JP6699505B2 - Electronic control unit - Google Patents

Electronic control unit Download PDF

Info

Publication number
JP6699505B2
JP6699505B2 JP2016205144A JP2016205144A JP6699505B2 JP 6699505 B2 JP6699505 B2 JP 6699505B2 JP 2016205144 A JP2016205144 A JP 2016205144A JP 2016205144 A JP2016205144 A JP 2016205144A JP 6699505 B2 JP6699505 B2 JP 6699505B2
Authority
JP
Japan
Prior art keywords
signal
failure diagnosis
drive circuit
temperature sensor
microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016205144A
Other languages
Japanese (ja)
Other versions
JP2018066311A (en
Inventor
潤哉 杉本
潤哉 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016205144A priority Critical patent/JP6699505B2/en
Priority to DE102017210540.2A priority patent/DE102017210540B4/en
Publication of JP2018066311A publication Critical patent/JP2018066311A/en
Application granted granted Critical
Publication of JP6699505B2 publication Critical patent/JP6699505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、電子制御装置に関する。   The present invention relates to an electronic control device.

従来より、内燃機関を制御する電子制御装置が供されている。この種の電子制御装置は、例えばパワーMOSFET等の発熱素子を含む電子部品を備えており、内燃機関を制御する際には、電子部品が発熱することで内部温度が上昇する。電子制御装置の内部温度が過度に上昇してしまうと、電子部品の誤作動や故障が発生する虞がある。このような事情から、電子制御装置の内部温度を検知する温度センサを設け、電子制御装置の内部温度が所定温度に到達すると、燃料を噴射するインジェクタの噴射回数を制限する等して電子制御装置の内部温度の上昇を抑制する技術が開示されている(例えば特許文献1参照)。   Conventionally, an electronic control device for controlling an internal combustion engine has been provided. This type of electronic control device includes an electronic component including a heat-generating element such as a power MOSFET. When controlling an internal combustion engine, the electronic component generates heat to raise the internal temperature. If the internal temperature of the electronic control unit rises excessively, there is a risk of malfunction or failure of electronic components. Under such circumstances, a temperature sensor for detecting the internal temperature of the electronic control unit is provided, and when the internal temperature of the electronic control unit reaches a predetermined temperature, the number of injections of the injector for injecting fuel is limited and the electronic control unit is controlled. A technique for suppressing an increase in the internal temperature of is disclosed (for example, refer to Patent Document 1).

特開2005−201091号公報JP, 2005-201091, A

電子制御装置の内部温度を検知する温度センサを設ける構成では、温度センサが正常に作動しているか否かを判定する故障診断を行う必要がある。その場合、温度センサの検知温度が上昇したか否かを判定することで、温度センサの故障診断を行う構成が考えられる。しかしながら、内燃機関の始動後に温度センサの検知温度を判定する構成では、内燃機関の駆動中に故障診断を行うことになるので、温度センサの故障診断を完了する前に電子部品の誤作動や故障を招いてしまう可能性がある。特に農建機や発電機等の内燃機関の始動直後から高負荷状態となる機器に搭載される電子制御装置では、温度センサの故障診断を完了する前に電子部品の誤作動や故障を招いてしまう可能性が比較的高い。   In the configuration in which the temperature sensor that detects the internal temperature of the electronic control device is provided, it is necessary to perform a failure diagnosis to determine whether the temperature sensor is operating normally. In that case, a configuration is conceivable in which a failure diagnosis of the temperature sensor is performed by determining whether or not the temperature detected by the temperature sensor has risen. However, in the configuration in which the temperature detected by the temperature sensor is determined after the internal combustion engine is started, failure diagnosis is performed while the internal combustion engine is being driven, so malfunctions or failures of electronic components may occur before the failure diagnosis of the temperature sensor is completed. May be invited. In particular, in electronic control devices that are installed in equipment that is in a high load state immediately after the start of internal combustion engines such as agricultural machinery and generators, malfunctions and failures of electronic components may occur before the failure diagnosis of the temperature sensor is completed. There is a relatively high possibility that it will happen.

本発明は、上記した事情に鑑みてなされたものであり、その目的は、電子部品の誤作動や故障を招いてしまう事態を未然に回避しつつ、内部温度を検知する温度センサの故障診断を適切に行うことができる電子制御装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to perform a failure diagnosis of a temperature sensor that detects an internal temperature while avoiding a situation that causes malfunction or failure of an electronic component. An object of the present invention is to provide an electronic control device that can be appropriately operated.

請求項1に記載した発明によれば、温度センサ(4)は、内燃機関を制御する電子制御装置の内部温度を検知する。駆動回路(3)は、制御対象(6〜8)を駆動させるための駆動信号を出力する。マイコン(2)は、内燃機関の始動前であって駆動信号を駆動回路から制御対象に出力させる前に、制御対象を駆動させない程度の故障診断信号を駆動回路から制御対象に出力させ、故障診断信号を出力させた前後での温度センサの検知温度の変化を用い、温度センサの故障診断を行う。駆動回路は、故障診断信号を制御対象に出力する際には、駆動信号を制御対象に出力する場合よりも駆動回路における消費エネルギーを高めた状態で故障診断信号を制御対象に出力する。 According to the invention described in claim 1, the temperature sensor (4) detects the internal temperature of the electronic control unit for controlling the internal combustion engine. The drive circuit (3) outputs a drive signal for driving the controlled object (6 to 8). The microcomputer (2) causes the drive circuit to output a failure diagnosis signal to the control target before the internal combustion engine is started and before the drive signal is output from the drive circuit to the control target, to output a failure diagnosis signal to the control target. Using the change in the temperature detected by the temperature sensor before and after outputting the signal, failure diagnosis of the temperature sensor is performed. When outputting the failure diagnosis signal to the control target, the drive circuit outputs the failure diagnosis signal to the control target in a state in which energy consumption in the drive circuit is higher than when the drive signal is output to the control target.

即ち、内燃機関の始動前に、制御対象を駆動させるための駆動信号とは別の故障診断信号を駆動回路から制御対象に出力し、電子制御装置の内部温度が上昇する状況を意図的に設定し、温度センサの故障診断を行うようにした。内燃機関の始動後に温度センサの故障診断を行う従来とは異なり、内燃機関の始動前に温度センサの故障診断を行うことで、内燃機関の始動時には温度センサの故障診断を完了しておくことができる。これにより、内燃機関の駆動中に故障診断を行うことがなく、電子部品の誤作動や故障を招いてしまう事態を未然に回避しつつ、温度センサの故障診断を適切に行うことができる。   That is, before starting the internal combustion engine, a fault diagnosis signal different from the drive signal for driving the controlled object is output from the drive circuit to the controlled object, and the situation in which the internal temperature of the electronic control unit rises is intentionally set. Then, the failure diagnosis of the temperature sensor is performed. Unlike the conventional method in which the temperature sensor failure diagnosis is performed after the internal combustion engine is started, by performing the temperature sensor failure diagnosis before the internal combustion engine is started, it is possible to complete the temperature sensor failure diagnosis when the internal combustion engine is started. it can. As a result, it is possible to appropriately perform the failure diagnosis of the temperature sensor without performing the failure diagnosis during the driving of the internal combustion engine and avoiding the situation of causing the malfunction or failure of the electronic component.

本発明の一実施形態を示す機能ブロック図Functional block diagram showing one embodiment of the present invention 内燃機関の構成を概略的に示す図Diagram schematically showing the configuration of an internal combustion engine フローチャートflowchart

以下、本発明の一実施形態について図面を参照して説明する。
電子制御装置1は、内燃機関を制御する装置であり、マイコン2と、駆動回路3と、温度センサ4と、入出力回路5とを有する。内燃機関は、図2に示すように、インジェクタ6(制御対象に相当する)と、燃料ポンプ7(制御対象に相当する、以下、ポンプと略称する)と、EGRバルブ8(制御対象に相当する)と、エアフロセンサ9と、インタークーラ10と、電子スロットルバルブ11と、グローコントローラ12と、燃料タンク13と、排気バルブ14と、コモンレール15と、尿素SCRシステム16等を有する。
An embodiment of the present invention will be described below with reference to the drawings.
The electronic control device 1 is a device that controls an internal combustion engine, and includes a microcomputer 2, a drive circuit 3, a temperature sensor 4, and an input/output circuit 5. As shown in FIG. 2, the internal combustion engine includes an injector 6 (corresponding to a control target), a fuel pump 7 (corresponding to a control target, hereinafter abbreviated as a pump), and an EGR valve 8 (corresponding to a control target). ), an air flow sensor 9, an intercooler 10, an electronic throttle valve 11, a glow controller 12, a fuel tank 13, an exhaust valve 14, a common rail 15, a urea SCR system 16 and the like.

マイコン2は、CPU、RAM、ROM、I/O等を有し、格納している制御プログラムを実行し、電子制御装置1の動作を制御する。駆動回路3は、インジェクタ6と、ポンプ7と、EGRバルブ8とを接続している。以下、インジェクタ6と、ポンプ7と、EGRバルブ8とを制御対象6〜8と総称する場合がある。駆動回路3は、例えばパワーMOSFET等の発熱素子を含む電子部品を備えており、後述する駆動信号や故障診断信号を制御対象6〜8に出力する際には、電流が流れることで電子部品が発熱する。   The microcomputer 2 has a CPU, a RAM, a ROM, an I/O, etc., executes a stored control program, and controls the operation of the electronic control unit 1. The drive circuit 3 connects the injector 6, the pump 7, and the EGR valve 8. Hereinafter, the injector 6, the pump 7, and the EGR valve 8 may be collectively referred to as control targets 6 to 8. The drive circuit 3 includes an electronic component including a heating element such as a power MOSFET, and when outputting a drive signal or a failure diagnosis signal described later to the control targets 6 to 8, the electronic component is generated by the current flowing. Fever.

マイコン2は、内燃機関を制御する際には、それぞれインジェクタ6に対する駆動指令、ポンプ7に対する駆動指令、EGRバルブ8に対する駆動指令を所定の出力タイミングで駆動回路3に出力する。駆動回路3は、マイコン2から駆動指令を入力すると、駆動信号としてパルス幅が所定幅以上のパルス信号を制御対象6〜8に出力し、制御対象6〜8の駆動を制御する。即ち、駆動回路3は、マイコン2からインジェクタ6に対する駆動指令を入力すると、駆動信号をインジェクタ6に出力する。インジェクタ6は、駆動回路3から駆動信号を入力すると、その入力した駆動信号が所定幅以上のパルス幅を有するパルス信号であり、動作することができるエネルギーが発生するので燃料を噴射する。又、駆動回路3は、マイコン2からポンプ7に対する駆動指令を入力すると、駆動信号をポンプ7に出力する。ポンプ7は、駆動回路3から駆動信号を入力すると、その入力した駆動信号が所定幅以上のパルス幅を有するパルス信号であり、動作することができるエネルギーが発生するので駆動する。又、駆動回路3は、マイコン2からEGRバルブ8に対する駆動指令を入力すると、駆動信号をEGRバルブ8に出力する。EGRバルブ8は、駆動回路3から駆動信号を入力すると、その入力した駆動信号が所定幅以上のパルス幅を有するパルス信号であり、動作することができるエネルギーが発生するので開放する。   When controlling the internal combustion engine, the microcomputer 2 outputs a drive command for the injector 6, a drive command for the pump 7, and a drive command for the EGR valve 8 to the drive circuit 3 at predetermined output timings. When the drive command is input from the microcomputer 2, the drive circuit 3 outputs a pulse signal having a pulse width of a predetermined width or more as a drive signal to the control targets 6 to 8 to control the drive of the control targets 6 to 8. That is, the drive circuit 3 outputs a drive signal to the injector 6 when a drive command for the injector 6 is input from the microcomputer 2. When the drive signal is input from the drive circuit 3, the injector 6 injects fuel because the input drive signal is a pulse signal having a pulse width greater than or equal to a predetermined width, and operable energy is generated. Further, the drive circuit 3 outputs a drive signal to the pump 7 when a drive command for the pump 7 is input from the microcomputer 2. When the drive signal is input from the drive circuit 3, the pump 7 is driven because the input drive signal is a pulse signal having a pulse width equal to or larger than a predetermined width, and energy for operation is generated. Further, the drive circuit 3 outputs a drive signal to the EGR valve 8 when a drive command for the EGR valve 8 is input from the microcomputer 2. When the drive signal is input from the drive circuit 3, the EGR valve 8 is opened because the input drive signal is a pulse signal having a pulse width of a predetermined width or more, and energy that can operate is generated.

尚、駆動回路3は、図示しないが、電子スロットルバルブ11や排気バルブ14も接続している。マイコン2は、内燃機関を制御する際には、上記した駆動指令に加え、それぞれ電子スロットルバルブ11に対する駆動指令、排気バルブ14に対する駆動指令をも所定の出力タイミングで駆動回路3に出力する。   Although not shown, the drive circuit 3 is also connected to the electronic throttle valve 11 and the exhaust valve 14. When controlling the internal combustion engine, the microcomputer 2 outputs a drive command for the electronic throttle valve 11 and a drive command for the exhaust valve 14 to the drive circuit 3 at predetermined output timings in addition to the drive commands described above.

マイコン2は、上記した駆動指令とは別に故障診断指令を駆動回路3に出力する。駆動回路3は、マイコン2から故障診断指令を入力すると、故障診断信号としてパルス幅が所定幅未満のパルス信号を所定時間又は所定回数にしたがって継続的に制御対象6〜8に出力する。インジェクタ6は、駆動回路3から故障診断信号を入力しても、その入力した故障診断信号が所定幅未満のパルス幅であり、動作するほどのエネルギーを発生しないので燃料を噴射しない。又、ポンプ7は、駆動回路3から故障診断信号を入力しても、その入力した故障診断信号が所定幅未満のパルス幅であり、動作するほどのエネルギーを発生しないので駆動しない。又、EGRバルブ8は、駆動回路3から故障診断信号を入力しても、その入力した故障診断信号が所定幅未満のパルス幅であり、動作するほどのエネルギーを発生しないので開放しない。   The microcomputer 2 outputs a failure diagnosis command to the drive circuit 3 in addition to the drive command described above. When the failure diagnosis command is input from the microcomputer 2, the drive circuit 3 continuously outputs a pulse signal having a pulse width of less than a predetermined width as a failure diagnosis signal to the control targets 6 to 8 according to a predetermined time or a predetermined number of times. The injector 6 does not inject fuel even when the failure diagnosis signal is input from the drive circuit 3 because the input failure diagnosis signal has a pulse width less than a predetermined width and does not generate enough energy to operate. Further, the pump 7 does not drive even if the failure diagnosis signal is input from the drive circuit 3 because the input failure diagnosis signal has a pulse width less than a predetermined width and does not generate enough energy to operate. Further, the EGR valve 8 does not open even if the failure diagnosis signal is input from the drive circuit 3, because the input failure diagnosis signal has a pulse width less than a predetermined width and does not generate enough energy to operate.

尚、駆動回路3は、故障診断信号を制御対象6〜8に出力する際には、駆動信号を制御対象6〜8に出力する場合よりも例えばコンデンサに蓄積する電荷量を多くすることで消費エネルギーを高めた状態で故障診断信号を出力する。即ち、駆動回路3は、故障診断信号を制御対象6〜8に出力する際には、駆動信号を制御対象6〜8に出力する場合よりも電子部品の発熱速度(即ち単位時間あたりの発熱量)が大きい。   The drive circuit 3 consumes more electric charge when it outputs the failure diagnosis signal to the controlled objects 6 to 8 than when it outputs the drive signal to the controlled objects 6 to 8, for example. The fault diagnosis signal is output with the energy increased. That is, when the drive circuit 3 outputs the failure diagnosis signal to the control targets 6 to 8, the heat generation speed of the electronic component (that is, the heat generation amount per unit time) is higher than when the drive signal is output to the control targets 6 to 8. ) Is large.

又、駆動回路3からインジェクタ6に出力されるパルス信号が駆動信号であるか故障診断信号であるかを区分する所定幅、駆動回路3からポンプ7に出力されるパルス信号が駆動信号であるか故障診断信号であるかを区分する所定幅、駆動回路3からEGRバルブ8に出力されるパルス信号が駆動信号であるか故障診断信号であるかを区分する所定幅は、同じであっても良いし異なっていても良い。   Further, whether the pulse signal output from the drive circuit 3 to the injector 6 has a predetermined width for discriminating whether the pulse signal is a drive signal or a failure diagnosis signal, and whether the pulse signal output from the drive circuit 3 to the pump 7 is a drive signal. The predetermined width for distinguishing whether it is a failure diagnosis signal and the predetermined width for distinguishing whether the pulse signal output from the drive circuit 3 to the EGR valve 8 is a drive signal or a failure diagnosis signal may be the same. But they may be different.

温度センサ4は、電子制御装置1の内部に設けられ、電子制御装置1の内部温度を検知し、その検知した内部温度を示す温度検知信号をマイコン2に出力する。入出力回路5は、イグニッションスイッチからイグニッション信号を入力することで、イグニッションスイッチのオンオフを検知し、その検知したイグニッションスイッチのオンオフを示すイグニッション検知信号をマイコン2に出力する。尚、入出力回路5は、イグニッションスイッチからイグニッション信号を直接入力しても良いし車載ネットワークを介して入力しても良い。又、イグニッションスイッチがオンすると、電子制御装置1が通電する。   The temperature sensor 4 is provided inside the electronic control unit 1, detects the internal temperature of the electronic control unit 1, and outputs a temperature detection signal indicating the detected internal temperature to the microcomputer 2. The input/output circuit 5 detects the on/off state of the ignition switch by inputting the ignition signal from the ignition switch, and outputs the detected ignition detection signal indicating the on/off state of the ignition switch to the microcomputer 2. It should be noted that the input/output circuit 5 may directly input the ignition signal from the ignition switch or may input the ignition signal via an in-vehicle network. When the ignition switch is turned on, the electronic control unit 1 is energized.

次に、上記した構成の作用について図3を参照して説明する。
マイコン2は、イグニッション信号の入出力回路5への入力を監視し、イグニッションスイッチのオフからオンへの切替を監視している。マイコン2は、イグニッションスイッチのオフからオンへの切替を判定すると、温度センサ故障判定処理を開始する。マイコン2は、温度センサ故障判定処理を開始すると、内燃機関が始動前、即ち停止中であるか否かを判定する(S1)。マイコン2は、内燃機関が始動前であると判定すると(S1:YES)、温度センサ4から温度検知信号を入力し、その入力した温度検知信号により示される電子制御装置1の内部温度を信号出力前の検知温度として取得し(S2)、その取得した信号出力前の検知温度を所定の記憶領域に記憶する(S3)。
Next, the operation of the above configuration will be described with reference to FIG.
The microcomputer 2 monitors the input of the ignition signal to the input/output circuit 5, and monitors the switching of the ignition switch from off to on. When the microcomputer 2 determines that the ignition switch is switched from off to on, the microcomputer 2 starts the temperature sensor failure determination process. When starting the temperature sensor failure determination processing, the microcomputer 2 determines whether or not the internal combustion engine has been started, that is, is stopped (S1). When the microcomputer 2 determines that the internal combustion engine has not been started (S1: YES), the temperature detection signal is input from the temperature sensor 4, and the internal temperature of the electronic control unit 1 indicated by the input temperature detection signal is output as a signal. It is acquired as the previous detected temperature (S2), and the acquired detected temperature before signal output is stored in a predetermined storage area (S3).

マイコン2は、故障診断指令を駆動回路3に出力することで、故障診断信号を駆動回路3から例えばインジェクタ6に出力させる。即ち、マイコン2は、パルス幅が所定幅未満のパルス信号を駆動回路3から例えばインジェクタ6に継続的に出力させる(S4)。このとき、インジェクタ6は、故障診断信号を駆動回路3から入力しても、動作するほどのエネルギーが発生しないので、燃料を噴射しないが、駆動回路3が故障診断信号を出力するので、その駆動回路3を構成する電子部品が発熱する。そして、電子部品が発熱することで、電子制御装置1の内部温度が上昇する。   The microcomputer 2 outputs a failure diagnosis command from the drive circuit 3 to the injector 6, for example, by outputting a failure diagnosis command to the drive circuit 3. That is, the microcomputer 2 causes the drive circuit 3 to continuously output the pulse signal having the pulse width less than the predetermined width to the injector 6, for example (S4). At this time, the injector 6 does not inject fuel because it does not generate enough energy to operate even if a failure diagnosis signal is input from the drive circuit 3, but the drive circuit 3 outputs a failure diagnosis signal. The electronic components forming the circuit 3 generate heat. Then, as the electronic components generate heat, the internal temperature of the electronic control unit 1 rises.

マイコン2は、駆動回路3からインジェクタ6へのパルス信号の継続的な出力を完了し、故障診断信号の出力を完了すると、温度センサ4から温度検知信号を入力し、その入力した温度検知信号により示される電子制御装置1の内部温度を信号出力後の検知温度として取得する(S5)。マイコン2は、これよりも先に記憶領域に記憶しておいた信号出力前の検知温度と、その取得した信号出力後の検知温度とを用い、信号出力後の検知温度から信号出力前の検知温度を差し引いて温度センサ4の検知温度の変化量を計算する(S6)。   When the microcomputer 2 completes the continuous output of the pulse signal from the drive circuit 3 to the injector 6 and completes the output of the failure diagnosis signal, it inputs the temperature detection signal from the temperature sensor 4 and outputs the temperature detection signal according to the input temperature detection signal. The indicated internal temperature of the electronic control unit 1 is acquired as the detected temperature after signal output (S5). The microcomputer 2 uses the detected temperature before the signal output stored in the storage area earlier than this and the acquired detected temperature after the signal output, and detects the signal before the signal output from the detected temperature after the signal output. The amount of change in the temperature detected by the temperature sensor 4 is calculated by subtracting the temperature (S6).

マイコン2は、その計算した検知温度の変化量が正方向に所定量以上であるか否かを判定する(S7)。マイコン2は、検知温度の変化量が正方向に所定量以上であると判定すると(S7:YES)、電子制御装置1の内部温度の上昇を温度センサ4が正常に検知した特定し、温度センサ4が正常であると特定し(S8)、温度センサ故障判定処理を終了する。一方、マイコン2は、検知温度の変化量が正方向に所定量以上でないと判定すると(S7:NO)、電子制御装置1の内部温度の上昇を温度センサ4が正常に検知しなかったと特定し、温度センサ4が異常であると特定し(S9)、温度センサ故障判定処理を終了する。   The microcomputer 2 determines whether or not the calculated change amount of the detected temperature is a predetermined amount or more in the positive direction (S7). When the microcomputer 2 determines that the amount of change in the detected temperature is equal to or more than the predetermined amount in the positive direction (S7: YES), it determines that the temperature sensor 4 has normally detected the increase in the internal temperature of the electronic control device 1, and the temperature sensor 4 is identified as normal (S8), and the temperature sensor failure determination process ends. On the other hand, when the microcomputer 2 determines that the change amount of the detected temperature is not more than the predetermined amount in the positive direction (S7: NO), it determines that the temperature sensor 4 does not normally detect the increase in the internal temperature of the electronic control unit 1. Then, the temperature sensor 4 is specified to be abnormal (S9), and the temperature sensor failure determination processing ends.

このようにマイコン2は、内燃機関の始動前に、駆動回路3からインジェクタ6に故障診断信号を出力させることで、電子制御装置1の内部温度が上昇する状況を意図的に設定し、温度センサ4が正常であるか異常であるかの故障診断を行う。尚、以上は、マイコン2において、故障診断信号を駆動回路3からインジェクタ6に出力させる場合を例示したが、故障診断信号を駆動回路3からポンプ7やEGRバルブ8に出力させても良い。又、マイコン2において、故障診断信号を駆動回路3からインジェクタ6、ポンプ7、EGRバルブ8のうち複数を組み合わせて異なるタイミングで出力させても良い。   As described above, the microcomputer 2 intentionally sets the situation in which the internal temperature of the electronic control unit 1 rises by causing the drive circuit 3 to output a failure diagnosis signal to the injector 6 before starting the internal combustion engine. A failure diagnosis is performed to determine whether 4 is normal or abnormal. In the above description, the microcomputer 2 outputs the failure diagnosis signal from the drive circuit 3 to the injector 6, but the failure diagnosis signal may be output from the drive circuit 3 to the pump 7 or the EGR valve 8. In the microcomputer 2, the failure diagnosis signal may be output from the drive circuit 3 at a different timing by combining a plurality of the injector 6, the pump 7, and the EGR valve 8.

以上説明したように本実施形態によれば、次に示す効果を得ることができる。
電子制御装置1において、内燃機関の始動前に、故障診断信号を駆動回路3から制御対象6〜8に出力し、電子制御装置1の内部温度が上昇する状況を意図的に設定して温度センサ4の故障診断を行うようにした。内燃機関の始動前に温度センサ4の故障診断を行うことで、内燃機関の始動時には温度センサ4の故障診断を完了しておくことができる。これにより、内燃機関の駆動中に故障診断を行うことがなく、電子部品の誤作動や故障を招いてしまう事態を未然に回避しつつ、温度センサ4の故障診断を適切に行うことができる。特に農建機や発電機等の内燃機関の始動直後から高負荷状態となる機器に搭載される場合に、多大な効果を得ることができる。
As described above, according to this embodiment, the following effects can be obtained.
In the electronic control unit 1, before starting the internal combustion engine, a failure diagnosis signal is output from the drive circuit 3 to the control targets 6 to 8 to intentionally set a situation in which the internal temperature of the electronic control unit 1 rises, and set the temperature sensor. The failure diagnosis of No. 4 was performed. By performing the failure diagnosis of the temperature sensor 4 before starting the internal combustion engine, it is possible to complete the failure diagnosis of the temperature sensor 4 at the time of starting the internal combustion engine. As a result, it is possible to appropriately perform the failure diagnosis of the temperature sensor 4 without performing a failure diagnosis during driving of the internal combustion engine and avoiding a situation in which the electronic component malfunctions or fails. In particular, when it is installed in a device that is in a high load state immediately after the start of an internal combustion engine such as an agricultural construction machine or a generator, a great effect can be obtained.

又、電子制御装置1において、故障診断信号としてパルス幅が所定幅未満のパルス信号を所定時間又は所定回数にしたがって継続的に出力するようしたので、電子部品の発熱を促進することができ、温度センサ4の故障診断を短時間で行うことができる。
又、電子制御装置1において、故障診断信号を出力した前後での温度センサ4の検知温度の変化量が正方向に所定量以上であるか否かを判定し、温度センサ4の故障診断を行うようにしたので、温度センサ4の検知温度の変化量を判定する簡易な方法で温度センサ4の故障診断を行うことができ、温度センサ4の故障診断を短時間で行うことができる。
又、電子制御装置1において、通電してから内燃機関の始動の制御を開始するまでの期間で故障診断信号を出力するようにしたので、通電してから内燃機関の始動の制御を開始するまでの期間を効果的に活用し、温度センサ4の故障診断を行うことができる。
Further, in the electronic control unit 1, since the pulse signal having the pulse width less than the predetermined width is continuously output as the failure diagnosis signal for the predetermined time or the predetermined number of times, it is possible to accelerate the heat generation of the electronic component, The failure diagnosis of the sensor 4 can be performed in a short time.
Further, in the electronic control unit 1, it is determined whether or not the amount of change in the temperature detected by the temperature sensor 4 before and after the failure diagnosis signal is output is a predetermined amount or more in the positive direction, and the failure diagnosis of the temperature sensor 4 is performed. Therefore, the failure diagnosis of the temperature sensor 4 can be performed by a simple method of determining the change amount of the detected temperature of the temperature sensor 4, and the failure diagnosis of the temperature sensor 4 can be performed in a short time.
Further, since the electronic control unit 1 outputs the failure diagnosis signal in the period from when the power is supplied to when the control for starting the internal combustion engine is started, until the control for starting the internal combustion engine is started after the power is supplied. It is possible to effectively utilize the period of 1 to perform the failure diagnosis of the temperature sensor 4.

又、電子制御装置1において、故障診断信号を出力する際には、駆動信号を出力する場合よりも消費エネルギーを高めた状態で故障診断信号を出力するようにしたので、電子部品の発熱を促進することができ、温度センサ4の故障診断を短時間で行うことができる。
又、電子制御装置1において、故障診断信号をインジェクタ6、ポンプ7、EGRバルブ8に出力するようにしたので、既存の構成を活用することで、新たな構成を追加することなく、温度センサ4の故障診断を短時間で行うことができる。
Further, in the electronic control unit 1, when the failure diagnosis signal is output, the failure diagnosis signal is output in a state where the energy consumption is higher than when the drive signal is output, so that heat generation of the electronic component is promoted. Therefore, failure diagnosis of the temperature sensor 4 can be performed in a short time.
Further, since the electronic control unit 1 outputs the failure diagnosis signal to the injector 6, the pump 7, and the EGR valve 8, the temperature sensor 4 can be utilized by utilizing the existing configuration without adding a new configuration. The failure diagnosis can be performed in a short time.

本発明は、上記した実施形態で例示したものに限定されることなく、その範囲を逸脱しない範囲で任意に変形又は拡張することができる。
本実施形態では、故障診断信号として制御対象を駆動させない程度のパルス幅のパルス信号を所定時間又は所定回数にしたがって継続的に制御対象に出力する構成を例示したが、制御対象を駆動させない信号であれば、どのような信号でも良い。例えば制御対象が駆動する方向とは逆方向の電流、即ち制御対象が駆動しない方向に電流を流す信号でも良い。又、故障診断信号を電子スロットルバルブ11や排気バルブ14に出力しても良い。
The present invention is not limited to what has been illustrated in the above-described embodiment, and can be arbitrarily modified or expanded without departing from the scope thereof.
In the present embodiment, as the failure diagnosis signal, a pulse signal having a pulse width that does not drive the control target is continuously output to the control target according to a predetermined time or a predetermined number of times, but it is a signal that does not drive the control target. Any signal will do as long as it is available. For example, it may be a signal in the direction opposite to the direction in which the controlled object drives, that is, a signal that causes a current to flow in the direction in which the controlled object does not drive. Further, the failure diagnosis signal may be output to the electronic throttle valve 11 and the exhaust valve 14.

本開示は、実施例に準拠して記述されたが、当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、更には、それらに一要素のみ、それ以上、或いはそれ以下を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。   Although the present disclosure has been described with reference to exemplary embodiments, it is understood that the disclosure is not limited to those exemplary embodiments and structures. The present disclosure also includes various modifications and modifications within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more, or less than them are also included in the scope and concept of the present disclosure.

図面中、1は電子制御装置、2はマイコン、3は駆動回路、4は温度センサ、6はインジェクタ(制御対象)、7はポンプ(制御対象)、8はEGRバルブ(制御対象)である。   In the drawings, 1 is an electronic control device, 2 is a microcomputer, 3 is a drive circuit, 4 is a temperature sensor, 6 is an injector (control target), 7 is a pump (control target), and 8 is an EGR valve (control target).

Claims (4)

内燃機関を制御する電子制御装置(1)において、
前記電子制御装置の内部温度を検知する温度センサ(4)と、
制御対象(6〜8)を駆動させるための駆動信号を出力する駆動回路(3)と、
前記温度センサの故障診断を行うマイコン(2)と、を備え、
前記マイコンは、前記内燃機関の始動前であって前記駆動信号を前記駆動回路から前記制御対象に出力させる前に、前記制御対象を駆動させない程度の故障診断信号を前記駆動回路から前記制御対象に出力させ、前記故障診断信号を出力させた前後での前記温度センサの検知温度の変化を用い、前記温度センサの故障診断を行い、
前記駆動回路は、前記故障診断信号を前記制御対象に出力する際には、前記駆動信号を前記制御対象に出力する場合よりも前記駆動回路における消費エネルギーを高めた状態で前記故障診断信号を前記制御対象に出力する電子制御装置。
In an electronic control unit (1) for controlling an internal combustion engine,
A temperature sensor (4) for detecting the internal temperature of the electronic control unit,
A drive circuit (3) for outputting a drive signal for driving the controlled object (6 to 8);
A microcomputer (2) for performing a failure diagnosis of the temperature sensor,
The microcomputer, before starting the internal combustion engine and before outputting the drive signal from the drive circuit to the control target, outputs a failure diagnosis signal from the drive circuit to the control target to the extent that the control target is not driven. It is output, using the change in the detected temperature of the temperature sensor before and after that to output the failure diagnosis signal, have rows fault diagnosis of the temperature sensor,
When the drive circuit outputs the failure diagnosis signal to the control target, the drive circuit outputs the failure diagnosis signal in a state in which energy consumption in the drive circuit is higher than when the drive signal is output to the control target. An electronic control device that outputs to a controlled object.
前記マイコンは、前記故障診断信号を前記駆動回路から前記制御対象に出力させることとして、前記制御対象を駆動させない程度のパルス幅のパルス信号を所定時間又は所定回数にしたがって継続的に出力させる請求項1に記載の電子制御装置。   The microcomputer causes the failure diagnosis signal to be output from the drive circuit to the control target, and continuously outputs a pulse signal having a pulse width that does not drive the control target for a predetermined time or a predetermined number of times. 1. The electronic control device according to 1. 前記マイコンは、前記故障診断信号を出力させた前後での前記温度センサの検知温度の変化量が正方向に所定量以上であると判定すると、前記温度センサが正常であると特定し、前記検知温度の変化量が正方向に所定量以上でないと判定すると、前記温度センサが異常であると特定する請求項1又は2に記載の電子制御装置。   When the microcomputer determines that the amount of change in the temperature detected by the temperature sensor before and after outputting the failure diagnosis signal is a predetermined amount or more in the positive direction, the microcomputer determines that the temperature sensor is normal, and detects the temperature. The electronic control device according to claim 1, wherein the temperature sensor is determined to be abnormal when it is determined that the amount of change in temperature is not more than a predetermined amount in the positive direction. 前記マイコンは、装置が通電してから内燃機関の始動の制御を開始するまでの期間で前記故障診断信号を前記駆動回路から前記制御対象に出力させる請求項1から3の何れか一項に記載の電子制御装置。   4. The microcomputer according to claim 1, wherein the microcomputer outputs the failure diagnosis signal from the drive circuit to the control target during a period from when the device is energized to when control of starting the internal combustion engine is started. Electronic control unit.
JP2016205144A 2016-10-19 2016-10-19 Electronic control unit Active JP6699505B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016205144A JP6699505B2 (en) 2016-10-19 2016-10-19 Electronic control unit
DE102017210540.2A DE102017210540B4 (en) 2016-10-19 2017-06-22 ELECTRONIC CONTROL UNIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205144A JP6699505B2 (en) 2016-10-19 2016-10-19 Electronic control unit

Publications (2)

Publication Number Publication Date
JP2018066311A JP2018066311A (en) 2018-04-26
JP6699505B2 true JP6699505B2 (en) 2020-05-27

Family

ID=61765011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205144A Active JP6699505B2 (en) 2016-10-19 2016-10-19 Electronic control unit

Country Status (2)

Country Link
JP (1) JP6699505B2 (en)
DE (1) DE102017210540B4 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19860762A1 (en) 1998-12-30 2000-07-06 Bosch Gmbh Robert Over-temperature protection method for control device end stage, e.g. for automobile throttle plate, fuel injection or ignition coil control, has internal power loss of control device component inserted in temperature model
JP4211610B2 (en) 2004-01-13 2009-01-21 株式会社デンソー Fuel injection control device for internal combustion engine
DE102005009737A1 (en) 2005-03-03 2006-09-07 Robert Bosch Gmbh Internal combustion engine control device protection method, involves causing switching of operation mode of multiple injection during exceeding of upper threshold value by output signal of comparator unit
JP2007211714A (en) * 2006-02-10 2007-08-23 Denso Corp Engine control unit, abnormality judgment device and program
DE102008040302A1 (en) 2008-07-10 2010-01-14 Robert Bosch Gmbh Controller monitoring method for vehicle, involves blocking injection processes when controller temperature exceeds preset temperature threshold value and temperature-time-gradients exceed preset temperature-time-gradients threshold value
JP5491889B2 (en) * 2009-04-02 2014-05-14 日本特殊陶業株式会社 Energization control device for vehicle control parts
JP2011088517A (en) * 2009-10-21 2011-05-06 Nsk Ltd Electric power steering device
JP5821907B2 (en) * 2013-06-28 2015-11-24 株式会社デンソー Fuel injection valve control device

Also Published As

Publication number Publication date
DE102017210540B4 (en) 2022-05-25
DE102017210540A1 (en) 2018-04-19
JP2018066311A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP5198496B2 (en) Engine control unit for internal combustion engines
JP4926032B2 (en) Control device for internal combustion engine
JP6476295B2 (en) Engine control device
JP2007100624A (en) Fuel injection device
JP5821907B2 (en) Fuel injection valve control device
CN106062345A (en) Control apparatus for internal combustion engine and control method therefor
JP5594251B2 (en) Fuel injection control device and fuel injection control system
JP5327124B2 (en) Fuel injection control device
JP2020033926A (en) Injection control device
CN105781766A (en) Malfunction Diagnosis Device For Crank-angle Sensor, And Malfunction Diagnosis Method For Crank-angle Sensor
JP2005180217A (en) Injector control device for cylinder injection type engine
JP2012127194A (en) Internal combustion engine control device
JP6314614B2 (en) Injection control device for in-cylinder internal combustion engine
JP6699505B2 (en) Electronic control unit
JP2022051146A (en) Injection control device
JP2013137028A (en) Device and method for fuel injection control of internal combustion engine
CN207319054U (en) Electronic control unit
JP7424257B2 (en) injection control device
US11098669B2 (en) Internal combustion engine control device
JP2022025426A (en) Injection control device
JP2020133551A (en) Electronic controller
JP5890678B2 (en) Fuel injection control device
KR101952713B1 (en) Diagnosis method for detecting short circuit of peak & hold typed car
JP6250712B2 (en) Fuel injection device
JP7312326B2 (en) fuel injection controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250