JP6695065B1 - Film formation method - Google Patents

Film formation method Download PDF

Info

Publication number
JP6695065B1
JP6695065B1 JP2019190200A JP2019190200A JP6695065B1 JP 6695065 B1 JP6695065 B1 JP 6695065B1 JP 2019190200 A JP2019190200 A JP 2019190200A JP 2019190200 A JP2019190200 A JP 2019190200A JP 6695065 B1 JP6695065 B1 JP 6695065B1
Authority
JP
Japan
Prior art keywords
zinc
film
coating
powder
zinc alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019190200A
Other languages
Japanese (ja)
Other versions
JP2021063283A (en
Inventor
弘朗 鈴木
弘朗 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SUZUKI COMPANY
Original Assignee
JAPAN SUZUKI COMPANY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70682334&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6695065(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JAPAN SUZUKI COMPANY filed Critical JAPAN SUZUKI COMPANY
Priority to JP2019190200A priority Critical patent/JP6695065B1/en
Application granted granted Critical
Publication of JP6695065B1 publication Critical patent/JP6695065B1/en
Priority to PCT/JP2020/036912 priority patent/WO2021075255A1/en
Priority to CN202080072437.XA priority patent/CN114555244A/en
Publication of JP2021063283A publication Critical patent/JP2021063283A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/544No clear coat specified the first layer is let to dry at least partially before applying the second layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C20/00Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
    • C23C20/06Coating with inorganic material, other than metallic material
    • C23C20/08Coating with inorganic material, other than metallic material with compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/65Adding a layer before coating metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2518/00Other type of polymers
    • B05D2518/10Silicon-containing polymers
    • B05D2518/12Ceramic precursors (polysiloxanes, polysilazanes)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2601/00Inorganic fillers
    • B05D2601/20Inorganic fillers used for non-pigmentation effect
    • B05D2601/22Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】部材表面の耐食性を向上させること。【解決手段】亜鉛粉または亜鉛合金粉とショット球とを部材の表面に衝突させることで、前記亜鉛粉または前記亜鉛合金粉が潰れ互いに接合し、前記部材の表面に亜鉛皮膜または亜鉛合金皮膜を形成する工程と、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にオルガノシロキサン、アルコキシシランオリゴマーまたはコロイダルシリカを含む溶液を塗布し乾燥させる第1工程と、前記第1工程の後、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にオルガノシロキサン、アルコキシシランオリゴマーまたはコロイダルシリカを含む溶液を塗布し乾燥させる第2工程と、を含む皮膜形成方法。【選択図】図1PROBLEM TO BE SOLVED: To improve the corrosion resistance of a member surface. SOLUTION: The zinc powder or the zinc alloy powder and a shot ball are made to collide with the surface of the member, so that the zinc powder or the zinc alloy powder is crushed and bonded to each other, and a zinc film or a zinc alloy film is formed on the surface of the member. A step of forming, a first step of applying a solution containing organosiloxane, an alkoxysilane oligomer or colloidal silica to the surface of the zinc coating or the zinc alloy coating and drying, and a zinc coating or the above after the first step A second step of applying a solution containing an organosiloxane, an alkoxysilane oligomer or colloidal silica to the surface of the zinc alloy film and drying the solution, the film forming method. [Selection diagram] Figure 1

Description

本発明は、皮膜形成方法に関し、例えば亜鉛皮膜または亜鉛合金皮膜を形成する工程を有する皮膜形成方法に関する。   The present invention relates to a film forming method, for example, a film forming method having a step of forming a zinc film or a zinc alloy film.

亜鉛皮膜や亜鉛合金皮膜等の金属表面にシリカ皮膜を設けることで錆等の腐食を抑制することが知られている(例えば特許文献1から4)。アルコキシシランオリゴマーを含むアルコール溶液を用いシリカ皮膜を形成することが知られている(例えば特許文献1)。水性コロイダルシリカを含む水性溶液を用いシリカ皮膜を形成することが知られている(例えば特許文献2)。亜鉛または亜鉛合金の電気メッキ膜に亜鉛、アルミニウムおよびシリカ化合物の混合皮膜を焼き付け塗装し、ポリオルガノシロキサン薄膜を焼成処理しシリカ皮膜を形成することが知られている(例えば特許文献3)。珪酸アルカリ金属塩溶液で処理後、シリカ皮膜を形成することが知られている(例えば特許文献4)。   It is known to prevent corrosion such as rust by providing a silica film on a metal surface such as a zinc film or a zinc alloy film (for example, Patent Documents 1 to 4). It is known to form a silica film using an alcohol solution containing an alkoxysilane oligomer (for example, Patent Document 1). It is known to form a silica film using an aqueous solution containing aqueous colloidal silica (for example, Patent Document 2). It is known that an electroplated film of zinc or a zinc alloy is baked and coated with a mixed film of zinc, aluminum and a silica compound, and a polyorganosiloxane thin film is baked to form a silica film (for example, Patent Document 3). It is known to form a silica film after treatment with an alkali metal silicate solution (for example, Patent Document 4).

特許第4128969号公報Japanese Patent No. 4128969 特許第5364390号公報Patent No. 5364390 特許第5840278号公報Japanese Patent No. 5840278 特許第6347531号公報Japanese Patent No. 6347531

特許文献1から4の方法では、クロムを用いずに耐食性を向上できる。しかしながら、特許文献1から4の方法では十分な耐食性が得られない場合がある。   The methods of Patent Documents 1 to 4 can improve the corrosion resistance without using chromium. However, sufficient corrosion resistance may not be obtained by the methods of Patent Documents 1 to 4.

本発明は、上記課題に鑑みなされたものであり、部材表面の耐食性を向上させることを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to improve the corrosion resistance of a member surface.

本発明は、亜鉛粉または亜鉛合金粉とショット球とを部材の表面に衝突させることで、前記亜鉛粉または前記亜鉛合金粉が潰れ互いに接合し、前記部材の表面に亜鉛皮膜または亜鉛合金皮膜を形成する工程と、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にオルガノシロキサン、アルコキシシランオリゴマーまたはコロイダルシリカを含む溶液を塗布し乾燥させる第1工程と、前記第1工程の後、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にオルガノシロキサン、アルコキシシランオリゴマーまたはコロイダルシリカを含む溶液を塗布し乾燥させる第2工程と、を含む皮膜形成方法である。   The present invention, by colliding the zinc powder or zinc alloy powder and the shot ball on the surface of the member, the zinc powder or the zinc alloy powder is crushed and bonded to each other, a zinc film or a zinc alloy film on the surface of the member. A step of forming, a first step of applying a solution containing organosiloxane, an alkoxysilane oligomer or colloidal silica to the surface of the zinc coating or the zinc alloy coating and drying, and a zinc coating or the above after the first step A second step of applying a solution containing an organosiloxane, an alkoxysilane oligomer or colloidal silica on the surface of the zinc alloy film and drying the solution, which is a film forming method.

上記構成において、前記第1工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にテトラアルコキシシランを加水分解しかつ縮重合されたアルコキシシランオリゴマーを含む有機溶液を塗布し乾燥させる工程、または、前記亜鉛皮膜または前記亜鉛合金皮膜の表面に水性コロイダルシリカとアルコールおよび水の混合溶媒とを含む水性溶液を塗布し乾燥させる工程を含み、前記第2工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にテトラアルコキシシランを加水分解しかつ縮重合されたアルコキシシランオリゴマーを含む有機溶液を塗布し乾燥させる工程、または、前記亜鉛皮膜または前記亜鉛合金皮膜の表面に水性コロイダルシリカとアルコールおよび水の混合溶媒とを含む水性溶液を塗布し乾燥させる工程を含む構成とすることができる。   In the above configuration, the first step is a step of applying an organic solution containing an alkoxysilane oligomer hydrolyzed and condensation-polymerized tetraalkoxysilane to the surface of the zinc coating or the zinc alloy coating, or The step of applying an aqueous solution containing an aqueous colloidal silica, a mixed solvent of alcohol and water to the surface of the zinc coating or the zinc alloy coating and drying, and the second step, the surface of the zinc coating or the zinc alloy coating A step of applying an organic solution containing an alkoxysilane oligomer hydrolyzed and polycondensed with tetraalkoxysilane and drying, or a mixed solvent of aqueous colloidal silica and alcohol and water on the surface of the zinc film or the zinc alloy film. It can be configured to include a step of applying and drying an aqueous solution containing and.

上記構成において、前記第1工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面に水性コロイダルシリカとアルコールおよび水の混合溶媒とを含む水性溶液を塗布し乾燥させる工程を含み、前記第2工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にテトラアルコキシシランを加水分解しかつ縮重合されたアルコキシシランオリゴマーを含む有機溶液を塗布し乾燥させる工程を含む構成とすることができる。   In the above configuration, the first step includes a step of applying an aqueous solution containing aqueous colloidal silica, a mixed solvent of alcohol and water to the surface of the zinc coating or the zinc alloy coating, and drying, and the second step. The process may include a step of applying an organic solution containing an alkoxysilane oligomer hydrolyzed and polycondensed with a tetraalkoxysilane to the surface of the zinc film or the zinc alloy film and drying the solution.

上記構成において、前記第1工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にテトラアルコキシシランを加水分解しかつ縮重合されたアルコキシシランオリゴマーを含む有機溶液を塗布し乾燥させる工程を含み、前記第2工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面に水性コロイダルシリカとアルコールおよび水の混合溶媒とを含む水性溶液を塗布し乾燥させる工程を含む構成とすることができる。   In the above configuration, the first step includes a step of applying an organic solution containing an alkoxysilane oligomer hydrolyzed and polycondensed tetraalkoxysilane to the surface of the zinc film or the zinc alloy film, and drying the solution. The second step can be configured to include a step of applying an aqueous solution containing aqueous colloidal silica and a mixed solvent of alcohol and water to the surface of the zinc coating or the zinc alloy coating and drying the coating.

上記構成において、前記亜鉛粉または前記亜鉛合金粉は、亜鉛、マグネシウムおよびアルミニウムを含む構成とすることができる。   In the above structure, the zinc powder or the zinc alloy powder may contain zinc, magnesium and aluminum.

上記構成において、前記亜鉛粉または前記亜鉛合金粉の平均粒径は150μm以下である構成とすることができる。   In the above structure, the zinc powder or the zinc alloy powder may have an average particle size of 150 μm or less.

上記構成において、前記部材は金属部材である構成とすることができる。   In the above structure, the member may be a metal member.

上記構成において、前記金属部材の表面は、鉄または鉄合金である構成とすることができる。   In the above configuration, the surface of the metal member may be iron or iron alloy.

上記構成において、前記アルコキシシランオリゴマーの重量平均分子量は1000から10000である構成とすることができる。   In the above structure, the weight average molecular weight of the alkoxysilane oligomer may be 1,000 to 10,000.

本発明によれば、金属表面の耐食性を向上させることができる。   According to the present invention, the corrosion resistance of the metal surface can be improved.

図1は、実施形態1に係る皮膜形成方法を示すフローチャートである。FIG. 1 is a flowchart showing a film forming method according to the first embodiment. 図2(a)から図2(d)は実施形態1に係る皮膜形成方法を示す断面模式図である。FIG. 2A to FIG. 2D are schematic cross-sectional views showing the film forming method according to the first embodiment.

特許文献1から4のように、金属部材等の部材の表面に亜鉛皮膜または亜鉛合金皮膜等の金属皮膜を形成し、金属皮膜の表面にシリカ皮膜を形成することで、錆等の腐食が抑制できる。特に、特許文献4のように、金属皮膜の表面を珪酸アルカリ金属塩溶液で処理後、シリカ皮膜を形成すると、防錆性が向上する。しかしながら、防錆性等の耐腐食性は十分ではない。例えば部材を曲げるまたはカシメを行う等変形させると、金属皮膜および/またはシリカ皮膜が剥がれてしまう。これにより、防錆性等の耐食性が低下する。   As in Patent Documents 1 to 4, by forming a metal film such as a zinc film or a zinc alloy film on the surface of a member such as a metal member and forming a silica film on the surface of the metal film, corrosion such as rust is suppressed. it can. Particularly, as in Patent Document 4, when the surface of the metal film is treated with the alkali metal silicate solution and then the silica film is formed, the rust prevention property is improved. However, corrosion resistance such as rust prevention is not sufficient. For example, when the member is deformed such as bent or crimped, the metal film and / or the silica film is peeled off. As a result, corrosion resistance such as rust prevention is reduced.

部材の変形に強い皮膜として、ショットピーニング法等を用い亜鉛粉または亜鉛合金粉等の粉体を部材に衝突させることにより、粉体が潰れ互いに接合することで金属皮膜を形成する方法が考えられる。この方法では部材と金属皮膜との密着力が強い。このため部材を変形しても金属皮膜が剥がれにくい。一方で、ショットピーニング法を用い形成した金属皮膜では粉体の接合界面に隙間が生じている場合がある。これにより、耐食性が劣化する。そこで、特許文献1から4のように金属皮膜上にシリカ皮膜を形成することが考えられる。しかしながら、ショットピーニング法を用い形成した金属皮膜上にシリカ皮膜を形成しても耐食性はあまり向上しない。以下、このような課題を解決する実施形態について説明する。   As a film resistant to deformation of a member, a method of forming a metal film by colliding powders with each other by colliding powders such as zinc powder or zinc alloy powder with a member by using a shot peening method or the like is conceivable. .. In this method, the adhesion between the member and the metal film is strong. Therefore, even if the member is deformed, the metal coating does not easily come off. On the other hand, in the metal film formed by the shot peening method, a gap may be formed at the bonding interface of the powder. This deteriorates the corrosion resistance. Therefore, it is conceivable to form a silica film on the metal film as in Patent Documents 1 to 4. However, even if the silica film is formed on the metal film formed by the shot peening method, the corrosion resistance is not improved so much. Hereinafter, an embodiment for solving such a problem will be described.

[実施形態1]
図1は、実施形態1に係る皮膜形成方法を示すフローチャートである。図2(a)から図2(d)は実施形態1に係る皮膜形成方法を示す断面模式図である。図1および図2(a)に示すように、金属部材10を準備する(ステップS10)。金属部材10は、例えば鉄(Fe)または鉄合金であり、例えばボルト、ナット、鉄筋またはカシメに用いられる部材である。鉄合金は、鉄を50重量%以上含む。金属部材10は鉄または鉄合金以外の部材でもよく、例えば銅、アルミニウムまたはこれらの合金等の金属材料または硬めの樹脂でもよい。
[Embodiment 1]
FIG. 1 is a flowchart showing a film forming method according to the first embodiment. FIG. 2A to FIG. 2D are schematic cross-sectional views showing the film forming method according to the first embodiment. As shown in FIGS. 1 and 2A, a metal member 10 is prepared (step S10). The metal member 10 is, for example, iron (Fe) or an iron alloy, and is a member used for, for example, bolts, nuts, reinforcing bars, or caulking. The iron alloy contains 50% by weight or more of iron. The metal member 10 may be a member other than iron or an iron alloy, for example, a metal material such as copper, aluminum, or an alloy thereof, or a hard resin.

図1および図2(b)に示すように、ショットピーニング法を用い金属部材10上に金属皮膜14を形成する(ステップS12)。常温において金属部材10の表面にショット球11と粉体12を投射する。ショット球11は粉体12より硬い金属または絶縁体であり、例えばステンレスである。ショット球11は例えば球形であり、ショット球11の平均粒径は例えば10μm以上かつ150μm以下であり、例えば100μm以下である。粉体12は、例えば亜鉛粉または亜鉛合金粉である。亜鉛粉は亜鉛(Zn)以外の元素を意図的に含まない。亜鉛合金粉は、例えば亜鉛を50重量%以上含み、アルミニウム(Al)、マグネシウム(Mg)およびニッケル(Ni)の少なくとも1つの元素を含む。粉体12の例としては、例えば亜鉛を50重量%以上含み、アルミニウムおよびマグネシウムを含む亜鉛合金である。亜鉛合金は亜鉛を70重量%以上含むことが好ましい。粉体12は例えば球形であり、粉体12の粒径は例えば10μm以上かつ150μm以下であり、例えば100μm以下である。例えば、粉体12とショット球11とをバレル内に投入しバレルを回転させることで、バレル内に配置した金属部材に粉体12とショット球11とが高速に投射される。   As shown in FIGS. 1 and 2B, the metal coating 14 is formed on the metal member 10 by using the shot peening method (step S12). The shot ball 11 and the powder 12 are projected onto the surface of the metal member 10 at room temperature. The shot sphere 11 is a metal or an insulator that is harder than the powder 12 and is, for example, stainless steel. The shot sphere 11 is, for example, spherical, and the average particle diameter of the shot sphere 11 is, for example, 10 μm or more and 150 μm or less, for example, 100 μm or less. The powder 12 is, for example, zinc powder or zinc alloy powder. Zinc powder intentionally does not contain elements other than zinc (Zn). The zinc alloy powder contains, for example, 50% by weight or more of zinc and contains at least one element of aluminum (Al), magnesium (Mg) and nickel (Ni). An example of the powder 12 is a zinc alloy containing 50% by weight or more of zinc and aluminum and magnesium. The zinc alloy preferably contains 70% by weight or more of zinc. The powder 12 is, for example, spherical, and the particle size of the powder 12 is, for example, 10 μm or more and 150 μm or less, for example, 100 μm or less. For example, by pouring the powder 12 and the shot ball 11 into the barrel and rotating the barrel, the powder 12 and the shot ball 11 are projected at high speed on the metal member arranged in the barrel.

図2(c)に示すように、ショット球11および粉体12が金属部材10の表面に衝突すると、粉体12の運動エネルギー、またはショット球11および粉体12の運動エネルギーにより、粉体12が潰れる。潰れた粉体13は金属部材10の表面に凝着する。複数の潰れた粉体13は互いに接合する。これにより、潰れた粉体13が接合した金属皮膜14となる。金属皮膜14には、潰れた粉体13の接合した界面16が存在する。また、金属皮膜14の上面はショット球11が衝突するため、凹凸が大きくなる。粉体12が亜鉛粉のとき、金属皮膜14は亜鉛皮膜となり、粉体12が亜鉛合金粉のとき、金属皮膜14は亜鉛合金皮膜となる。金属皮膜14の厚さは例えば1μm以上かつ10μm以下であり、例えば2μm以上かつ5μm以下である。ショット球11および粉体12を金属部材10に打ち付けるエネルギーとしては、バレルを用いた遠心力または空気圧等の熱以外のエネルギーを主に用いる。   As shown in FIG. 2C, when the shot sphere 11 and the powder 12 collide with the surface of the metal member 10, the kinetic energy of the powder 12 or the kinetic energy of the shot sphere 11 and the powder 12 causes the powder 12 to move. Is crushed. The crushed powder 13 adheres to the surface of the metal member 10. The plurality of crushed powders 13 are bonded to each other. As a result, the crushed powder 13 becomes the metal film 14 bonded to the metal film 14. The metal film 14 has an interface 16 to which the crushed powder 13 is bonded. Further, since the shot ball 11 collides with the upper surface of the metal film 14, the unevenness becomes large. When the powder 12 is zinc powder, the metal coating 14 is a zinc coating, and when the powder 12 is zinc alloy powder, the metal coating 14 is a zinc alloy coating. The thickness of the metal film 14 is, for example, 1 μm or more and 10 μm or less, for example, 2 μm or more and 5 μm or less. As the energy for hitting the shot sphere 11 and the powder 12 to the metal member 10, energy other than heat such as centrifugal force using a barrel or air pressure is mainly used.

このように形成した金属皮膜14は、ショット球11が粉体13に衝突するため金属部材10との密着性がよく、金属部材10を曲げまたはカシメを行っても金属皮膜14が剥がれにくい。ピーニング効果により、金属部材10の機械的特性が向上する。常温で処理するため熱応力等の問題が生じにくい。また、めっき処理または酸処理を行わないため、残存する水素に起因する水素脆性による劣化の問題が生じにくい。   The metal film 14 thus formed has good adhesion to the metal member 10 because the shot sphere 11 collides with the powder 13, and the metal film 14 is unlikely to peel off even if the metal member 10 is bent or crimped. The mechanical characteristics of the metal member 10 are improved by the peening effect. Since it is processed at room temperature, problems such as thermal stress are unlikely to occur. Further, since the plating treatment or the acid treatment is not performed, the problem of deterioration due to hydrogen embrittlement due to residual hydrogen is unlikely to occur.

図1のように、金属皮膜14にシリカ皮膜形成用溶液を塗布する(ステップS14)。シリカ皮膜形成用溶液は、オルガノシロキサンを含む有機溶液、アルコキシシランオリゴマーを含む有機溶液、または水性コロイダルシリカを含む水性溶液である。   As shown in FIG. 1, the silica coating forming solution is applied to the metal coating 14 (step S14). The silica film forming solution is an organic solution containing an organosiloxane, an organic solution containing an alkoxysilane oligomer, or an aqueous solution containing aqueous colloidal silica.

オルガノシロキサンを含む有機溶液またはアルコキシシランオリゴマーを含む有機溶液は、例えば特許文献1のようなアルコキシシランオリゴマーのアルコール溶液である。アルコキシシランオリゴマーは、例えばテトラアルコキシシランを加水分解しかつ縮重合された重量平均分子量が1000から10000である。有機溶剤中の濃度はシリカ成分に換算して例えば8重量%から25重量%である。有機溶剤は、メタノール、エタノールおよび/またはイソプロピルアルコール等のアルコールを含む。有機溶剤は、プロピレンフリコールモノメチルエーテルおよび/またはエチレングリコールモノブチルエーテル等のエーテルを含んでもよい。有機溶剤は、テトラエトキシシタンおよび/またはトリエトキシビニルシラン等のシランカップリング剤を含んでもよい。さらに有機溶剤は、酸化チタン粉末および/または有機溶剤に可溶性の樹脂を含んでもよい。   The organic solution containing an organosiloxane or the organic solution containing an alkoxysilane oligomer is, for example, an alcohol solution of an alkoxysilane oligomer as disclosed in Patent Document 1. The alkoxysilane oligomer has a weight average molecular weight of 1,000 to 10,000 obtained by, for example, hydrolyzing and polycondensing tetraalkoxysilane. The concentration in the organic solvent is, for example, 8 wt% to 25 wt% in terms of silica component. Organic solvents include alcohols such as methanol, ethanol and / or isopropyl alcohol. The organic solvent may include ethers such as propylene flicol monomethyl ether and / or ethylene glycol monobutyl ether. The organic solvent may include a silane coupling agent such as tetraethoxycytan and / or triethoxyvinylsilane. Further, the organic solvent may include titanium oxide powder and / or a resin soluble in the organic solvent.

水性コロイダルシリカを含む水性溶液は、例えば特許文献2のような水性コロイダルシリカと、アルコールと水の混合溶媒とを含む水性溶液である。水性コロイダルシリカは、例えば酸性で安定である。混合溶媒中には例えば3重量%から40重量%のアルコールを含む。アルコールは、例えばメタノール、エタノールおよび/またはイソプロピルアルコールである。水性溶液はシランカップリング剤、チタンキレート化合物、および/または水性溶液に可溶性の樹脂を含んでもよい。   The aqueous solution containing the aqueous colloidal silica is an aqueous solution containing the aqueous colloidal silica as disclosed in Patent Document 2 and a mixed solvent of alcohol and water. Aqueous colloidal silica is acidic and stable, for example. The mixed solvent contains, for example, 3% by weight to 40% by weight of alcohol. The alcohol is, for example, methanol, ethanol and / or isopropyl alcohol. The aqueous solution may include a silane coupling agent, a titanium chelate compound, and / or a resin soluble in the aqueous solution.

シリカ皮膜形成用溶液の塗布は、例えば溶液に浸漬した後引き上げる方法、浸漬しその後スピン法を用い残液を振り切る方法、または溶液をスプレーする方法等を用いる。シリカ皮膜形成用溶液を塗布する前に前処理を行ってもよい。例えば金属皮膜14の表面に珪酸アルカリ金属塩溶液を塗布し乾燥させてもよい。   The silica film forming solution is applied by, for example, a method of immersing in the solution and then pulling it up, a method of immersing and then spinning off the residual liquid using a spin method, a method of spraying the solution, or the like. Pretreatment may be performed before applying the silica film forming solution. For example, the surface of the metal film 14 may be coated with an alkali metal silicate solution and dried.

塗布したシリカ皮膜形成用溶液を乾燥させる(ステップS16)。乾燥は、例えば雰囲気炉または大気炉または温風乾燥炉において80℃から150℃の温度で10分から30分程度行う。   The applied silica film forming solution is dried (step S16). The drying is performed, for example, in an atmosphere furnace, an air furnace, or a hot air drying furnace at a temperature of 80 to 150 ° C. for about 10 to 30 minutes.

次に、金属皮膜14にシリカ皮膜形成用溶液を再度塗布する(ステップS18)。シリカ皮膜形成用溶液および塗布方法は、ステップS14において例示した溶液および方法を用いる。塗布したシリカ皮膜形成用溶液を乾燥させる(ステップS20)。乾燥方法はステップS16において例示した方法を用いる。   Next, the silica coating forming solution is applied to the metal coating 14 again (step S18). As the solution for silica film formation and the coating method, the solution and method exemplified in step S14 are used. The applied silica film forming solution is dried (step S20). As the drying method, the method exemplified in step S16 is used.

図2(d)に示すように、金属皮膜14上にシリカ皮膜18が形成される。シリカ皮膜18の膜厚は例えば0.5μmから20μmであり、例えば1μmから2μmである。シリカ皮膜形成用溶液中のシリカまたはオリゴマーの大きさは例えば20nm以下であるが、シリカ皮膜18内のシリカ粒子の大きさは例えば100nmから2000nmである。シリカ粒子は2000nmより大きくてもよい。粉体13の接合界面16にシリカ17が浸透し接合界面16の隙間を塞ぐ。   As shown in FIG. 2D, a silica film 18 is formed on the metal film 14. The film thickness of the silica film 18 is, for example, 0.5 μm to 20 μm, for example, 1 μm to 2 μm. The size of silica or oligomer in the solution for forming a silica film is, for example, 20 nm or less, while the size of silica particles in the silica film 18 is, for example, 100 nm to 2000 nm. The silica particles may be larger than 2000 nm. Silica 17 permeates the bonding interface 16 of the powder 13 and closes the gap of the bonding interface 16.

金属皮膜14には亜鉛が含まれるため、金属皮膜14とシリカ皮膜18との密着性が向上する。金属皮膜14の厚さを2μmから5μm、シリカ皮膜18の厚さを1μmから2μmとすると、金属皮膜14とシリカ皮膜18との合計の厚さは3μmから5μmとなり、非常に薄い皮膜となる。   Since the metal film 14 contains zinc, the adhesion between the metal film 14 and the silica film 18 is improved. When the thickness of the metal coating 14 is 2 μm to 5 μm and the thickness of the silica coating 18 is 1 μm to 2 μm, the total thickness of the metal coating 14 and the silica coating 18 is 3 μm to 5 μm, which is a very thin coating.

実施形態1では、溶液を塗布し乾燥する工程を2回行う。これにより、耐食性が向上する。これは、ステップS14の工程で金属皮膜14内の粉体13の界面16にシリカ皮膜形成用溶液が浸透する。ステップS16において界面16内にシリカ17が形成され、界面16の隙間が塞がれる。これにより、金属皮膜14は空気に曝されない状態となる。ステップS18およびS20において、界面16の隙間が塞がれた状態で金属皮膜14上にさらにシリカ皮膜を形成する。これにより界面16の隙間が完全に塞がれているため、実施形態1より耐食性がより向上すると考えられる。   In the first embodiment, the step of applying the solution and drying is performed twice. This improves the corrosion resistance. This is because the silica film forming solution penetrates into the interface 16 of the powder 13 in the metal film 14 in the step S14. In step S16, silica 17 is formed in the interface 16 and the gap of the interface 16 is closed. As a result, the metal film 14 is not exposed to the air. In steps S18 and S20, a silica film is further formed on the metal film 14 with the gap at the interface 16 closed. As a result, the gap of the interface 16 is completely closed, and it is considered that the corrosion resistance is further improved as compared with the first embodiment.

実施例および比較例として、以下の実験を行った。
[比較例1]
図1のステップS10および図2(a)の金属部材10としてリベット状の炭素鋼(SWCH10R)を20個準備した。
The following experiments were conducted as examples and comparative examples.
[Comparative Example 1]
20 pieces of rivet-shaped carbon steel (SWCH10R) were prepared as the metal member 10 of step S10 of FIG. 1 and FIG. 2 (a).

図1のステップS12および図2(b)において、ショット球11を直径が約100μmの球形のステンレス球、粉体12を直径が約100μmの球形の亜鉛合金粉とした。亜鉛合金粉は、亜鉛、アルミニウムおよびマグネシウムからなる合金であり50重量%以上の亜鉛を含む。金属皮膜14の厚さは2μmから3μmである。ステップS14からS20は行っていない。   In step S12 of FIG. 1 and FIG. 2B, the shot sphere 11 is a spherical stainless sphere having a diameter of about 100 μm, and the powder 12 is a spherical zinc alloy powder having a diameter of about 100 μm. The zinc alloy powder is an alloy composed of zinc, aluminum and magnesium, and contains 50% by weight or more of zinc. The thickness of the metal coating 14 is 2 μm to 3 μm. Steps S14 to S20 are not performed.

[比較例2]
ステップS10およびS12は、比較例1と同じである。
[Comparative example 2]
Steps S10 and S12 are the same as in Comparative Example 1.

ステップS14として、テトラアルコキシシランを加水分解しかつ縮重合された重量平均分子量が1000から10000であるアルコキシシランオリゴマーを含む有機溶液を塗布した。塗布条件は以下である。
溶液P:株式会社放電精密加工研究所製ZEC−Premium
主に、珪素化合物、チタン化合物、イソプロピルアルコール、シランカップリング剤および樹脂が含まれている。
塗布方法:溶液に浸漬
溶液温度:常温
In step S14, an organic solution containing an alkoxysilane oligomer having a weight average molecular weight of 1,000 to 10,000 obtained by hydrolyzing and polycondensing tetraalkoxysilane was applied. The coating conditions are as follows.
Solution P: ZEC-Premium manufactured by Electric Discharge Precision Processing Laboratory Co., Ltd.
It mainly contains a silicon compound, a titanium compound, isopropyl alcohol, a silane coupling agent and a resin.
Application method: dipping in solution Solution temperature: normal temperature

ステップS16として、塗布した溶液を乾燥させた。条件は以下である。
乾燥温度:120℃
乾燥時間:15分
ステップS18およびS20は行っていない。
As step S16, the applied solution was dried. The conditions are as follows.
Drying temperature: 120 ℃
Drying time: 15 minutes Steps S18 and S20 are not performed.

[比較例3]
ステップS10およびS12は、比較例1と同じである。
[Comparative Example 3]
Steps S10 and S12 are the same as in Comparative Example 1.

ステップS14として、水性コロイダルシリカとアルコールおよび水の混合溶媒とを含む水性溶液を塗布した。塗布条件は以下である。
溶液W:株式会社放電精密加工研究所製ZEC−W
主に、珪素化合物、チタン化合物、イソプロピルアルコール、シランカップリング剤、樹脂および水が含まれている。
塗布方法:溶液に浸漬
溶液温度:常温
As step S14, an aqueous solution containing aqueous colloidal silica and a mixed solvent of alcohol and water was applied. The coating conditions are as follows.
Solution W: ZEC-W manufactured by Electric Discharge Precision Processing Laboratory Co., Ltd.
It mainly contains a silicon compound, a titanium compound, isopropyl alcohol, a silane coupling agent, a resin and water.
Application method: dipping in solution Solution temperature: normal temperature

ステップS16として、塗布した溶液を乾燥させた。条件は以下である。
乾燥温度:100℃
乾燥時間:20分
ステップS18およびS20は行っていない。
As step S16, the applied solution was dried. The conditions are as follows.
Drying temperature: 100 ℃
Drying time: 20 minutes Steps S18 and S20 are not performed.

[実施例1]
ステップS10およびS12は比較例1と同じである。
ステップS14およびS16は比較例2と同じである。
ステップS18およびS20は比較例3のステップS14およびS16と同じである。
[Example 1]
Steps S10 and S12 are the same as in Comparative Example 1.
Steps S14 and S16 are the same as in Comparative Example 2.
Steps S18 and S20 are the same as steps S14 and S16 of Comparative Example 3.

[実施例2]
ステップS10およびS12は比較例1と同じである。
ステップS14およびS16は比較例3と同じである。
ステップS18およびS20は比較例2のステップS14およびS16と同じである。
[Example 2]
Steps S10 and S12 are the same as in Comparative Example 1.
Steps S14 and S16 are the same as in Comparative Example 3.
Steps S18 and S20 are the same as steps S14 and S16 of Comparative Example 2.

比較例1から3、実施例1および2のサンプルを各々20個用い、塩水噴霧試験を行った。塩水噴霧試験の条件は以下である。
JIS−Z2371に準拠
試験室温度:35±2℃
噴霧液:5%塩化ナトリウム溶液
噴霧量:1.5±0.5ml/時間
A salt spray test was conducted using 20 samples of each of Comparative Examples 1 to 3 and Examples 1 and 2. The conditions of the salt spray test are as follows.
Conforms to JIS-Z2371 Test chamber temperature: 35 ± 2 ° C
Spray liquid: 5% sodium chloride solution Spray amount: 1.5 ± 0.5 ml / hour

表1は、比較例1から3、実施例1および2の作製条件および塩水噴霧試験の結果をまとめた表である。表1において項目「S12」は金属皮膜14の有無を示す。項目「S14」および「S18」はそれぞれステップS14およびS18における溶液を示し、「W」は溶液Wを示し、「P」は溶液Pを示す。[−]は処理を行っていないことを示す。項目「錆発生時間」は、20個のサンプルの少なくとも1個に錆が発生し始めた時間を示す。項目「1000h後錆発生個数」は、塩水噴霧試験を1000時間行った後の錆の発生した個数を示す。項目「表」は20個のサンプルのうちサンプルの表側に錆が発生した個数を示し、項目「裏」は20個のサンプルのうちサンプルの裏側に錆が発生した個数を示す。   Table 1 is a table summarizing the preparation conditions of Comparative Examples 1 to 3 and Examples 1 and 2 and the results of the salt spray test. In Table 1, the item "S12" indicates the presence or absence of the metal film 14. Items "S14" and "S18" indicate solutions in steps S14 and S18, respectively, "W" indicates solution W, and "P" indicates solution P. [-] Indicates that no processing is performed. The item "rust occurrence time" indicates the time when rust started to occur in at least one of the 20 samples. The item "Number of rusts generated after 1000 hours" indicates the number of rusts generated after the salt spray test was performed for 1000 hours. The item "front" shows the number of rusts on the front side of the sample among the 20 samples, and the item "back" shows the number of rusts on the back side of the sample among the 20 samples.

Figure 0006695065
Figure 0006695065

表1に示すように、比較例1では、550時間後に錆が発生し始め、1000時間後には全てのサンプルに錆が発生している。比較例2では、600時間後に錆が発生し始め、1000時間後には表で13個、裏で18個に錆が発生している。比較例3では、520時間後に錆が発生し始め、1000時間後には全てのサンプルに錆が発生している。このように、1回のシリカ皮膜を形成した比較例2および3では、錆の発生は、シリカ皮膜を形成していない比較例1と同程度である。このように、金属皮膜14にシリカ皮膜を形成しても防食性が向上しない。   As shown in Table 1, in Comparative Example 1, rust started to be generated after 550 hours, and rust was generated in all the samples after 1000 hours. In Comparative Example 2, rust started to be generated after 600 hours, and after 1000 hours, rust was generated on 13 pieces on the front side and 18 pieces on the back side. In Comparative Example 3, rust started to be generated after 520 hours, and rust was generated in all the samples after 1000 hours. As described above, in Comparative Examples 2 and 3 in which the silica film was formed once, the rust was generated in the same degree as in Comparative Example 1 in which the silica film was not formed. Thus, even if the silica coating is formed on the metal coating 14, the anticorrosion property is not improved.

実施例1では、800時間後に錆が発生し始め、1000時間後には表で5個、裏で7個に錆が発生している。実施例2では、900時間後に錆が発生し始め、1000時間後には表で9個、裏で8個に錆が発生している。このように、1回のシリカ皮膜を形成した比較例2および3に比べ、2回シリカ皮膜を形成した実施例1および2では、錆の発生が抑制されている。   In Example 1, rust started to be generated after 800 hours, and after 1000 hours, rust was generated in 5 pieces on the front side and 7 pieces on the back side. In Example 2, rust started to be generated after 900 hours, and after 1000 hours, rust was generated on 9 pieces on the front side and 8 pieces on the back side. Thus, in Examples 1 and 2 in which the silica film was formed twice, the generation of rust was suppressed, as compared with Comparative Examples 2 and 3 in which the silica film was formed once.

実施形態1および実施例によれば、ステップS12のように、粉体12(亜鉛粉または亜鉛合金粉)とショット球11とを金属部材10の表面に衝突させることで、粉体12が潰れ互いに接合し、金属部材10の表面に金属皮膜14(亜鉛皮膜または亜鉛合金皮膜)を形成する。これにより、金属部材が変形しても皮膜が剥がれにくくなる。次に、ステップS14およびS16のように、第1工程として、金属皮膜14の表面にオルガノシロキサン、アルコキシシランオリゴマーまたはコロイダルシリカを含む溶液を塗布し乾燥させる。ステップS18およびS20のように、第1工程の後、第2工程として金属皮膜14の表面にオルガノシロキサン、アルコキシシランオリゴマーまたはコロイダルシリカを含む溶液を塗布し乾燥させる。   According to the first embodiment and the example, as in step S12, the powder 12 (zinc powder or zinc alloy powder) and the shot sphere 11 collide with the surface of the metal member 10, so that the powder 12 is crushed to each other. Bonding is performed to form a metal film 14 (zinc film or zinc alloy film) on the surface of the metal member 10. Thereby, even if the metal member is deformed, the film is less likely to peel off. Next, as in steps S14 and S16, as a first step, a solution containing an organosiloxane, an alkoxysilane oligomer or colloidal silica is applied to the surface of the metal film 14 and dried. As in steps S18 and S20, as a second step after the first step, a solution containing an organosiloxane, an alkoxysilane oligomer or colloidal silica is applied and dried on the surface of the metal film 14.

これにより、粉体12(亜鉛粉または亜鉛合金粉)を金属部材10の表面に衝突させることで形成した金属皮膜14において防食性を向上できる。   Thereby, the anticorrosion property can be improved in the metal film 14 formed by colliding the powder 12 (zinc powder or zinc alloy powder) with the surface of the metal member 10.

第1工程では、金属皮膜14の表面にテトラアルコキシシランを加水分解しかつ縮重合されたアルコキシシランオリゴマーを含む有機溶液(溶液P)を塗布し乾燥させる工程、または、金属皮膜14の表面に水性コロイダルシリカとアルコールおよび水の混合溶媒とを含む水性溶液(溶液W)を塗布し乾燥させる工程を行う。第2工程では、金属皮膜14の表面に溶液Pまたは溶液Wを塗布し乾燥させる工程を行う。これにより、防食性をより向上できる。   In the first step, a step of applying an organic solution (solution P) containing an alkoxysilane oligomer hydrolyzed and polycondensed with tetraalkoxysilane to the surface of the metal film 14 and drying it, or an aqueous solution is applied to the surface of the metal film 14. A step of applying and drying an aqueous solution (solution W) containing colloidal silica, a mixed solvent of alcohol and water is performed. In the second step, a step of applying the solution P or the solution W on the surface of the metal film 14 and drying it is performed. This can further improve the anticorrosion property.

実施例1のように、第1工程として溶液Pを用い、第2工程として溶液Wを用いてもよい。実施例2のように、第1工程として溶液Wを用い、第2工程として溶液Pを用いてもよい。   As in Example 1, the solution P may be used as the first step and the solution W may be used as the second step. As in Example 2, the solution W may be used as the first step and the solution P may be used as the second step.

金属皮膜14の形成には、粉体12とショット球11とを金属部材10の表面に衝突させることで、粉体12が潰れ互いに接合し、金属部材10の表面に金属皮膜14を形成することが好ましい。これにより、ショット球11の運動エネルギーにより粉体12が金属部材10に衝突するため、金属皮膜14と金属部材10との密着性をより向上できる。   To form the metal coating 14, the powder 12 and the shot balls 11 collide with the surface of the metal member 10 so that the powder 12 is crushed and bonded to each other to form the metal coating 14 on the surface of the metal member 10. Is preferred. As a result, the powder 12 collides with the metal member 10 due to the kinetic energy of the shot sphere 11, so that the adhesion between the metal film 14 and the metal member 10 can be further improved.

粉体12は、亜鉛、マグネシウムおよびアルミニウムを含むことが好ましい。これにより、金属皮膜14による耐食性を向上できる。粉体12の平均粒径は150μm以下であることが好ましい。これにより、金属皮膜14による耐食性を向上できる。金属皮膜14を形成する部材は金属部材以外の絶縁性部材等でもよいが金属部材は腐食しやすい。そこで、部材が金属部材のとき金属皮膜を形成し、かつ溶液処理を2回行うことが好ましい。金属部材10の表面は、鉄または鉄合金である。これにより、金属部材10の耐食性を向上できる。   The powder 12 preferably contains zinc, magnesium and aluminum. Thereby, the corrosion resistance of the metal film 14 can be improved. The average particle size of the powder 12 is preferably 150 μm or less. Thereby, the corrosion resistance of the metal film 14 can be improved. The member forming the metal film 14 may be an insulating member other than the metal member, but the metal member is easily corroded. Therefore, when the member is a metal member, it is preferable to form a metal film and perform the solution treatment twice. The surface of the metal member 10 is iron or iron alloy. Thereby, the corrosion resistance of the metal member 10 can be improved.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to these specific embodiments, and various modifications and alterations are possible within the scope of the gist of the present invention described in the claims. It can be changed.

10 金属部材
11 ショット球
12、13 粉体
14 金属皮膜
16 界面
17 シリカ
18 シリカ皮膜
10 Metal Member 11 Shot Sphere 12, 13 Powder 14 Metal Film 16 Interface 17 Silica 18 Silica Film

Claims (9)

亜鉛粉または亜鉛合金粉とショット球とを部材の表面に衝突させることで、前記亜鉛粉または前記亜鉛合金粉が潰れ互いに接合し、前記部材の表面に亜鉛皮膜または亜鉛合金皮膜を形成する工程と、
前記亜鉛皮膜または前記亜鉛合金皮膜の表面にオルガノシロキサン、アルコキシシランオリゴマーまたはコロイダルシリカを含む溶液を塗布し乾燥させる第1工程と、
前記第1工程の後、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にオルガノシロキサン、アルコキシシランオリゴマーまたはコロイダルシリカを含む溶液を塗布し乾燥させる第2工程と、
を含む皮膜形成方法。
By colliding the zinc powder or the zinc alloy powder and the shot ball on the surface of the member, the zinc powder or the zinc alloy powder is crushed and bonded to each other, and a zinc film or a zinc alloy film is formed on the surface of the member. ,
A first step of applying a solution containing an organosiloxane, an alkoxysilane oligomer or colloidal silica to the surface of the zinc coating or the zinc alloy coating and drying the coating;
A second step of applying a solution containing organosiloxane, an alkoxysilane oligomer or colloidal silica to the surface of the zinc coating or the zinc alloy coating after the first step and drying the coating;
A method for forming a coating film containing.
前記第1工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にテトラアルコキシシランを加水分解しかつ縮重合されたアルコキシシランオリゴマーを含む有機溶液を塗布し乾燥させる工程、または、前記亜鉛皮膜または前記亜鉛合金皮膜の表面に水性コロイダルシリカとアルコールおよび水の混合溶媒とを含む水性溶液を塗布し乾燥させる工程を含み、
前記第2工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にテトラアルコキシシランを加水分解しかつ縮重合されたアルコキシシランオリゴマーを含む有機溶液を塗布し乾燥させる工程、または、前記亜鉛皮膜または前記亜鉛合金皮膜の表面に水性コロイダルシリカとアルコールおよび水の混合溶媒とを含む水性溶液を塗布し乾燥させる工程を含む請求項1に記載の皮膜形成方法。
The first step is a step of applying an organic solution containing an alkoxysilane oligomer hydrolyzed and polycondensed with tetraalkoxysilane to the surface of the zinc coating or the zinc alloy coating, and drying the zinc coating or the zinc coating. Including a step of applying an aqueous solution containing an aqueous colloidal silica and a mixed solvent of alcohol and water on the surface of the zinc alloy coating and drying,
The second step is a step of applying an organic solution containing an alkoxysilane oligomer hydrolyzed and polycondensed with a tetraalkoxysilane to the surface of the zinc coating or the zinc alloy coating and drying the same, or the zinc coating or the The film forming method according to claim 1, comprising a step of applying an aqueous solution containing aqueous colloidal silica, a mixed solvent of alcohol and water onto the surface of the zinc alloy film and drying the applied solution.
前記第1工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面に水性コロイダルシリカとアルコールおよび水の混合溶媒とを含む水性溶液を塗布し乾燥させる工程を含み、
前記第2工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にテトラアルコキシシランを加水分解しかつ縮重合されたアルコキシシランオリゴマーを含む有機溶液を塗布し乾燥させる工程を含む請求項1に記載の皮膜形成方法。
The first step includes a step of applying an aqueous solution containing aqueous colloidal silica and a mixed solvent of alcohol and water to the surface of the zinc film or the zinc alloy film and drying the solution.
The said 2nd process includes the process of apply | coating the organic solution containing the alkoxysilane oligomer which hydrolyzed and polycondensed tetraalkoxysilane to the surface of the said zinc film or the said zinc alloy film, and was dried. Film formation method.
前記第1工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面にテトラアルコキシシランを加水分解しかつ縮重合されたアルコキシシランオリゴマーを含む有機溶液を塗布し乾燥させる工程を含み、
前記第2工程は、前記亜鉛皮膜または前記亜鉛合金皮膜の表面に水性コロイダルシリカとアルコールおよび水の混合溶媒とを含む水性溶液を塗布し乾燥させる工程を含む請求項1に記載の皮膜形成方法。
The first step includes a step of applying an organic solution containing an alkoxysilane oligomer hydrolyzed and polycondensed tetraalkoxysilane to the surface of the zinc film or the zinc alloy film, and drying the solution.
The film forming method according to claim 1, wherein the second step includes a step of applying an aqueous solution containing aqueous colloidal silica and a mixed solvent of alcohol and water to the surface of the zinc film or the zinc alloy film and drying the solution.
前記亜鉛粉または前記亜鉛合金粉は、亜鉛、マグネシウムおよびアルミニウムを含む請求項1から4のいずれか一項に記載の皮膜形成方法。   The film forming method according to claim 1, wherein the zinc powder or the zinc alloy powder contains zinc, magnesium, and aluminum. 前記亜鉛粉または前記亜鉛合金粉の平均粒径は150μm以下である請求項1から5のいずれか一項に記載の皮膜形成方法。   The coating film forming method according to claim 1, wherein the zinc powder or the zinc alloy powder has an average particle diameter of 150 μm or less. 前記部材は金属部材である請求項1から6のいずれか一項に記載の皮膜形成方法。   The film forming method according to claim 1, wherein the member is a metal member. 前記部材の表面は、鉄または鉄合金である請求項1から6のいずれか一項に記載の皮膜形成方法。   The film forming method according to any one of claims 1 to 6, wherein the surface of the member is iron or an iron alloy. 前記アルコキシシランオリゴマーの重量平均分子量は1000から10000である請求項2から4のいずれか一項に記載の皮膜形成方法。   The film formation method according to claim 2, wherein the alkoxysilane oligomer has a weight average molecular weight of 1,000 to 10,000.
JP2019190200A 2019-10-17 2019-10-17 Film formation method Active JP6695065B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019190200A JP6695065B1 (en) 2019-10-17 2019-10-17 Film formation method
PCT/JP2020/036912 WO2021075255A1 (en) 2019-10-17 2020-09-29 Method for forming coating film
CN202080072437.XA CN114555244A (en) 2019-10-17 2020-09-29 Method for forming coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190200A JP6695065B1 (en) 2019-10-17 2019-10-17 Film formation method

Publications (2)

Publication Number Publication Date
JP6695065B1 true JP6695065B1 (en) 2020-05-20
JP2021063283A JP2021063283A (en) 2021-04-22

Family

ID=70682334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190200A Active JP6695065B1 (en) 2019-10-17 2019-10-17 Film formation method

Country Status (3)

Country Link
JP (1) JP6695065B1 (en)
CN (1) CN114555244A (en)
WO (1) WO2021075255A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075255A1 (en) * 2019-10-17 2021-04-22 株式会社鈴木商店 Method for forming coating film

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119101A (en) * 1979-03-02 1980-09-12 Mitsui Mining & Smelting Co Ltd Zinc-aluminium alloy powder for mechanical plating
JPS57110601A (en) * 1980-12-29 1982-07-09 Mitsui Mining & Smelting Co Ltd Zinc alloy powder for mechanical plating
JPS5925032B2 (en) * 1981-03-06 1984-06-13 三井金属鉱業株式会社 Method of forming a corrosion-resistant film on metal surfaces
JPS6138870A (en) * 1984-07-30 1986-02-24 Dowa Teppun Kogyo Kk Continuous mechanical plating and mixture powder therefor
JP2950481B2 (en) * 1990-11-29 1999-09-20 株式会社日本ダクロシャムロック Metal surface treatment method
JP3184614B2 (en) * 1992-07-16 2001-07-09 三菱重工業株式会社 Corrosion protection coating method for steel
JP2003083376A (en) * 2001-09-07 2003-03-19 Mitsui Kinzoku Toryo Kagaku Kk Plate spring and manufacturing method thereof
JP2004256379A (en) * 2003-02-27 2004-09-16 Aichi Prefecture Shot coating method, shot material for shot coating, method for producing shot material for shot coating, and shot coating formed material
JP4128969B2 (en) * 2004-03-16 2008-07-30 株式会社放電精密加工研究所 Non-chromium surface treatment agent for galvanized products
JP4633477B2 (en) * 2005-01-07 2011-02-16 株式会社ケーヒン Aluminum-based film cast product and method for producing the same
JP4074320B2 (en) * 2005-01-24 2008-04-09 株式会社放電精密加工研究所 Non-chromium anticorrosion treatment method for metal member having zinc surface
JP5364390B2 (en) * 2009-02-02 2013-12-11 株式会社放電精密加工研究所 Non-chromium aqueous rust preventive surface treatment agent for metal parts with zinc surface
JP5754102B2 (en) * 2009-10-27 2015-07-22 Jfeスチール株式会社 Galvanized steel sheet
JP5680350B2 (en) * 2010-08-05 2015-03-04 比嘉 美代子 Anti-corrosion paint, article, nut and connector
DE102015211626A1 (en) * 2015-06-23 2017-01-19 Richard Bergner Verbindungstechnik Gmbh & Co. Kg Method for producing a connecting element and connecting element
JP6347531B1 (en) * 2017-09-08 2018-06-27 株式会社鈴木商店 Film formation method
JP6695065B1 (en) * 2019-10-17 2020-05-20 株式会社鈴木商店 Film formation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075255A1 (en) * 2019-10-17 2021-04-22 株式会社鈴木商店 Method for forming coating film

Also Published As

Publication number Publication date
JP2021063283A (en) 2021-04-22
WO2021075255A1 (en) 2021-04-22
CN114555244A (en) 2022-05-27

Similar Documents

Publication Publication Date Title
JP4651098B2 (en) Anticorrosion film using nano hollow particles made of silica shell and anticorrosion coating using nano hollow particles made of silica shell
JP6695065B1 (en) Film formation method
CN114182249B (en) Method for improving corrosion resistance of cold-sprayed double-layer coating
JP6923432B2 (en) Painted galvanized steel sheet
EP2821523A1 (en) Electromagnetic steel sheet with insulative coating, method for producing same, and coating agent for forming insulative coating
KR20110016750A (en) Surface treatment process for magnesium parts and magnesium parts treated by using the same
CN110564266B (en) Anticorrosive composite coating material with self-repairing function and coating preparation method
EP3146001B1 (en) Binder composition, method for producing a sacrificial protective coating against corrosion using said composition and a substrate coated with such a coating
WO2013056848A1 (en) Anti-scale and anti-corrosion coatings for steel substrates
JP2963272B2 (en) Projection material for mechanical plating and mechanical plating method using the same
Ko et al. Influence of oxide chemistry of feedstock on cold sprayed Cu coatings
JP4030427B2 (en) Case for electronic parts
WO2002042520A1 (en) Treating agent for metal surface and metallic material coated therewith
CN102492324A (en) Coating reinforcing agent, preparation method thereof and phosphate-metal aluminum powder coating using reinforcing agent
US8367162B2 (en) Pretreatment method for improving antioxidation of steel T91/P91 in high temperature water vapor
US6562289B1 (en) Method for improving the corrosion protection of permanent magnets containing rare earth metals
JP5079037B2 (en) Conductive pre-coated aluminum alloy plate for electrical or electronic equipment housing
JP7114914B2 (en) Anti-rust treated metal parts and coating paint
WO2024111661A1 (en) Film and film formation method
JP2019131844A5 (en)
JP2024076808A (en) Coating and coating formation method
JP2012082512A (en) Method for manufacturing hot-dip zinc-coated steel sheet showing black color, and method for manufacturing formed body of the hot-dip zinc-coated steel sheet showing black color
JP2005296789A (en) Method for coating surface of metallic material with high molecular polymer and metallic material coated with high molecular polymer
CN113913079B (en) Anti-corrosion protective layer for metal plate and preparation process thereof
CN117603617B (en) Surface activation treatment method for polytetrafluoroethylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200205

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200205

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200403

R150 Certificate of patent or registration of utility model

Ref document number: 6695065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250