さくなりすぎると走行性が悪化するためスリット性が低下する。上限値が3を超えると全突起に対する高さ60nm以上の突起割合が高くなり、転写が発生しやすく、磁性層表面の欠陥抑制が不十分となりやすい。突起密度比(M60/M10)×100の値を本発明の範囲内とすることによって、走行性やスリット性と磁性層表面の欠陥抑止、つまり電磁変換特性やドロップアウトの両立が高いレベルで可能となる。 The biaxially oriented polyester film of the present invention has a roughness curve measured by a three-dimensional surface roughness meter on at least one side, and with respect to the protrusion density when the slice level is set at 10 nm intervals from the reference plane, a slice level with a height of 60 nm. The relationship between the protrusion density (M60 (pieces/mm 2 )) and the protrusion density (M10 (pieces/mm 2 )) at the slice level of 10 nm in height is 0.4≦(M60/M10)×100≦3. The value of (M60/M10)×100 is preferably 0.4 to 2.8, more preferably 0.5 to 2.5. If the lower limit is small, it is preferable that the lower limit leads to the suppression of transfer, but if it is too small, the running property deteriorates and the slit property deteriorates. When the upper limit is more than 3, the ratio of protrusions having a height of 60 nm or more with respect to all the protrusions is high, transfer is likely to occur, and defect suppression on the surface of the magnetic layer tends to be insufficient. By setting the value of the protrusion density ratio (M60/M10)×100 within the range of the present invention, it is possible to achieve a high level of compatibility between running property and slitting property and defects on the magnetic layer surface, that is, electromagnetic conversion characteristics and dropout. Becomes

本発明の二軸配向ポリエステルフィルムの少なくとも片面の三次元表面粗さ計により測定した粗さ曲線において、基準面から10nm間隔にスライスレベルを設定したときの突起密度について、高さ100nmのスライスレベルにおける突起密度(M100(個/mm))は5以下である。突起密度(M100)が本願の範囲外であると磁気記録媒体としたときのドロップアウトが悪化しやすく電磁変換特性が低下しやすい。本発明の密度比(M60/M10)×100および突起密度(M100)の各特性を有する特徴面がB層表面であると走行性やスリット性の向上と磁性層表面の平滑性欠陥抑制効果が十分に発揮されるので好ましい。 In the roughness curve measured by a three-dimensional surface roughness meter on at least one side of the biaxially oriented polyester film of the present invention, with respect to the protrusion density when the slice level is set at 10 nm intervals from the reference plane, at the slice level of height 100 nm The protrusion density (M100 (pieces/mm 2 )) is 5 or less. If the protrusion density (M100) is out of the range of the present application, the dropout when used as a magnetic recording medium is likely to be deteriorated and the electromagnetic conversion characteristics are likely to be deteriorated. When the characteristic surface having the characteristics of the density ratio (M60/M10)×100 and the protrusion density (M100) of the present invention is the surface of the B layer, the running property and the slit property are improved and the smoothness defect suppressing effect on the magnetic layer surface is improved. It is preferable because it is sufficiently exhibited.

本発明の二軸配向ポリエステルフィルムの少なくとも片面の三次元表面粗さ計により測定した粗さ曲線において、基準面から10nm間隔にスライスレベルを設定したときの突起密度について、高さ10nmと0nmの各スライスレベルにおける突起密度の比(M10/M0)の値(M10、M0いずれも単位は個/mm)は1〜10であることが好ましい。この値は、好ましくは1.5〜8であり、さらに好ましくは2〜5である。上記した突起密度の比の値が1未満であると走行性に寄与する突起が減少し、走行性やスリット性が低下する傾向にある。10を超えると突起が密集しすぎ粗大突起を形成しやすくなり磁気記録媒体としたときのドロップアウトが増加したり電磁変換特性が低下しやすい。 In the roughness curve measured by a three-dimensional surface roughness meter on at least one side of the biaxially oriented polyester film of the present invention, the protrusion density when the slice level is set at 10 nm intervals from the reference plane is 10 nm in height and 0 nm in each case. it is preferable (the M10, M0 both units pieces / mm 2) values of the ratio of the protrusion density (M10 / M0) in the slice level is 1 to 10. This value is preferably 1.5 to 8, and more preferably 2 to 5. When the value of the ratio of the above-mentioned projection density is less than 1, the projections that contribute to the running property decrease, and the running property and the slit property tend to decrease. When it exceeds 10, the protrusions are excessively densely formed and coarse protrusions are likely to be formed, resulting in increased dropout and deterioration of electromagnetic conversion characteristics when used as a magnetic recording medium.

上記で規定する突起密度の比(M10/M0)の値を有する特徴面がB層表面であると磁性層表面の平滑性欠陥抑制効果、つまり電磁変換特性やドロップアウトが十分に発揮されるので特に好ましい。   When the characteristic surface having the value of the protrusion density ratio (M10/M0) defined above is the B layer surface, the smoothness defect suppressing effect on the magnetic layer surface, that is, the electromagnetic conversion characteristics and dropout are sufficiently exhibited. Particularly preferred.

本発明の二軸配向ポリエステルフィルムの少なくとも片面の三次元表面粗さ計により測定した粗さ曲線において、高さ0nmのスライスレベル(基準面)における突起密度(M0)は0.1万〜1万個/mmであることが好ましい。好ましくは0.2〜0.9万個/mmである。突起密度(M0)が0.1万個/mm未満であると走行性やスリット性が悪化する場合があり、上記した突起密度の比(M10/M0)の値を達成しにくくなる。1万個/mmを超えると突起が密集し過ぎ、粗大突起を形成しやすくなる。 In the roughness curve measured by a three-dimensional surface roughness meter on at least one surface of the biaxially oriented polyester film of the present invention, the protrusion density (M0) at a slice level (reference surface) with a height of 0 nm is 0.1000 to 10,000. The number of particles/mm 2 is preferable. It is preferably 0.2 to 90,000 pieces/mm 2 . When the protrusion density (M0) is less than 10 thousand pieces/mm 2 , the running property and the slit property may be deteriorated, and it becomes difficult to achieve the above-mentioned value of the protrusion density ratio (M10/M0). If it exceeds 10,000 pieces/mm 2 , the protrusions will be too dense and it will be easy to form coarse protrusions.

本発明の二軸配向ポリエステルフィルムの少なくとも片面の三次元表面粗さ計により測定した粗さ曲線において、高さ10nmのスライスレベルにおける突起密度(M10)は好ましくは0.6〜2万個/mm、より好ましくは0.8万〜2万個/mmである。さらに好ましくは0.8万〜1.8万個/mmである。突起密度が0.6万個/mm未満であると走行性が不十分となり、スリット性が低下する場合がある。上限の2万個/mmを超えると突起が密集しすぎ粗大突起を形成しやすくなるためフィルムロールとして巻き取ったときに平滑面への転写が起こりやすくなる。また、上記で規定した突起密度の比(M60/M10)×100の値を得ることが困難となる場合がある。 In the roughness curve measured by a three-dimensional surface roughness meter on at least one side of the biaxially oriented polyester film of the present invention, the protrusion density (M10) at a slice level of 10 nm height is preferably 0.6 to 20,000 pieces/mm. 2 , more preferably 80,000 to 20,000 pieces/mm 2 . Still more preferably 08000 to 18000 pieces / mm 2. If the protrusion density is less than 60,000 pieces/mm 2 , the running property becomes insufficient and the slit property may deteriorate. If the upper limit of 20,000 pieces/mm 2 is exceeded, the projections will be too dense and coarse projections will tend to be formed, and transfer to a smooth surface will likely occur when wound up as a film roll. Further, it may be difficult to obtain the value of the ratio (M60/M10)×100 of the protrusion density defined above.

本発明の二軸配向ポリエステルフィルムは、少なくとも片面の三次元粗さ計による粗さ曲線において、高さ0nmのスライスレベルにおける突起の平均直径(P0)が2〜25μmであることが好ましい。より好ましくは3〜20μmであり、さらに好ましくは5〜15μmである。高さ0nmのスライスレベルの突起の平均径(P0)が25μmよりも大きいと上記の密度比(M60/M10)×100の好ましい値を満足しにくくなる。また、上記した突起密度(M0)を得ることが困難となる場合がある。平均径(P0)は小さいことが望ましいが、2μm未満では走行性に有効な高さの突起が得られにくくなり走行性やスリット性が悪化する場合がある。 The biaxially oriented polyester film of the present invention preferably has an average diameter (P 0 ) of the protrusions at a slice level of 0 nm in height of 2 to 25 μm in a roughness curve measured by a three-dimensional roughness meter on at least one surface. The thickness is more preferably 3 to 20 μm, further preferably 5 to 15 μm. If the average diameter (P 0 ) of the slice-level protrusions having a height of 0 nm is larger than 25 μm, it becomes difficult to satisfy the preferable value of the density ratio (M60/M10)×100. Further, it may be difficult to obtain the above-mentioned protrusion density (M0). It is desirable that the average diameter (P 0 ) is small, but if the average diameter (P 0 ) is less than 2 μm, it may be difficult to obtain a protrusion having a height effective for running property, and running property or slit property may be deteriorated.

本発明の二軸配向ポリエステルフィルムは、少なくとも片面の三次元粗さ計による粗さ曲線において、高さ10nmのスライスレベルにおける突起の平均径(P10)が1〜5μmであることが好ましい。より好ましくは3〜4.5μmである。高さ10nmのスライスレベルの突起の平均径が5μmよりも大きいと突起が密集しすぎ粗大突起を形成しやすくなるため上記の密度比(M60/M10)×100の好ましい値を得ることが困難となる場合がある。また、磁気記録媒体としたときに良好な電磁変換特性が得られにくい。平均径(P10)は小さいことが望ましいが、1μm未満では走行性に有効な高さの突起が得られにくくなりスリット性が悪化する場合がある。 The biaxially oriented polyester film of the present invention preferably has an average diameter (P 10 ) of protrusions at a slice level of 10 nm in height of 1 to 5 μm in a roughness curve measured by a three-dimensional roughness meter on at least one surface. More preferably, it is 3 to 4.5 μm. When the average diameter of the slice-level protrusions having a height of 10 nm is larger than 5 μm, the protrusions are excessively dense and the coarse protrusions are likely to be formed, which makes it difficult to obtain the preferable value of the density ratio (M60/M10)×100. May be. In addition, it is difficult to obtain good electromagnetic conversion characteristics when used as a magnetic recording medium. It is desirable that the average diameter (P 10 ) be small, but if it is less than 1 μm, it may be difficult to obtain a protrusion having a height effective for running property, and the slit property may be deteriorated.

なお、上記基準面とは、後述の測定条件に記載されている通り、3次元表面粗さ測定後に測定領域全域をレべリング処理した後、規定のフィルターを用いてカットオフを実行し、ノイズやうねり、形状等の成分を取り除く処理を行った際に決定される基準位置(高さ0nm)である。各スライスレベルにおける突起密度および突起の平均直径(P0、10)は、後述の測定方法に記載されている粒子解析(複数レベル)から導き出されるパラメータである。突起密度はフィルム表面を所定の高さのスライスレベルで水平方向に凸側を切った際の凸部の切り口の個数から算出された値であり、また、突起の平均直径(P0、10)は、所定の高さのスライスレベルで凸側を切った際の凸部の切り口の平均円相当径である。これは、凸部の総面積を凸部の個数で除算し、得られた1個あたりの面積から円相当径(直径)として算出された値である。 In addition, the reference surface is, as described in the measurement conditions described later, after leveling the entire measurement region after measuring the three-dimensional surface roughness, a cutoff is performed using a specified filter to reduce noise. It is a reference position (height 0 nm) determined when a process of removing components such as undulations and shape is performed. The protrusion density and the average diameter of the protrusions (P 0, P 10 ) at each slice level are parameters derived from particle analysis (multiple levels) described in the measurement method described later. The projection density is a value calculated from the number of cuts of the projections when the projection surface is cut in the horizontal direction at a slice level of a predetermined height, and the average diameter of the projections (P 0, P 10 ) Is the average circle equivalent diameter of the cut portion of the convex portion when the convex side is cut at a slice level of a predetermined height. This is a value calculated by dividing the total area of the convex portions by the number of the convex portions and calculating the equivalent circle diameter (diameter) from the obtained area per piece.

上記した突起密度(M100、M60)の制御方法としては、(たとえばB層に適用する場合)B層における含有粒子の平均粒子径、添加量、積層厚みで制御が可能である。特にB層に含有する粒子の粒子径が0.5μmを超えないことは重要であり、含有できる最大の粒子(L)の粒子径としては、0.3〜0.5μmであり、該粒子の含有量は0.005〜0.3質量%で含有することが好ましく、粒子(L)の粒子径が0.4μmを超える場合の含有量は0.005〜0.02質量%とすることが好ましい。また、積層厚み(t)と該層に含有される粒子径(d)の比(t/d)を1〜5、好ましくは1.3〜3に設定することが好ましい。含有粒子径が異なる粒子を数種類併用したり、粒子径の分布に幅が存在する場合では、最大粒子の粒子径と積層厚みの比を上記範囲内に設定することが好ましい。   As a method of controlling the above-mentioned protrusion density (M100, M60), it is possible to control the average particle diameter of the contained particles in the B layer, the addition amount, and the laminated thickness (when applied to the B layer). In particular, it is important that the particle diameter of the particles contained in the B layer does not exceed 0.5 μm, and the maximum particle diameter (L) that can be contained is 0.3 to 0.5 μm. The content is preferably 0.005 to 0.3% by mass, and when the particle diameter of the particles (L) exceeds 0.4 μm, the content is 0.005 to 0.02% by mass. preferable. Further, it is preferable to set the ratio (t/d) of the laminated thickness (t) and the particle diameter (d) contained in the layer to 1 to 5, preferably 1.3 to 3. When several kinds of particles having different contained particle diameters are used in combination or when there is a width in the distribution of particle diameters, it is preferable to set the ratio of the particle diameter of the largest particles to the laminated thickness within the above range.

上記した突起密度(M10、M0)の制御方法としては、平均粒子径が0.05〜0.5μmの粒子を0.1〜0.8質量%含有し、積層厚みと含有する最大粒子径の比を1〜5に設定することで制御が可能である。さらに、後述の延伸方法に記載されているMD多段延伸やTD延伸倍率比((TD延伸1)/(TD延伸2))を特定の範囲内に設定することは特に有効である。   As a method of controlling the above-mentioned protrusion density (M10, M0), 0.1 to 0.8 mass% of particles having an average particle diameter of 0.05 to 0.5 μm is contained, and the stacking thickness and the maximum particle diameter to be contained are Control is possible by setting the ratio to 1-5. Furthermore, it is particularly effective to set the MD multi-stage stretching and the TD stretching ratio ((TD stretching 1)/(TD stretching 2)) described in the stretching method described below within a specific range.

上記した密度比(M60/M10)×100の値の制御方法としては、B層中に少なくとも2種類以上の平均粒子径の異なる粒子(LおよびM)を併用することが好ましく、粒子(L)と粒子(M)の含有量とt/dの調節で制御が可能である。粒子(L)は平均粒子径が0.3〜0.5μmであり、粒子(M)の平均粒子径は0.05〜0.3μmが好ましい。この時、粒子(L)は粒子(M)よりも平均粒子径が大きい粒子であり、粒子(L)と粒子(M)の配合比(L/M)は0.01〜0.2が好ましく、より好ましくは0.03〜0.18、さらに好ましくは0.03〜0.15の割合となるように配合することが好ましい。但し、粒子(L)の平均粒径が0.4μm以下の場合は、粒子(L)と粒子(M)の配合比(L/M)が0.2を越えても配合することは可能である。この場合の配合比の上限は1以下である。   As a method of controlling the value of the above-mentioned density ratio (M60/M10)×100, it is preferable to use at least two kinds of particles (L and M) having different average particle sizes in combination in the B layer, and the particles (L) It can be controlled by adjusting the content of particles (M) and t/d. The particles (L) have an average particle size of 0.3 to 0.5 μm, and the particles (M) preferably have an average particle size of 0.05 to 0.3 μm. At this time, the particles (L) have a larger average particle size than the particles (M), and the compounding ratio (L/M) of the particles (L) and the particles (M) is preferably 0.01 to 0.2. It is preferable to mix them in a ratio of 0.03 to 0.18, more preferably 0.03 to 0.15. However, when the average particle size of the particles (L) is 0.4 μm or less, it is possible to mix even if the mixing ratio (L/M) of the particles (L) and the particles (M) exceeds 0.2. is there. In this case, the upper limit of the compounding ratio is 1 or less.

上記した突起の平均直径(P0、P10)の制御方法としては、平均粒子径が0.05〜0.5μmの粒子を用い、積層厚みと含有する最大粒子径の比を1〜5に設定することで制御が可能である。さらに、後述の延伸方法に記載されているMD多段延伸やTD延伸倍率比((TD延伸1)/(TD延伸2))を特定の範囲内に設定することは特に有効である。 As a method for controlling the average diameter (P 0 , P 10 ) of the protrusions described above, particles having an average particle size of 0.05 to 0.5 μm are used, and the ratio of the laminated thickness to the maximum particle size contained is set to 1 to 5. It can be controlled by setting. Furthermore, it is particularly effective to set the MD multi-stage stretching and the TD stretching ratio ((TD stretching 1)/(TD stretching 2)) described in the stretching method described below within a specific range.

本発明の二軸配向ポリエステルフィルムのB層に好ましく含有される粒子としては特に限定されないが、無機粒子、有機粒子、いずれも用いることができる。2種類以上の粒子を併用することが本発明の特徴面を得るためには好ましい。具体的な種類としては、例えば、クレー、マイカ、酸化チタン、炭酸カルシウム、湿式シリカ、乾式シリカ、コロイダルシリカ、リン酸カルシウム、硫酸バリウム、アルミナ珪酸塩、カオリン、タルク、モンモリロナイト、アルミナ、ジルコニア等の無機粒子、アクリル酸類、スチレン系樹脂、シリコーン、イミド等を構成成分とする有機粒子、コアシェル型有機粒子などが例示できるが、本発明の突起径と突起密度を制御するには、単一分散する球形の粒子である有機粒子やコロイダルシリカが特に好ましい。   The particles that are preferably contained in the B layer of the biaxially oriented polyester film of the present invention are not particularly limited, but either inorganic particles or organic particles can be used. It is preferable to use two or more kinds of particles in combination in order to obtain the features of the present invention. Specific types include, for example, inorganic particles such as clay, mica, titanium oxide, calcium carbonate, wet silica, dry silica, colloidal silica, calcium phosphate, barium sulfate, alumina silicate, kaolin, talc, montmorillonite, alumina and zirconia. Examples include organic particles having acrylic acid, styrene resin, silicone, imide, etc. as constituent components, core-shell organic particles, and the like. Organic particles and colloidal silica, which are particles, are particularly preferable.

上記の粒子を含有するB層表面の中心線表面粗さRaは3〜15nmであることが好ましく、10点平均粗さRzは60〜200nmであることが好ましい。より好ましくはRaが5〜12nm、Rzが70〜150nmである。表面粗さRaおよびRzが下限値未満であると走行性やスリット性が不良となりやすく、RaおよびRzが上限値を超えると該表面にバックコート層を設け磁気記録媒体とした場合に転写痕による電磁変換特性が低下しやすい。   The center line surface roughness Ra of the surface of the B layer containing the above particles is preferably 3 to 15 nm, and the 10-point average roughness Rz is preferably 60 to 200 nm. More preferably, Ra is 5 to 12 nm and Rz is 70 to 150 nm. When the surface roughness Ra and Rz are less than the lower limit values, the running property and the slit property are likely to be poor, and when the Ra and Rz exceed the upper limit values, a back coat layer is provided on the surface to cause transfer marks. Electromagnetic conversion characteristics tend to deteriorate.

本発明の二軸配向ポリエステルフィルムを磁気記録媒体用ベースフィルムとして用いる場合は、上記した特徴面側にバックコート層(以下BC層という)を設けることが高密度磁気記録媒体を得る上で好ましく、特に、磁性層に強磁性六方晶フェライト粉末を用いてなる磁気記録媒体は磁性層および非磁性層やBC層自体の厚みも薄いために、上記した特徴面にBC層を設けるとBC層の表面に支持体に起因する突起の影響が出にくく、磁性面に転写痕を形成することなく超平坦な表面を得ることが可能となるため優れた電磁変換特性を発揮できる。   When the biaxially oriented polyester film of the present invention is used as a base film for a magnetic recording medium, it is preferable to provide a back coat layer (hereinafter referred to as a BC layer) on the characteristic surface side in order to obtain a high density magnetic recording medium, In particular, a magnetic recording medium using ferromagnetic hexagonal ferrite powder for the magnetic layer has a small thickness of the magnetic layer, the non-magnetic layer and the BC layer itself. Therefore, when the BC layer is provided on the above-mentioned characteristic surface, the surface of the BC layer is In addition, the effects of the protrusions due to the support hardly occur, and it becomes possible to obtain an ultra-flat surface without forming a transfer mark on the magnetic surface, so that excellent electromagnetic conversion characteristics can be exhibited.

本発明の二軸配向ポリエステルフィルムの厚みは3.5〜4.5μmの範囲が好ましい。厚みが3.5μmより小さくなると、剛性や寸法安定性が悪化しテープの腰が不十分となり磁気記録媒体としたときに電磁変換特性が悪化する傾向がある。また、B層表面突起による平滑面(A面)側への突き上げを抑制しにくくなる。また、4.5μmより大きいとテープ1巻あたりのテープ長さが短くなるため、磁気テープの小型化、高容量に対応し難い。厚みの調整方法としては、二軸配向ポリエステルフィルムの製膜の際のポリマーの溶融押出時におけるスクリューの吐出量を調整し、口金から未延伸フィルムの厚みを制御することによって二軸延伸後のフィルム厚みを調節することが可能となる。   The thickness of the biaxially oriented polyester film of the present invention is preferably in the range of 3.5 to 4.5 μm. If the thickness is less than 3.5 μm, the rigidity and the dimensional stability are deteriorated, and the rigidity of the tape is insufficient, and the electromagnetic conversion characteristics tend to be deteriorated when the magnetic recording medium is used. Further, it becomes difficult to suppress the push-up toward the smooth surface (A surface) side by the B layer surface projection. On the other hand, if it is larger than 4.5 μm, the tape length per roll of tape becomes short, which makes it difficult to cope with miniaturization and high capacity of the magnetic tape. As a method of adjusting the thickness, by adjusting the discharge amount of the screw during melt extrusion of the polymer during film formation of the biaxially oriented polyester film, the film after biaxial stretching by controlling the thickness of the unstretched film from the die It is possible to adjust the thickness.

本発明の二軸配向ポリエステルフィルムは、幅方向の湿度膨張係数が0〜6ppm/%RHであることが好ましい。湿度膨張係数が6ppm/%RH以下であると、磁気記録媒体用に用いた場合、湿度変化による変形が大きくならず、寸法安定性の悪化が起こりにくくなる。より好ましい上限は5.5ppm/%RHであり、さらに好ましくは5ppm/%RHである。湿度膨張係数は分子鎖の緊張度合いが影響する物性であり、後述するようにTD延伸1とTD延伸2の倍率比によって制御することができ、また、TD延伸トータルの倍率やMD延伸倍率との比によっても制御が可能である。TD延伸1とTD延伸2の倍率比が(TD1/TD2)が大きいほど湿度膨張係数は小さくなる。また、TD延伸トータルの倍率が高いほど湿度膨張係数は小さくなる。   The biaxially oriented polyester film of the present invention preferably has a humidity expansion coefficient in the width direction of 0 to 6 ppm/%RH. When the coefficient of humidity expansion is 6 ppm/% RH or less, when used for a magnetic recording medium, deformation due to humidity change does not become large, and deterioration of dimensional stability hardly occurs. A more preferable upper limit is 5.5 ppm/% RH, and a further preferable upper limit is 5 ppm/% RH. The coefficient of humidity expansion is a physical property that is affected by the degree of tension of the molecular chain, and can be controlled by the ratio of TD stretch 1 and TD stretch 2 as will be described later. It can be controlled by the ratio. The larger the ratio of TD stretch 1 to TD stretch 2 (TD1/TD2), the smaller the humidity expansion coefficient. Further, the higher the total TD stretching ratio, the smaller the humidity expansion coefficient.

なお、本発明において、MDとは二軸配向ポリエステルフィルムの長手方向(縦方向)を示し、TDとは二軸配向ポリエステルフィルムの幅方向(横方向)を示す。   In addition, in this invention, MD shows the longitudinal direction (longitudinal direction) of a biaxially oriented polyester film, and TD shows the width direction (transverse direction) of a biaxially oriented polyester film.

本発明の二軸配向ポリエステルフィルムは、幅方向のヤング率が7GPa以上であることが好ましく、7〜10GPaであることが幅方向の湿度膨張係数の制御の観点からより好ましい。幅方向のヤング率が上記範囲内であると、磁気記録媒体用に用いた場合に磁気記録媒体の記録再生時の環境変化による寸法安定性が良好となる傾向にある。幅方向のヤング率は後述するTD延伸1、2の温度や倍率によって制御することができる。特にトータルのTD倍率が影響し、トータルのTD倍率が高いほどTDヤング率が高くなる。   The biaxially oriented polyester film of the present invention preferably has a Young's modulus in the width direction of 7 GPa or more, and more preferably 7 to 10 GPa from the viewpoint of controlling the humidity expansion coefficient in the width direction. When the Young's modulus in the width direction is within the above range, the dimensional stability tends to be good when used for a magnetic recording medium due to environmental changes during recording/reproduction of the magnetic recording medium. The Young's modulus in the width direction can be controlled by the temperature and magnification of TD stretching 1, 2 described later. In particular, the total TD magnification affects, and the higher the total TD magnification, the higher the TD Young's modulus.

本発明の二軸配向ポリエステルフィルムは、長手方向のヤング率が3.5〜8GPaであることが好ましい。長手方向のヤング率が上記範囲内であると、磁気記録媒体用に用いた場合に磁気記録媒体の保管時の張力による保存安定性がより良好となる。長手方向のヤング率のさらに好ましい範囲は3.8〜7.5GPa、さらにより好ましい範囲は4〜7GPaである。長手方向のヤング率はMD延伸倍率で制御することができる。MD倍率が高いほどMDヤング率が高くなる。   The biaxially oriented polyester film of the present invention preferably has a Young's modulus in the longitudinal direction of 3.5 to 8 GPa. When the Young's modulus in the longitudinal direction is within the above range, the storage stability due to the tension during storage of the magnetic recording medium becomes better when used for the magnetic recording medium. A more preferable range of Young's modulus in the longitudinal direction is 3.8 to 7.5 GPa, and an even more preferable range is 4 to 7 GPa. The Young's modulus in the longitudinal direction can be controlled by the MD stretching ratio. The higher the MD magnification, the higher the MD Young's modulus.

本発明の二軸配向ポリエステルフィルムのヘイズは1%以下であることが好ましい。フィルムのヘイズが本願の範囲外であるとディスプレイ用のフィルムとして用いた時に画面の輝度や明るさに加え画質の鮮明さが低下する傾向がある。   The haze of the biaxially oriented polyester film of the present invention is preferably 1% or less. When the haze of the film is out of the range of the present application, the sharpness of the image quality tends to be deteriorated in addition to the brightness and brightness of the screen when used as a film for a display.

上記したような本発明の二軸配向ポリエステルフィルムは、たとえば次のように製造される。   The biaxially oriented polyester film of the present invention as described above is manufactured, for example, as follows.

まず、ポリエステルのペレットを、押出機を用いて溶融し、口金から吐出した後、冷却固化してシート状に成形する。このとき、繊維焼結ステンレス金属フィルターによりポリマーを濾過することが、ポリマー中の未溶融物を除去するために好ましい。   First, polyester pellets are melted using an extruder, discharged from a die, and then cooled and solidified to form a sheet. At this time, it is preferable to filter the polymer with a fiber-sintered stainless metal filter in order to remove the unmelted material in the polymer.

本発明の特徴面を阻害しない範囲内であれば、各種添加剤、例えば、相溶化剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、結晶核剤、紫外線吸収剤、難燃剤、難燃助剤、顔料、染料、などが添加されてもよい。   Various additives, such as compatibilizers, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brighteners, and colorants, as long as they are within the range that does not impair the features of the present invention. , A conductive agent, a crystal nucleating agent, an ultraviolet absorber, a flame retardant, a flame retardant aid, a pigment, a dye, etc. may be added.

続いて、上記シートを長手方向と幅方向の二軸に延伸した後、熱処理する。上記の密度比(M10/M0)、高さ0nmの平均径(P0)や幅方向の寸法安定性を向上させるために延伸工程は、縦方向の多段延伸および幅方向において2段階以上に分けることが好ましい。すなわち、縦多段延伸によって高さ0nmの平均径(P0)と突起密度(M0)が制御され、かつ、再横延伸により高寸法安定性の磁気テープとして最適な高強度のフィルムが得られ易いために好ましい。 Subsequently, the sheet is biaxially stretched in the longitudinal direction and the width direction, and then heat treated. Density ratio of the (M10 / M0), stretching step in order to improve the average diameter (P 0) and the width direction of the dimensional stability of high 0nm is divided into two or more stages in the longitudinal direction of the multi-stage stretching and transverse direction Preferably. That is, the average diameter (P 0 ) and the protrusion density (M 0 ) at a height of 0 nm are controlled by the longitudinal multi-stage stretching, and the transversely re-stretching gives a high-strength film most suitable as a magnetic tape having high dimensional stability. It is preferable because it is easy.

延伸形式としては、長手方向に延伸した後に幅方向に2段階で延伸を行うなどの逐次二軸延伸法や同時二軸延伸した後にさらに幅方向に延伸する延伸方法が好ましい。   As a stretching method, a sequential biaxial stretching method in which stretching is performed in the longitudinal direction and then in two steps in the width direction, and a stretching method in which simultaneous biaxial stretching is performed and then further stretching in the width direction is preferable.

以下、本発明のフィルムの製造方法について、ポリエチレンテレフタレート(PET)をポリエステルとして用いた例を代表例として説明する。なお本願はPETフィルムに限定されるものではなく、他のポリマーを用いたものものでもよい。例えば、ガラス転移温度や融点の高いポリエチレン−2,6−ナフタレンジカルボキシレートなどを用いてポリエステルフィルムを構成する場合は、以下に示す温度よりも高温で押出や延伸を行えばよい。   Hereinafter, the method of producing the film of the present invention will be described by taking an example of using polyethylene terephthalate (PET) as polyester as a typical example. Note that the present application is not limited to the PET film, and one using another polymer may be used. For example, when a polyester film is formed using polyethylene-2,6-naphthalene dicarboxylate having a high glass transition temperature or a high melting point, extrusion or stretching may be performed at a temperature higher than the temperature shown below.

まず、PETのペレットを製造する。PETは、次のいずれかのプロセスで製造される。すなわち、(1)テレフタル酸とエチレングリコールを原料とし、直接エステル化反応によって低分子量のPETまたはオリゴマーを得、さらにその後の三酸化アンチモンやチタン化合物を触媒に用いた重縮合反応によってポリマーを得るプロセス、(2)ジメチルテレフタレートとエチレングリコールを原料とし、エステル交換反応によって低分子量体を得、さらにその後の三酸化アンチモンやチタン化合物を触媒に用いた重縮合反応によってポリマーを得るプロセスである。   First, PET pellets are manufactured. PET is manufactured by any of the following processes. That is, (1) a process in which terephthalic acid and ethylene glycol are used as raw materials, a low molecular weight PET or oligomer is obtained by a direct esterification reaction, and then a polymer is obtained by a polycondensation reaction using antimony trioxide or a titanium compound as a catalyst. , (2) A process in which dimethyl terephthalate and ethylene glycol are used as raw materials to obtain a low molecular weight compound by a transesterification reaction, and then a polycondensation reaction using an antimony trioxide or titanium compound as a catalyst to obtain a polymer.

フィルムを構成するPETに粒子を含有させるには、エチレングリコールに粒子を所定割合にてスラリーの形で分散させ、このエチレングリコールを重合時に添加する方法が好ましい。粒子を添加する際には、例えば、粒子の合成時に得られる水ゾルやアルコールゾル状態の粒子を一旦乾燥させることなく添加すると粒子の分散性がよい。また、粒子の水スラリーを直接PETペレットと混合し、ベント式二軸混練押出機を用いて、PETに練り込む方法も有効である。粒子の含有量を調節する方法としては、上記方法で高濃度の粒子のマスターペレットを作っておき、それを製膜時に粒子を実質的に含有しないPETで希釈して粒子の含有量を調節する方法が有効である。この際、粒子を含有しないPETの固有粘度を粒子含有ペレットの固有粘度よりも高く調整しておくことは上記した密度比(M60/M10)×100の値やM100を制御する上で有効である。   In order to incorporate the particles into PET forming the film, it is preferable to disperse the particles in a predetermined ratio in ethylene glycol in the form of a slurry and add the ethylene glycol during the polymerization. When the particles are added, for example, when the particles in the water sol or alcohol sol state obtained during the synthesis of the particles are added without once drying, the dispersibility of the particles is good. Further, a method in which an aqueous slurry of particles is directly mixed with PET pellets and kneaded into PET using a vent type twin-screw kneading extruder is also effective. As a method of adjusting the content of particles, a master pellet of high-concentration particles is prepared by the above-mentioned method, and it is diluted with PET that does not substantially contain particles at the time of film formation to adjust the content of particles. The method is effective. At this time, adjusting the intrinsic viscosity of PET containing no particles higher than the intrinsic viscosity of pellets containing particles is effective in controlling the value of the density ratio (M60/M10)×100 and M100. .

次に、得られたPETのペレットを、180℃で3時間以上減圧乾燥した後、固有粘度が低下しないように窒素気流下あるいは減圧下で、270〜320℃に加熱された押出機に供給し、スリット状のダイから押出し、キャスティングロール上で冷却して未延伸フィルムを得る。この際、異物や変質ポリマーを除去するために各種のフィルター、例えば、焼結金属、多孔性セラミック、サンド、金網などの素材からなるフィルターを用いることが好ましい。また、定量供給性を向上させ、所望のt/dを得るためにギアポンプを設けることは上記した特徴面を形成する上で極めて好ましい。フィルムを積層するには、2台以上の押出機およびマニホールドまたは合流ブロックを用いて、複数の異なるポリマーを溶融積層するとよい。   Next, the obtained PET pellets were dried under reduced pressure at 180° C. for 3 hours or more, and then fed to an extruder heated to 270 to 320° C. under a nitrogen stream or under reduced pressure so that the intrinsic viscosity would not decrease. Then, it is extruded from a slit die and cooled on a casting roll to obtain an unstretched film. At this time, it is preferable to use various filters, for example, filters made of materials such as sintered metal, porous ceramics, sand, and wire mesh in order to remove foreign matters and denatured polymers. Further, it is extremely preferable to provide a gear pump in order to improve the quantitative supply property and obtain a desired t/d in order to form the above-mentioned characteristic surface. To laminate the films, two or more extruders and manifolds or confluence blocks may be used to melt laminate a plurality of different polymers.

次に、このようにして得られた未延伸フィルムを、数本のロールの配置された縦延伸機を用いて、ロールの周速差を利用して縦方向に延伸し(MD延伸)、続いてステンターにより横延伸を二段階行う(TD延伸1、TD延伸2)二軸延伸方法について説明する。   Next, the unstretched film thus obtained is stretched in the machine direction using the longitudinal stretching machine in which several rolls are arranged, utilizing the peripheral speed difference of the rolls (MD stretching). A biaxial stretching method in which the transverse stretching is performed in two stages by a stenter (TD stretching 1, TD stretching 2) will be described.

まず、未延伸フィルムをMD延伸する。MD延伸の延伸温度は、用いるポリマーの種類によって異なるが、未延伸フィルムのガラス転移温度(Tg)を目安として決めることができる。Tg−10〜Tg+15℃の範囲であることが好ましく、より好ましくはTg℃〜Tg+10℃である。上記範囲より延伸温度が低い場合には、フィルム破れが多発して生産性が低下し、本願の特徴であるMD延伸後の二段階TD延伸で安定して延伸することが困難となることがある。MD延伸倍率は3.3〜6倍、好ましくは3.3〜5.5倍である。MD延伸は2段階以上の多段で実施することが本発明の突起径を制御するために有効である。その場合、1段目のMD延伸倍率がトータルMD延伸倍率の75%以上、好ましくは80%以上に設定することが好ましい。   First, the unstretched film is MD stretched. The MD stretching temperature depends on the type of polymer used, but can be determined by using the glass transition temperature (Tg) of the unstretched film as a guide. The temperature is preferably in the range of Tg-10 to Tg+15°C, more preferably Tg°C to Tg+10°C. When the stretching temperature is lower than the above range, film breakage frequently occurs and the productivity is lowered, and it may be difficult to perform stable stretching in the two-stage TD stretching after MD stretching, which is a feature of the present invention. .. The MD stretching ratio is 3.3 to 6 times, preferably 3.3 to 5.5 times. It is effective to carry out MD stretching in multiple stages of two or more stages in order to control the projection diameter of the present invention. In that case, it is preferable to set the MD stretch ratio of the first stage to 75% or more, preferably 80% or more of the total MD stretch ratio.

次に、ステンターを用いて、TD延伸を行う。上記の密度比(M10/M0)および突起の平均径(P0、P10)を有するフィルムを効率よく形成させるためには、温度の異なるゾーンで二段階にTD方向に延伸することが好ましい。まず、一段目の延伸(TD延伸1)の延伸倍率は、好ましくは3.2〜6.0倍であり、より好ましくは3.3〜5.8倍である。また、TD延伸1の延伸温度は好ましくは(MD延伸後のフィルムの冷結晶化温度(以下Tcc.BFという)−5℃)〜(Tcc.BF+5℃)の範囲であり、さらに好ましくは(Tcc.BF−3℃)〜(Tcc.BF+5℃)の範囲で行う。 Next, TD stretching is performed using a stenter. To a film having a density ratio of the a (M10 / M0) and the average diameter of the projections (P 0, P 10) formed effectively, they are preferably stretched in the TD direction in two steps at different zones of temperature. First, the stretching ratio of the first stage stretching (TD stretching 1) is preferably 3.2 to 6.0 times, and more preferably 3.3 to 5.8 times. The stretching temperature of TD stretching 1 is preferably in the range of (cold crystallization temperature of film after MD stretching (hereinafter referred to as Tcc.BF)-5°C) to (Tcc.BF+5°C), and more preferably (Tcc. BF−3° C.) to (Tcc.BF+5° C.).

次にステンター内で二段目の延伸(TD延伸2)を行う。TD延伸2の延伸倍率は好ましくは1.2〜2倍であり、より好ましくは1.3〜1.8倍、さらに好ましくは1.3〜1.6倍である。TD延伸倍率比(TD延伸1)/(TD延伸2)を2〜3の範囲に設定することは上記の突起径や密度比を上記範囲内に設定する有効な手段である。TD延伸2の延伸温度は好ましくは(TD延伸1温度+50)〜(TD延伸1温度+100)℃の範囲であり、さらに好ましくは(TD延伸1温度+60)〜(TD延伸1温度+90)℃の範囲で行う。前工程の延伸温度よりも十分高めることにより、上記の突起密度比(M10/M0)を特定の範囲内に制御することが可能となるため好ましい。   Next, the second stage stretching (TD stretching 2) is performed in the stenter. The draw ratio of TD stretching 2 is preferably 1.2 to 2 times, more preferably 1.3 to 1.8 times, and further preferably 1.3 to 1.6 times. Setting the TD stretching ratio (TD stretching 1)/(TD stretching 2) within the range of 2 to 3 is an effective means for setting the above-mentioned projection diameter and density ratio within the above range. The stretching temperature of TD stretching 2 is preferably in the range of (TD stretching 1 temperature +50) to (TD stretching 1 temperature +100)°C, and more preferably (TD stretching 1 temperature +60) to (TD stretching 1 temperature +90)°C. Do in range. By sufficiently raising the stretching temperature in the preceding step, it becomes possible to control the projection density ratio (M10/M0) within a specific range, which is preferable.

続いて、この延伸フィルムを緊張下または幅方向に弛緩しながら熱固定処理する。熱固定処理条件として、熱固定温度は、180〜210℃が好ましい。熱固定温度の上限は、より好ましくは205℃、さらに好ましくは200℃である。熱固定温度の下限は、より好ましくは185℃、さらに好ましくは190℃である。熱固定処理時間は0.5〜10秒の範囲、弛緩率は0.3〜2%で行うのが好ましい。熱固定処理後は把持しているクリップを開放することでフィルムにかかる張力を低減させながら室温へ急冷する。その後、フィルムエッジを除去しロールに巻き取り、本発明の二軸配向ポリエステルフィルムを得ることができる。また、TD延伸2の延伸温度と熱固定温度に差があり、熱固定温度が上述の範囲よりも高いとフィルムが緩和しやすく上記した湿度膨張係数を得ることが困難となり寸法安定性が低下しやすい。熱固定温度が低すぎると結晶性が低くなりやすく、磁気記録媒体の製造工程においてベースフィルムのへ平面性が低下し電磁変換特性が悪化する傾向がある。   Subsequently, the stretched film is heat-set while being stretched or relaxing in the width direction. As the heat setting treatment condition, the heat setting temperature is preferably 180 to 210°C. The upper limit of the heat setting temperature is more preferably 205°C, further preferably 200°C. The lower limit of the heat setting temperature is more preferably 185°C, further preferably 190°C. The heat setting treatment time is preferably in the range of 0.5 to 10 seconds and the relaxation rate is preferably 0.3 to 2%. After the heat-setting treatment, the gripped clip is released to reduce the tension applied to the film, and the film is rapidly cooled to room temperature. Then, the film edge is removed and the film is wound on a roll to obtain the biaxially oriented polyester film of the present invention. In addition, there is a difference between the stretching temperature of TD stretching 2 and the heat setting temperature. If the heat setting temperature is higher than the above range, the film tends to relax, and it becomes difficult to obtain the above-mentioned humidity expansion coefficient, and the dimensional stability decreases. Cheap. If the heat setting temperature is too low, the crystallinity tends to be low, and the flatness of the base film tends to deteriorate in the manufacturing process of the magnetic recording medium, so that the electromagnetic conversion characteristics tend to deteriorate.

次に、磁気記録媒体は例えば次のように製造される。   Next, the magnetic recording medium is manufactured, for example, as follows.

上記のようにして得られた磁気記録媒体用支持体(二軸配向ポリエステルフィルム)を、たとえば0.1〜3m幅にスリットし、速度20〜300m/min、張力50〜300N/mで搬送しながら、一方の面に非磁性塗料をエクストルージョンコーターにより厚み0.5〜1.5μm塗布し乾燥後、さらに磁性塗料を厚み0.1〜0.3μmで塗布する。その後、磁性塗料および非磁性塗料が塗布された支持体を磁気配向させ、温度80〜130℃で乾燥させる。次いで、反対側の面にバックコートを厚み0.3〜0.8μmで塗布し、カレンダー処理した後、巻き取る。なお、カレンダー処理は、小型テストカレンダー装置(金属ロール、7段)を用い、温度70〜120℃、線圧0.5〜5kN/cmで行う。その後、60〜80℃にて24〜72時間エージング処理し、12.65mm幅にスリットし、パンケーキを作製する。次いで、このパンケーキから特定の長さ分をカセットに組み込んで、カセットテープ型磁気記録媒体とする。   The magnetic recording medium support (biaxially oriented polyester film) obtained as described above is slit into, for example, a width of 0.1 to 3 m, and conveyed at a speed of 20 to 300 m/min and a tension of 50 to 300 N/m. On the other hand, one surface is coated with a non-magnetic coating material by an extrusion coater to a thickness of 0.5 to 1.5 μm, dried and then coated with a magnetic coating material to a thickness of 0.1 to 0.3 μm. Then, the support coated with the magnetic paint and the non-magnetic paint is magnetically oriented and dried at a temperature of 80 to 130°C. Then, a back coat having a thickness of 0.3 to 0.8 μm is applied to the opposite surface, calendered, and then wound. The calendering process is carried out at a temperature of 70 to 120° C. and a linear pressure of 0.5 to 5 kN/cm using a small test calendering device (metal roll, 7 stages). After that, aging treatment is performed at 60 to 80° C. for 24 to 72 hours, and slitting is performed to a width of 12.65 mm to prepare a pancake. Next, a specific length of this pancake is incorporated into a cassette to obtain a cassette tape type magnetic recording medium.

ここで、磁性塗料などの組成は例えば以下のような組成が挙げられる。   Here, examples of the composition of the magnetic paint include the following compositions.

以下、単に「部」と記載されている場合は、「質量部」を意味する。   Hereinafter, when simply described as “part”, it means “part by mass”.

[磁性層形成塗液]
バリウムフェライト磁性粉末 100部
〔板径:20.5nm、板厚:7.6nm、板状比:2.7、Hc:191kA/m(≒2400Oe)飽和磁化:44Am/kg、BET比表面積:60m/g〕
ポリウレタン樹脂 12部
質量平均分子量 10,000
スルホン酸官能基 0.5meq/g
α−アルミナ HIT60(住友化学社製) 8部
カーボンブラック #55(旭カーボン社製)粒子サイズ0.015μm 0.5部
ステアリン酸 0.5部
ブチルステアレート 2部
メチルエチルケトン 180部
シクロヘキサノン 100部
[非磁性層形成用塗布液]
非磁性粉体 α酸化鉄 100部
平均長軸長0.09μm、BET法による比表面積 50m/g
pH 7
DBP吸油量 27〜38ml/100g
表面処理層Al 8質量%
カーボンブラック 25部
コンダクテックスSC−U(コロンビアンカーボン社製)
塩化ビニル共重合体 MR104(日本ゼオン社製) 13部
ポリウレタン樹脂 UR8200(東洋紡社製) 5部
フェニルホスホン酸 3.5部
ブチルステアレート 1.0部
磁気記録媒体は、例えば、データ記録用途、具体的にはコンピュータデータのバックアップ用途(例えばリニアテープ式の記録媒体(LTO5、LTO6、次世代LTOテープ(LTO7))や映像などのデジタル画像の記録用途などに好適に用いることができる。
[Magnetic layer forming coating liquid]
Barium ferrite magnetic powder 100 parts [plate diameter: 20.5 nm, plate thickness: 7.6 nm, plate ratio: 2.7, Hc: 191 kA/m (≈2400 Oe) saturation magnetization: 44 Am 2 /kg, BET specific surface area: 60m 2 /g]
Polyurethane resin 12 parts Weight average molecular weight 10,000
Sulfonic acid functional group 0.5 meq/g
α-alumina HIT60 (manufactured by Sumitomo Chemical Co., Ltd.) 8 parts Carbon black #55 (manufactured by Asahi Carbon Co., Ltd.) Particle size 0.015 μm 0.5 part Stearic acid 0.5 part Butyl stearate 2 parts Methyl ethyl ketone 180 parts Cyclohexanone 100 parts [Non Coating liquid for forming magnetic layer]
Non-magnetic powder α Iron oxide 100 parts Average major axis length 0.09 μm, BET specific surface area 50 m 2 /g
pH 7
DBP oil absorption 27-38ml/100g
Surface treatment layer Al 2 O 3 8% by mass
Carbon black 25 parts Conductectex SC-U (made by Colombian Carbon Co.)
Vinyl chloride copolymer MR104 (manufactured by Nippon Zeon Co., Ltd.) 13 parts Polyurethane resin UR8200 (manufactured by Toyobo Co., Ltd.) 5 parts Phenylphosphonic acid 3.5 parts Butyl stearate 1.0 part Magnetic recording media include, for example, data recording applications, specific examples. In particular, it can be preferably used for computer data backup applications (for example, linear tape recording media (LTO5, LTO6, next-generation LTO tape (LTO7))) and digital image recording applications such as video.

本発明の二軸配向ポリエステルフィルムが好適に用いられる塗布型デジタル記録方式の磁気記録媒体としては、例えば、磁性層がバリウムフェライト等の強磁性粉末をポリウレタン樹脂等のバインダーに均一に分散させて磁性塗液を作成し、その塗液を塗布して磁性層が形成された塗布型磁気記録媒体を例示することができる。   A magnetic recording medium of a coating type digital recording system in which the biaxially oriented polyester film of the present invention is preferably used is, for example, a magnetic layer in which a ferromagnetic powder such as barium ferrite is uniformly dispersed in a binder such as a polyurethane resin to be magnetic. A coating type magnetic recording medium having a magnetic layer formed by preparing a coating liquid and applying the coating liquid can be exemplified.

本発明の二軸配向ポリエステルフィルムは、光学フィルム、及びそれを用いた偏光板、液晶表示装置用の光学補償フィルム等の光学用フィルムとして用いることができる。近年の薄型軽量ノートパソコンや薄型の電子モバイルの開発に伴い、液晶表示装置用光学補償フィルムの薄膜化への要求が非常に厳しくなっており、特に透明性と走行性に優れた薄膜の光学フィルムとして好適に用いることができる。   The biaxially oriented polyester film of the present invention can be used as an optical film, a polarizing plate using the same, an optical film such as an optical compensation film for a liquid crystal display device. With the recent development of thin and lightweight notebook personal computers and thin electronic mobiles, the demand for thinner optical compensation films for liquid crystal display devices has become extremely strict, and in particular, thin optical films with excellent transparency and runnability. Can be suitably used as.

本発明の二軸配向ポリエステルフィルムはまた離型用フィルムとしても使用できる。離型用フィルムは、ポリエステルフィルムを基材として、離型性のある樹脂層、例えばシリコ−ン樹脂やエポキシ樹脂などを塗布し形成される。特に、グリーンシート製造用、液晶偏光板用離型用、液晶保護フィルム用離型用、フォトレジスト用、多層基板用などの各種離型用途として使用されている。ポリエステルフィルム中には、加工適性、例えば滑り性、巻き特性などを良くするために粒子を適量配合しフィルム表面に微細な突起を形成することが一般的であるが、近年の各種用途の精密化などに伴い、使用される離型フィルムについても表面欠点の無い平滑な表面性と走行性が要求されている。本発明の二軸配向ポリエステルフィルムは高精細な表面平滑性と走行性を有するため各種用途の離型用フィルムとして好適に用いることができる。   The biaxially oriented polyester film of the present invention can also be used as a release film. The release film is formed by coating a polyester film as a base material with a resin layer having releasability, such as a silicone resin or an epoxy resin. In particular, it is used for various release applications such as production of green sheets, release of liquid crystal polarizing plates, release of liquid crystal protective films, photoresists, and multilayer substrates. Polyester film is generally mixed with an appropriate amount of particles in order to improve processability, such as slipperiness and winding properties, to form fine protrusions on the film surface, but recent refinement of various applications Accordingly, the release film used is also required to have smooth surface properties and runnability without surface defects. Since the biaxially oriented polyester film of the present invention has high-definition surface smoothness and running property, it can be suitably used as a release film for various applications.

(物性の測定方法ならびに効果の評価方法)
本発明における特性値の測定方法並びに効果の評価方法は次の通りである。
(Method of measuring physical properties and method of evaluating effects)
The method of measuring the characteristic value and the method of evaluating the effect in the present invention are as follows.

(1)平均径および突起密度(M100、M60、M10、M0)、平均直径(P、P10
小坂研究所製のsurf−corder ET−4000Aを用いて下記条件にて3次元表面粗さを測定し、その後、内蔵されている解析ソフトにて粒子解析(複数レベル)を実施した。測定条件は下記のとおりであり、スライスレベルを10nmの等間隔に設定し、各スライスレベルの平均直径と密度を場所を変えて5回測定し平均値をもって値とした。サンプルセットは、視野測定のX方向が二軸配向ポリエステルフィルムの幅方向になるように試料台にセットした。
(1) Average diameter and protrusion density (M100, M60, M10, M0 ), the average diameter (P 0, P 10)
The three-dimensional surface roughness was measured under the following conditions using surf-order ET-4000A manufactured by Kosaka Laboratory, and then particle analysis (multiple levels) was carried out with the built-in analysis software. The measurement conditions are as follows. The slice levels were set at equal intervals of 10 nm, and the average diameter and density of each slice level were measured 5 times at different places, and the average value was taken as the value. The sample set was set on the sample stand so that the X direction of the visual field measurement was the width direction of the biaxially oriented polyester film.

(但し、M100:100nmのスライスレベルにおける突起密度
M60:60nmのスライスレベルにおける突起密度、
M10:10nmのスライスレベルにおける突起密度
M0:0nm(基準面)のスライスレベルにおける突起密度、
10:10nmのスライスレベルにおける平均直径、
0:0nm(基準面)のスライスレベルにおける平均直径である。)
装置:小坂研究所製“surf−corder ET−4000A”
解析ソフト:i−Face model TDA31
触針先端半径:0.5μm
測定視野 :X方向:380μm ピッチ:1μm
Y方向:280μm ピッチ:5μm
針圧 :50μN
測定速度 :0.1mm/s
カットオフ値:低域−0.8mm、高域-なし
レベリング :全域
フィルター :ガウシアンフィルタ(2D)
倍率 :10万倍
粒子解析(複数レベル)条件
出力内容設定:山粒子
ヒステリシス幅:5nm
スライスレベル等間隔:10nm
(2)B層の表面性、中心線表面粗さRa、10点平均粗さRz
上記(1)に記載の装置を用いて、上記に記載の測定条件でB層表面の3次元粗さを場所を変えて10回測定しその平均値をそれぞれ中心線表面粗さRa、10点平均粗さRzとした。
(However, M100: protrusion density at a slice level of 100 nm, M60: protrusion density at a slice level of 60 nm,
M10: Protrusion density at slice level of 10 nm M0: Protrusion density at slice level of 0 nm (reference plane),
P 10 : average diameter at slice level of 10 nm,
P 0: Average diameter at a slice level of 0 nm (reference plane). )
Equipment: Kosaka Laboratory's "surf-order ET-4000A"
Analysis software: i-Face model TDA31
Stylus tip radius: 0.5 μm
Measurement field of view: X direction: 380 μm Pitch: 1 μm
Y direction: 280 μm Pitch: 5 μm
Needle pressure: 50 μN
Measurement speed: 0.1 mm/s
Cut-off value: Low-0.8mm, High-none Leveling: Full filter: Gaussian filter (2D)
Magnification: 100,000 times Particle analysis (multiple levels) Conditions Output content setting: Mountain particles Hysteresis width: 5 nm
Slice level equal intervals: 10 nm
(2) Surface property of layer B, centerline surface roughness Ra, 10-point average roughness Rz
Using the apparatus described in (1) above, the three-dimensional roughness of the surface of the B layer was measured 10 times at different locations under the measurement conditions described above, and the average value was measured for the center line surface roughness Ra of 10 points. The average roughness was Rz.

なお、表面性は下記基準にて判断し、Cを平滑性不良とした。   In addition, the surface property was judged according to the following criteria, and C was regarded as poor smoothness.

AA:Rzが100nm以下、
A :Rzが100nmを超え150nm以下、
B :Rzが150nmを超え200nm未満、
C :Rzが200nm以上
(3)幅方向の湿度膨張係数、寸法安定性
フィルムの幅方向に対して、下記条件にて測定を行い、3回の測定結果の平均値を本発明における湿度膨張係数とした。
AA: Rz is 100 nm or less,
A: Rz is more than 100 nm and 150 nm or less,
B: Rz is more than 150 nm and less than 200 nm,
C: Rz is 200 nm or more (3) Humidity expansion coefficient in the width direction, dimensional stability Measurement was performed in the width direction of the film under the following conditions, and the average value of three measurement results was used as the humidity expansion coefficient in the present invention. And

測定装置:島津製作所製熱機械分析装置TMA−50(湿度発生器:アルバック理工製湿度雰囲気調節装置HC−1)
試料サイズ:フィルム長手方向10mm×フィルム幅方向12.6mm
荷重:0.5g
測定回数:3回
測定温度:30℃
測定湿度:40%RHで6時間保持し寸法を測定し時間40分で80%RHまで昇湿し、80%RHで6時間保持したあと支持体幅方向の寸法変化量ΔL(mm)を測定する。次式から湿度膨張係数(ppm/%RH)を算出した。
Measuring device: Shimadzu's thermomechanical analyzer TMA-50 (humidity generator: ULVAC-RIKO humidity atmosphere controller HC-1)
Sample size: Film longitudinal direction 10 mm x Film width direction 12.6 mm
Load: 0.5g
Number of measurements: 3 times Measurement temperature: 30°C
Measured humidity: Hold dimensions at 40%RH for 6 hours, measure dimensions, increase humidity to 80%RH in 40 minutes, hold at 80%RH for 6 hours, and then measure the dimensional change ΔL (mm) in the width direction of the support. To do. The humidity expansion coefficient (ppm/%RH) was calculated from the following formula.

湿度膨張係数(ppm/%RH)=106×{(ΔL/12.6)/(80−40)}
なお、寸法安定性は以下の判断基準とし、Cを寸法安定性不良と判断した。
Humidity expansion coefficient (ppm/%RH)=106×{(ΔL/12.6)/(80-40)}
The dimensional stability was determined as follows, and C was determined to be poor dimensional stability.

AA:湿度膨張係数が5.5ppm/%RH以下
A :湿度膨張係数が5.5ppm/%RHを超え6.0ppm/%RH以下
B:湿度膨張係数が6.0ppm/%RHを超え6.5ppm/%RH未満
C:湿度膨張係数が6.5ppm/%RH以上
(4)積層厚み
以下の条件にて断面観察を場所を変えて10視野行い、得られた厚み[nm]の平均値を算出しA層の厚み[nm]とした。
AA: Humidity expansion coefficient is 5.5 ppm/% RH or less A: Humidity expansion coefficient is more than 5.5 ppm/% RH and 6.0 ppm/% RH or less B: Humidity expansion coefficient is more than 6.0 ppm/% RH 6. Less than 5 ppm/% RH C: Humidity expansion coefficient is 6.5 ppm/% RH or more (4) Lamination thickness Under the following conditions, cross-section observation was performed in 10 different fields of view, and the average value of the obtained thickness [nm] was calculated. The thickness was calculated to be the thickness of the layer A [nm].

測定装置:透過型電子顕微鏡(TEM) 日立製H−7100FA型
測定条件:加速電圧 100kV
測定倍率:1万倍
試料調整:超薄膜切片法
観察面 :TD−ZD断面(TD:幅方向、ZD:厚み方向)
測定回数:1視野につき3点、10視野を測定する。
Measuring device: Transmission electron microscope (TEM) Hitachi H-7100FA measuring condition: Accelerating voltage 100 kV
Measurement magnification: 10,000 times Sample preparation: Ultra thin film section method Observation surface: TD-ZD cross section (TD: width direction, ZD: thickness direction)
Number of times of measurement: 3 fields and 10 fields of view are measured per field of view.

(5)屈折率
JIS−K7142(2008年)に従って、下記測定器を用いて測定した。
(5) Refractive index It measured using the following measuring device according to JIS-K7142 (2008).

装置:アッベ屈折計 4T(株式会社アタゴ社製)
光源:ナトリウムD線
測定温度:25℃
測定湿度:65%RH
マウント液:ヨウ化メチレン
(但し、屈折率1.74以上の場合は硫黄ヨウ化メチレンを用いた。)
平均屈折率n_bar=((nMD+nTD+nZD)/3)
複屈折Δn=(nMD−nTD)
nMD;フィルム長手方向の屈折率
nTD;フィルム幅方向の屈折率
nZD;フィルム厚み方向の屈折率
(6)ヤング率
ASTM−D882(1997年)に準拠してフィルムのヤング率を測定した。なお、インストロンタイプの引張試験機を用い、条件は下記のとおりとした。5回の測定結果の平均値を本発明におけるヤング率とした。
Device: Abbe refractometer 4T (manufactured by Atago Co., Ltd.)
Light source: Sodium D line Measurement temperature: 25°C
Measuring humidity: 65%RH
Mounting solution: methylene iodide (However, when the refractive index is 1.74 or more, sulfur methylene iodide was used.)
Average refractive index n_bar=((nMD+nTD+nZD)/3)
Birefringence Δn=(nMD-nTD)
nMD; Refractive index in the film longitudinal direction nTD; Refractive index in the film width direction nZD; Refractive index in the film thickness direction (6) Young's modulus The Young's modulus of the film was measured in accordance with ASTM-D882 (1997). An Instron type tensile tester was used and the conditions were as follows. The average value of the results of 5 measurements was defined as the Young's modulus in the present invention.

測定装置:インストロン社製超精密材料試験機MODEL5848
試料サイズ:
フィルム幅方向のヤング率測定の場合
フィルム長手方向2mm×フィルム幅方向12.6mm
(つかみ間隔はフィルム幅方向に8mm)
フィルム長手方向のヤング率測定の場合
フィルム幅方向2mm×フィルム長手方向12.6mm
(つかみ間隔はフィルム長手方向に8mm)
引張り速度:1mm/分
測定環境:温度23℃、湿度65%RH
測定回数:5回。
Measuring device: Instron ultra-precision material testing machine MODEL5848
Sample size:
In the case of Young's modulus measurement in the film width direction, film longitudinal direction 2 mm × film width direction 12.6 mm
(Gripping interval is 8 mm in the film width direction)
When measuring Young's modulus in the longitudinal direction of the film: 2 mm in the width direction of the film x 12.6 mm in the longitudinal direction of the film
(Gripping interval is 8 mm in the longitudinal direction of the film)
Tension rate: 1 mm/min Measuring environment: temperature 23°C, humidity 65%RH
Number of measurements: 5 times.

(7)全光線透過率、ヘイズ、透明性
JIS−K 7361−1(1997年)およびJIS−K 7136(2000年)に準拠し、下記測定装置を用いて測定した。支持体中央部について長手方向に5箇所透過率を測定し測定結果の平均値を本発明における全光線透過率およびヘイズとする。
(7) Total light transmittance, haze, transparency Based on JIS-K 7361-1 (1997) and JIS-K 7136 (2000), it measured using the following measuring device. The transmittance is measured at five points in the longitudinal direction of the central part of the support, and the average value of the measurement results is taken as the total light transmittance and haze in the present invention.

測定装置:濁度計(NDH−5000) 日本電色工業株式会社製
光源 :白色LED(5V3W)
測定環境:温度23℃湿度65%RH
測定回数:5回。
Measuring device: Turbidimeter (NDH-5000) made by Nippon Denshoku Industries Co., Ltd. Light source: White LED (5V3W)
Measurement environment: temperature 23°C, humidity 65%RH
Number of measurements: 5 times.

なお、透明性については、下記の判断基準で判断し、Cを透明性不良とした。   The transparency was judged according to the following criteria, and C was regarded as poor transparency.

A:ヘイズが1%以下。   A: Haze is 1% or less.

B:ヘイズが1%を超え2%未満。   B: Haze is more than 1% and less than 2%.

C:ヘイズが2%以上。   C: Haze is 2% or more.

(8)粒子の平均粒径および最大粒子の粒子径、凝集粒子の平均1次粒子径
フィルム断面を透過型電子顕微鏡(TEM)を用い、1万倍で観察する。この時、写真上で1cm以下の粒子が確認できた場合はTEM観察倍率を5万倍に変えて観察する。TEMの切片厚さは約100nmとし、場所を変えて100視野測定し、写真に撮影された分散した粒子全てについて等価円相当径をもとめ、横軸に等価円相当径を、縦軸に粒子の個数として粒子の個数分布をプロットし、そのピーク値の等価円相当径を粒子の平均粒径とした。ここで、1万倍で観察した写真上に凝集粒子が確認できた場合は上記プロットに含めない。フィルム中に粒子径の異なる2種類以上の粒子が存在する場合、上記等価円相当径の個数分布は2個以上のピークを有する分布となる。この場合は、それぞれのピーク値をそれぞれの粒子の平均粒径とする。最大粒子の粒子径は、1万倍で観察した写真において、最大の粒子径を持つ粒子の粒子径である。
(8) Average particle size of particles, maximum particle size, average primary particle size of agglomerated particles The cross section of the film is observed with a transmission electron microscope (TEM) at 10,000 times. At this time, when particles of 1 cm or less can be confirmed on the photograph, the TEM observation magnification is changed to 50,000 times for observation. The section thickness of the TEM was set to about 100 nm, 100 fields of view were measured at different locations, and the equivalent circle equivalent diameters of all the dispersed particles photographed were found. The abscissa axis represents the equivalent circle equivalent diameter and the ordinate axis represents the particle equivalent diameter. The number distribution of particles was plotted as the number, and the equivalent circle equivalent diameter of the peak value was taken as the average particle diameter of the particles. Here, if aggregated particles can be confirmed on the photograph observed at 10,000 times, they are not included in the above plot. When two or more kinds of particles having different particle diameters are present in the film, the number distribution of the equivalent circle equivalent diameter is a distribution having two or more peaks. In this case, each peak value is the average particle size of each particle. The particle size of the maximum particle is the particle size of the particle having the maximum particle size in the photograph observed at 10,000 times.

凝集粒子の平均1次粒子径は、上記の装置を用いて20万倍で観察する。凝集粒子100個について、凝集粒子を構成する個々の1次粒子の等価円相当径をもとめ、上記と同様の方法でプロットし、ピーク値の等価円相当径を凝集粒子の平均1次粒子径とする。   The average primary particle diameter of the agglomerated particles is observed at 200,000 times using the above apparatus. For 100 agglomerated particles, the equivalent circle equivalent diameters of the individual primary particles constituting the agglomerated particles are determined and plotted in the same manner as above, and the equivalent circle equivalent diameter of the peak value is taken as the average primary particle diameter of the agglomerated particles. To do.

(9)粒子の含有量
ポリマー1gを1N−KOHメタノール溶液200mlに投入して加熱還流し、ポリマーを溶解した。溶解が終了した該溶液に200mlの水を加え、ついで該液体を遠心分離器にかけて粒子を沈降させ、上澄み液を取り除いた。粒子にはさらに水を加えて洗浄、遠心分離を2回繰り返した。このようにして得られた粒子を乾燥させ、その質量を量ることで粒子の含有量を算出した。
(9) Content of particles 1 g of the polymer was put into 200 ml of a 1N-KOH methanol solution and heated under reflux to dissolve the polymer. 200 ml of water was added to the dissolved solution, and then the liquid was subjected to a centrifugal separator to settle particles, and the supernatant was removed. Water was further added to the particles, and washing and centrifugation were repeated twice. The particles thus obtained were dried, and the content of the particles was calculated by weighing the mass.

(10)走行性
フィルムのA面側とB面側を重ね合わせた2枚のフィルムをガラス板の上に設置し、フィルム上に200gの重り(接触面積40cm)を置く。下側のフィルムの一端(移動方向側)とガラスを固定し、上側のフィルムの一端(移動方向とは逆端)は検出器に固定した。ガラス板を速度2mm/secで5mm移動した時の静摩擦係数(μs)を以下の式より求めた。
(10) Runnability Two films in which the A side and the B side of the film are overlapped are placed on a glass plate, and a 200 g weight (contact area 40 cm 2 ) is placed on the film. One end (moving direction side) of the lower film was fixed to the glass, and one end (opposite end to the moving direction) of the upper film was fixed to the detector. The static friction coefficient (μs) when the glass plate was moved 5 mm at a speed of 2 mm/sec was obtained from the following formula.

なお、走行性の判断は、下記の通りとした。   The runnability was determined as follows.

μs=(スタート時の張力)/(荷重200g)
A:μs=0.5以下
B:μs=0.5を超え、0.6以下
C:μs=0.6を超える
(11)スリット性
フィルムを幅1mにスリットする際、スリット速度を変更しフィルム端部の切れ味を目視にて以下に示す方法により評価した。なお、Cをスリット性不良と判断した。
μs=(tension at start)/(load 200g)
A: μs=0.5 or less B: μs=0.5 or more and 0.6 or less C: μs=0.6 or more (11) Slitting property When slitting a film to a width of 1 m, the slitting speed is changed. The sharpness of the film edge was visually evaluated by the following method. In addition, C was determined to have a poor slit property.

AA:速度120m/分でも端部が歪になることなくスリット可能。   AA: Can slit even at a speed of 120 m/min without distortion of the edges.

A:速度100m/分以上120m/分未満で端部に歪が発生する。     A: Strain is generated at the end at a speed of 100 m/min or more and less than 120 m/min.

B:速度80m/分以上100m/分未満で端部に歪が発生する。     B: Distortion occurs at the end at a speed of 80 m/min or more and less than 100 m/min.

C:速度80m/分未満でフィルム表面にシワが発生し端部が歪になる。     C: Wrinkles are generated on the film surface at a speed of less than 80 m/min and the edges are distorted.

(12)電磁変換特性
1m幅にスリットしたフィルムを、張力200Nで搬送させ、支持体の一方の表面に下記に従って磁性塗料および非磁性塗料を塗布し12.65mm幅にスリットし、パンケーキを作成する。次いで、このパンケーキから長さ200m分をカセットに組み込んで、磁気テープとした。
(12) Electromagnetic conversion characteristics A film slit to a width of 1 m is conveyed with a tension of 200 N, a magnetic paint and a non-magnetic paint are applied to one surface of a support according to the following, and slit to a width of 12.65 mm to prepare a pancake. To do. Next, a 200 m-long portion of this pancake was incorporated into a cassette to obtain a magnetic tape.

(以下、「部」とあるのは「質量部」を意味する。)
磁性層形成用塗布液
バリウムフェライト磁性粉末 100部
(板径:20.5nm、板厚:7.6nm、
板状比:2.7、Hc:191kA/m(≒2400Oe)
飽和磁化:44Am/kg、BET比表面積:60m/g)
ポリウレタン樹脂 12部
質量平均分子量 10,000
スルホン酸官能基 0.5meq/g
α−アルミナ HIT60(住友化学社製) 8部
カーボンブラック #55(旭カーボン社製)
粒子サイズ0.015μm 0.5部
ステアリン酸 0.5部
ブチルステアレート 2部
メチルエチルケトン 180部
シクロヘキサノン 100部
非磁性層形成用塗布液
非磁性粉体 α酸化鉄 85部
平均長軸長0.09μm、BET法による比表面積 50m/g
pH 7
DBP吸油量 27〜38ml/100g
表面処理層Al 8質量%
カーボンブラック 15部
“コンダクテックス”(登録商標)SC−U(コロンビアンカーボン社製)
ポリウレタン樹脂 UR8200(東洋紡社製) 22部
フェニルホスホン酸 3部
シクロヘキサノン 140部
メチルエチルケトン 170部
ブチルステアレート 1部
ステアリン酸 2部
メチルエチルケトン 205部
シクロヘキサノン 135部
上記の塗布液のそれぞれについて、各成分をニ−ダで混練した。1.0mmφのジルコニアビーズを分散部の容積に対し65%充填する量を入れた横型サンドミルに、塗布液をポンプで通液し、2,000rpmで120分間(実質的に分散部に滞留した時間)、分散させた。得られた分散液にポリイソシアネ−トを非磁性層の塗料には5.0部、磁性層の塗料には2.5部を加え、さらにメチルエチルケトン3部を加え、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
(Hereinafter, "part" means "part by mass".)
Coating liquid for forming magnetic layer 100 parts of barium ferrite magnetic powder (plate diameter: 20.5 nm, plate thickness: 7.6 nm,
Plate ratio: 2.7, Hc: 191 kA/m (≈2400 Oe)
Saturation magnetization: 44 Am 2 /kg, BET specific surface area: 60 m 2 /g)
Polyurethane resin 12 parts Weight average molecular weight 10,000
Sulfonic acid functional group 0.5 meq/g
α-alumina HIT60 (Sumitomo Chemical Co., Ltd.) 8 parts Carbon black #55 (Asahi Carbon Co., Ltd.)
Particle size 0.015 μm 0.5 part Stearic acid 0.5 part Butyl stearate 2 parts Methyl ethyl ketone 180 parts Cyclohexanone 100 parts Nonmagnetic layer forming coating liquid Nonmagnetic powder α iron oxide 85 parts Average major axis length 0.09 μm, Specific surface area by BET method 50 m 2 /g
pH 7
DBP oil absorption 27-38ml/100g
Surface treatment layer Al 2 O 3 8% by mass
Carbon black 15 parts "Conductex" (registered trademark) SC-U (manufactured by Colombian Carbon Co.)
Polyurethane resin UR8200 (manufactured by Toyobo Co., Ltd.) 22 parts Phenylphosphonic acid 3 parts Cyclohexanone 140 parts Methyl ethyl ketone 170 parts Butyl stearate 1 part Stearic acid 2 parts Methyl ethyl ketone 205 parts Cyclohexanone 135 parts For each of the above-mentioned coating liquids, each component is used. Kneaded in. The coating solution was pumped through a horizontal sand mill containing an amount of 1.0 mmφ zirconia beads filling 65% of the volume of the dispersion section, and the coating solution was pumped at 2,000 rpm for 120 minutes (substantially staying time in the dispersion section). ), dispersed. To the obtained dispersion, 5.0 parts of polyisocyanate was added to the paint of the non-magnetic layer, 2.5 parts of the paint of the magnetic layer, 3 parts of methyl ethyl ketone was added, and a filter having an average pore size of 1 μm was added. It filtered using and prepared the coating liquid for nonmagnetic layer formation and the coating liquid for magnetic layer formation, respectively.

得られた非磁性層形成用塗布液を、PETフィルム上に乾燥後の厚さが0.8μmになるように塗布乾燥させた後、磁性層形成用塗布液を乾燥後の磁性層の厚さが0.07μmになるように塗布を行い、磁性層がまだ湿潤状態にあるうちに6,000G(600mT)の磁力を持つコバルト磁石と6,000G(600mT)の磁力を持つソレノイドにより配向させ乾燥させた。その後、カレンダー後の厚みが0.5μmとなるようにバックコート層(カーボンブラック 平均粒子サイズ:17nm 100部、炭酸カルシウム平均粒子サイズ:40nm 80部、αアルミナ 平均粒子サイズ:200nm 5部をポリウレタン樹脂、ポリイソシアネートに分散)を塗布した。次いでカレンダで温度90℃、線圧300kg/cm(294kN/m)にてカレンダ処理を行った後、65℃で、72時間キュアリングした。さらに、スリット品の送り出し、巻き取り装置を持った装置に不織布とカミソリブレードが磁性面に押し当たるように取り付け、テープクリーニング装置で磁性層の表面のクリーニングを行い、磁気テープを得た。   The obtained non-magnetic layer-forming coating liquid was applied and dried on a PET film so that the thickness after drying was 0.8 μm, and then the magnetic layer-forming coating liquid was dried. To 0.07 μm, and while the magnetic layer is still wet, a cobalt magnet with a magnetic force of 6,000 G (600 mT) and a solenoid with a magnetic force of 6,000 G (600 mT) are used to orient and dry it. Let Then, a back coat layer (carbon black average particle size: 17 nm 100 parts, calcium carbonate average particle size: 40 nm 80 parts, α-alumina average particle size: 200 nm 5 parts) was applied to a polyurethane resin so that the thickness after calendering was 0.5 μm. , Dispersed in polyisocyanate). Then, after calendering with a calender at a temperature of 90° C. and a linear pressure of 300 kg/cm (294 kN/m), curing was carried out at 65° C. for 72 hours. Further, a non-woven fabric and a razor blade were attached to a device having a slitting device and a winding device so that the magnetic surface was pressed against the nonwoven fabric, and the surface of the magnetic layer was cleaned by a tape cleaning device to obtain a magnetic tape.

記録ヘッド(MIG,ギャップ0.15μm、1.8T)と再生用GMRヘッドをドラムテスターに取り付けて上記により得られた磁気テープの出力を測定した。ヘッド/テープの相対速度は15m/secとし、トラック密度16KTPI、線記録密度400Kbpiの信号を記録した後、出力とノイズの比を電磁変換特性とした。実施例4の結果を0dBとして2.0dB以上はA、2.0未満〜0dBはB、0dB未満はCと判定した。Aが望ましいが、Bでも実用的には使用可能である。   A recording head (MIG, gap 0.15 μm, 1.8T) and a reproducing GMR head were attached to a drum tester, and the output of the magnetic tape obtained above was measured. The relative speed of the head/tape was set to 15 m/sec, a signal with a track density of 16 KTPI and a linear recording density of 400 Kbpi was recorded, and then the ratio of output to noise was used as the electromagnetic conversion characteristic. The result of Example 4 was determined to be 0 dB, and A was determined to be 2.0 dB or more, B was less than 2.0 to 0 dB, and C was less than 0 dB. A is desirable, but B is also practically usable.

(13)ドロップアウト
上記(12)と同様の記録・再生を行い、テープ送り長さ1m当たりで0.5μm以上の大きさで50%以上出力低下したものをドロップアウトとして回数(個数)を測定し、下記基準で判断した。ドロップアウトが600個未満のものが高容量のデータバックアップ用テープとして望ましい。
(13) Dropout The same number of recordings and reproductions as in (12) above were performed, and the number (number) was measured as a dropout when the tape feed length was 0.5 μm or more and the output decreased by 50% or more per 1 m. However, it was judged according to the following criteria. A tape with less than 600 dropouts is desirable as a high capacity data backup tape.

AA:ドロップアウト 100個未満
A:ドロップアウト 100以上300個未満
B:ドロップアウト 300以上600個未満
C:ドロップアウト 600個以上
AA: Dropout less than 100 A: Dropout 100 or more and less than 300 B: Dropout 300 or more and less than 600 C: Dropout 600 or more

次の実施例に基づき、本発明の実施形態を説明する。なお、ここでポリエチレンテレフタレートをPET、ポリエチレンナフタレートをPEN、ポリエーテルイミドをPEIと表記する。   Embodiments of the present invention will be described based on the following examples. Here, polyethylene terephthalate is referred to as PET, polyethylene naphthalate is referred to as PEN, and polyetherimide is referred to as PEI.

(1)PETペレットの作製:テレフタル酸ジメチル194質量部とエチレングリコール124質量部とをエステル交換反応装置に仕込み、内容物を140℃に加熱して溶解した。その後、内容物を撹拌しながら酢酸マグネシウム四水和物0.3質量部および三酸化アンチモン0.05質量部を加え、140〜230℃でメタノールを留出しつつエステル交換反応を行った。次いで、リン酸トリメチルの5質量%エチレングリコール溶液を0.5質量部(リン酸トリメチルとして0.025質量部)とリン酸二水素ナトリウム2水和物の5質量%エチレングリコール溶液を0.3質量部(リン酸二水素ナトリウム2水和物として0.015質量部)添加した。   (1) Preparation of PET pellets: 194 parts by mass of dimethyl terephthalate and 124 parts by mass of ethylene glycol were charged into a transesterification reactor, and the contents were heated to 140°C to dissolve them. Then, 0.3 part by mass of magnesium acetate tetrahydrate and 0.05 part by mass of antimony trioxide were added while stirring the contents, and transesterification was carried out while distilling methanol at 140 to 230°C. Next, 0.5 parts by mass of a 5% by mass ethylene glycol solution of trimethyl phosphate (0.025 parts by mass as trimethyl phosphate) and 0.3 parts of a 5% by mass solution of sodium dihydrogen phosphate dihydrate in an ethylene glycol are added. Parts by mass (0.015 parts by mass as sodium dihydrogen phosphate dihydrate) were added.

トリメチルリン酸のエチレングリコール溶液を添加すると反応内容物の温度が低下する。そこで余剰のエチレングリコールを留出させながら反応内容物の温度が230℃に復帰するまで撹拌を継続した。このようにしてエステル交換反応装置内の反応内容物の温度が230℃に達した後、反応内容物を重合装置へ移行した。   When the ethylene glycol solution of trimethyl phosphoric acid is added, the temperature of the reaction contents decreases. Therefore, stirring was continued while distilling excess ethylene glycol until the temperature of the reaction contents returned to 230°C. After the temperature of the reaction contents in the transesterification reactor reached 230°C in this way, the reaction contents were transferred to the polymerization device.

移行後、反応系を230℃から275℃まで徐々に昇温するとともに、圧力を0.1kPaまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。最終温度、最終圧力に到達した後、2時間(重合を始めて3時間)反応させたところ、重合装置の撹拌トルクが所定の値(重合装置の仕様によって具体的な値は異なるが、本重合装置にて固有粘度0.55のポリエチレンテレフタレートが示す値を所定の値とした)を示した。そこで反応系を窒素パージし常圧に戻して重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングして固有粘度0.55のポリエチレンテレフタレートのPETペレットを得た(原料−1)。   After the transition, the reaction system was gradually heated from 230°C to 275°C and the pressure was lowered to 0.1 kPa. The time required to reach the final temperature and the final pressure was 60 minutes. After reaching the final temperature and the final pressure, a reaction was carried out for 2 hours (3 hours after starting the polymerization), and the stirring torque of the polymerization apparatus was a predetermined value (specific values differ depending on the specifications of the polymerization apparatus, but the present polymerization apparatus was used). The value indicated by polyethylene terephthalate having an intrinsic viscosity of 0.55 was defined as a predetermined value. Then, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in a strand form, and immediately cut to obtain PET pellets of polyethylene terephthalate having an intrinsic viscosity of 0.55 (raw material-1).

回転型真空重合装置を用いて、上記のPETペレット(原料−1)を0.1kPaの減圧下230℃の温度で長時間加熱処理し、固相重合を行った(原料−1k)。加熱処理時間が長いほど固有粘度は高くなる。処理時間が1時間で固有粘度が0.60、5時間で固有粘度が0.70である。   Using a rotary vacuum polymerization device, the above PET pellets (raw material-1) were subjected to a heat treatment at a temperature of 230°C for a long time under a reduced pressure of 0.1 kPa to carry out solid phase polymerization (raw material-1k). The longer the heat treatment time, the higher the intrinsic viscosity. The treatment time is 1 hour and the intrinsic viscosity is 0.60, and the treatment time is 5 hours and the intrinsic viscosity is 0.70.

(1b)PENペレットの作成:2,6−ナフタレンジカルボン酸ジメチル128質量部とエチレングリコール60質量部の混合物に、酢酸マンガン・4水和物塩0.025質量部と酢酸ナトリウム・3水塩0.005質量部を添加し、150℃の温度から240℃の温度に徐々に昇温しながらエステル交換反応を行った。途中、反応温度が170℃に達した時点で三酸化アンチモン0.024質量部を添加した。また、反応温度が220℃に達した時点で3,5−ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩0.042質量部(2mmol%に相当)を添加した。その後、引き続いてエステル交換反応を行い、トリメチルリン酸0.023質量部を添加した。次いで、反応生成物を重合装置に移し、290℃の温度まで昇温し、30Paの高減圧下にて重縮合反応を行い、重合装置の撹拌トルクが所定の値(重合装置の仕様によって具体的な値は異なるが、本重合装置にて固有粘度0.6のポリエチレン−2,6−ナフタレートが示す値を所定の値とした)を示した。そこで反応系を窒素パージし常圧に戻して重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングして固有粘度0.6のPENペレット(原料−1b)を得た。   (1b) Preparation of PEN pellets: A mixture of 128 parts by mass of dimethyl 2,6-naphthalenedicarboxylate and 60 parts by mass of ethylene glycol was added to 0.025 parts by mass of manganese acetate tetrahydrate and 0 parts of sodium acetate trihydrate. 0.005 parts by mass was added, and the transesterification reaction was carried out while gradually increasing the temperature from 150°C to 240°C. On the way, when the reaction temperature reached 170° C., 0.024 part by mass of antimony trioxide was added. Further, when the reaction temperature reached 220° C., 0.042 parts by mass (corresponding to 2 mmol %) of 3,5-dicarboxybenzenesulfonic acid tetrabutylphosphonium salt was added. Then, the transesterification reaction was subsequently carried out, and 0.023 parts by mass of trimethylphosphoric acid was added. Next, the reaction product is transferred to a polymerization apparatus, heated to a temperature of 290° C., and subjected to a polycondensation reaction under a high reduced pressure of 30 Pa, and the stirring torque of the polymerization apparatus has a predetermined value (specifically depending on the specifications of the polymerization apparatus). Although different values are different, the value indicated by polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.6 in the present polymerization device was set as a predetermined value). Then, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in a strand form, and immediately cut to obtain a PEN pellet (raw material-1b) having an intrinsic viscosity of 0.6.

(2−a)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を80質量部と平均粒径0.30μmの架橋ポリスチレン粒子の10質量%水スラリーを20質量部(架橋ポリスチレン粒子として2質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、架橋ポリスチレン粒子を2質量%含有する固有粘度0.62の粒子含有ペレット(原料−2a)を得た。   (2-a) Preparation of PET Pellets Containing Particles: 80 parts by mass of the above-mentioned PET pellets (raw material-1) and an average particle size of 0 were added to a vent type twin-screw kneading extruder of the same direction rotation type heated to 280°C. 20 mass parts (2 mass parts as cross-linked polystyrene particles) of 10 mass% water slurry of 30 μm cross-linked polystyrene particles is supplied, the vent hole is kept at a reduced pressure of 1 kPa or less to remove water, and A particle-containing pellet (raw material-2a) having an intrinsic viscosity of 0.62 and containing by mass% was obtained.

(2−b)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を80質量部と平均粒径0.45μmの架橋ポリスチレン粒子の10質量%水スラリーを20質量部(架橋ポリスチレン粒子として2質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、架橋ポリスチレン粒子を2質量%含有する固有粘度0.62の粒子含有ペレット(原料−2b)を得た。   (2-b) Preparation of particle-containing PET pellets: 80 parts by mass of the above PET pellets (raw material-1) and an average particle size of 0 were added to a vent-type twin-screw kneading extruder of the same direction rotation type heated to 280°C. 20 mass parts (2 mass parts as cross-linked polystyrene particles) of 10 mass% aqueous slurry of cross-linked polystyrene particles of 0.45 μm is supplied, and the vent hole is maintained at a reduced pressure of 1 kPa or less to remove water, and the cross-linked polystyrene particles are converted into 2 parts. A particle-containing pellet (raw material-2b) having an intrinsic viscosity of 0.62 in a mass% content was obtained.

(2−c)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を90質量部と平均粒径0.060μmのコロイダルシリカ粒子の10質量%水スラリーを10質量部(コロイダルシリカ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を1質量%含有する固有粘度0.62の粒子含有ペレット(原料−2c)を得た。   (2-c) Preparation of particle-containing PET pellets: 90 parts by mass of the above-mentioned PET pellets (raw material-1) and an average particle size of 0 were added to a co-rotating vent type twin-screw kneading extruder heated to 280°C. 10 parts by mass of a 10% by mass aqueous slurry of colloidal silica particles of 0.060 μm (1 part by mass as colloidal silica particles) was supplied, the vent hole was kept at a reduced pressure of 1 kPa or less to remove water, and the colloidal silica particles were separated by 1 part. A particle-containing pellet (raw material-2c) having an intrinsic viscosity of 0.62 and containing mass% was obtained.

(2−d)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を80質量部と平均粒径0.10μmのコロイダルシリカ粒子の10質量%水スラリーを20質量部(コロイダルシリカ粒子として2質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を2質量%含有する固有粘度0.62の粒子含有ペレット(原料−2d)を得た。   (2-d) Preparation of PET Pellets Containing Particles: 80 parts by mass of the above-mentioned PET pellets (raw material-1) and an average particle size of 0 were added to a vent type twin-screw kneading extruder of the same direction rotation type heated to 280°C. 20 mass parts (2 mass parts as colloidal silica particles) of a 10 mass% aqueous slurry of 10 μm colloidal silica particles was supplied, and the vent hole was kept at a reduced pressure of 1 kPa or less to remove water, and the colloidal silica particles were converted to 2 mass parts. A particle-containing pellet (raw material-2d) having an intrinsic viscosity of 0.62, which was contained in a mass% amount, was obtained.

(2−e)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPETペレット(原料−1)を80質量部と平均粒径0.20μmのコロイダルシリカ粒子の10質量%水スラリーを20質量部(コロイダルシリカ粒子として2質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を2質量%含有する固有粘度0.62の粒子含有ペレット(原料−2e)を得た。   (2-e) Preparation of PET Pellets Containing Particles: 80 parts by mass of the above-mentioned PET pellets (raw material-1) and an average particle size of 0 were added to a vent type twin-screw kneading extruder of the same direction rotation type heated to 280°C. 20 mass parts of a 10 mass% aqueous slurry of 20 μm colloidal silica particles (2 mass parts as colloidal silica particles) is supplied, the vent holes are kept at a reduced pressure of 1 kPa or less to remove water, and the colloidal silica particles are converted into 2 parts. A particle-containing pellet (raw material-2e) containing 0.6% by mass of intrinsic viscosity was obtained.

(2−f)粒子含有PENペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPENペレット(原料−1b)を80質量部と平均粒径0.30μmの架橋ポリスチレン粒子の10質量%水スラリーを20質量部(架橋ポリスチレン粒子として2質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、架橋ポリスチレン粒子を2質量%含有する固有粘度0.6の粒子含有ペレット(原料−2f)を得た。   (2-f) Preparation of PEN Pellets Containing Particles: 80 parts by mass of PEN pellets (raw material-1b) and an average particle size of 0 in a vent type twin-screw kneading extruder of the same direction rotation type heated to 280° C. 20 mass parts (2 mass parts as cross-linked polystyrene particles) of 10 mass% water slurry of 30 μm cross-linked polystyrene particles is supplied, the vent hole is kept at a reduced pressure of 1 kPa or less to remove water, and A particle-containing pellet (raw material-2f) having an intrinsic viscosity of 0.6 and containing by mass% was obtained.

(2−g)粒子含有PENペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPENペレット(原料−1b)を80質量部と平均粒径0.45μmの架橋ポリスチレン粒子の10質量%水スラリーを20質量部(架橋ポリスチレン粒子として2質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、架橋ポリスチレン粒子を2質量%含有する固有粘度0.6の粒子含有ペレット(原料−2g)を得た。   (2-g) Preparation of PEN pellets containing particles: 80 parts by mass of PEN pellets (raw material-1b) and an average particle diameter of 0 were added to a vent-type twin-screw kneading extruder of the same direction rotation type heated to 280°C. 20 mass parts (2 mass parts as cross-linked polystyrene particles) of 10 mass% aqueous slurry of cross-linked polystyrene particles of 0.45 μm was supplied, and the vent hole was kept at a reduced pressure of 1 kPa or less to remove water, and the cross-linked polystyrene particles were converted into 2 parts. A particle-containing pellet (raw material-2 g) having an intrinsic viscosity of 0.6 and containing mass% was obtained.

(2−h)粒子含有PENペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPENペレット(原料−1b)を90質量部と平均粒径0.060μmのコロイダルシリカ粒子の10質量%水スラリーを10質量部(コロイダルシリカ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を1質量%含有する固有粘度0.6の粒子含有ペレット(原料−2h)を得た。   (2-h) Preparation of PEN pellets containing particles: 90 parts by mass of PEN pellets (raw material-1b) and an average particle diameter of 0 in a vent type twin-screw kneading extruder of the same direction rotation type heated to 280°C. 10 parts by mass of a 10% by mass aqueous slurry of colloidal silica particles of 0.060 μm (1 part by mass as colloidal silica particles) was supplied, the vent hole was kept at a reduced pressure of 1 kPa or less to remove water, and the colloidal silica particles were separated by 1 part. A particle-containing pellet (raw material-2h) having an intrinsic viscosity of 0.6 and containing by mass% was obtained.

(2−i)粒子含有PENペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPENペレット(原料−1b)を80質量部と平均粒径0.10μmのコロイダルシリカ粒子の10質量%水スラリーを20質量部(コロイダルシリカ粒子として2質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を2質量%含有する固有粘度0.6の粒子含有ペレット(原料−2i)を得た。   (2-i) Preparation of PEN Pellets Containing Particles: 80 parts by mass of PEN pellets (raw material-1b) and an average particle size of 0 in a vent type twin-screw kneading extruder of the same direction rotation type heated to 280° C. 20 mass parts (2 mass parts as colloidal silica particles) of a 10 mass% aqueous slurry of 10 μm colloidal silica particles was supplied, and the vent hole was kept at a reduced pressure of 1 kPa or less to remove water, and the colloidal silica particles were converted to 2 mass parts. A particle-containing pellet (raw material-2i) having an intrinsic viscosity of 0.6 and containing by mass% was obtained.

(2−j)粒子含有PENペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPENペレット(原料−1b)を80質量部と平均粒径0.20μmのコロイダルシリカ粒子の10質量%水スラリーを20質量部(コロイダルシリカ粒子として2質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を2質量%含有する固有粘度0.6の粒子含有ペレット(原料−2j)を得た。   (2-j) Preparation of PEN Pellets Containing Particles: 80 parts by mass of PEN pellets (raw material-1b) and an average particle size of 0 were added to a vent type twin-screw kneading extruder of the same direction rotation type heated to 280°C. 20 mass parts (2 mass parts as colloidal silica particles) of 10 mass% water slurry of 20 μm colloidal silica particles is supplied, and the vent holes are kept at a reduced pressure of 1 kPa or less to remove water, and colloidal silica particles are converted to 2 mass parts. A particle-containing pellet (raw material-2j) having an intrinsic viscosity of 0.6 and containing mass% was obtained.

(3)2成分組成物(PET/PEI)ペレットの作製:温度280℃に加熱されたニーディングパドル混練部を3箇所設けた同方向回転タイプのベント式2軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に、上記方法で得られたPETペレット(原料−1)とSABICイノベーティブプラスチック社製のPEI“Ultem”(登録商標)1010のペレットを供給して、剪断速度100sec−1、滞留時間1分にて溶融押出し、PEIを50質量%含有した2成分組成物ペレットを得た。なお、作製した2成分組成物ペレットのガラス転移温度は150℃であった(原料−3)。 (3) Preparation of two-component composition (PET/PEI) pellets: co-rotating vent type twin-screw kneading extruder provided with three kneading paddle kneading parts heated to a temperature of 280° C. (manufactured by Japan Steel Works) , Screw diameter 30 mm, screw length/screw diameter=45.5), the PET pellets (raw material-1) obtained by the above method and the pellets of PEI "Ultem" (registered trademark) 1010 manufactured by SABIC Innovative Plastics Co., Ltd. It was supplied and melt-extruded at a shear rate of 100 sec −1 and a residence time of 1 minute to obtain a two-component composition pellet containing 50% by mass of PEI. The glass transition temperature of the produced two-component composition pellet was 150°C (raw material-3).

(実施例1)
押出機E1、E2の2台を用い、280℃に加熱された押出機E1には、A層原料として、固相重合を4時間実施したPETペレット(原料−1k)を80質量部、平均粒径0.06μmのコロイダルシリカ粒子含有ペレット(原料−2c)20質量部を180℃で3時間減圧乾燥した後に供給した。同じく280℃に加熱された押出機E2には、B層原料として、A層で用いたPETペレット(原料−1k)を72.5質量部、平均粒径0.20μmのコロイダルシリカ粒子含有ペレット(原料−2e)20質量部、平均粒径0.30μmの架橋ポリスチレン粒子含有ペレット(原料−2a)7.5質量部、を配合し、180℃で3時間減圧乾燥した後に供給した。これらを2層積層するべくTダイ中で積層厚み比(A層|B層)=4|1とし、B層側がキャストドラム面側になるように合流させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製した。
(Example 1)
Using two extruders E1 and E2, the extruder E1, which was heated to 280° C., had 80 parts by mass of PET pellets (raw material-1k), which had been subjected to solid phase polymerization for 4 hours, as an A layer raw material, and had an average grain size. 20 parts by mass of pellets (raw material-2c) containing colloidal silica particles having a diameter of 0.06 μm were dried under reduced pressure at 180° C. for 3 hours and then supplied. Similarly, in the extruder E2 heated to 280° C., 72.5 parts by mass of the PET pellets (raw material-1k) used in the A layer as the B layer raw material, and the colloidal silica particle-containing pellets with an average particle diameter of 0.20 μm ( 20 parts by mass of raw material-2e) and 7.5 parts by mass of pellets containing crosslinked polystyrene particles having an average particle size of 0.30 μm (raw material-2a) were mixed, dried under reduced pressure at 180° C. for 3 hours, and then supplied. In order to laminate these two layers, the lamination thickness ratio (A layer|B layer)=4|1 was set in the T-die, and the B layer side was merged so that it was on the cast drum surface side. The laminated unstretched film was produced by closely cooling and solidifying while applying an electric charge.

この積層未延伸フィルムをロール式延伸機にて88℃で3段階で長手方向に3.5倍延伸した。この延伸は2組ずつのロールの周速差を利用し1段目に2.8倍、2段目1.15倍、3段目1.09倍で行った。   This laminated unstretched film was stretched 3.5 times in the longitudinal direction at 88° C. in three stages with a roll-type stretching machine. This stretching was carried out by utilizing the peripheral speed difference between two sets of rolls at 2.8 times in the first step, 1.15 times in the second step, and 1.09 times in the third step.

得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の90℃の温度の予熱ゾーンに導き、引き続き連続的に90℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.5倍延伸し(TD延伸1)、さらに続いて190℃の温度の加熱ゾーンでに幅方向に1.4倍延伸した(TD延伸2)。引き続いて、テンター内の熱処理ゾーンで190℃の温度で10秒間の熱処理を施し、さらに150℃の温度で0.5%幅方向に弛緩処理を行った。次いで、25℃に均一に冷却後、フィルムエッジを除去し、コア上に巻き取って厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの製膜安定性は良好であり、物性評価したところ、表に示すように、磁気テープとして使用した際に優れた特性を有していた。   While holding both ends of the obtained uniaxially stretched film with clips, the uniaxially stretched film was guided to a preheating zone at a temperature of 90°C in a tenter, and continuously in a heating zone at a temperature of 90°C in a width direction (TD direction) perpendicular to the longitudinal direction. Was stretched 3.5 times (TD stretching 1), and then 1.4 times in the width direction in a heating zone at a temperature of 190° C. (TD stretching 2). Subsequently, heat treatment was performed in the heat treatment zone in the tenter at a temperature of 190° C. for 10 seconds, and further relaxation treatment was performed in the width direction of 0.5% at a temperature of 150° C. Then, after uniformly cooling to 25° C., the film edge was removed, and the film was wound on a core to obtain a 4.5 μm-thick biaxially stretched polyester film. The obtained biaxially oriented polyester film had good film-forming stability, and when the physical properties were evaluated, as shown in the table, it had excellent properties when used as a magnetic tape.

以下、表に各実施例、比較例の原料組成、製膜条件、二軸配向ポリエステルフィルムの物性、磁気テープの特性等を示す。   In the following, the raw material compositions, film forming conditions, physical properties of the biaxially oriented polyester film, magnetic tape properties and the like of each Example and Comparative Example are shown in the table.

(実施例2)
表に示すように、B層に用いる粒子濃度を変更した以外は全て実施例1と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Example 2)
As shown in the table, a biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 1 except that the particle concentration used in the layer B was changed.

(実施例3)
押出機E1、E2の2台を用い、280℃に加熱された押出機E1には、A層原料として、固相重合を4時間実施したPETペレット(原料−1k)を74質量部、2成分組成物ペレット(原料−3)6質量部、平均粒径0.06μmの架橋ポリスチレン粒子含有ペレット(原料−2c)20質量部を180℃で3時間減圧乾燥した後に供給した。同じく280℃に加熱された押出機E2には、B層原料として、A層で用いたPETペレット(原料−1k)を87.6質量部、2成分組成物ペレット(原料−3)6質量部、平均粒径0.3μmのコロイダルシリカ粒子含有ペレット(原料−2a)6質量部、平均粒径0.45μmの架橋ポリスチレン粒子含有ペレット(原料−2b)0.4質量部を配合し、180℃で3時間減圧乾燥した後に供給した。これらを2層積層するべくTダイ中で積層厚み比(A層|B層)=4|1とし、B層側がキャストドラム面側になるように合流させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製した。
(Example 3)
Using two extruders E1 and E2, the extruder E1, which was heated to 280° C., contained 74 parts by mass of PET pellets (raw material-1k) that had been subjected to solid phase polymerization for 4 hours as a raw material for layer A, 2 components. 6 parts by mass of the composition pellets (raw material-3) and 20 parts by mass of pellets containing the crosslinked polystyrene particles having an average particle diameter of 0.06 μm (raw material-2c) were dried under reduced pressure at 180° C. for 3 hours and then supplied. Similarly, in the extruder E2 heated to 280° C., as the B layer raw material, 87.6 parts by mass of the PET pellets (raw material-1k) used in the A layer, 6 parts by mass of two-component composition pellets (raw material-3) were used. , 6 parts by mass of a colloidal silica particle-containing pellet (raw material-2a) having an average particle diameter of 0.3 μm and 0.4 parts by mass of a crosslinked polystyrene particle-containing pellet (raw material-2b) having an average particle diameter of 0.45 μm were mixed, and 180° C. It was vacuum dried for 3 hours and then supplied. In order to laminate these two layers, the lamination thickness ratio (A layer|B layer)=4|1 was set in the T-die, and the B layer side was merged so that it was on the cast drum surface side. The laminated unstretched film was produced by closely cooling and solidifying while applying an electric charge.

この積層未延伸フィルムをロール式延伸機にて90℃で3段階で長手方向に3.5倍延伸した。この延伸は2組ずつのロールの周速差を利用し1段目に2.5倍、2段目1.34倍、3段目1.05倍で行った。   This laminated unstretched film was stretched 3.5 times in the longitudinal direction at 90° C. in three stages with a roll-type stretching machine. This stretching was performed using the difference in peripheral speed between the rolls of two sets at a first stage of 2.5 times, a second stage of 1.34 times, and a third stage of 1.05 times.

得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の95℃の温度の予熱ゾーンに導き、引き続き連続的に90℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.5倍延伸し(TD延伸1)、さらに続いて195℃の温度の加熱ゾーンでに幅方向に1.4倍延伸した(TD延伸2)。引き続いて、テンター内の熱処理ゾーンで190℃の温度で10秒間の熱処理を施し、さらに150℃の温度で0.5%幅方向に弛緩処理を行った。次いで、25℃に均一に冷却後、フィルムエッジを除去し、コア上に巻き取って厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの製膜安定性は良好であり、物性評価したところ、表に示すように、磁気テープとして使用した際に優れた特性を有していた。   While holding both ends of the obtained uniaxially stretched film with clips, the uniaxially stretched film was guided to a preheating zone at a temperature of 95°C in a tenter, and continuously in a heating zone at a temperature of 90°C in a width direction (TD direction) perpendicular to the longitudinal direction. Was stretched 3.5 times (TD stretching 1), and subsequently 1.4 times in the width direction in a heating zone at a temperature of 195° C. (TD stretching 2). Subsequently, heat treatment was performed at a temperature of 190° C. for 10 seconds in a heat treatment zone in the tenter, and further relaxation treatment was performed at a temperature of 150° C. in the 0.5% width direction. Then, after uniformly cooling to 25° C., the film edge was removed, and the film was wound on a core to obtain a 4.5 μm-thick biaxially stretched polyester film. The obtained biaxially oriented polyester film had good film-forming stability, and when the physical properties were evaluated, as shown in the table, it had excellent properties when used as a magnetic tape.

(実施例4)
表に示すように、B層に用いる粒子濃度を変更し、A,B層の積層厚み比(A層|B層)=6|1とした以外は全て実施例3と同様にして厚さ4.2μmの二軸延伸ポリエステルフィルムを得た。
(Example 4)
As shown in the table, a thickness of 4 was obtained in the same manner as in Example 3 except that the concentration of particles used in the B layer was changed and the layer thickness ratio of the A and B layers (A layer|B layer)=6|1. A biaxially stretched polyester film of 0.2 μm was obtained.

(実施例5)
表に示すように、B層に用いる粒子原料および濃度を変更した以外は全て実施例4と同様にして厚さ4.2μmの二軸延伸ポリエステルフィルムを得た。
(Example 5)
As shown in the table, a biaxially stretched polyester film having a thickness of 4.2 μm was obtained in the same manner as in Example 4 except that the particle raw material used for the layer B and the concentration were changed.

(実施例6)
A層原料として、PENペレット(原料−1b)80質量部、平均粒径0.06μmのコロイダルシリカ粒子含有ペレット(原料−2h)20質量部を180℃で3時間減圧乾燥した後に供給した。同じく280℃に加熱された押出機E2には、B層原料として、A層で用いたPENペレット(原料−1b)を70質量部、平均粒径0.2μmのコロイダルシリカ粒子含有ペレット(原料−2j)20質量部、平均粒径0.30μmの架橋ポリスチレン粒子含有ペレット(原料−2f)10質量部、を配合し、180℃で3時間減圧乾燥した後に供給した。これらを2層積層するべくTダイ中で積層厚み比(A層|B層)=6|1とし、B層側がキャストドラム面側になるように合流させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製した。
(Example 6)
As the layer A raw material, 80 parts by mass of PEN pellets (raw material-1b) and 20 parts by mass of pellets containing colloidal silica particles having an average particle diameter of 0.06 μm (raw material-2h) were dried under reduced pressure at 180° C. for 3 hours and then supplied. Similarly, in the extruder E2 heated to 280° C., 70 parts by mass of the PEN pellets (raw material-1b) used in the A layer were used as the raw material of the B layer, and the pellets containing the colloidal silica particles having an average particle diameter of 0.2 μm (raw material- 2j) 20 parts by mass and 10 parts by mass of pellets containing crosslinked polystyrene particles having an average particle size of 0.30 μm (raw material-2f) were blended, dried under reduced pressure at 180° C. for 3 hours, and then supplied. In order to stack these two layers, the stacking thickness ratio (A layer|B layer)=6|1 was set in a T-die, the B layer side was merged so that it was the cast drum surface side, and the mixture was statically placed on a cast drum with a surface temperature of 25°C. The laminated unstretched film was produced by closely cooling and solidifying while applying an electric charge.

この積層未延伸フィルムをロール式延伸機にて125℃で3段階で長手方向に4.5倍延伸した。この延伸は2組ずつのロールの周速差を利用し1段目に3.6倍、2段目1.2倍、3段目1.05倍で行った。   This laminated unstretched film was stretched 4.5 times in the longitudinal direction at 125° C. in three stages with a roll-type stretching machine. This stretching was carried out by utilizing the peripheral speed difference between two pairs of rolls at a first stage of 3.6 times, a second stage of 1.2 times, and a third stage of 1.05 times.

得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の135℃の温度の予熱ゾーンに導き、引き続き連続的に120℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に4倍延伸し(TD延伸1)、さらに続いて150℃の温度の加熱ゾーンでに幅方向に1.6倍延伸した(TD延伸2)。引き続いて、テンター内の熱処理ゾーンで200℃の温度で10秒間の熱処理を施し、さらに150℃の温度で0.5%幅方向に弛緩処理を行った。次いで、25℃に均一に冷却後、フィルムエッジを除去し、コア上に巻き取って厚さ4.2μmの二軸延伸ポリエステルフィルムを得た。   While holding both ends of the obtained uniaxially stretched film with clips, the uniaxially stretched film was guided to a preheating zone at a temperature of 135°C in a tenter, and continuously in a heating zone at a temperature of 120°C in a width direction (TD direction) perpendicular to the longitudinal direction. Was stretched 4 times (TD stretching 1), and then 1.6 times in the width direction in a heating zone at a temperature of 150° C. (TD stretching 2). Subsequently, heat treatment was performed at a temperature of 200° C. for 10 seconds in a heat treatment zone inside the tenter, and further relaxation treatment was performed at a temperature of 150° C. in the 0.5% width direction. Then, after uniformly cooling to 25° C., the film edge was removed, and the film was wound on a core to obtain a 4.2 μm-thick biaxially stretched polyester film.

(実施例7)
表に示すように、B層に用いる粒子原料の濃度を変更し、A,B層の積層厚み比(A層|B層)=2.7|1とした以外は全て実施例7と同様にして厚さ4.1μmの二軸延伸ポリエステルフィルムを得た。
(Example 7)
As shown in the table, all were the same as in Example 7 except that the concentration of the particle raw material used in the B layer was changed and the layer thickness ratio of the A and B layers (A layer|B layer)=2.7|1. A biaxially stretched polyester film having a thickness of 4.1 μm was obtained.

(比較例1)
表に示すように、B層に用いる粒子濃度を変更した以外は全て実施例4と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 1)
As shown in the table, a biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 4 except that the concentration of particles used in the layer B was changed.

(比較例2)
B層に用いる粒子原料および濃度を表の通りに変更し、A,B層の積層厚み比(A層|B層)=21.5|1とした以外は全て実施例1と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative example 2)
The same procedure as in Example 1 was performed except that the particle raw material and the concentration used in the B layer were changed as shown in the table, and the lamination thickness ratio of the A and B layers (A layer|B layer)=21.5|1. A biaxially stretched polyester film having a length of 4.5 μm was obtained.

(比較例3)
B層に用いる粒子原料および濃度を表の通り変更し、A,B層の積層厚み比(A層|B層)=2|1に変更した以外は全て実施例1と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative example 3)
A thickness of 4 was obtained in the same manner as in Example 1 except that the particle raw material and the concentration used for the B layer were changed as shown in the table, and the lamination thickness ratio of the A and B layers (A layer|B layer)=2|1. A 0.5 μm biaxially stretched polyester film was obtained.

(比較例4)
B層に用いる粒子原料および濃度を表の通りに変更し、長手方向に3.5倍多段延伸することなく1段延伸した以外は全て実施例1と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative example 4)
A biaxial film having a thickness of 4.5 μm was obtained in the same manner as in Example 1 except that the particle raw material and the concentration used in the B layer were changed as shown in the table, and the film was stretched in one stage in the longitudinal direction without being stretched by 3.5 times. A stretched polyester film was obtained.

(比較例5)
表に示すように、B層に用いる粒子原料および濃度、A,B層の積層厚み比(A層|B層)=1|2に変更した以外は全て実施例6と同様にして厚さ5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 5)
As shown in the table, the thickness was 5 μm in the same manner as in Example 6 except that the particle raw material and concentration used for the B layer and the layer thickness ratio of the A and B layers (A layer|B layer)=1|2 were changed. A biaxially stretched polyester film of was obtained.

(比較例6)
実施例3の粒子原料を用い、表に示すように、B層に用いる粒子(原料-2b)濃度を変更した以外は全て実施例3と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative example 6)
A biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 3 except that the particle raw material of Example 3 was used and the concentration of the particles (raw material-2b) used in the B layer was changed as shown in the table. Got

(比較例7)
表に示すように、B層に用いる粒子原料および濃度、A,B層の積層厚み比(A層|B層)=1|2に変更した以外は全て実施例1と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 7)
As shown in the table, the thickness was 4 in the same manner as in Example 1 except that the particle raw material and concentration used for the B layer and the laminated thickness ratio of the A and B layers (A layer|B layer)=1|2 were changed. A 0.5 μm biaxially stretched polyester film was obtained.

(比較例8)
B層に用いる粒子原料を原料2-hおよび原料2-fとし、各濃度を表の通りに変更した。さらにA,B層の積層厚み比(A層|B層)=1|2とし、長手方向に5倍多段延伸することなく1段延伸し、幅方向(TD方向)に5.3倍延伸し(TD延伸1)、さらに続いて幅方向に1.2倍延伸(TD延伸2)した以外は全て実施例6と同様にして厚さ5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 8)
Raw materials 2-h and raw materials 2-f were used as the particle raw materials for the layer B, and the respective concentrations were changed as shown in the table. Further, the stacking thickness ratio of the A and B layers (A layer|B layer)=1|2, 1 stage was stretched in the longitudinal direction without multistage stretching 5 times, and was stretched 5.3 times in the width direction (TD direction). A biaxially stretched polyester film having a thickness of 5 μm was obtained in the same manner as in Example 6 except that (TD stretching 1) and then 1.2-fold widthwise stretching (TD stretching 2) were carried out.

Figure 0006701666
Figure 0006701666

Figure 0006701666
Figure 0006701666

Figure 0006701666
Figure 0006701666

Claims (11)

ポリエステル樹脂を含むA層と、ポリエステル樹脂、平均粒子径0.3〜0.5μmの粒子Lを0.005〜0.3質量%(但し、粒子Lの平均粒子径が0.4μmを超える場合の含有量は0.005〜0.02質量%)、平均粒子径0.05〜0.3μmの粒子Mを0.01〜0.2の配合比(L/M)(但し、粒子Lの平均粒子径が0.4μm以下の場合の上限は1以下)で含むB層とを有し(ただし、粒子Lは粒子Mよりも平均粒子径が大きい粒子)、厚みが3.5〜4.5μmであり、B層の積層厚み(t)と該層に含有される粒子の最大粒子径(d)の比(t/d)が1〜5であり、少なくとも片面の三次元表面粗さ計により測定した粗さ曲線において、基準面から10nm間隔にスライスレベルを設定したときの突起密度が以下の関係を満足する二軸配向ポリエステルフィルム。
0.4≦(M60/M10)×100≦3
M100≦5
(但し、M10(個/mm):高さ10nmのスライスレベルにおける突起密度、
M60(個/mm):高さ60nmのスライスレベルにおける突起密度、
M100(個/mm):高さ100nmのスライスレベルにおける突起密度、である。)
0.005 to 0.3% by mass of the layer A containing the polyester resin, the polyester resin, and particles L having an average particle diameter of 0.3 to 0.5 μm (provided that the average particle diameter of the particles L exceeds 0.4 μm). Content of 0.005 to 0.02% by mass), and a mixing ratio (L/M) of particles M having an average particle diameter of 0.05 to 0.3 μm of 0.01 to 0.2 (however, of the particles L B layer included with an average particle diameter of 0.4 μm or less is 1 or less) (however, particle L has a larger average particle diameter than particle M), and has a thickness of 3.5 to 4. It is 5 μm, the ratio (t/d) of the laminated thickness (t) of the layer B and the maximum particle diameter (d) of the particles contained in the layer is 1 to 5, and a three-dimensional surface roughness meter on at least one side. A biaxially oriented polyester film having a protrusion density satisfying the following relationship when a slice level is set at an interval of 10 nm from a reference plane in the roughness curve measured by.
0.4≦(M60/M10)×100≦3
M100≦5
(However, M10 (pieces/mm 2 ): protrusion density at a slice level with a height of 10 nm,
M60 (pieces/mm 2 ): protrusion density at a slice level with a height of 60 nm,
M100 (pieces/mm 2 ): protrusion density at a slice level of 100 nm in height. )
少なくとも片面の三次元表面粗さ計により測定した粗さ曲線において、基準面から10nm間隔にスライスレベルを設定したときの突起密度が以下の関係を満足する、請求項1に記載の二軸配向ポリエステルフィルム。
1≦M10/M0≦10
(但し、M0(個/mm):高さ0nmのスライスレベル(基準面)における突起密度である。)
The biaxially oriented polyester according to claim 1, wherein the protrusion density when the slice level is set at an interval of 10 nm from the reference plane satisfies the following relationship in a roughness curve measured by a three-dimensional surface roughness meter on at least one side. the film.
1≤M10/M0≤10
(However, M0 (pieces/mm 2 ): projection density at a slice level (reference plane) with a height of 0 nm.)
高さ10nmのスライスレベル(基準面)における突起密度(M10)が0.6万〜2万個/mmである、請求項1または2に記載の二軸配向ポリエステルフィルム。 Projection density at the height 10nm slice level (a reference plane) (M10) is from 06,000 to 20,000 pieces / mm 2, the biaxially oriented polyester film according to claim 1 or 2. 高さ0nmのスライスレベル(基準面)における突起密度(M0)が0.1万〜1万個/mmである、請求項1〜3のいずれかに記載の二軸配向ポリエステルフィルム。 Slice level height 0nm projection density at (the reference plane) (M0) is from 01,000 to 10,000 pieces / mm 2, the biaxially oriented polyester film according to claim 1. 高さ0nmのスライスレベル(基準面)における突起の平均直径(P0)が2〜25μmである、請求項1〜4のいずれかに記載の二軸配向ポリエステルフィルム。   The biaxially oriented polyester film according to any one of claims 1 to 4, wherein the average diameter (P0) of the protrusions at a slice level (reference plane) having a height of 0 nm is 2 to 25 µm. 高さ10nmのスライスレベルにおける突起の平均直径(P10)が1〜5μmである、請求項1〜5のいずれかに記載の二軸配向ポリエステルフィルム。   The biaxially oriented polyester film according to any one of claims 1 to 5, wherein the average diameter (P10) of the protrusions at a slice level of 10 nm in height is 1 to 5 µm. 幅方向の湿度膨張係数が0〜6ppm/%RHである、請求項1〜のいずれかに記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1, having a humidity expansion coefficient in the width direction of 0 to 6 ppm/% RH. 塗布型デジタル記録方式の磁気記録媒体用ベースフィルム用である、請求項1〜のいずれかに記載の二軸配向ポリエステルフィルム。 A base film for a magnetic recording medium of coating type digital recording system, the biaxially oriented polyester film according to any one of claims 1-7. ヘイズが1%以下である、請求項1〜のいずれかに記載の二軸配向ポリエステルフィルム。 Haze is 1% or less, a biaxially oriented polyester film according to any one of claims 1-8. 請求項1〜のいずれかに記載の二軸配向ポリエステルフィルムをベースフィルムとして用いた磁気記録媒体。 The magnetic recording medium using the biaxially oriented polyester film according to any one of claims 1 to 9 as a base film. 光学用として用いられる、請求項1〜のいずれかに記載の二軸配向ポリエステルフィルム。 Used for the optical biaxially oriented polyester film according to any one of claims 1-9.
JP2015205424A 2014-10-20 2015-10-19 Biaxially oriented polyester film and magnetic recording medium Active JP6701666B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014213400 2014-10-20
JP2014213400 2014-10-20

Publications (2)

Publication Number Publication Date
JP2016079410A JP2016079410A (en) 2016-05-16
JP6701666B2 true JP6701666B2 (en) 2020-05-27

Family

ID=55957586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205424A Active JP6701666B2 (en) 2014-10-20 2015-10-19 Biaxially oriented polyester film and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP6701666B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7000676B2 (en) * 2016-03-31 2022-01-19 東レ株式会社 Polyester film
JP7000677B2 (en) * 2016-12-07 2022-01-19 東レ株式会社 Polyester film
JP7056317B2 (en) * 2018-03-29 2022-04-19 三菱ケミカル株式会社 LCD cell laminate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006157A (en) * 1999-06-22 2001-01-12 Teijin Ltd Polyester film for magnetic recording medium
JP3920008B2 (en) * 2000-06-06 2007-05-30 帝人株式会社 Laminated biaxially oriented polyester film
JP2002240223A (en) * 2001-02-22 2002-08-28 Teijin Ltd Laminated biaxially-oriented polyester film and magnetic recording medium
JP2011148187A (en) * 2010-01-21 2011-08-04 Mitsubishi Plastics Inc Laminated polyester film
JP5915102B2 (en) * 2011-11-11 2016-05-11 東レ株式会社 Biaxially oriented polyester film and magnetic recording medium
JP6186800B2 (en) * 2013-03-28 2017-08-30 東レ株式会社 Biaxially oriented polyester film

Also Published As

Publication number Publication date
JP2016079410A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP5712614B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP5796493B2 (en) Biaxially oriented polyester film and linear magnetic recording medium
JP6926616B2 (en) Biaxially oriented laminated polyester film and magnetic recording medium
JP6260199B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP6926617B2 (en) Biaxially oriented laminated polyester film and magnetic recording medium
JP2014189717A (en) Biaxially oriented polyester film
JP6701666B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP6819082B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP5915102B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP4893190B2 (en) Biaxially oriented polyester film
JP2021055077A (en) Biaxially oriented polyester film
JP6707861B2 (en) Biaxially oriented polyester film
JP6866703B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP2020164807A (en) Biaxially oriented polyester film
JP2013199510A (en) Biaxially oriented polyester film and linear magnetic recording medium
JP2019116093A (en) Biaxially oriented polyester film
JP2011183714A (en) Biaxially oriented polyester film
JP6759642B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP7456203B2 (en) Biaxially oriented polyester film
JP6879419B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP2011184605A (en) Biaxially oriented film
JP2023127054A (en) Biaxially oriented polyester film
JP5589718B2 (en) Biaxially oriented polyester film
JP2024047655A (en) Biaxially aligned polyester film and film roll using the same
JP2012101457A (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R151 Written notification of patent or utility model registration

Ref document number: 6701666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151