JP6697224B2 - Laminated electricity storage module - Google Patents

Laminated electricity storage module Download PDF

Info

Publication number
JP6697224B2
JP6697224B2 JP2015078157A JP2015078157A JP6697224B2 JP 6697224 B2 JP6697224 B2 JP 6697224B2 JP 2015078157 A JP2015078157 A JP 2015078157A JP 2015078157 A JP2015078157 A JP 2015078157A JP 6697224 B2 JP6697224 B2 JP 6697224B2
Authority
JP
Japan
Prior art keywords
metal foil
exposed portion
resin layer
thermoplastic resin
battery element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015078157A
Other languages
Japanese (ja)
Other versions
JP2016201172A (en
Inventor
広治 南谷
広治 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Packaging Co Ltd
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2015078157A priority Critical patent/JP6697224B2/en
Publication of JP2016201172A publication Critical patent/JP2016201172A/en
Application granted granted Critical
Publication of JP6697224B2 publication Critical patent/JP6697224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、軽量化、高放熱化、省スペース化がなされたラミネート型蓄電モジュールおよびその関連技術に関する。   TECHNICAL FIELD The present invention relates to a laminate type power storage module that is lightweight, has high heat dissipation, and saves space, and a related technique thereof.

なお、本明細書において、「アルミニウム」の語は、AlおよびAl合金を含む意味で用い、「銅」の語は、CuおよびCu合金を含む意味で用い、「ニッケル」の語は、NiおよびNi合金を含む意味で用い、「チタン」の語は、TiおよびTi合金を含む意味で用いている。また、本明細書において、「金属」の語は、単体の金属および合金を含む意味で用いる。   In the present specification, the term “aluminum” is used to include Al and Al alloys, the term “copper” is used to include Cu and Cu alloys, and the term “nickel” is Ni and It is used to include a Ni alloy, and the term "titanium" is used to include Ti and a Ti alloy. In addition, in the present specification, the term “metal” is used to include simple metals and alloys.

ハイブリッド自動車や電気自動車の電池、家庭用または工業用の定置用蓄電池に使用されるリチウムイオン二次電池やリチウムポリマー二次電池は小型化、軽量化に伴い、従来使用されていた金属製の外装に代えて、金属箔の両面に樹脂フィルムを貼り合わせたラミネート外装材が用いられることが多くなっている。また、ラミネート外装材を使用した電気二重層コンデンサやリチウムイオンキャパシタ等も自動車やバスに搭載することが検討されている。   Lithium ion secondary batteries and lithium polymer secondary batteries used in batteries for hybrid vehicles and electric vehicles, stationary storage batteries for home and industrial use are made of metal, which has been used in the past due to miniaturization and weight reduction. Instead of the above, a laminated exterior material in which a resin film is attached to both surfaces of a metal foil is often used. Further, mounting of electric double layer capacitors, lithium ion capacitors, etc. using a laminated exterior material on automobiles and buses is also under study.

電気自動車など、高エネルギーを必要とするデバイスでは高レートで電力エネルギーを取り出したり、チャージさせることが要求されており、それに伴い同時に発生する熱量も増大するため、安全性やデバイス内部の劣化の防止を考慮し、冷却対策が不可欠である。例えば、特許文献1に記載された二次電池では、外装体に電池要素を密封する際にラミネート外装材の間に冷却管を挟み込んで熱封止し、前記冷却管に冷媒を流通させている。   Devices that require high energy, such as electric vehicles, are required to extract and charge electric power energy at a high rate, and the amount of heat that is generated at the same time also increases, so safety and prevention of deterioration inside the device Considering the above, cooling measures are indispensable. For example, in the secondary battery described in Patent Document 1, when a battery element is sealed in an outer casing, a cooling pipe is sandwiched between laminated outer casings for heat sealing, and a refrigerant is circulated in the cooling pipe. ..

特開2014−78471号広報Publication of JP-A-2014-78471

しかしながら、前記二次電池は外装体の熱封止部からタブリードが引き出されているため、タブリード付近の封止作業が困難になるだけではなく、タブリードや冷却管が共に立体構造であるためタブリードと冷却管の密着性が下がり、効率よく冷却できなくなることがある。また、冷却効率だけでなく、同部分の封止性も悪化するために内部からの電解質漏れの可能性も発生する。   However, since the tab lead of the secondary battery is pulled out from the heat-sealed portion of the outer package, not only the sealing work in the vicinity of the tab lead becomes difficult, but also the tab lead and the cooling pipe have a three-dimensional structure, so The adhesion of the cooling pipe may be reduced, and efficient cooling may not be possible. Further, not only the cooling efficiency but also the sealing property of the same portion is deteriorated, which may cause electrolyte leakage from the inside.

本発明は、かかる技術的背景に鑑みてなされたものであって、熱分散性を向上させて電池寿命を長くすることが出来、さらに液漏れなどのリスクも大幅に低減させ、尚且つ製造コストが大幅に低減できるラミネート型蓄電モジュールを提供することを目的とする。   The present invention has been made in view of the above technical background, and can improve the heat dispersibility to prolong the battery life, further significantly reduce the risk of liquid leakage and the like, and the manufacturing cost. It is an object of the present invention to provide a laminate-type electricity storage module that can significantly reduce power consumption.

前記目的を達成するために、本発明は以下の構成を有する。   In order to achieve the above object, the present invention has the following configurations.

[1]第一金属箔の一方の面に第一耐熱性樹脂層が積層され他方の面に第一熱可塑性樹脂層が積層され、前記第一熱可塑性樹脂層側の面に第一金属箔が露出する第一金属箔内側露出部を有する第一外装材と、
第二金属箔の一方の面に第二耐熱性樹脂層が積層され他方の面に第二熱可塑性樹脂層が積層され、前記第二熱可塑性樹脂層側の面に第二金属箔が露出する第二金属箔内側露出部を有する第二外装材と、
正極要素と、負極要素と、これらの間に配置されるセパレーターとを有する電池要素と、
伝熱体とを備え、
前記第一外装材の第一熱可塑性樹脂層と第二外装材の第二熱可塑性樹脂層とが向かい合い、第一熱可塑性樹脂層と第二熱可塑性樹脂層とが融着した熱封止部に囲まれることによって、室内に第一金属箔内側露出部および第二金属箔内側露出部が臨む1室以上の電池要素室を有する外装体が形成され、
前記電池要素室内に電解質とともに封入された電池要素は、正極部が第一金属箔内側露出部に導通するとともに負極部が第二金属箔内側露出部に導通し、
前記熱封止部の少なくとも一部は、第一熱可塑性樹脂層と第二熱可塑性樹脂層との間に伝熱体を有していることを特徴とするラミネート型蓄電モジュール。
[1] A first heat-resistant resin layer is laminated on one surface of the first metal foil, a first thermoplastic resin layer is laminated on the other surface, and a first metal foil is formed on the surface on the side of the first thermoplastic resin layer. A first exterior material having a first metal foil inner exposed portion where is exposed,
The second heat resistant resin layer is laminated on one surface of the second metal foil and the second thermoplastic resin layer is laminated on the other surface, and the second metal foil is exposed on the surface on the side of the second thermoplastic resin layer. A second exterior material having a second metal foil inner exposed portion,
A battery element having a positive electrode element, a negative electrode element, and a separator disposed therebetween,
With a heat transfer body,
The first thermoplastic resin layer of the first exterior material and the second thermoplastic resin layer of the second exterior material face each other, and the heat sealing portion in which the first thermoplastic resin layer and the second thermoplastic resin layer are fused to each other. By being surrounded by, an exterior body having at least one battery element chamber facing the first metal foil inner exposed portion and the second metal foil inner exposed portion is formed in the room,
The battery element enclosed with the electrolyte in the battery element chamber, the positive electrode portion is conducted to the first metal foil inner exposed portion and the negative electrode portion is conducted to the second metal foil inner exposed portion,
At least a part of the heat-sealed portion has a heat transfer body between the first thermoplastic resin layer and the second thermoplastic resin layer, wherein the laminate-type electricity storage module is characterized.

[2]前記外装体の外面に、第一金属箔が露出する第一金属箔外側露出部および第二金属箔が露出する第二金属箔外側露出部の少なくとも一方が形成されている前項1に記載のラミネート型蓄電モジュール。   [2] At least one of a first metal foil outer exposed portion where the first metal foil is exposed and a second metal foil outer exposed portion where the second metal foil is exposed is formed on the outer surface of the exterior body. Laminated electricity storage module described.

[3]前記電池要素の正極要素は集電体および正極活物質からなり、負極要素は集電体および負極活物質からなる前項1または2に記載のラミネート型蓄電モジュール。   [3] The laminated electricity storage module according to the above 1 or 2, wherein the positive electrode element of the battery element is composed of a current collector and a positive electrode active material, and the negative electrode element is composed of a current collector and a negative electrode active material.

[4]前記電池要素の正極要素は第一金属箔内側露出部に積層された正極活物質層であり、負極要素は第二金属箔内側露出部に積層された負極活物質層である前項1または2に記載のラミネート型蓄電モジュール。   [4] The positive electrode element of the battery element is a positive electrode active material layer laminated on the exposed portion inside the first metal foil, and the negative electrode element is a negative electrode active material layer laminated on the exposed portion inside the second metal foil. Alternatively, the laminated electricity storage module according to the item 2.

[5]第一金属箔の一方の面に第一耐熱性樹脂層が積層され他方の面に第一熱可塑性樹脂層が積層され、前記第一熱可塑性樹脂層側の面に第一金属箔が露出する第一金属箔内側露出部を有する第一外装材と、第二金属箔の一方の面に第二耐熱性樹脂層が積層され他方の面に第二熱可塑性樹脂層が積層され、前記第二熱可塑性樹脂層側の面に第二金属箔が露出する第二金属箔内側露出部を有する第二外装材とを、第一熱可塑性樹脂層と第二熱可塑性樹脂層とが向かい合うように配置する工程と、
正極要素と負極要素とこれらの間に配置されるセパレーターとを有する電池要素の正極要素を第一金属箔内側露出部に導通させるともに負極要素が第二金属箔内側露出部に導通させた状態で向かい合わせた第一外装材と第二外装材とを重ね、重ねることにより形成された電池要素室内に電池要素を配置する工程と、
前記電池要素が配置された電池要素室内に電解質を注入する工程と、
前記電池要素および電解質を入れた電池要素室の周囲の少なくとも一部を、第一外装材と第二外装材との間に伝熱体を挟んだ状態で熱封止する工程と、
を含むことを含むことを特徴とするラミネート型蓄電モジュールの製造方法。
[5] The first heat-resistant resin layer is laminated on one surface of the first metal foil, the first thermoplastic resin layer is laminated on the other surface, and the first metal foil is formed on the surface on the side of the first thermoplastic resin layer. A first exterior material having a first metal foil inner exposed portion exposed, a second heat-resistant resin layer is laminated on one surface of the second metal foil and a second thermoplastic resin layer is laminated on the other surface, A second exterior material having a second metal foil inner exposed portion where the second metal foil is exposed on the surface on the side of the second thermoplastic resin layer, the first thermoplastic resin layer and the second thermoplastic resin layer face each other. And the process of arranging
In a state in which the positive electrode element of the battery element having the positive electrode element, the negative electrode element, and the separator disposed therebetween is electrically connected to the first metal foil inner exposed portion, and the negative electrode element is electrically connected to the second metal foil inner exposed portion. Stacking the first exterior material and the second exterior material facing each other, and placing the battery element in the battery element chamber formed by overlapping,
Injecting an electrolyte into the battery element chamber in which the battery element is arranged,
At least a part of the periphery of the battery element chamber containing the battery element and the electrolyte, heat-sealing with a heat transfer body sandwiched between the first outer packaging material and the second outer packaging material,
A method of manufacturing a laminate type electricity storage module, comprising:

[6]2個以上の、前項1〜4のうちのいずれか1項に記載されたラミネート型蓄電モジュールを有し、それらのラミネート型蓄電モジュールが直列に連結されていることを特徴とする蓄電システム。   [6] Electric storage having two or more of the laminate-type electric storage modules described in any one of the above items 1 to 4, and the laminate-type electric storage modules being connected in series. system.

上記[1]に記載のラミネート型蓄電モジュールは、電池要素室を封止する熱封止部に挟み込んだ伝熱体を通じて冷却または加熱することができるので、モジュールの適温を保持して電池性能を長期に亘って維持することができ、電池寿命を長くすることができる。   The laminated type electricity storage module according to the above [1] can be cooled or heated through the heat transfer body sandwiched in the heat sealing portion that seals the battery element chamber, so that the module temperature can be maintained and the battery performance can be improved. It can be maintained for a long time and the battery life can be extended.

上記[2]に記載のラミネート型蓄電モジュールは、外装体の外面に第一金属箔外側露出部および第二金属箔外側露出部が設けられているのでタブリードを引き出す必要がない。そのため、熱封止作業、特に伝熱体を挟みこんだ状態での熱封止作業が容易になる。また、熱封止部の電池要素室に接する部分はあまねく第一熱可塑性樹脂層と第二熱可塑性樹脂層とが融着しているので密着性が高く、タブリードが引き出された電池要素室よりも高い密閉性が得られる。さらに、タブリードを用いないことで、軽量化、省スペース化を図ることができる。   In the laminated type electricity storage module described in [2] above, since the outer exposed portion of the first metal foil and the outer exposed portion of the second metal foil are provided on the outer surface of the outer package, it is not necessary to pull out the tab lead. Therefore, the heat-sealing work, especially the heat-sealing work with the heat transfer body sandwiched therebetween, becomes easy. Further, since the first thermoplastic resin layer and the second thermoplastic resin layer are generally fused to each other in the portion of the heat-sealed portion which is in contact with the battery element chamber, the adhesion is high, and the tab lead is more than the battery element chamber pulled out. High sealing performance can be obtained. Furthermore, by not using the tab leads, it is possible to achieve weight reduction and space saving.

上記[3]に記載のラミネート型蓄電モジュールによれば、内部に電池機能を持つモジュールにおいて上記の効果が得られる。   According to the laminate type electricity storage module described in [3] above, the above effect can be obtained in a module having a battery function inside.

上記[4]に記載のラミネート型蓄電モジュールによれば、電池要素の正極部が正極活物質層であり負極部が負極活物質層であるモジュールにおいて上記の効果が得られる。   According to the laminate type electricity storage module described in [4] above, the above effects can be obtained in a module in which the positive electrode part of the battery element is the positive electrode active material layer and the negative electrode part is the negative electrode active material layer.

上記[5]に記載の蓄電システムは高出力でかつ放熱効率に優れている。   The power storage system according to the above [5] has high output and excellent heat dissipation efficiency.

上記[6]に記載の方法によれば、上記[1]に記載の効果を奏するラミネート型蓄電モジュールを製造することができる。   According to the method described in [6] above, it is possible to manufacture a laminated electricity storage module that exhibits the effect described in [1] above.

本発明にかかるラミネート型蓄電モジュールの一実施形態の斜視図である。It is a perspective view of one embodiment of the lamination type electricity storage module concerning the present invention. 図1Aにおける1B−1B線断面図である。FIG. 1B is a sectional view taken along line 1B-1B in FIG. 1A. 本発明にかかるラミネート型蓄電モジュールの他の実施形態の斜視図である。It is a perspective view of other embodiment of the lamination type electricity storage module concerning the present invention. 図2Aにおける2B−2B線断面図である。It is the 2B-2B sectional view taken on the line in FIG. 2A. 本発明にかかるラミネート型蓄電モジュールの他の実施形態の斜視図である。It is a perspective view of other embodiment of the lamination type electricity storage module concerning the present invention. 図3Aにおける3B−3B線断面図である。FIG. 3B is a sectional view taken along line 3B-3B in FIG. 3A. 本発明にかかるラミネート型蓄電モジュールの他の実施形態の斜視図である。It is a perspective view of other embodiment of the lamination type electricity storage module concerning the present invention. 図4Aにおける4B−4B線断面図である。FIG. 4B is a sectional view taken along line 4B-4B in FIG. 4A. ベアセルの断面図である。It is sectional drawing of a bare cell. 本発明にかかる蓄電システムの一実施形態の斜視図である。1 is a perspective view of an embodiment of a power storage system according to the present invention. 図6Aにおける6B−6B線断面図である。FIG. 6B is a sectional view taken along line 6B-6B in FIG. 6A.

図1A〜図4Bに、本発明にかかるラミネート型蓄電モジュールの4つの実施形態を示す。   1A to 4B show four embodiments of the laminate type electricity storage module according to the present invention.

これらのラミネート型蓄電モジュール1、2、3、4は、外装体31、32、33、34を構成する第一外装材10が第一金属箔11の一方の面に第一耐熱性樹脂層12が積層され他方の面に第一熱可塑性樹脂層13が積層されたラミネート材であり、第二外装材20が第二金属箔21の一方の面に第二耐熱性樹脂層22が積層され他方の面に第二熱可塑性樹脂層23が積層されたラミネート材であり、外装体31、32、33、34が第一外装材10の第一熱可塑性樹脂層13と第二外装材20の第二熱可塑性樹脂層23とが向かい合い、第一熱可塑性樹脂層13と第二熱可塑性樹脂層23が融着した熱封止部51a、51b、52a、52b、53a、53b、54a、54bに囲まれた電池要素室41、42、43、44に電池要素60、65と電解質が封入されていることが共通する。さらに、電池要素室41、42、43、44内に臨んで、第一熱可塑性樹脂層13の一部が除去されて第一金属箔11が露出する第一金属箔内側露出部14が形成され、第二熱可塑性樹脂層23の一部が除去されて第二金属箔21が露出する第二金属箔内側露出部24が形成され、電池要素室41、42、43、44内において電池要素60、65の正極要素61、66および負極要素63、68が第一金属箔内側露出部14および第二金属箔露出部24に導通していることが共通する。さらに、外部の電極端子として、第一熱可塑性樹脂層13の一部が除去されて第一金属箔11が露出する第一金属箔外側露出部16と、第二熱可塑性樹脂層23の一部が除去されて第二金属箔21が露出する第二金属箔外側露出部26とが外装体31、32、33、34と一体に設けられていることが共通する、即ち、ラミネート型蓄電モジュール1、2、3、4は、外装体31、32、33、34を構成する第一外装材10および第二外装材20が電池要素室41、42、43、44の内外にそれぞれの金属箔露出部を有することが共通する。   In these laminate type power storage modules 1, 2, 3, and 4, the first exterior material 10 that constitutes the exterior bodies 31, 32, 33, and 34 has the first heat-resistant resin layer 12 on one surface of the first metal foil 11. Is laminated and the first thermoplastic resin layer 13 is laminated on the other surface, and the second exterior material 20 is laminated with the second heat resistant resin layer 22 on one surface of the second metal foil 21 and the other. Of the first thermoplastic resin layer 13 of the first external packaging material 10 and the second thermoplastic resin layer 13 of the second external packaging material 20. The two thermoplastic resin layers 23 face each other and are surrounded by the heat-sealed portions 51a, 51b, 52a, 52b, 53a, 53b, 54a, 54b in which the first thermoplastic resin layer 13 and the second thermoplastic resin layer 23 are fused. It is common that the battery element chambers 41, 42, 43 and 44 are filled with battery elements 60 and 65 and an electrolyte. Further, a first metal foil inner exposed portion 14 is formed which faces the insides of the battery element chambers 41, 42, 43, 44 and in which a part of the first thermoplastic resin layer 13 is removed to expose the first metal foil 11. The second metal foil inner exposed portion 24 where the second metal foil 21 is exposed by removing a part of the second thermoplastic resin layer 23 is formed, and the battery element 60 is formed in the battery element chambers 41, 42, 43, 44. It is common that the positive electrode elements 61, 66 and the negative electrode elements 63, 68 of 65, 65 are electrically connected to the first metal foil inner exposed portion 14 and the second metal foil exposed portion 24. Further, as external electrode terminals, a part of the first thermoplastic resin layer 13 is removed and the first metal foil 11 is exposed, and a part of the second thermoplastic resin layer 23 is exposed. It is common that the second metal foil outer exposed portion 26 from which the second metal foil 21 is exposed by being removed is integrally provided with the outer casings 31, 32, 33, 34, that is, the laminate-type power storage module 1 2, 3, 4, the first outer packaging material 10 and the second outer packaging material 20 constituting the outer packaging 31, 32, 33, 34 are exposed to the inside and outside of the battery element chambers 41, 42, 43, 44, respectively. It is common to have parts.

以下の説明において同一の符号は同一物を示すものとして重複する説明を省略する。また、第一外装材10および第二外装材20において金属箔が露出する部分を指す場合は形成にかかわらず「金属箔露出部」と称する。また、第一外装材10の第一金属箔内側露出部14および第一金属箔外側露出部16、ならびに第二外装材20の第二金属箔内側露出部24および第二金属箔外側露出部26を指す場合は「金属箔露出部14、16、24、26」と略称する。
[ラミネート型蓄電モジュール(1)]
図1Aおよび図1Bに示すラミネート型蓄電モジュール1の外装体31は、フラットシートをプレス成形して平面視長方形の電池要素室41となるエンボス部が形成された第一外装材10と、プレス成形をしないフラットシートの第二外装材20とにより構成され、電池要素室41を囲んで熱封止部51a、51bが形成されている。前記第一外装材10の一方の長辺は熱封止部51aから延長されて両面が露出して外装体31の外面となる第一フランジ15となされ、第一金属箔外側露出部16が形成されている。一方、前記第一フランジ15の対向辺においては第二外装材20が熱封止部51aから延長されて両面が露出して外装体31の外面となる第二フランジ25となされ、第二金属箔外側露出部26が形成されている。
In the following description, the same reference numerals indicate the same things, and duplicate explanations are omitted. Further, when referring to a portion where the metal foil is exposed in the first exterior material 10 and the second exterior material 20, it is referred to as a “metal foil exposed portion” regardless of the formation. Further, the first metal foil inner exposed portion 14 and the first metal foil outer exposed portion 16 of the first exterior material 10, and the second metal foil inner exposed portion 24 and the second metal foil outer exposed portion 26 of the second exterior material 20. Is abbreviated as "metal foil exposed portion 14, 16, 24, 26".
[Laminate type electricity storage module (1)]
The outer casing 31 of the laminate-type electricity storage module 1 shown in FIGS. 1A and 1B includes a first outer casing 10 in which an embossed portion that is a flat sheet is formed by pressing to form a battery element chamber 41, and a press forming. And a heat-sealed portion 51a, 51b surrounding the battery element chamber 41. One long side of the first outer package 10 is extended from the heat-sealed portion 51a to expose both surfaces thereof to form a first flange 15 which is an outer surface of the outer package 31, and a first metal foil outer exposed portion 16 is formed. Has been done. On the other hand, on the opposite side of the first flange 15, the second outer packaging material 20 is extended from the heat-sealed portion 51a to expose both surfaces thereof to form the second flange 25 which is the outer surface of the outer packaging body 31, and the second metal foil. The outer exposed portion 26 is formed.

前記電池要素室41に電解質(符号なし)とともに封入される電池要素60は、図5に示すように、正極要素としての正極61、セパレーター62、負極要素としての負極63、セパレーター62を積層し、この積層物をロール状に形成した捲回型ベアセルである。前記電池要素60は最上層として正極61が露出し、最下層として負極63が露出している。電池要素室41内において、電池要素60の正極61は第一外装材10の第一金属箔内側露出部14に接触して電気的に導通し、負極63は第二外装材20の第二金属箔内側露出部24に接触して電気的に導通している。前記第一金属箔11は外装体31の外面の第一金属箔外側露出部16において露出し、第二金属箔21は外装体31の外面の第二金属箔外側露出部26において露出しているので、電池要素60は第一金属箔10および第二金属箔20を通じて外部との電気的導通が得られる。即ち、第一金属箔11は正極側導通部として利用され、第二外装材20の第二金属箔21が負極側導通部として利用される。   As shown in FIG. 5, a battery element 60 enclosed in the battery element chamber 41 together with an electrolyte (no reference numeral) has a positive electrode 61 as a positive electrode element, a separator 62, a negative electrode 63 as a negative electrode element, and a separator 62, which are stacked. A wound type bare cell in which this laminate is formed in a roll shape. In the battery element 60, the positive electrode 61 is exposed as the uppermost layer and the negative electrode 63 is exposed as the lowermost layer. In the battery element chamber 41, the positive electrode 61 of the battery element 60 contacts the first metal foil inner exposed portion 14 of the first outer package 10 to be electrically conductive, and the negative electrode 63 is the second metal of the second outer package 20. The exposed portion 24 inside the foil is in contact with and electrically connected to. The first metal foil 11 is exposed at the first metal foil outer exposed portion 16 on the outer surface of the outer casing 31, and the second metal foil 21 is exposed at the second metal foil outer exposed portion 26 on the outer surface of the outer casing 31. Therefore, the battery element 60 can be electrically connected to the outside through the first metal foil 10 and the second metal foil 20. That is, the first metal foil 11 is used as the positive electrode side conducting portion, and the second metal foil 21 of the second exterior material 20 is used as the negative electrode side conducting portion.

4辺の熱封止部51a、51bうちの対向する2辺の熱封止部51aにおいては、第一外装材10と第二外装材20との間に伝熱体70としての金属パイプが介在した状態で取り付けられている。前記伝熱体70の両端は外装体31から突出し、第一外装材10および第二外装材20に覆われている部分は第一熱可塑性樹脂層13および第二熱可塑性樹脂層23が融着している。
[ラミネート型蓄電モジュール(2)]
図2Aおよび図2Bに示すラミネート型蓄電モジュール2は、図1Aおよび図1Bのラミネート型蓄電モジュール1とは、外装体32がエンボス部を有する第一外装材10とフラットシートの第2外装材20とで構成され、電池要素60が捲回型ベアセルであることが共通し、熱封止部52a、52bで仕切られた複数の電池要素室42を有している点が異なる。
In the heat-sealing portions 51a on the opposite two sides of the heat-sealing portions 51a and 51b on the four sides, a metal pipe as the heat transfer body 70 is interposed between the first exterior material 10 and the second exterior material 20. It is installed in the condition Both ends of the heat transfer body 70 protrude from the exterior body 31, and the first thermoplastic resin layer 13 and the second thermoplastic resin layer 23 are fused to the portion covered by the first exterior material 10 and the second exterior material 20. is doing.
[Laminated power storage module (2)]
2A and 2B is different from the laminated type electricity storage module 1 of FIGS. 1A and 1B in that the outer casing 32 has a first outer casing material 10 having an embossed portion and a flat sheet second outer casing material 20. The common difference is that the battery element 60 is a wound type bare cell and has a plurality of battery element chambers 42 partitioned by the heat-sealing portions 52a and 52b.

前記外装体32は、3列×3列で配置された平面視正方形の9個の電池要素室42を有している。これらの電池要素室42は横4列×縦4列の熱封止部52a、52bで仕切られ、各電池要素室42内において電池要素60の正極61が第一金属箔内側露出部14と導通し、負極63が第二金属箔内側露出部24と導通している。全ての電池要素60の正極要素は第一金属箔11を介して導通し、負極要素は第二金属箔21を介して導通している。また、第一外装材10および第二外装材20は、横4列の熱封止部52aのうちの両外側の熱封止部52aから第一フランジ15および第二フランジ25が延長されて、これらのフランジ15、25に第一金属箔外側露出16および第二金属箔外側露出部26が形成されている。かかる構造により、全ての電池要素60は第一金属箔10および第二金属箔20を通じて外部との電気的導通が得られる。   The exterior body 32 has nine battery element chambers 42 arranged in 3 rows × 3 rows and having a square shape in plan view. These battery element chambers 42 are partitioned by 4 rows × 4 columns of heat-sealed portions 52a, 52b, and the positive electrode 61 of the battery element 60 is electrically connected to the first metal foil inner exposed portion 14 in each battery element chamber 42. The negative electrode 63 is electrically connected to the second metal foil inner exposed portion 24. The positive electrode elements of all the battery elements 60 are electrically connected via the first metal foil 11, and the negative electrode elements are electrically connected via the second metal foil 21. Further, in the first exterior material 10 and the second exterior material 20, the first flange 15 and the second flange 25 are extended from the heat-sealing portions 52a on both outer sides of the heat-sealing portions 52a arranged in four rows. A first metal foil outer side exposed portion 16 and a second metal foil outer side exposed portion 26 are formed on these flanges 15 and 25. With this structure, all the battery elements 60 can be electrically connected to the outside through the first metal foil 10 and the second metal foil 20.

また、横4列の各熱封止部52aの第一熱可塑性樹脂層13と第二熱可塑性樹脂層23との間には伝熱体70が介在している。従って、全ての電池要素室42は、電池要素室を囲む4辺のうちの2辺の熱封止部52aが伝熱体70を有している。   Further, the heat transfer body 70 is interposed between the first thermoplastic resin layer 13 and the second thermoplastic resin layer 23 of each of the four rows of the heat sealing parts 52a. Therefore, in all the battery element chambers 42, the heat sealing parts 52a on two sides of the four sides surrounding the battery element chambers have the heat transfer body 70.

また、前記第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側金属箔露出部26には、それぞれ3個の接続用穴17、27が穿設されている。
[ラミネート型蓄電モジュール(3)]
図3Aおよび図3Bに示すラミネート型蓄電モジュール3は、外装体33を構成する第一外装体10および第二外装体20がいずれもフラットシートである。
Further, the first metal foil outer exposed portion 16 of the first flange 15 and the second metal foil outer metallic foil exposed portion 26 of the second flange 25 are provided with three connection holes 17 and 27, respectively. There is.
[Laminate type electricity storage module (3)]
In the laminate-type power storage module 3 shown in FIGS. 3A and 3B, both the first exterior body 10 and the second exterior body 20 forming the exterior body 33 are flat sheets.

電池要素室43に封入される電池要素65は、正極要素としての正極活物質層66、セパレーター67および負極要素としての負極活物質層68により構成されたコアセルである。前記正極活物質層66は第一金属箔内側露出部14に積層され、負極活物質層68は第二金属箔内側露出部24に積層され、第一外装材10と第二外装材20との間にセパレーター67を介在させて向かい合わせ、電解質を注入した状態で封入されている。このラミネート型蓄電モジュール3は、第一金属箔内側露出部14および第二金属箔内側露出部24の周囲を熱封止して熱封止部53a、53bを形成することにより、正極活物質層66、セパレーター67、負極活物質層68が占める空間が電池要素室43となされる。前記第一外装材10の第一金属箔11が正極となり、第二外装材20の第二金属箔21が負極となる。   The battery element 65 enclosed in the battery element chamber 43 is a core cell including a positive electrode active material layer 66 as a positive electrode element, a separator 67, and a negative electrode active material layer 68 as a negative electrode element. The positive electrode active material layer 66 is laminated on the first metal foil inner exposed portion 14, and the negative electrode active material layer 68 is laminated on the second metal foil inner exposed portion 24. The separators 67 are faced to each other with a separator 67 interposed therebetween, and are filled with an electrolyte. In this laminated type electricity storage module 3, the positive electrode active material layer is formed by heat-sealing the periphery of the first metal foil inner exposed portion 14 and the second metal foil inner exposed portion 24 to form heat-sealed portions 53a and 53b. The space occupied by 66, the separator 67, and the negative electrode active material layer 68 is the battery element chamber 43. The first metal foil 11 of the first outer package 10 serves as a positive electrode, and the second metal foil 21 of the second outer package 20 serves as a negative electrode.

また、対向する2辺の熱封止部53aには、図1Aのラミネート型モジュール1と同じく、伝熱体70が介在している。   Further, the heat transfer member 70 is interposed between the heat sealing portions 53a on the two opposite sides, as in the laminated module 1 of FIG. 1A.

また、前記第一外装材10および第二外装材20は、図1Aのラミネート型モジュール1と同じく、対向する熱封止部53aからそれぞれ延長して第一フランジ15および第二フランジ25となされ、第一金属箔外側露出部16および第二金属箔露出部26が形成されている。
[ラミネート型蓄電モジュール(4)]
図4Aおよび図4Bに示すラミネート型蓄電モジュール4は、図3Aおよび図3Bのラミネート型蓄電モジュール3と比べ、外装体34がフラットシートの第一外装材10および第二外装材20とで構成され、電池要素65が正極活物質66、セパレーター67および負極活物質68により構成されたコアセルであることが共通し、複数の電池要素室44を有している点が異なる。
Further, the first exterior material 10 and the second exterior material 20 are respectively extended from opposing heat sealing portions 53a to form a first flange 15 and a second flange 25, as in the laminated module 1 of FIG. 1A. The first metal foil outer exposed portion 16 and the second metal foil exposed portion 26 are formed.
[Laminated power storage module (4)]
4A and 4B, the laminate-type electricity storage module 4 is configured with the first exterior material 10 and the second exterior material 20 whose outer casing 34 is a flat sheet, as compared with the laminate-type electricity storage module 3 of FIGS. 3A and 3B. It is common that the battery element 65 is a core cell composed of a positive electrode active material 66, a separator 67 and a negative electrode active material 68, and is different in that it has a plurality of battery element chambers 44.

前記外装体34は、3列×3列で配置された平面視正方形の9個の電池要素室44を有している。これらの電池要素室44は横4列×縦4列の熱封止部54a、54bで仕切られ、各電池要素室44内において電池要素65の正極活物質66が第一金属箔内側露出部14に積層され、負極活物質68が第二金属箔内側露出部24に積層されている。また、図3Aおよび図3Bのラミネート型蓄電モジュール3と同じく、正極活物質66を付与した第一外装材10と負極活物質68を付与した第二外装材20との間にセパレーター67を介在させて向かい合わせ、電解質を注入した状態で封入されている。   The exterior body 34 has nine battery element chambers 44 arranged in 3 rows × 3 rows and having a square shape in plan view. These battery element chambers 44 are partitioned by 4 rows × 4 columns of heat-sealed portions 54a and 54b. In each battery element chamber 44, the positive electrode active material 66 of the battery element 65 is exposed inside the first metal foil. And the negative electrode active material 68 is laminated on the second metal foil inner exposed portion 24. Further, similarly to the laminated type electricity storage module 3 of FIGS. 3A and 3B, the separator 67 is interposed between the first exterior material 10 provided with the positive electrode active material 66 and the second exterior material 20 provided with the negative electrode active material 68. They are faced to each other and are filled with an electrolyte.

また、横4列の各熱封止部54aの第一熱可塑性樹脂層13と第二熱可塑性樹脂層23との間には伝熱体70が介在している。従って、全ての電池要素室44は、電池要素室44を囲む4辺のうちの2辺の熱封止部54aが伝熱体70を有している。
[外装体外面の金属箔露出部]
本発明のラミネート型蓄電モジュールは、電池要素室41、42、43、44内に第一金属箔内側露出部14および第二金属箔内側露出部24が設けられていることが必須要件であるが、外装体31、32、33、34の外面の第一金属箔外側露出部16および第二金属箔外側露出部26の有無は任意に設定することができる。第一金属箔外側露出部16および/または第二金属箔外側露出部26を設けたラミネート型モジュール1、2、3、4では、電池要素室41、42、43、44内において第一金属箔11および/または第二金属箔21にタブリードを導通させてその先端を外装体外部に引き出すことで電池要素との導通が得られる。
Further, the heat transfer body 70 is interposed between the first thermoplastic resin layer 13 and the second thermoplastic resin layer 23 of each of the four rows of the heat sealing parts 54a. Therefore, in all the battery element chambers 44, the heat sealing portions 54a on two sides of the four sides surrounding the battery element chamber 44 have the heat transfer body 70.
[Exposed metal foil on outer surface of exterior body]
In the laminated type electricity storage module of the present invention, it is essential that the first metal foil inner exposed portion 14 and the second metal foil inner exposed portion 24 are provided in the battery element chambers 41, 42, 43, 44. The presence or absence of the first metal foil outer exposed portion 16 and the second metal foil outer exposed portion 26 on the outer surfaces of the outer casings 31, 32, 33, 34 can be set arbitrarily. In the laminate type modules 1, 2, 3, 4 provided with the first metal foil outer exposed portion 16 and / or the second metal foil outer exposed portion 26, the first metal foil is provided in the battery element chambers 41, 42, 43, 44. The tab lead is made conductive to 11 and / or the second metal foil 21 and the tip thereof is pulled out to the outside of the outer package, so that conduction to the battery element can be obtained.

実施形態のラミネート型蓄電モジュール1、2、3、4は第一金属箔外側露出部16および第二金属箔外側露出部26を設けたことでタブリードを引き出す必要がない。そのため、熱封止作業、特に伝熱体を挟みこんだ状態での熱封止作業が容易になる。また、熱封止部の電池要素室41、42、43、44に接する部分はあまねく第一熱可塑性樹脂層13と第二熱可塑性樹脂層23とが融着しているので密着性が高く、タブリードが引き出された電池要素室よりも高い密閉性が得られる。さらに、タブリードを用いないことで、軽量化、省スペース化を図ることができる。   In the laminate type electricity storage modules 1, 2, 3 and 4 of the embodiment, the tab lead does not need to be pulled out because the first metal foil outer side exposed portion 16 and the second metal foil outer side exposed portion 26 are provided. Therefore, the heat-sealing work, especially the heat-sealing work with the heat transfer body sandwiched therebetween, becomes easy. Further, since the first thermoplastic resin layer 13 and the second thermoplastic resin layer 23 are generally fused at the portions of the heat-sealed portion which are in contact with the battery element chambers 41, 42, 43, 44, the adhesion is high, Higher hermeticity than that of the battery element chamber from which the tab lead is drawn can be obtained. Furthermore, by not using the tab leads, it is possible to achieve weight reduction and space saving.

なお、前記第一金属箔外側露出部16および第二金属箔外側露出部26は外装体31、32、33、34の外面であればどこでも形成することができ、第一耐熱性樹脂層12および第二耐熱性樹脂層22において金属箔露出部を形成することができる。また、上記実施形態の第一フランジ15および第二フランジ25のように、他方の外装材と重ならない部分であれば、どちらの面にでも形成できる。
[蓄電モジュールの冷却および加熱]
上述の4つのラミネート型蓄電モジュール1、2、3、4において、伝熱体70は熱封止時に第一外装材10と第二外装材20との間に該伝熱体70を挟んだ状態で加熱することにより熱封止部51a、52a、53a、54aに取り付けられている。
The first metal foil outer exposed portion 16 and the second metal foil outer exposed portion 26 can be formed anywhere on the outer surface of the outer casing 31, 32, 33, 34, and the first heat resistant resin layer 12 and The exposed portion of the metal foil can be formed in the second heat resistant resin layer 22. In addition, like the first flange 15 and the second flange 25 of the above-mentioned embodiment, it can be formed on either surface as long as it does not overlap with the other exterior material.
[Cooling and heating of power storage module]
In the above four laminated type electricity storage modules 1, 2, 3, and 4, the heat transfer body 70 is in a state in which the heat transfer body 70 is sandwiched between the first exterior material 10 and the second exterior material 20 during heat sealing. It is attached to the heat-sealed parts 51a, 52a, 53a and 54a by heating.

前記ラミネート型蓄電モジュール1、2、3、4は伝熱体70を介して冷却または加熱され、モジュールを適温に保つことができる。図示例の伝熱体70はパイプであり、パイプ内に熱媒体を流通させることにより、伝熱体70の熱交換能力を高めて蓄電モジュール1、2、3、4を冷却または加熱することができる。熱媒体は、空気、水、油脂、アルコールやエチレングリコールなどの不凍液等を適宜用いることができる。例えば、電池要素60、65の発熱により電池性能が低下するおそれのある時は伝熱体70に冷媒を流通させて放熱を促進することで電池性能を維持することができる。また、過熱を防ぐことにより安全性を高めることができる。逆に低温化によって電池性能が低下するおそれのある時は、加熱した熱媒体を流通させて電池要素60、65を加熱することで適温を保持して電池性能を維持することができる。また、金属パイプはそれ自体が伝熱体であるから熱媒体を流通させない場合でも相応の熱交換能力が得られる。上記のとおり、モジュールの適温を保持することにより、電池性能を長期に亘って維持し、電池寿命を長くすることができる。   The laminated power storage modules 1, 2, 3, 4 are cooled or heated through the heat transfer body 70, so that the modules can be kept at an appropriate temperature. The heat transfer body 70 in the illustrated example is a pipe, and by circulating a heat medium in the pipe, the heat exchange capacity of the heat transfer body 70 can be increased to cool or heat the power storage modules 1, 2, 3, 4. it can. As the heat medium, air, water, fats and oils, antifreeze liquids such as alcohol and ethylene glycol, and the like can be appropriately used. For example, when there is a possibility that the battery performance may be deteriorated due to the heat generation of the battery elements 60 and 65, the coolant performance may be maintained by circulating a refrigerant through the heat transfer body 70 to promote heat dissipation. In addition, safety can be improved by preventing overheating. On the contrary, when there is a possibility that the battery performance is deteriorated due to the low temperature, the heated heat medium may be circulated to heat the battery elements 60 and 65 to maintain an appropriate temperature and maintain the battery performance. Further, since the metal pipe itself is a heat transfer body, a corresponding heat exchange capacity can be obtained even when the heat medium is not passed. As described above, by maintaining the proper temperature of the module, the battery performance can be maintained for a long period of time and the battery life can be extended.

本発明は少なくとも1つの伝熱体を有していることが条件であり、伝熱体の数は任意に設定でき、本数を増やすことで冷却効果および加熱効果を向上させることができる。複数の電池要素室を有するモジュールにおいても伝熱体の数は任意であるが、複数列×複数列で電池要素室が配置されたモジュールでは、図2Aおよび図4Aに参照されるように、隣接する電池要素室間の熱封止部に伝熱体を介在させて各電池要素室が均等に冷却または加熱できる構造であることが好ましい。   The present invention has a condition that it has at least one heat transfer body, the number of heat transfer bodies can be set arbitrarily, and the cooling effect and the heating effect can be improved by increasing the number. The number of heat transfer bodies is also arbitrary in a module having a plurality of battery element chambers, but in a module in which battery element chambers are arranged in a plurality of rows × a plurality of rows, as shown in FIG. 2A and FIG. It is preferable that each of the battery element chambers can be uniformly cooled or heated by interposing a heat transfer member between the heat sealed portions between the battery element chambers.

前記伝熱体70は金属パイプに限定されるものではない。金属、特にアルミニウムや銅等の熱伝導率の高い金属は熱交換効果が優れている点で推奨できる。伝熱体70はパイプ型であれば樹脂製であってもよい。樹脂は金属よりも熱伝導率が低いがパイプ内に熱媒体を流通させることで熱交換効果を得ることができる。また、樹脂は外装材の熱可塑性樹脂層に対して高い密着性が得られ、かつ軟質樹脂製チューブであれば可撓性を有するフレキシブルモジュールを作製できる。前記伝熱体70の形状はパイプに限定されず、中実材であってもよい。熱伝導率の高い金属製であれば中実材によっても熱交換効果を得ることができる。さらに、熱封止部にトンネル状の空間を形成し、この空間に空気を流通させることで伝熱体として利用することもできる。   The heat transfer body 70 is not limited to a metal pipe. Metals, especially metals having high thermal conductivity such as aluminum and copper, are recommended because of their excellent heat exchange effect. The heat transfer body 70 may be made of resin as long as it is a pipe type. Resin has a lower thermal conductivity than metal, but a heat exchange effect can be obtained by circulating a heat medium in the pipe. Further, the resin has high adhesion to the thermoplastic resin layer of the exterior material, and a flexible module having flexibility can be manufactured by using a soft resin tube. The shape of the heat transfer body 70 is not limited to a pipe and may be a solid material. If it is made of metal having high thermal conductivity, the heat exchange effect can be obtained even by using a solid material. Further, a tunnel-shaped space is formed in the heat-sealed portion, and air can be circulated in this space to be used as a heat transfer body.

また、前記伝熱体70は冷却装置、加熱装置、熱媒体供給装置に連結することにより熱交換効果を高めることができる。
[蓄電システム]
図6Aおよび図6Bに、本発明にかかる蓄電システム5の一実施形態を示す。
Further, the heat transfer body 70 may be connected to a cooling device, a heating device, and a heat medium supply device to enhance the heat exchange effect.
[Power storage system]
6A and 6B show an embodiment of the power storage system 5 according to the present invention.

前記蓄電システム6は、4個のラミネート型蓄電モジュール2を、上下に隣り合うモジュールの第一フランジ15と第二フランジ25とが重なるように互い違いにして積層し、これらが連結されている。即ち、4個のラミネート型蓄電モジュール2は、1段目のモジュールの第二フランジ25の第二金属箔外側露出部26と2段目のモジュールの第一フランジ15の第一金属箔外側露出16とが接続用穴27、17に導電性材料からなる接続ピン35を通すことにより連結され、同様に、2段目のモジュールの第二金属箔外側露出部26と3段目のモジュールの第一金属箔外側露出部16とが連結され、3段目のモジュールの第二金属箔外側露出部26と3段目のモジュールの第一金属箔外側露出部16とが連結されている。また、1段目のモジュールの第一金属箔外側露出部16の接続用穴17には導電性材料からなる正極用ピン36が取り付けられ、4段目の第二金属箔外側露出部26の接続用穴には導電性材料からなる負極用ピン37が取り付けられている。上記の連結により、4つのラミネート型蓄電モジュール2は直列に連結され、正極用ピン36および負極用ピン37を蓄電システム5の電極端子とし、電線38を引き出して他のデバイスに接続することができる。   In the electricity storage system 6, four laminated type electricity storage modules 2 are alternately stacked so that the first flange 15 and the second flange 25 of vertically adjacent modules overlap with each other, and these are connected. That is, the four laminate-type power storage modules 2 include the second metal foil outer exposed portion 26 of the second flange 25 of the first module and the first metal foil outer exposed 16 of the first flange 15 of the second module. Are connected by inserting the connecting pin 35 made of a conductive material into the connecting holes 27 and 17, and similarly, the second metal foil outer exposed portion 26 of the second-stage module and the first external part of the third-stage module. The metal foil outside exposed portion 16 is connected, and the second metal foil outside exposed portion 26 of the third stage module and the first metal foil outside exposed portion 16 of the third stage module are connected. Further, a positive electrode pin 36 made of a conductive material is attached to the connection hole 17 of the first metal foil outer exposed portion 16 of the first stage module, and the fourth metal foil outer exposed portion 26 of the fourth stage is connected. A negative electrode pin 37 made of a conductive material is attached to the use hole. By the above connection, the four laminate type power storage modules 2 are connected in series, the positive electrode pin 36 and the negative electrode pin 37 are used as the electrode terminals of the power storage system 5, and the electric wire 38 can be led out and connected to another device. ..

また、各段のラミネート型蓄電モジュール2の4本の伝熱体70は3個のU字パイプ71によって直列に連結され、さらに1段目と2段目の第二フランジ25側の伝熱体70がU字パイプ72で連結され、2段目と3段目の第一フランジ15側の伝熱体70がU字パイプ72で連結され、3段目と4段目の第二フランジ25側の伝熱体70がU字パイプ72で連結され、全ての伝熱体70が蛇行しながら直列に連結されている。そして、連結された蛇行パイプの一方の開口端を熱媒体の入り口73とし、他方の開口端74となされ、図外の熱媒体供給装置との間で熱媒体を循環させている。   Further, the four heat transfer bodies 70 of the laminated type electricity storage module 2 of each stage are connected in series by three U-shaped pipes 71, and further the heat transfer body on the second flange 25 side of the first stage and the second stage. 70 is connected by a U-shaped pipe 72, the heat transfer element 70 on the first flange 15 side of the second and third steps is connected by a U-shaped pipe 72, and the second flange 25 side of the third and fourth steps The heat transfer elements 70 are connected by U-shaped pipes 72, and all the heat transfer elements 70 are connected in series while meandering. Then, one opening end of the connected meandering pipes serves as an inlet 73 for the heat medium and the other opening end 74 serves to circulate the heat medium with a heat medium supply device (not shown).

前記蓄電システム5は、複数のラミネート型蓄電モジュール5を連結することにより高出力が得られ、かつ発生した熱は伝熱体70を介して効率よく放熱される。   The power storage system 5 has a high output obtained by connecting a plurality of laminate type power storage modules 5, and the generated heat is efficiently radiated through the heat transfer body 70.

なお、本発明蓄電システムは各モジュールの伝熱体70が連結されていることには限定されない。上述したように伝熱体70は種々の材料および形態を選択でき、例えば熱伝導率の高い金属製伝熱体を熱封止部52aに挟み込むだけでも放熱性能が得られ、冷却装置等に連結しないのであれば伝熱体70同士の連結を必要としないからである。
[第一外装材および第二外装材の材料と成形]
第一外装材10は、第一金属箔11の一方の面に第一接着層を介して第一耐熱性樹脂層12が貼り合わされ、他方の面に第二接着層を介して第一熱可塑性樹脂層13が貼り合わされている。前記第一外装材10の第一金属箔内側露出部14および第一金属箔外側露出部16は第一熱可塑性樹脂層13および第二接着層を除去することによって形成されている。また、プレス成形によって電池要素室41、42を形成する場合は、金属露出部を形成した後にプレス成形を行う。
The power storage system of the present invention is not limited to the connection of the heat transfer body 70 of each module. As described above, various materials and forms can be selected for the heat transfer body 70, and for example, heat dissipation performance can be obtained even by sandwiching a metal heat transfer body having high thermal conductivity between the heat sealing parts 52a, and the heat transfer body 70 can be connected to a cooling device or the like. This is because it is not necessary to connect the heat transfer elements 70 to each other if not performed.
[Material and molding of the first exterior material and the second exterior material]
In the first exterior material 10, the first heat-resistant resin layer 12 is attached to one surface of the first metal foil 11 via the first adhesive layer, and the first thermoplastic resin is bonded to the other surface via the second adhesive layer. The resin layer 13 is attached. The first metal foil inner exposed portion 14 and the first metal foil outer exposed portion 16 of the first exterior material 10 are formed by removing the first thermoplastic resin layer 13 and the second adhesive layer. When the battery element chambers 41 and 42 are formed by press molding, press molding is performed after the metal exposed portion is formed.

第二外装材20は、第二金属箔21の一方の面に第三接着層を介して第二耐熱性樹脂層22が貼り合わされ、他方の面に第四接着層を介して第二熱可塑性樹脂層23が貼り合わされている。前記第二外装材20の第二金属箔内側露出部24および第二金属箔外側露出部26は第二熱可塑性樹脂層23および第四接着層を除去することによって形成している。   In the second exterior material 20, the second heat resistant resin layer 22 is attached to one surface of the second metal foil 21 via the third adhesive layer, and the second thermoplastic resin is bonded to the other surface via the fourth adhesive layer. The resin layer 23 is attached. The second metal foil inner exposed portion 24 and the second metal foil outer exposed portion 26 of the second exterior material 20 are formed by removing the second thermoplastic resin layer 23 and the fourth adhesive layer.

なお、図1B、2B、3B、4B、6Bは、第一接着層、第二接着層、第三接着層および第四接着層の図示を省略している。   1B, 2B, 3B, 4B, and 6B, illustration of the first adhesive layer, the second adhesive layer, the third adhesive layer, and the fourth adhesive layer is omitted.

前記第一金属箔11の好ましい材料は軟質のアルミニウム箔であり、厚さは20〜150μmが好ましい。成形性やコストの点で特に30〜80μmの軟質アルミニウム箔が好ましい。一方、第二金属箔21の好ましい材料は、軟質または硬質のアルミニウム箔、ステンレス箔、ニッケル箔、銅箔、チタン箔である。これらの箔の好ましい厚さは10〜150μmであり、耐衝撃性や曲げ耐性、コストの点で15〜100μmが好ましい。   A preferred material for the first metal foil 11 is a soft aluminum foil, and the thickness thereof is preferably 20 to 150 μm. A soft aluminum foil having a thickness of 30 to 80 μm is particularly preferable in terms of formability and cost. On the other hand, preferable materials for the second metal foil 21 are soft or hard aluminum foil, stainless steel foil, nickel foil, copper foil, and titanium foil. The preferable thickness of these foils is 10 to 150 μm, and 15 to 100 μm is preferable in terms of impact resistance, bending resistance and cost.

また、前記第一金属箔11および第二金属箔21はメッキ処理箔やクラッド箔も用いることができる。例えば、第二金属箔21にとして、銅にニッケルメッキを施したメッキ処理箔や、ステンレスとニッケルのクラッド箔を用いることができる。   Further, as the first metal foil 11 and the second metal foil 21, a plated foil or a clad foil can be used. For example, as the second metal foil 21, a plated foil obtained by plating copper with nickel or a clad foil of stainless steel and nickel can be used.

さらに、前記第一金属箔層11、第二金属箔層21における少なくとも金属箔露出部14、16、24、16が存在する側の面に化成皮膜が形成されているのが好ましい。前記化成皮膜は、金属箔の表面に化成処理を施すことによって形成される皮膜であり、このような化成処理が施されていることによって、内容物(電解質等)による金属箔表面の腐食を十分に防止できるし、電気の取出し窓となる露出部でも、モジュールを作製する際電解質が付着しても変色や劣化することがなく、大気中の水分などによる腐食の影響も低減できる。化成処理層自体の導電性はほとんどないが、塗膜厚が極めて少ないので通電抵抗もほとんどない。例えば、次のような処理を行うことによって、金属箔に化成処理を施す。即ち、脱脂処理を行った金属箔の表面に、
1)リン酸と、
クロム酸と、
フッ化物の金属塩およびフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂およびフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸およびクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂およびフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸およびクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
フッ化物の金属塩およびフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
上記1)〜3)のうちのいずれかの水溶液を金属箔の表面に塗工した後、乾燥することにより、化成処理を施す。
Further, it is preferable that a chemical conversion film is formed on at least the surface of the first metal foil layer 11 and the second metal foil layer 21 on the side where the metal foil exposed portions 14, 16, 24, 16 are present. The chemical conversion film is a film formed by subjecting the surface of the metal foil to a chemical conversion treatment, and such a chemical conversion treatment provides sufficient corrosion of the metal foil surface by the contents (electrolyte, etc.). In addition, even in the exposed portion that serves as an electricity take-out window, discoloration or deterioration does not occur even if the electrolyte adheres when the module is manufactured, and the effect of corrosion due to moisture in the atmosphere can be reduced. The chemical conversion treatment layer itself has almost no conductivity, but since the coating film thickness is extremely small, there is almost no current resistance. For example, the metal foil is subjected to chemical conversion treatment by performing the following treatment. That is, on the surface of the metal foil subjected to degreasing treatment,
1) phosphoric acid,
Chromic acid,
An aqueous solution of a mixture containing at least one compound selected from the group consisting of metal salts of fluorides and non-metal salts of fluorides 2) phosphoric acid;
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
An aqueous solution of a mixture containing at least one compound selected from the group consisting of chromic acid and chromium (III) salts 3) phosphoric acid;
At least one resin selected from the group consisting of acrylic resins, chitosan derivative resins and phenolic resins;
At least one compound selected from the group consisting of chromic acid and chromium (III) salts;
An aqueous solution of a mixture containing at least one compound selected from the group consisting of metal salts of fluorides and non-metal salts of fluorides, and the aqueous solution of any one of 1) to 3) above is applied to the surface of the metal foil. After working, it is dried to be subjected to chemical conversion treatment.

前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m〜50mg/mが好ましく、特に2mg/m〜20mg/mが好ましい。 The conversion coating, chromium coating weight preferably is 0.1mg / m 2 ~50mg / m 2 as a (per one surface), in particular 2mg / m 2 ~20mg / m 2 preferred.

前記第一耐熱性樹脂層12および第二耐熱性樹脂層22を構成する耐熱性樹脂としては、外装材をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、熱可塑性樹脂層13、23を構成する熱可塑性樹脂の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、熱可塑性樹脂の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。例えば、ポリエステルフィルムやポリアミドフィルムの他、ポリエチレンナフタレートフィルム、ポリブチレンナフタレートフィルム、ポリカーボネートフィルム等の延伸フィルムが好ましい。また、厚さは9〜50μmの範囲が好ましい。   As the heat-resistant resin forming the first heat-resistant resin layer 12 and the second heat-resistant resin layer 22, a heat-resistant resin that does not melt at the heat sealing temperature when heat-sealing the exterior material is used. As the heat resistant resin, it is preferable to use a heat resistant resin having a melting point higher than the melting point of the thermoplastic resin constituting the thermoplastic resin layers 13 and 23 by 10 ° C. or more, and a melting point higher than the melting point of the thermoplastic resin by 20 ° C. or more. It is particularly preferable to use a heat resistant resin having For example, stretched films such as polyethylene naphthalate film, polybutylene naphthalate film, and polycarbonate film are preferable in addition to polyester film and polyamide film. Further, the thickness is preferably in the range of 9 to 50 μm.

前記第一熱可塑性樹脂層12および第二熱可塑性樹脂層22としては、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群より選ばれた少なくとも1種の熱可塑性樹脂からなる未延伸フィルムが好ましく、厚さは20〜80μmの範囲が好ましい。   As the first thermoplastic resin layer 12 and the second thermoplastic resin layer 22, at least one thermoplastic resin selected from the group consisting of polyethylene, polypropylene, an olefin-based copolymer, an acid-modified product of these, and an ionomer. Is preferably an unstretched film having a thickness of 20 to 80 μm.

前記第一接着層、第三接着層は二液硬化型のポリエステルポリウレタン系やポリエーテルポリウレタン系の接着剤が好ましく、第二接着層、第四接着層には耐電解質性を考慮してポリオレフィン系の接着剤が好ましい。それぞれの接着剤の好ましい塗布は1〜5g/mである。 The first adhesive layer and the third adhesive layer are preferably two-component curing type polyester polyurethane-based or polyether polyurethane-based adhesives, and the second adhesive layer and the fourth adhesive layer are polyolefin-based in consideration of electrolyte resistance. Adhesives are preferred. The preferred coating of each adhesive is 1-5 g / m 2 .

前記第一外装材10および第二外装材20における金属箔露出部の形成方法は何ら限定されない。例えば、ドライラミネート法による金属箔と樹脂層とを貼り合わせる工程で、接着剤を付着させない部分が彫刻されたグラビアロールを用い接着剤を塗布して接着剤未塗布部を形成し、金属箔と樹脂層を貼り合わせた後に接着剤未塗布部上の樹脂層を切除して金属箔を露出させる。上記実施形態のラミネート型蓄電モジュール1,2、3、4に使用している第一外装材10および第二外装材20は熱可塑性樹脂層側の面に金属箔露出部14、16、24、26を有しているので、上記の手法で第一金属箔11と第一熱可塑性樹脂層13、第二金属箔21と第二熱可塑性樹脂層23とを貼り合わせ、貼り合わせ後に金属箔露出部14、16、24、26を形成する。一方、耐熱性樹脂層側の面に金属露出部は無いので、第一金属箔11と第一耐熱性樹脂層12、第二金属箔21と第二耐熱性樹脂層22は周知の貼り合わせ手法によって貼り合わせる。   The method for forming the exposed metal foil portion of the first exterior material 10 and the second exterior material 20 is not limited at all. For example, in the step of laminating a metal foil and a resin layer by a dry laminating method, an adhesive is applied by using a gravure roll in which a portion to which the adhesive is not attached is engraved to form an adhesive-unapplied portion. After the resin layers are bonded together, the resin layer on the adhesive-uncoated portion is cut off to expose the metal foil. The first outer packaging material 10 and the second outer packaging material 20 used in the laminate-type power storage modules 1, 2, 3 and 4 of the above-described embodiment have metal foil exposed portions 14, 16, 24 on the surface on the thermoplastic resin layer side. Since it has 26, the first metal foil 11 and the first thermoplastic resin layer 13 and the second metal foil 21 and the second thermoplastic resin layer 23 are bonded by the above-mentioned method, and the metal foil is exposed after the bonding. The parts 14, 16, 24 and 26 are formed. On the other hand, since there is no metal exposed portion on the surface on the heat resistant resin layer side, the first metal foil 11 and the first heat resistant resin layer 12 and the second metal foil 21 and the second heat resistant resin layer 22 are well known bonding methods. Stick together.

なお、上記実施形態の外装体31、32、33、34は電池要素室41、42、43、44内外の金属露出部を熱可塑性樹脂層側の面に形成しているが、室外の金属露出部は耐熱性樹脂層側の面に設けることもできる。耐熱性樹脂層側の面に金属露出部を形成する場合は、第一金属箔11と第一耐熱性樹脂層12、第二金属箔21と第二耐熱性樹脂層22を上記手法で貼り合わせ、貼り合わせ後に樹脂層を切除して金属箔を露出させる。   In the outer casings 31, 32, 33, and 34 of the above-described embodiment, the metal exposed portions inside and outside the battery element chambers 41, 42, 43, and 44 are formed on the surface on the thermoplastic resin layer side. The part may be provided on the surface of the heat resistant resin layer side. When the metal exposed portion is formed on the surface of the heat resistant resin layer side, the first metal foil 11 and the first heat resistant resin layer 12 and the second metal foil 21 and the second heat resistant resin layer 22 are bonded by the above method. After bonding, the resin layer is cut off to expose the metal foil.

また、図1A〜2Bに参照されるように、第一外装材10にプレス成形してエンボス部を形成する場合は、金属露出部を形成した後にプレス成形を行う。図示例の第一外装材10の成形においては、第一金属箔内側露出部14が天面に接する雄型、雄型が挿入される雌型および押さえ型からなる成形金型でプレス成形する。   Further, as shown in FIGS. 1A and 2B, when the embossed portion is formed by press molding on the first exterior material 10, press molding is performed after the metal exposed portion is formed. In the molding of the first exterior material 10 of the illustrated example, the first metal foil inner exposed portion 14 is press-molded with a molding die including a male die in contact with the top surface, a female die into which the male die is inserted, and a pressing die.

前記エンボス部の周囲は熱封止部51a、51b、52a、52bとなる部分であるから、複数の金属箔露出部およびエンボス部を形成する場合は必要な間隔を空けてこれらの加工を行い、加工後にトリミングを行う。さらに、伝熱体70挟み込む熱封止部51a、52aにおいては伝熱体70の直径の約5倍の寸法を見込んでこれらの形成位置を設定する。また、フラットシートの状態で使用する第二外装材20、図3A〜図4Bの外装体33、34用の第一外装材10および第二外装材20についても、伝熱体70を挟み込む熱封止部53a、54aにおいて伝熱体70の寸法を見込んで金属露出部の位置決めを行う。   Since the periphery of the embossed portion is a portion to be the heat-sealed portions 51a, 51b, 52a, 52b, when forming a plurality of exposed metal foil portions and embossed portions, these are processed with a necessary interval, Trim after processing. Further, in the heat-sealed portions 51a and 52a sandwiching the heat transfer body 70, the formation positions thereof are set in consideration of the dimension of about 5 times the diameter of the heat transfer body 70. Also, regarding the second outer packaging material 20 used in the state of the flat sheet, the first outer packaging material 10 and the second outer packaging material 20 for the outer packaging bodies 33 and 34 of FIGS. 3A to 4B, the heat transfer material 70 is sandwiched. The metal exposed portions are positioned in consideration of the dimensions of the heat transfer body 70 in the stoppers 53a and 54a.

なお、第一外装体10および第二外装体20にエンボス部を設けるか否かは電池要素60,65の形態や寸法に応じて適宜設定される。図1A〜2Bのラミネート型蓄電モジュール1、2はベアセルを装填するために第一外装体10に形成しているが、図3A〜4Bのラミネート型蓄電モジュール1、2はコアセルが薄いのでエンボス部を設けていない。また、第一外装材10および第二外装材20の両方にエンボス部を設け、両者を合わせて大容積の電池要素室を形成することも、外装材の重ね方向で互い違いに電池要素室を形成することもできる。   Whether or not to provide the embossed portion on the first outer package 10 and the second outer package 20 is appropriately set according to the form and size of the battery elements 60 and 65. The laminated storage modules 1 and 2 of FIGS. 1A to 2B are formed on the first outer casing 10 for loading bare cells, but the laminated storage modules 1 and 2 of FIGS. Is not provided. In addition, both the first exterior material 10 and the second exterior material 20 may be provided with embossed portions and combined to form a large-capacity battery element chamber, or the battery element chambers may be formed alternately in the stacking direction of the exterior materials. You can also do it.

また、第一外装材10は第一フランジの無い2辺を第二外装材20から少しはみ出す寸法に裁断しておき、はみ出し部分を熱封止後に折り曲げるようにすれば、切断端面における第一金属箔11と第二金属箔21の接触を防止することができる。第一外装材10と第二外装材10の寸法を逆にして第二外装材20を折り曲げるようにしてもよい。
[電池要素の構造と材料]
前記ラミネート型蓄電モジュール1、2は電池要素60としてベアセルを用い、前記ラミネート型蓄電モジュール3、4は電池要素65としてコアセルを用いている。ベアセル、コアセル、およびこれらの電池要素とともに封入する電解質の詳細は以下のとおりである。
(ベアセル)
電池要素60としてのベアセルは、正極61、セパレーター62、負極63およびこれらに付随する層によって構成されている。前記セルの形態は図5の捲回型に限定されない。ベアセルの他の形態として、正極および負極をセルの大きさに断裁してそれぞれの箔にセパレーターを組み合わせたものをして交互に複数積層し、正電極同志、および負電極同志を超音波で接合した積層型を例示できる。
In addition, if the first exterior material 10 is cut so that two sides without the first flange are slightly protruded from the second exterior material 20, and the protruding portion is bent after heat sealing, the first metal on the cut end face is cut. The contact between the foil 11 and the second metal foil 21 can be prevented. The dimensions of the first exterior material 10 and the second exterior material 10 may be reversed, and the second exterior material 20 may be bent.
[Battery element structure and materials]
The laminate type power storage modules 1 and 2 use bare cells as the battery elements 60, and the laminate type power storage modules 3 and 4 use core cells as the battery elements 65. Details of the bare cell, the core cell, and the electrolyte to be encapsulated with these battery elements are as follows.
(Bare cell)
The bare cell as the battery element 60 is composed of a positive electrode 61, a separator 62, a negative electrode 63, and layers associated therewith. The form of the cell is not limited to the wound type shown in FIG. As another form of the bare cell, the positive electrode and the negative electrode are cut to the size of the cell, each foil is combined with a separator, and a plurality of layers are alternately laminated, and the positive electrode and the negative electrode are bonded by ultrasonic waves. The laminated type can be exemplified.

前記正極61は集電体と正極活物質とで構成され、前記集電体は金属箔が一般的に使用される。金属箔としては厚さ7〜50μmの硬質または軟質のアルミニウム箔が好ましく用いられ、金属露出部14と接する箇所は活物質が無い方が好ましい。前記正極活物質層の組成は特に限定されるものではないが、例えば、PVDF(ポリフッ化ビニリデン)、SBR(スチレンブタジエンゴム)、CMC(カルボキシメチルセルロースナトリウム塩など)、PAN(ポリアクリロニトリル)、直鎖型多糖類等のバインダーに、塩(例えば、コバルト酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム、マンガン酸リチウム等)を添加した混合組成物などで形成される。前記正極活物質層の厚さは、2μm〜300μmに設定されるのが好ましい。前記正極活物質層には、カーボンブラック、CNT(カーボンナノチューブ)等の導電補助剤をさらに含有せしめてもよい。   The positive electrode 61 includes a current collector and a positive electrode active material, and a metal foil is generally used as the current collector. As the metal foil, a hard or soft aluminum foil having a thickness of 7 to 50 μm is preferably used, and it is preferable that a portion in contact with the metal exposed portion 14 has no active material. Although the composition of the positive electrode active material layer is not particularly limited, for example, PVDF (polyvinylidene fluoride), SBR (styrene butadiene rubber), CMC (carboxymethyl cellulose sodium salt etc.), PAN (polyacrylonitrile), linear It is formed of a mixed composition in which a salt (for example, lithium cobalt oxide, lithium nickel oxide, lithium iron phosphate, lithium manganate, etc.) is added to a binder such as type polysaccharide. The thickness of the positive electrode active material layer is preferably set to 2 μm to 300 μm. The positive electrode active material layer may further contain a conductive auxiliary agent such as carbon black or CNT (carbon nanotube).

さらに、前記集電体と正極活物質の間には、密着性を上げるためにバインダーを用いることが好ましい。前記バインダーは特に限定されるものではないが、例えば、PVDF、SBR、CMC、PAN、直鎖型多糖類等で形成された層が挙げられる。前記バインダー層には、集電体と正極活物質層の間の導電性を向上させるために、カーボンブラック、CNT(カーボンナノチューブ)等の導電補助剤がさらに添加されていてもよい。前記バインダー層の厚さは、0.2μm〜10μmに設定されるのが好ましい。バインダー層を10μm以下とすることで、導電性を持たないバインダーによるベアセルの内部抵抗の増大を極力抑制することができる。   Further, it is preferable to use a binder between the current collector and the positive electrode active material in order to improve the adhesion. The binder is not particularly limited, but examples thereof include a layer formed of PVDF, SBR, CMC, PAN, linear polysaccharides, and the like. A conductive auxiliary agent such as carbon black or CNT (carbon nanotube) may be further added to the binder layer in order to improve the conductivity between the current collector and the positive electrode active material layer. The thickness of the binder layer is preferably set to 0.2 μm to 10 μm. When the binder layer has a thickness of 10 μm or less, it is possible to suppress the increase in the internal resistance of the bare cell due to the binder having no conductivity as much as possible.

前記負極63は、集電体と負極活物質とで構成され、前記集電体は金属箔が一般的に使用される。金属箔としては厚さ7〜50μmの銅箔が好ましく用いられ、他にアルミニウム箔やチタン箔、ステンレス箔を使用することが出来る。また、正極と同じく、金属露出部24と接する箇所は活物質が無い方が好ましい。前記負極活物質層の組成は特に限定されるものではないが、例えば、PVDF、SBR、CMC、PAN、直鎖型多糖類等のバインダーに、添加物(例えば、黒鉛、チタン酸リチウム、Si系合金、スズ系合金等)を添加した混合組成物等で形成される。前記負極活物質層の厚さは、1μm〜300μmに設定されるのが好ましい。前記負極活物質層には、カーボンブラック、CNT(カーボンナノチューブ)等の導電補助剤をさらに含有せしめてもよい。   The negative electrode 63 includes a current collector and a negative electrode active material, and a metal foil is generally used as the current collector. As the metal foil, a copper foil having a thickness of 7 to 50 μm is preferably used, and in addition, an aluminum foil, a titanium foil, or a stainless steel foil can be used. Further, as with the positive electrode, it is preferable that the portion in contact with the metal exposed portion 24 has no active material. The composition of the negative electrode active material layer is not particularly limited, but examples thereof include binders such as PVDF, SBR, CMC, PAN, and linear polysaccharides, and additives (eg, graphite, lithium titanate, Si-based). Alloys, tin-based alloys, etc.) added thereto. The thickness of the negative electrode active material layer is preferably set to 1 μm to 300 μm. The negative electrode active material layer may further contain a conductive auxiliary agent such as carbon black or CNT (carbon nanotube).

さらに、集電体と負極活物質の間には、密着性を上げるためにバインダーを用いることが好ましい。前記バインダーは特に限定されるものではないが、例えば、PVDF、SBR、CMC、PANで形成された層が挙げられる。前記バインダー層には、集電体と負極活物質層の間の導電性を向上させるために、カーボンブラック、CNT等の導電補助剤がさらに添加されていてもよい。前記バインダー層の厚さは、0.2μm〜10μmに設定されるのが好ましい。前記バインダー層を10μm以下とすることで、導電性を持たないバインダーによるベアセルの内部抵抗の増大を極力抑制することができる。   Furthermore, it is preferable to use a binder between the current collector and the negative electrode active material in order to improve the adhesion. The binder is not particularly limited, and examples thereof include a layer formed of PVDF, SBR, CMC, PAN. A conductive auxiliary agent such as carbon black or CNT may be further added to the binder layer in order to improve the conductivity between the current collector and the negative electrode active material layer. The thickness of the binder layer is preferably set to 0.2 μm to 10 μm. When the binder layer has a thickness of 10 μm or less, it is possible to suppress the increase in the internal resistance of the bare cell due to the binder having no conductivity as much as possible.

正極61を構成する集電体(金属箔)にバインダー層および正極活物質層を積層する場合は、金属箔に各層の組成物を順次塗工し、乾燥させる。負極63を構成する集電体(金属箔)にバインダー層および負極活物質層を積層する場合も同様である。   When the binder layer and the positive electrode active material layer are laminated on the current collector (metal foil) that constitutes the positive electrode 61, the composition of each layer is sequentially applied to the metal foil and dried. The same applies to the case where the binder layer and the negative electrode active material layer are laminated on the current collector (metal foil) forming the negative electrode 63.

前記セパレーター62としては、特に限定されるものではないが、例えば、ポリエチレン製セパレーター、ポリプロピレン製セパレーター、ポリエチレンフィルムとポリプロピレンフィルムとからなる複層フィルムで形成されるセパレーター、あるいはこれの樹脂製セパレーターにセラミック等の耐熱無機物を塗布した湿式または乾式の多孔質フィルムで構成されるセパレーター等が挙げられる。前記セパレーター62の厚さは、5μm〜50μmに設定されるのが好ましい。   The separator 62 is not particularly limited, but examples thereof include a polyethylene separator, a polypropylene separator, a separator formed of a multilayer film composed of a polyethylene film and a polypropylene film, or a resin separator of the ceramic. Examples of the separator include a wet or dry porous film coated with a heat-resistant inorganic substance such as The thickness of the separator 62 is preferably set to 5 μm to 50 μm.

さらに、本発明のラミネート型蓄電モジュールが電気2重層キャパシタである場合の好ましい材料は以下のとおりである。   Further, the preferred materials when the laminate type electricity storage module of the present invention is an electric double layer capacitor are as follows.

正極61の集電体および負極63の集電体は厚さ7〜50μmの硬質アルミニウム箔が好ましい。正極活物質および負極活物質はカーボンブラックまたはCNT(カーボンナノチューブ)が好ましい。セパレーターは厚さ5μm〜100μmの多孔質のポリセルロース膜または厚さ5μm〜100μmの不織布等が好ましい。
(コアセル)
電池要素65としてのコアセルは、第一金属箔内側露出部14に積層される正極活物質層66、セパレーター67、第二金属箔内側露出部24に積層される負極活物質層68およびこれらに付随する層によって構成されている。
によりで構成された
前記正極活物質層66および負極活物質層68の組成は、上述したベアセルの正極活物質層および負極活物質層で説明した組成物に準じ、セパレーター67もベアセルのセパレーター62に準じる。さらに、前記正極活物質層66および負極活物質層68はバインダー層を介して形成することが好ましい。前記バインダー層の組成は上述したベアセルにおけるバインダーに準じる。
The collector of the positive electrode 61 and the collector of the negative electrode 63 are preferably hard aluminum foil having a thickness of 7 to 50 μm. The positive electrode active material and the negative electrode active material are preferably carbon black or CNT (carbon nanotube). The separator is preferably a porous polycellulose membrane having a thickness of 5 μm to 100 μm or a nonwoven fabric having a thickness of 5 μm to 100 μm.
(Core cell)
The core cell as the battery element 65 includes a positive electrode active material layer 66 laminated on the first metal foil inner exposed portion 14, a separator 67, a negative electrode active material layer 68 laminated on the second metal foil inner exposed portion 24, and accompanying them. It is composed of layers.
The composition of the positive electrode active material layer 66 and the negative electrode active material layer 68 configured by the same as the composition described in the above-described bare cell positive electrode active material layer and negative electrode active material layer, the separator 67 also in the bare cell separator 62. Follow. Further, the positive electrode active material layer 66 and the negative electrode active material layer 68 are preferably formed with a binder layer interposed therebetween. The composition of the binder layer conforms to the binder in the bare cell described above.

前記正極活物質層66および負極活物質層68の積層方法として以下の方法を例示できる。   The following method can be exemplified as a method for laminating the positive electrode active material layer 66 and the negative electrode active material layer 68.

第一金属箔内側露出部14に、要すればバインダー層用組成物を塗工し、次いで正極活物質層用組成物を塗工し、乾燥させる。あるいは、第一外装材10を作製する工程において、第一金属箔11に正極活物質層用組成物を塗布し、この塗布部分を接着剤未塗布部として第二接着剤を塗布し、第一熱可塑性樹脂層13を貼り合わせ、貼り合わせ後に正極活物質層用組成物塗布部分上の第一熱可塑性樹脂層13を切除し、正極活物質層66を露出させる。即ち、第一金属箔内側露出部14の形成と正極活物質層66の形成を同じ工程内で行う。この貼り合わせ手法および切除方法は、上述した第一外装材10における金属箔露出部の形成方法と同じである。また、第二外装材20の第二金属箔内側露出部24に負極活物質層を積層する場合も同じ方法で行う。
(電解質)
また、電池要素とともに封入される電解質としては、特に限定されるものではないが、水、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートおよびジメトキシエタンからなる群より選ばれる少なくとも1種の溶媒と、リチウム塩とを含む電解質を挙示できる。前記リチウム塩としては、特に限定されるものではないが、例えば、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸4級アンモニウム塩等が挙げられる。前記4級アンモニウム塩としては、例えば、テトラメチルアンモニウム塩などが挙げられる。また、前述の電解質が、PVDF、PEO(ポリエチレンオキサイド)等とゲル化したものを用いてもよい。
[ラミネート型蓄電モジュールの製造方法]
図2Aおよび図2Bに示すラミネート型蓄電モジュール2は以下の工程により製造することができる。
(1)第一外装材10を第一熱可塑性樹脂層13が上にくるように置き、電池要素室42となる各エンボス部内の第一金属箔内側露出部14に電池要素60の正極側金属箔61が接触するように電池要素60を装填し、シリンジ等を用いて電解質を注入する。
(2)第一外装材10の熱封止部52aとなる部分に伝熱体70を載せ、第二外装材20を、第二外装材20の第二金属箔内側露出部24が電池要素60の負極側金属箔63に接触し、かつ熱封止部52aとなる部分で伝熱体70を挟むように位置合わせをしながら重ねて外装体32を組み立てる。この組み立て状態において、第一フランジ15は第二外装材20の端部から延出するとともに第二フランジ25は第一外装材10の端部から延出して、第一金属箔外側露出16および第二金属箔外側露出部26は外装体32の外面に露出している。
(3)加熱した熱板を用いて伝熱体70を挟み込んだ部分を熱封止し、熱封止部52aを形成する。
(4)第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側露出部26にクリップを繋いで予備充電を行い、100℃の恒温槽に8時間入れてガス抜きを行う。
(5)減圧下で未封止部分をに加熱した熱板で熱封止して熱封止部52bを形成し、電池要素室42内に電池要素60および電解質を封入する。
(6)第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側露出部26に接続用穴17、27を穿つ。
If necessary, the composition for the binder layer is applied to the exposed portion 14 on the inside of the first metal foil, and then the composition for the positive electrode active material layer is applied and dried. Alternatively, in the step of producing the first exterior material 10, the positive electrode active material layer composition is applied to the first metal foil 11, and the second adhesive is applied using this applied portion as an adhesive-unapplied portion. The thermoplastic resin layer 13 is attached, and after the attachment, the first thermoplastic resin layer 13 on the portion coated with the composition for the positive electrode active material layer is cut off to expose the positive electrode active material layer 66. That is, the formation of the exposed portion 14 inside the first metal foil and the formation of the positive electrode active material layer 66 are performed in the same step. The bonding method and the cutting method are the same as the method for forming the exposed metal foil portion of the first exterior material 10 described above. Further, the same method is used to stack the negative electrode active material layer on the second metal foil inner exposed portion 24 of the second exterior material 20.
(Electrolytes)
The electrolyte enclosed with the battery element is not particularly limited, but is at least one selected from the group consisting of water, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate and dimethoxyethane. Examples of the electrolyte include the solvent described above and a lithium salt. The lithium salt is not particularly limited, and examples thereof include lithium hexafluorophosphate, lithium tetrafluoroborate, and quaternary ammonium tetrafluoroborate salt. Examples of the quaternary ammonium salt include tetramethylammonium salt and the like. Further, the above-mentioned electrolyte may be gelled with PVDF, PEO (polyethylene oxide) or the like.
[Manufacturing Method of Laminate Type Energy Storage Module]
The laminated type electricity storage module 2 shown in FIGS. 2A and 2B can be manufactured by the following steps.
(1) The first outer packaging material 10 is placed so that the first thermoplastic resin layer 13 is on top, and the positive electrode side metal of the battery element 60 is provided on the exposed portion 14 inside the first metal foil inside each embossed portion that becomes the battery element chamber 42. The battery element 60 is loaded so that the foil 61 contacts, and the electrolyte is injected using a syringe or the like.
(2) The heat transfer body 70 is placed on the portion that will be the heat-sealed portion 52a of the first outer packaging material 10, the second outer packaging material 20, and the second metal foil inner exposed portion 24 of the second outer packaging material 20 is the battery element 60. The outer casing 32 is assembled while being aligned while contacting the negative electrode side metal foil 63 and sandwiching the heat transfer body 70 at the portion which becomes the heat sealing portion 52a. In this assembled state, the first flange 15 extends from the end of the second exterior material 20, and the second flange 25 extends from the end of the first exterior material 10, and the first metal foil outer side exposure 16 and the first outer side of the metal foil are exposed. The second metal foil outer exposed portion 26 is exposed on the outer surface of the exterior body 32.
(3) Using a heated hot plate, the portion sandwiching the heat transfer body 70 is heat-sealed to form the heat-sealed portion 52a.
(4) A clip is connected to the first metal foil outer side exposed portion 16 of the first flange 15 and the second metal foil outer side exposed portion 26 of the second flange 25 to perform precharging, and then put in a constant temperature bath at 100 ° C. for 8 hours. Degas.
(5) The unsealed portion is heat-sealed under reduced pressure with a hot plate to form a heat-sealed portion 52b, and the battery element 60 and the electrolyte are sealed in the battery element chamber 42.
(6) The connection holes 17 and 27 are formed in the first metal foil outside exposed portion 16 of the first flange 15 and the second metal foil outside exposed portion 26 of the second flange 25.

また、1個の電池要素室41を有するラミネート型蓄電モジュール1も同様の工程で製造する。   Also, the laminated type electricity storage module 1 having one battery element chamber 41 is manufactured in the same process.

図4Aおよび図4Bに示すラミネート型蓄電モジュール4は以下の工程により製造することができる。
(1)第一外装材10の各第一金属箔内側露出部14に正極活物質を塗布して正極活物質層66を形成する。同様にして、第二外装材20の各第二金属箔内側露出部24に負極活物質層68を形成する。
(2)第一外装体10と第二外装体20を向かい合わせる。このとき、正極活物質層66と負極活物質層68の間にセパレーター67を挟むとともに、注射針を各正極活物質層66および負極活物質層68の位置に達するように挟み、かつ熱封止部54aとなる部分に伝熱体70を挟むように位置合わせをしながら両者を重ねて外装体34を組み立てる。前記注射針の端部は外装体34外に引き出しておく。この組み立て状態において、第一フランジ15は第二外装材20の端部から延出するとともに第二フランジ25は第一外装材10の端部から延出して、第一金属箔外側露出16および第二金属箔外側露出部26は外装体32の外面に露出している。
(3)各正極活物質層66および負極活物質層68の周囲を熱封止して熱封止部54a、54bを形成する。
(4)前記注射針を通じて電解質を注入し、注射針に封をする。
(5)第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側露出部26にクリップを繋いで予備充電を行い、100℃の恒温槽に8時間入れてガス抜きを行う。
(6)注射針を抜き、抜き跡の穴を熱封止して完全に閉じる。この熱封止により、電池要素44が形成されるとともに室内に電池要素65および電解質が封入される。
(7)第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側露出部26に接続用穴17、27を穿つ。
Laminated electricity storage module 4 shown in FIGS. 4A and 4B can be manufactured by the following steps.
(1) A positive electrode active material is applied to each first metal foil inner exposed portion 14 of the first exterior material 10 to form a positive electrode active material layer 66. Similarly, the negative electrode active material layer 68 is formed on each second metal foil inner exposed portion 24 of the second exterior material 20.
(2) The first exterior body 10 and the second exterior body 20 face each other. At this time, the separator 67 is sandwiched between the positive electrode active material layer 66 and the negative electrode active material layer 68, and the injection needle is sandwiched so as to reach the positions of the positive electrode active material layer 66 and the negative electrode active material layer 68, and heat sealing is performed. The exterior body 34 is assembled by stacking the heat transfer bodies 70 so that the heat transfer bodies 70 are sandwiched between the portions to be the portions 54a. The end of the injection needle is pulled out of the exterior body 34. In this assembled state, the first flange 15 extends from the end of the second exterior material 20, and the second flange 25 extends from the end of the first exterior material 10, and the first metal foil outer side exposure 16 and the first outer side of the metal foil are exposed. The second metal foil outer exposed portion 26 is exposed on the outer surface of the exterior body 32.
(3) The periphery of each of the positive electrode active material layer 66 and the negative electrode active material layer 68 is heat-sealed to form the heat-sealed portions 54a and 54b.
(4) Inject an electrolyte through the injection needle and seal the injection needle.
(5) A clip is connected to the first metal foil outer side exposed portion 16 of the first flange 15 and the second metal foil outer side exposed portion 26 of the second flange 25 to perform precharging, and then put in a constant temperature bath at 100 ° C. for 8 hours. Degas.
(6) Remove the injection needle and heat-seal the hole of the removal mark to completely close it. By this heat sealing, the battery element 44 is formed and the battery element 65 and the electrolyte are enclosed in the room.
(7) Connection holes 17 and 27 are formed in the first metal foil outer side exposed portion 16 of the first flange 15 and the second metal foil outer side exposed portion 26 of the second flange 25.

また、1個の電池要素室43を有するラミネート型蓄電モジュール3も同様の工程で製造する。   Further, the laminated type electricity storage module 3 having one battery element chamber 43 is also manufactured in the same process.

上記製造方法は、その一例を挙げたものに過ぎず、特にこのような製造方法に限定されるものではない。   The above-mentioned manufacturing method is only one example, and is not particularly limited to such a manufacturing method.

本発明にかかるラミネート型蓄電モジュールおよび蓄電モジュールの用途は限定されないが、電気が必要な自動車、自転車、二輪車、電車、飛行機、船舶などの電源、具体的にはハイブリッド車や電気自動車、工業用・家庭用蓄電池等の容量が大きなリチウム2次電池(リチウムイオン電池、リチウムポリマー電池等)モジュール、固体電池モジュール、同用途のリチウムイオンキャパシタモジュール、同上用途の電気2重層コンデンサモジュールに用いることができる。   The application of the laminate type electricity storage module and the electricity storage module according to the present invention is not limited, but is a power source for automobiles, bicycles, motorcycles, trains, airplanes, ships, etc. that require electricity, specifically, hybrid vehicles, electric vehicles, industrial It can be used for a lithium secondary battery (lithium ion battery, lithium polymer battery, etc.) module having a large capacity such as a household storage battery, a solid battery module, a lithium ion capacitor module for the same purpose, and an electric double layer capacitor module for the same purpose.

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
〈実施例1〉
図2Aおよび図2Bに示すラミネート型蓄電モジュール2を作製した。
Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
<Example 1>
A laminated type electricity storage module 2 shown in FIGS. 2A and 2B was produced.

第一外装材10および第二外装材20の材料は以下のとおりである。   The materials of the first exterior material 10 and the second exterior material 20 are as follows.

第一金属箔11はJIS H4160で分類されるA8079の厚さ40μmの軟質のアルミニウム箔であり、両面に化成処理を施した。第一耐熱性樹脂層12は厚さ25μmの二軸延伸ポリアミドフィルムである。第一熱可塑性樹脂層13は厚さ40μmの未延伸ポリプロピレンフィルムである。第二金属箔21は厚さ20μmの軟質のSUS304のステンレス箔であり、両面の両面に化成処理を施した。第二耐熱性樹脂層22は厚さ12μmの二軸延伸ポリエステルフィルムである。第二熱可塑性樹脂層23は厚さ40μmの未延伸ポリプロピレンフィルムである。   The first metal foil 11 is a soft aluminum foil having a thickness of 40 μm of A8079 classified according to JIS H4160, and has been subjected to chemical conversion treatment on both sides. The first heat resistant resin layer 12 is a biaxially stretched polyamide film having a thickness of 25 μm. The first thermoplastic resin layer 13 is an unstretched polypropylene film having a thickness of 40 μm. The second metal foil 21 is a soft SUS304 stainless steel foil with a thickness of 20 μm, and chemical conversion treatment was performed on both sides. The second heat resistant resin layer 22 is a biaxially stretched polyester film having a thickness of 12 μm. The second thermoplastic resin layer 23 is an unstretched polypropylene film having a thickness of 40 μm.

また、第一金属箔内側露出部14および第二金属箔内側露出部24の寸法は30mm×30mmであり、第一金属箔外側露出部16および第二金属箔外側露出部26の寸法は20mm×200mmである。
(第一外装材)
第一金属箔11の片面に、ドライラミネート法により、塗布厚さ3μmの2液硬化型のポリエステルポリウレタン接着剤で第一耐熱性樹脂層12を貼り合わせ、50℃エージング炉で3日間養生した。次に、前記第一金属箔11の反対面に、ドライラミネート法により、塗布厚さ2μmの2液硬化型のオレフィン系接着剤を塗布厚さ2μmに塗布する際に9個の第一金属箔内側露出部14および1個の第一金属箔外側露出部16の寸法および位置に対応する接着剤未塗布部を形成して第一熱可塑性樹脂層13を貼り合わせた。貼り合わせ後、40℃のエージング炉で3日間養生した。
Further, the dimensions of the first metal foil inner exposed portion 14 and the second metal foil inner exposed portion 24 are 30 mm × 30 mm, and the dimensions of the first metal foil outer exposed portion 16 and the second metal foil outer exposed portion 26 are 20 mm ×. It is 200 mm.
(First exterior material)
The first heat-resistant resin layer 12 was attached to one surface of the first metal foil 11 with a two-component curing type polyester polyurethane adhesive having a coating thickness of 3 μm by a dry lamination method, and cured in a 50 ° C. aging furnace for 3 days. Next, when applying a two-component curing type olefin adhesive having a coating thickness of 2 μm to the coating thickness of 2 μm on the opposite surface of the first metal foil 11 by dry laminating method, nine first metal foils are applied. Adhesive uncoated portions corresponding to the dimensions and positions of the inner exposed portion 14 and the one first metal foil outer exposed portion 16 were formed, and the first thermoplastic resin layer 13 was bonded. After pasting, it was aged in a 40 ° C. aging furnace for 3 days.

養生後、接着剤未塗布部上の第一熱可塑性樹脂層13をレーザー刃で切断して除去し、第一金属箔11が露出する第一金属箔内側露出部14および第一金属箔外側露出部16を形成した。   After curing, the first thermoplastic resin layer 13 on the adhesive uncoated portion is removed by cutting with a laser blade, and the first metal foil inner exposed portion 14 and the first metal foil outer exposed portion where the first metal foil 11 is exposed. The part 16 was formed.

次に、40mm角の雄型、雌型、押さえ型からなる成形金型を用い、雄型の天面に第一金属箔内側露出部14に接する態様で深さ4mmのプレス成形を行い、電池要素室42となるエンボス部を形成した。さらに周囲をトリミングして第一外装材10を得た。この第一外装材10の平面寸法は210mm×250mmであり、伝熱体70を挟み込む熱封止部52aの予定部分は挟み代を見込んだ寸法に設定されている。
(第二外装材)
第二金属箔21の片面に、ドライラミネート法により、塗布厚さ3μmの2液硬化型のポリエステルポリウレタン接着剤で第二耐熱性樹脂層22を貼り合わせ、50℃エージング炉で3日間養生した。次に、前記第二金属箔21の反対面に、ドライラミネート法により、塗布厚さ2μmの2液硬化型のオレフィン系接着剤を塗布厚さ2μmに塗布する際に9個の第二金属箔内側露出部24および1個の第二金属箔外側露出部26の寸法および位置に対応する接着剤未塗布部を形成して第二熱可塑性樹脂層23を貼り合わせた。貼り合わせ後、40℃のエージング炉で3日間養生した。
Next, using a molding die consisting of a 40 mm square male mold, a female mold, and a pressing mold, press molding with a depth of 4 mm was performed on the top surface of the male mold so as to contact the first metal foil inner exposed portion 14. An embossed portion serving as the element chamber 42 was formed. Further, the periphery was trimmed to obtain the first exterior material 10. The plane dimension of the first exterior material 10 is 210 mm × 250 mm, and the planned portion of the heat sealing portion 52 a that sandwiches the heat transfer body 70 is set to have a dimension that allows for the sandwiching margin.
(Second exterior material)
The second heat-resistant resin layer 22 was attached to one surface of the second metal foil 21 by a dry lamination method with a two-component curing type polyester polyurethane adhesive having a coating thickness of 3 μm, and cured in a 50 ° C. aging furnace for 3 days. Next, on the opposite surface of the second metal foil 21, when two-component curing type olefin adhesive having a coating thickness of 2 μm is applied to a coating thickness of 2 μm by dry laminating method, nine second metal foils are applied. An adhesive uncoated portion corresponding to the size and position of the inner exposed portion 24 and one second metal foil outer exposed portion 26 was formed, and the second thermoplastic resin layer 23 was bonded. After pasting, it was aged in a 40 ° C. aging furnace for 3 days.

養生後、接着剤未塗布部上の第二熱可塑性樹脂層23をレーザー刃で切断して除去し、第二金属箔21が露出する第二金属箔内側露出部24および第二金属箔外側露出部26を形成した。さらに周囲をトリミングして第二外装材20を得た。この第二外装材20の平面寸法は220mm×250mmであり、第一外装材10よりも大きい。また、伝熱体70を挟み込む熱封止部52aの予定部分は挟み代を見込んだ寸法に設定されている。
(電極要素)
電極要素60として、以下の材料を用いてベアセルを作製した。
After curing, the second thermoplastic resin layer 23 on the adhesive-uncoated portion is removed by cutting with a laser blade, and the second metal foil inner exposed portion 24 and the second metal foil outer exposed where the second metal foil 21 is exposed. The part 26 was formed. Further, the periphery was trimmed to obtain the second exterior material 20. The plane dimension of the second exterior material 20 is 220 mm × 250 mm, which is larger than that of the first exterior material 10. In addition, a predetermined portion of the heat-sealing portion 52a that sandwiches the heat transfer body 70 is set to have a size that allows for a sandwiching margin.
(Electrode element)
As the electrode element 60, a bare cell was produced using the following materials.

正極61の集電体はJIS H4160で分類されるA1100の硬質アルミニウム箔であり、厚さ15μm、幅500mmである。負極63の集電体はJIS H3100で分類されるC1100Rの硬質銅箔であり、厚さ15μm、幅200mmである。正極活物質層形成用ペーストはコバルト酸リチウムを主成分とする正極活物質60質量部、結着剤兼電解質保持剤としてのPVDF10質量部、アセチレンブラック(導電材)5質量部、N−メチル−2−ピロリドン(有機溶媒)25質量部が混練分散されてなるペーストである。負極活物質形成用ペーストは、カーボン粉末を主成分とする負極活物質57質量部、結着剤兼電解質保持剤としてのPVDF5質量部、ヘキサフルオロプロピレンと無水マレイン酸の共重合体10質量部、アセチレンブラック(導電材)3質量部、N−メチル―2−ピロリドン(有機溶媒)25質量部が混練分散されてなるペーストである。バインダー液はPVDFを溶媒(ジメチルホルムアミド)に溶解させたバインダー液である。セパレータ62は幅38mmで厚さ8μmの多孔質の湿式セパレーターである。電解質はエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)が等量体積比で配合された混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF)が濃度1モル/Lで溶解された溶液である。 The collector of the positive electrode 61 is a hard aluminum foil of A1100 classified by JIS H4160, and has a thickness of 15 μm and a width of 500 mm. The collector of the negative electrode 63 is a hard copper foil of C1100R classified by JIS H3100, and has a thickness of 15 μm and a width of 200 mm. The positive electrode active material layer forming paste is 60 parts by mass of a positive electrode active material containing lithium cobalt oxide as a main component, 10 parts by mass of PVDF as a binder / electrolyte holding agent, 5 parts by mass of acetylene black (conductive material), N-methyl- This is a paste obtained by kneading and dispersing 25 parts by mass of 2-pyrrolidone (organic solvent). The paste for forming a negative electrode active material comprises 57 parts by mass of a negative electrode active material containing carbon powder as a main component, 5 parts by mass of PVDF as a binder / electrolyte retainer, 10 parts by mass of a copolymer of hexafluoropropylene and maleic anhydride, It is a paste in which 3 parts by mass of acetylene black (conductive material) and 25 parts by mass of N-methyl-2-pyrrolidone (organic solvent) are kneaded and dispersed. The binder liquid is a binder liquid in which PVDF is dissolved in a solvent (dimethylformamide). The separator 62 is a porous wet separator having a width of 38 mm and a thickness of 8 μm. As the electrolyte, lithium hexafluorophosphate (LiPF 6 ) was dissolved at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) were mixed in an equal volume ratio. It is a prepared solution.

前記正極61は以下の工程で作製した。まず、集電体の片面全体にバインダー液を塗布し、100℃で30秒間乾燥させて乾燥後の厚さが0.5μmのバインダー層を形成した。次に前記バインダー層の表面に正極活物質層液性用ペーストを塗布し、100℃で30分間乾燥させ、次いで熱プレスを行い、密度4.8g/cm、乾燥後の厚さが120μmの正極活物質層を形成した。さらに、幅入れにより35mm幅のコイル状に裁断した。 The positive electrode 61 was manufactured by the following steps. First, the binder liquid was applied to the entire one surface of the current collector and dried at 100 ° C. for 30 seconds to form a binder layer having a thickness after drying of 0.5 μm. Next, a positive electrode active material layer liquid paste is applied to the surface of the binder layer, dried at 100 ° C. for 30 minutes, and then hot pressed to a density of 4.8 g / cm 3 and a thickness after drying of 120 μm. A positive electrode active material layer was formed. Further, it was cut into a coil having a width of 35 mm by width-filling.

前記負極63は以下の工程で作製した。まず、集電体の片面にバインダー液を塗布し、100℃で30秒間乾燥させて乾燥後の厚さが0.5μmのバインダー層を形成した。次に前記バインダー層の表面に負極活物質層液性用ペーストを塗布し、100℃で30分間乾燥させ、次いで熱プレスを行い、密度1.5g/cm、乾燥後の厚さが20.1μmの負極活物質層を形成した。さらに、幅入れにより35mm幅のコイル状に裁断した。 The negative electrode 63 was produced by the following steps. First, a binder solution was applied to one surface of a current collector and dried at 100 ° C. for 30 seconds to form a binder layer having a thickness after drying of 0.5 μm. Next, the paste for negative electrode active material layer liquid property was applied to the surface of the binder layer, dried at 100 ° C. for 30 minutes, and then hot pressed to have a density of 1.5 g / cm 3 and a thickness after drying of 20. A 1 μm negative electrode active material layer was formed. Further, it was cut into a coil having a width of 35 mm by width-filling.

次に、負極63(集電体−負極活物質層)/セパレーター62/(正極活物質層−集電体)正極61/セパレーターの順にそれぞれを少しずつずらして積層して捲回し、一方の面に正極61が露出し、反対面に負極63が露出するように押し潰して、38mm角で厚さ4mmのベアセルを作製した。
(ラミネート型蓄電モジュールの組み立て)
伝熱体70として直径3mmで長さ300mmの銅線(中実材)を用いた。なお、図2Aおよび図2Bにおいては伝熱体70としてパイプを図示しているが、本実施例においてパイプを中実材に置き換えて図2Aおよび図2Bを参照する。
(1)第一外装材10を第一熱可塑性樹脂層13が上にくるように置き、電池要素室42を形成する各エンボス部内の第一金属箔内側露出部14に電池要素60の正極61が接触するように電池要素60を装填し、シリンジ等を用いて電解質を注入した。
(2)第一外装材10の熱封止部52aとなる部分に伝熱体70を載せ、第二外装材20を、第二外装材20の第二金属箔内側露出部24が電池要素60の負極箔63に接触し、かつ熱封止部52aとなる部分で伝熱体70を挟むように位置合わせをしながら重ねて外装体32を組み立てた。この組み立て状態において、第一フランジ15は第二外装材20の端部から延出するとともに第二フランジ25は第一外装材10の端部から延出して、第一金属箔外側露出16および第二金属箔外側露出部26は外装体32の外面に露出している。
(3)約200℃に加熱した熱板を用いて伝熱体70を挟み込んだ部分を0.3MPaの圧力で3秒間熱封止し、熱封止部52aを形成した。
(4)第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側露出部26にクリップを繋いで4.2Vの電池電圧が発生するまで充電を行い、100℃の恒温槽に8時間入れて電池要素室42内のガス抜きを行った。
(5)86kPaの減圧下で未封止部分を約200℃に加熱した熱板で熱封止して熱封止部52bを形成し、電池要素室42内に電池要素60および電解質を封入した。
(6)短絡対策として、第一外装材10の第二フランジ25側の端縁および第二外装材20の第一フランジ15側の端縁に25μmの粘着テープを貼り付けて端面に露出する第一金属箔11および第二金属箔21を被覆した。さらに、他の2辺ははみ出た第二外装材20を第一外装材10側に折り曲げ、絶縁対策を行うとともに側面の強度補強を行った。なお、図2Aは折り曲げ前の状態を示している。
(7)第一フランジ15の第一金属箔外側露出部16および第二フランジ25の第二金属箔外側露出部26に3個の接続用穴17、27を穿った。
〈比較例1〉
熱封止部52aに伝熱体70を挟み込まないことを除いて、実施例1と同じ材料で同じ形態のラミネート型蓄電モジュールを作製した。
〈評価〉
上記のようにして得られた実施例1および比較例1のラミネート型蓄電モジュールについて、下記評価法に基づいて評価を行った。評価結果を表1に示す。
Next, the negative electrode 63 (current collector-negative electrode active material layer) / separator 62 / (positive electrode active material layer-current collector) positive electrode 61 / separator are laminated in a staggered manner and wound one side. It was crushed so that the positive electrode 61 was exposed to the outside and the negative electrode 63 was exposed to the opposite surface, to produce a bare cell having a 38 mm square and a thickness of 4 mm.
(Assembly of laminated type electricity storage module)
As the heat transfer body 70, a copper wire (solid material) having a diameter of 3 mm and a length of 300 mm was used. Although a pipe is shown as the heat transfer body 70 in FIGS. 2A and 2B, the pipe is replaced with a solid material in this embodiment, and FIGS. 2A and 2B are referred to.
(1) The first outer packaging material 10 is placed with the first thermoplastic resin layer 13 on top, and the positive electrode 61 of the battery element 60 is provided on the exposed portion 14 inside the first metal foil inside each embossed portion forming the battery element chamber 42. The battery element 60 was loaded so as to contact with each other, and the electrolyte was injected using a syringe or the like.
(2) The heat transfer body 70 is placed on the portion that will be the heat-sealed portion 52a of the first outer packaging material 10, the second outer packaging material 20, and the second metal foil inner exposed portion 24 of the second outer packaging material 20 is the battery element 60. The exterior body 32 was assembled by stacking the heat transfer bodies 70 while contacting the negative electrode foil 63 and aligning the heat transfer body 70 so that the heat transfer body 70 was sandwiched therebetween. In this assembled state, the first flange 15 extends from the end of the second exterior material 20, and the second flange 25 extends from the end of the first exterior material 10, and the first metal foil outer side exposure 16 and the first outer side of the metal foil are exposed. The second metal foil outer exposed portion 26 is exposed on the outer surface of the exterior body 32.
(3) Using a hot plate heated to about 200 ° C., the portion sandwiching the heat transfer body 70 was heat-sealed at a pressure of 0.3 MPa for 3 seconds to form the heat-sealed portion 52a.
(4) A clip is connected to the first metal foil outer side exposed portion 16 of the first flange 15 and the second metal foil outer side exposed portion 26 of the second flange 25, and charging is performed until a battery voltage of 4.2 V is generated. The battery element chamber 42 was degassed by placing it in a constant temperature bath at 8 ° C. for 8 hours.
(5) The unsealed portion was heat-sealed under a reduced pressure of 86 kPa with a hot plate heated to about 200 ° C. to form the heat-sealed portion 52b, and the battery element 60 and the electrolyte were sealed in the battery element chamber 42. .
(6) As a measure against a short circuit, a 25 μm adhesive tape is attached to the edge of the first exterior material 10 on the side of the second flange 25 and the edge of the second exterior material 20 on the side of the first flange 15 to expose the end surface. The first metal foil 11 and the second metal foil 21 were coated. Further, the second exterior material 20 protruding from the other two sides was bent toward the first exterior material 10 side to take measures against insulation and strengthen the side surface. Note that FIG. 2A shows a state before bending.
(7) Three connecting holes 17 and 27 were drilled in the first metal foil outside exposed portion 16 of the first flange 15 and the second metal foil outside exposed portion 26 of the second flange 25.
<Comparative Example 1>
A laminate type electricity storage module having the same material and the same form as in Example 1 was produced except that the heat transfer body 70 was not sandwiched between the heat sealing parts 52a.
<Evaluation>
The laminated type electricity storage modules of Example 1 and Comparative Example 1 obtained as described above were evaluated based on the following evaluation methods. The evaluation results are shown in Table 1.

ラミネート型蓄電モジュールを4.2Vにフル充電した後、18℃室温下で1Cの充放電(1時間で充電、1時間で放電)を100回繰り返し、再度フル充電したときの電圧と容量を測定した。また、フル充電した電池を1Cの放電をしたとき、0.2Cの放電をしたときのモジュール内の各電池の中央部分の温度を温度センサーにて計測し、平均値を出した。   After fully charging the laminate type electricity storage module to 4.2V, charge and discharge 1C (charged in 1 hour, discharged in 1 hour) at room temperature at 18 ° C, repeated 100 times, and measured voltage and capacity when fully charged again. did. When the fully charged battery was discharged at 1C, the temperature of the central portion of each battery in the module when discharged at 0.2C was measured with a temperature sensor, and the average value was calculated.

Figure 0006697224
Figure 0006697224

表1の通り、放電時の発熱量については、1C放電時も0.2放電時も比較例1に対し、実施例1のラミネート型蓄電モジュール内のベアセルの発熱が抑えられ、放熱効果が大きくなっていた。また、実施例1は比較例1よりも100サイクルの充放電後の容量低下が小さく、電池寿命が長いことを示唆している。   As shown in Table 1, with respect to the heat generation amount during discharge, the heat generation of the bare cell in the laminate-type electricity storage module of Example 1 was suppressed and the heat dissipation effect was large compared to Comparative Example 1 in both 1C discharge and 0.2 discharge. Was becoming. In addition, Example 1 suggests that the capacity decrease after 100 cycles of charge and discharge is smaller than that of Comparative Example 1, and that the battery life is long.

本発明のラミネート型蓄電モジュールは各種電源として好適に利用できる。   The laminate type electricity storage module of the present invention can be suitably used as various power sources.

1、2、3、4…ラミネート型蓄電モジュール
5…蓄電システム
10…第一外装材
11…第一金属箔
12…第一耐熱性樹脂層
13…第一熱可塑性樹脂層
14…第一金属箔内側露出部
16…第一金属箔外側露出部
20…第二外装材
21…第二金属箔
22…第二耐熱性樹脂層
23…第二熱可塑性樹脂層
24…第二金属箔内側露出部
26…第二金属箔外側露出部
31、32、33、34…外装体
41、42、43、44…電池要素室
51a、51b、52a、52b、53a、53b、54a、54b…熱封止部
60…電池要素(ベアセル)
61…正極(正極要素)
62…セパレーター
63…負極(負極要素)
65…コアセル(電池要素)
66…正極活物質層(正極要素)
67…セパレーター
68…負極活物質層(負極要素)
70…伝熱体
1, 2, 3, 4 ... Laminated power storage module 5 ... Power storage system 10 ... First exterior material 11 ... First metal foil 12 ... First heat-resistant resin layer 13 ... First thermoplastic resin layer 14 ... First metal foil Inner exposed portion 16 ... First metal foil outer exposed portion 20 ... Second exterior material 21 ... Second metal foil 22 ... Second heat resistant resin layer 23 ... Second thermoplastic resin layer 24 ... Second metal foil inner exposed portion 26 ... Second metal foil outer exposed portion 31, 32, 33, 34 ... Exterior body 41, 42, 43, 44 ... Battery element chamber 51a, 51b, 52a, 52b, 53a, 53b, 54a, 54b ... Heat sealing portion 60 ... Battery element (bare cell)
61 ... Positive electrode (positive electrode element)
62 ... Separator 63 ... Negative electrode (negative electrode element)
65 ... Core cell (battery element)
66 ... Positive electrode active material layer (positive element)
67 ... Separator 68 ... Negative electrode active material layer (negative electrode element)
70 ... Heat transfer body

Claims (5)

第一金属箔の一方の面に第一耐熱性樹脂層が積層され他方の面に第一熱可塑性樹脂層が積層され、前記第一熱可塑性樹脂層側の面に第一金属箔が露出する第一金属箔内側露出部を有する第一外装材と、
第二金属箔の一方の面に第二耐熱性樹脂層が積層され他方の面に第二熱可塑性樹脂層が積層され、前記第二熱可塑性樹脂層側の面に第二金属箔が露出する第二金属箔内側露出部を有する第二外装材と、
正極要素と、負極要素と、これらの間に配置されるセパレーターとを有する電池要素と、
伝熱体とを備え、
前記第一外装材の第一熱可塑性樹脂層と第二外装材の第二熱可塑性樹脂層とが向かい合い、第一熱可塑性樹脂層と第二熱可塑性樹脂層とが融着した熱封止部に囲まれることによって、室内に第一金属箔内側露出部および第二金属箔内側露出部が臨む1室以上の電池要素室を有する外装体が形成され、かつこの外装体の外面に、第一金属箔が露出する第一金属箔外側露出部および第二金属箔が露出する第二金属箔外側露出部の少なくとも一方が形成され、
前記電池要素室内に電解質とともに封入された電池要素は、正極部が第一金属箔内側露出部に導通するとともに負極部が第二金属箔内側露出部に導通し、
前記熱封止部の少なくとも前記第一金属箔内側露出部および第二金属箔内側露出部とこれらに電気的に導通する第一金属箔外側露出部および/または第二金属箔外側露出部との間において、第一熱可塑性樹脂層と第二熱可塑性樹脂層との間に伝熱体を有していることを特徴とするラミネート型蓄電モジュール。
The first heat resistant resin layer is laminated on one surface of the first metal foil and the first thermoplastic resin layer is laminated on the other surface, and the first metal foil is exposed on the surface on the side of the first thermoplastic resin layer. A first exterior material having a first metal foil inner exposed portion,
The second heat resistant resin layer is laminated on one surface of the second metal foil and the second thermoplastic resin layer is laminated on the other surface, and the second metal foil is exposed on the surface on the side of the second thermoplastic resin layer. A second exterior material having a second metal foil inner exposed portion,
A battery element having a positive electrode element, a negative electrode element, and a separator disposed therebetween,
With a heat transfer body,
The first thermoplastic resin layer of the first exterior material and the second thermoplastic resin layer of the second exterior material face each other, and the heat sealing portion in which the first thermoplastic resin layer and the second thermoplastic resin layer are fused to each other. By being surrounded by, the exterior body having at least one battery element chamber in which the first metal foil inner exposed portion and the second metal foil inner exposed portion face the interior is formed, and the outer surface of the outer body is At least one of the first metal foil outside exposed portion where the metal foil is exposed and the second metal foil outside exposed portion where the second metal foil is exposed is formed,
The battery element enclosed with the electrolyte in the battery element chamber, the positive electrode portion is conducted to the first metal foil inner exposed portion and the negative electrode portion is conducted to the second metal foil inner exposed portion,
At least the first metal foil inner exposed portion and the second metal foil inner exposed portion of the heat-sealed portion, and the first metal foil outer exposed portion and / or the second metal foil outer exposed portion electrically connected to them. between, the laminated power storage module, characterized in that it has a heat transfer member between the first thermoplastic resin layer and the second thermoplastic resin layer.
前記電池要素の正極要素は集電体および正極活物質からなり、負極要素は集電体および負極活物質からなる請求項に記載のラミネート型蓄電モジュール。 The laminate-type electricity storage module according to claim 1 , wherein the positive electrode element of the battery element includes a current collector and a positive electrode active material, and the negative electrode element includes a current collector and a negative electrode active material. 前記電池要素の正極要素は第一金属箔内側露出部に積層された正極活物質層であり、負極要素は第二金属箔内側露出部に積層された負極活物質層である請求項に記載のラミネート型蓄電モジュール。 The positive electrode element of the battery element is a positive electrode active material layer laminated on the first metal foil inner exposed portion, the negative electrode element according to claim 1 which is a negative electrode active material layer laminated on the second metal foil inner exposed portion Laminated electricity storage module. 第一外装材および第二外装材からなる外装体内に、正極要素と負極要素とこれらの間に配置されるセパレーターとを有する電池要素が封入されたラミネート型蓄電モジュールの製造方法であり、
前記第一外装材は、第一金属箔の一方の面に第一耐熱性樹脂層が積層され他方の面に第一熱可塑性樹脂層が積層され、前記第一熱可塑性樹脂層側の面に第一金属箔が露出する第一金属箔内側露出部を有し、第二外装材は、第二金属箔の一方の面に第二耐熱性樹脂層が積層され他方の面に第二熱可塑性樹脂層が積層され、前記第二熱可塑性樹脂層側の面に第二金属箔が露出する第二金属箔内側露出部を有し、さらに第一外装材および第二外装材の少なくとも一方は、外装体の外面に第一金属箔が露出する第一金属箔外側露出部および/または第二金属箔が露出する第二金属箔外側露出部を有し、
記第一外装材と第二外装材とを第一熱可塑性樹脂層と第二熱可塑性樹脂層とが向かい合うように配置する工程と、
前記電池要素の正極要素を第一金属箔内側露出部に導通させるともに負極要素が第二金属箔内側露出部に導通させた状態で向かい合わせた第一外装材と第二外装材とを重ね、重ねることにより形成された電池要素室内に電池要素を配置する工程と、
前記電池要素が配置された電池要素室内に電解質を注入する工程と、
前記電池要素および電解質を入れた電池要素室の周囲の少なくとも第一金属箔内側露出部および第二金属箔内側露出部に電気的に導通する第一金属箔外側露出部および/または第二金属箔外側露出部との間において、第一外装材と第二外装材との間に伝熱体を挟んだ状態で熱封止する工程と、
を含むことを含むことを特徴とするラミネート型蓄電モジュールの製造方法。
A method of manufacturing a laminate-type electricity storage module in which a battery element having a positive electrode element, a negative electrode element, and a separator arranged between them is enclosed in an outer package made of a first outer package and a second outer package,
The first exterior material, the first heat-resistant resin layer is laminated on one surface of the first metal foil, the first thermoplastic resin layer is laminated on the other surface, on the surface of the first thermoplastic resin layer side. The first metal foil has an exposed portion inside which the first metal foil is exposed, and the second exterior material has a second thermoplastic resin layer laminated on one surface of the second metal foil and a second thermoplastic resin on the other surface. A resin layer is laminated, and has a second metal foil inner exposed portion where the second metal foil is exposed on the surface on the side of the second thermoplastic resin layer, and further at least one of the first exterior material and the second exterior material, The outer surface of the exterior body has a first metal foil outer exposed portion where the first metal foil is exposed and / or a second metal foil outer exposed portion where the second metal foil is exposed,
A step of pre-Symbol disposed a first outer package and a second outer package such that the first thermoplastic resin layer and the second thermoplastic resin layer face each other,
Overlapping a first exterior member and the second exterior member that face each other in a state where both the anode element to the cathode elements are electrically connected to the first metal foil inner exposed portion of the battery element is made conductive to the second metal foil inner exposed portion , Arranging the battery element in the battery element chamber formed by stacking,
Injecting an electrolyte into the battery element chamber in which the battery element is arranged,
A first metal foil outer exposed portion and / or a second metal foil electrically connected to at least the first metal foil inner exposed portion and the second metal foil inner exposed portion around the battery element chamber containing the battery element and the electrolyte. Between the outer exposed portion, a step of heat sealing with the heat transfer body sandwiched between the first exterior material and the second exterior material,
A method of manufacturing a laminate type electricity storage module, comprising:
2個以上の、請求項1〜のうちのいずれか1項に記載されたラミネート型蓄電モジュールを有し、それらのラミネート型蓄電モジュールが直列に連結されていることを特徴とする蓄電システム。 An electric storage system comprising two or more of the laminate type electric storage modules according to any one of claims 1 to 5 , and the laminate type electric storage modules being connected in series.
JP2015078157A 2015-04-07 2015-04-07 Laminated electricity storage module Active JP6697224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015078157A JP6697224B2 (en) 2015-04-07 2015-04-07 Laminated electricity storage module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078157A JP6697224B2 (en) 2015-04-07 2015-04-07 Laminated electricity storage module

Publications (2)

Publication Number Publication Date
JP2016201172A JP2016201172A (en) 2016-12-01
JP6697224B2 true JP6697224B2 (en) 2020-05-20

Family

ID=57424352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078157A Active JP6697224B2 (en) 2015-04-07 2015-04-07 Laminated electricity storage module

Country Status (1)

Country Link
JP (1) JP6697224B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6661459B2 (en) * 2016-04-28 2020-03-11 昭和電工パッケージング株式会社 Outer body for power storage device
CN110165133A (en) * 2019-05-28 2019-08-23 华为技术有限公司 A kind of battery and battery pack
JP2021111481A (en) * 2020-01-08 2021-08-02 信越ポリマー株式会社 Heat conductor and battery including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5450981B2 (en) * 2008-05-16 2014-03-26 Necエナジーデバイス株式会社 Single battery and battery pack
JP2013161674A (en) * 2012-02-06 2013-08-19 Sumitomo Electric Ind Ltd Laminate case for electrochemical element, battery, capacitor, and electrochemical element set
US9178200B2 (en) * 2012-05-18 2015-11-03 24M Technologies, Inc. Electrochemical cells and methods of manufacturing the same

Also Published As

Publication number Publication date
JP2016201172A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6611455B2 (en) Assembled battery
CN105374959B (en) Thin power storage device and method for manufacturing same
JP6487712B2 (en) Power storage device
JP4828458B2 (en) Secondary battery with improved sealing safety
JP4135473B2 (en) Bipolar battery
JP5382130B2 (en) Method for producing solid electrolyte battery
JP4211769B2 (en) Automotive battery
US20120231313A1 (en) Prismatic cell with integrated cooling plate
JP4661020B2 (en) Bipolar lithium ion secondary battery
WO2007105541A1 (en) Electric device with outer film cover
JP6649026B2 (en) Power storage device
JP2014026980A (en) Electrochemical device
JP2016207542A (en) Outer housing for electricity storage device and electricity storage device
US20190348644A1 (en) High power battery and battery case
JP5286730B2 (en) Flat electrochemical cell
JP4042613B2 (en) Bipolar battery
JP6697224B2 (en) Laminated electricity storage module
JP4304715B2 (en) How to install the battery pack
JP2012209126A (en) Thin-film primary battery
CN107591555B (en) Secondary battery
JP4186260B2 (en) Thin battery
JP6697227B2 (en) Power storage device
JP6637675B2 (en) Storage module and battery pack
CN111768981A (en) Flexible ionic liquid super capacitor
JP7343413B2 (en) battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200424

R150 Certificate of patent or registration of utility model

Ref document number: 6697224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250