JP6693350B2 - 複数の電池スタックの電圧均等化方法 - Google Patents

複数の電池スタックの電圧均等化方法 Download PDF

Info

Publication number
JP6693350B2
JP6693350B2 JP2016173756A JP2016173756A JP6693350B2 JP 6693350 B2 JP6693350 B2 JP 6693350B2 JP 2016173756 A JP2016173756 A JP 2016173756A JP 2016173756 A JP2016173756 A JP 2016173756A JP 6693350 B2 JP6693350 B2 JP 6693350B2
Authority
JP
Japan
Prior art keywords
battery
smr
voltage
relay
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016173756A
Other languages
English (en)
Other versions
JP2018042342A (ja
Inventor
勇二 西
勇二 西
宏昌 田中
宏昌 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016173756A priority Critical patent/JP6693350B2/ja
Publication of JP2018042342A publication Critical patent/JP2018042342A/ja
Application granted granted Critical
Publication of JP6693350B2 publication Critical patent/JP6693350B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本開示は、複数の電池スタックの電圧均等化方法に関する。
車両等に搭載される電源装置は、所定の高電圧及び大電流を出力するために、複数の電池スタックを直列及び並列接続して構成される。例えば、特許文献1には、電動機に対しSMR(System Main Relay)と呼ばれる電力用リレーを介して、複数の電池スタックが並列接続される例が示される。
電源装置が動作中は、各電池スタックが充放電しているので、各電池スタックの開放回路電圧(Open Circuit Voltage:OCV)が測定できない。電源装置が動作停止するとSMRが遮断されるので、各電池スタックの端子間電圧であるOCVが測定できる。そのときに各電池スタックの端子間電圧の間に電圧差が生じていることがあり、この状態のままで、電源装置を再起動すると、並列接続されている電池スタック間の電圧差によってSMRに突入電流が流れ、SMRの耐久性が低下する。これを防ぐために、各電池スッタック間の電圧均等化が行われる。
特開2010−246285号公報
従来技術において、複数の電池スタックの電圧均等化方法として、10数mA〜数100mA程度の均等化電流を必要な電池スタックに流す。この程度の均等化電流では、各電池スタック間の電圧差が大きい場合等のときに電圧均等化が終了するまで長時間を要し、電源装置の次回起動のタイミングに間に合わないことが生じる。均等化電流を増大させるには、均等化回路等のコストが増大する。そこで、SMRの耐久性を維持しながら、適切な電圧均等化を実行できる複数の電池スタックの電圧均等化方法が要望される。
本開示に係る複数の電池スタックの電圧均等化方法は、正極母線と正極側リレーに接続される正極、及び、負極母線と負極側リレーに接続される負極を有する電池スタックを2つ並列接続し、電流制限抵抗を直列接続したプリチャージリレーを一方側の電池スタックの正極側リレーにのみ並列に接続して構成されて、プリチャージリレー以外をすべてオンして起動し、全てのリレーをオフして動作を停止する電源装置における電池スタックの電圧均等化方法であって、電源装置の動作の停止後において、異なる電池スタック間の電圧差が均等化処理を許可できる所定値範囲内であるか否かを判定し、所定値範囲内の場合には、一方側の電池スタックの正極側リレーをオフのままプリチャージリレーと負極側リレーとをオンし、かつ、他方側の電池スタックの正極側リレーと負極側リレーを共にオンし、電池スタックの間の電圧差が所定の電圧差に低減するまでの所定時間はその状態を維持する。
上記構成に係る複数の電池スタックの電圧均等化方法によれば、プリチャージリレーを用いて電圧均等化を図れるので、SMRの耐久性を維持しながら、適切な電圧均等化を実行できる。
実施の形態に係る複数の電池スタックの電圧均等化方法が適用される電源装置を含む車両駆動システムの構成図である。 実施の形態に係る複数の電池スタックの電圧均等化方法の手順を示すフローチャートである。 図2において、動作中の電源装置の各リレーのオンオフを示す図である。 図2において、動作停止した電源装置の各リレーのオンオフを示す図である。 図2において、電圧均等化処理中の電源装置の各リレーのオンオフを示す図である。 図5に引き続いて実行されるさらなる電圧均等化処理における電源装置の各リレーのオンオフを示す図である。 図6の構成を用いる電圧均等化方法の手順を示すフローチャートである。
以下に図面を用いて、本実施の形態に付き詳細に説明する。以下では、電源装置の負荷として、車両に搭載される回転電機及びその駆動回路を述べるが、これは例示であって、その他の補機等の負荷を含んでもよい。回転電機の数は1つの場合を述べるがこれは説明のための例示であって、複数の回転電機であってよく、これに合わせて複数の駆動回路であってもよい。車両は、回転電機と共にエンジンを搭載するハイブリッド車両であってもよい。
以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。
図1は、複数の電池スタックの電圧均等化方法が適用される電源装置20を含む車両駆動システム10の構成図である。以下では、特に断らない限り、「複数の電池スタックの電圧均等化方法」を、電圧均等化方法と呼ぶ。車両駆動システム10は、回転電機を駆動源とする車両の駆動システムであって、回転電機12と、その駆動回路13を構成するインバータ14、平滑コンデンサ16、DC/DCコンバータ18と、電源装置20と、電池制御部60とを含む。回転電機12およびその駆動回路13は、電源装置20に対する充放電の対象である負荷である。回転電機12及びその駆動回路13の内容は、周知であるので、詳細な説明を省略する。
電源装置20は、複数の電池スタックとして2つの電池スタック22,24が並列接続された高電圧大電力の直流電源である。電源装置20の正極母線26は、駆動回路13の正極母線となり、電源装置20の負極母線28は、駆動回路13の負極母線となる。正極母線26、負極母線28は、高電圧電力線であるので、車両の車体から絶縁されてフローティングの電位とされる。
電池スタック22,24は、充放電可能な二次電池である。電池スタック22,24としては、所定数の電池セルを直列に接続した高電圧組電池が用いられる。電池セルとしては、リチウムイオン電池あるいはニッケル水素電池が用いられる。電池スタック22,24の端子間電圧の例を挙げると、約200V〜約300Vである。
2つの電池スタック22,24を区別するときは、一方側の電池スタック22、他方側の電池スタック24と呼ぶ。一方側の電池スタック22の正極は、電源装置20の正極母線26との間に正極側リレー30が設けられ、負極は、電源装置20の負極母線28との間に負極側リレー32が設けられる。同様に、他方側の電池スタック24の正極は、電源装置20の正極母線26との間に正極側リレー36が設けられ、負極は、電源装置20の負極母線28との間に負極側リレー38が設けられる。一方側の電池スタック22と他方側の電池スタック24の間の相違点は、電流制限抵抗35を直列接続したプリチャージリレー34が、一方側の電池スタック22の正極側リレー30にのみ並列に設けられることである。
プリチャージリレー34を含み、正極側リレー30,36、負極側リレー32,38は、駆動回路13と電源装置20との間の大電力のやり取りを遮断または接続する電力用リレーである。これら5つの電力用リレーについて、電池スタック22,24との接続関係が分かりやすいように、以下では、特に断らない限り、符号でなく、記号で示す。すなわち、正極側リレー30,36は、それぞれSMR−B1,SMR−B2と示し、負極側リレー32,38は、それぞれSMR−G1,SMR−G2と示し、プリチャージリレー34は、SMR−Pと示す。SMRは、システムメインリレーを意味し、Bは、電池スタック22,24の正極側に接続されることを意味し、Gは、電池スタック22,24の負極側に接続されることを意味する。B,Gの後の1,2は、それぞれ一方側の電池スタック22と他方側の電池スタック24を意味する。Pは、プリチャージを意味する。
SMR−Pは、電源装置20が起動するに先立って平滑コンデンサ16を事前充電(プリチャージ)するリレーである。例えば、電源装置20を起動させるために、一方側の電池スタック22について、順序はいずれでもよいが、SMR−G1とSMR−B1とを順次接続する際に、平滑コンデンサ16が未充電であると、その充電のために電流が急激に流れる。この突入電流のために、SMR−G1,SMR−B1の内で、後で接続が行われた方のリレーに溶着が生じる恐れがある。これを防止するために、他方側の電池スタック24におけるSMR−B2、SMR−G2をオフし、一方側の電池スタック22においてSMR−G1をオンとし、SMR−B1をオフとして、SMR−Pをオンする。SMR−Pと正極母線26との間には電流制限抵抗35が接続されているので、電池スタック22からの電流は、電流制限抵抗35を介して平滑コンデンサ16を充電する。電流制限抵抗35の抵抗値は、SMR−G1を流れる電流が過大にならないように設定される。これによって、SMR−G1の溶着を防止できる。平滑コンデンサ16に適切な事前充電が行われた後は、SMR−Pをオフし、SMR−B1,SMR−G2,SMR−B2を定められた順序で順次オンする。これによって、リレーの溶着を防止しながら、電源装置20が起動される。
なお、電流制限抵抗35によって制限された一方側の電池スタック22からの電流は、一般的な電圧均等化処理で用いられる均等化電流と比較すると、例えば、1桁〜数桁程度大きな電流である。
図1では、SMR−Pは、一方側の電池スタック22のSMR−B1に並列に配置されるものとした。これに代えて、SMR−Pを一方側の電池スタック22のSMR−G1に並列に配置することもできる。一方側の電池スタック22は、SMR−Pが配置される側の電池スタックであるので、図1において、電池スタック24を一方側の電池スタックと呼ぶ場合には、SMR−Pは、電池スタック24のSMR−B2に並列に配置される。これに代えて、電池スタック24のSMR−G2に並列に配置してもよい。以下では、図1の配置関係とする。
図1において、電圧検出部40は、一方側の電池スタック22の端子間電圧V1を検出する電圧検出手段である。電流検出部42は、一方側の電池スタック22を流れる電流I1を検出する電流検出手段である。電池温度検出部44は、一方側の電池スタック22の電池温度θ1を検出する温度検出手段である。同様に、他方側の電池スタック24に、端子間電圧V2を検出する電圧検出部46、電流I2を検出する電流検出部48、電池温度θ2を検出する電池温度検出部50が設けられる。これらの検出データは、それぞれ適当な信号線で電池制御部60に伝送される。
起動/停止指令58は、車両駆動システム10の動作を全体として制御するシステム制御部から伝送される指令で、電源装置20を起動する指令、または電源装置20の動作を停止する指令である。図1ではシステム制御部の図示を省略した。起動/停止指令58は、適当な信号線で電池制御部60に伝送される。
電池制御部60は、電源装置20の5つのリレーSMR−B1,SMR−G1,SMR−P,SMR−B2,SMR−G2の動作を全体として制御する。特に、電源装置20において一方側の電池スタック22の端子間電圧V1と、他方側の電池スタック24の端子間電圧V2の間に絶対値としての電圧差ΔV=|V1−V2|が生じるときに、ΔVを小さくする電圧均等化処理を行う。かかる電池制御部60は、車両搭載に適したコンピュータで構成される。
コンピュータである電池制御部60の電圧均等化処理の機能は、電池制御部60がソフトウェアを実行することで実現でき、具体的には、電池制御部60が、電圧均等化処理プログラムの各処理手順を実行することで実現される。上記機能の一部をハードウェアで実現してもよい。なお、電池制御部60を独立のコンピュータとして構成することもできるが、図示しないシステム制御部の機能の一部としてもよい。
上記構成の作用効果、特に、電池制御部60の電圧均等化処理の機能について、図2以下を用いて、詳細に説明する。図2は、電圧均等化処理の手順を示すフローチャートである。各手順は、電圧均等化処理プログラムの各処理手順にそれぞれ対応する。
車両制御プログラムが立ち上がると、初期化の後に、電圧均等化処理プログラムも立ち上がる。車両において、回転電機12と駆動回路13を動作させるとき、起動/停止指令58は、電源装置20の起動指令を電池制御部60に伝送する。これを受けて、電池制御部60は、電源装置20を動作状態にする(S10)。
図3は、動作中の電源装置20の各リレーのオンオフを示す図である。電源装置20が動作中のときは、SMR−B1,SMR−G1,SMR−B2,SMR−G2がオンとされる。SMR−Pは、電源装置20の起動に先立つプリチャージにおいて平滑コンデンサ16を充電するときにオンされるが、必要な充電が終了すると、オフ状態となる。図1では、プリチャージが終了した後の動作中の電源装置20の状態を示すので、SMR−Pはオフ状態である。
SMR−B1,SMR−G1がオンするので、一方側の電池スタック22から電流I1が正極母線26側に放電する。同様に、SMR−B2,SMR−G2がオンするので、他方側の電池スタック24から電流I2が正極母線26側に放電する。図3において、流れる電流を太線で示し、電流の方向を矢印で示す。したがって、駆動回路13へは、(I1+I2)の直流放電電流が供給される。これとは逆に、駆動回路13から直流充電電流が電池スタック22,24に供給されるときは、図3の太線の電流の方向が反対方向となり、電池スタック22,24が充電される。
なお、図3におけるV1,V2は、電池スタック22,24に電流が流れているときの端子間電圧であり、CCV(Closed Circuit Voltage)と呼ばれる。CCVは、電池スタック22,24に電流が流れないときの開放回路電圧OCVとは異なる。
図2に戻り、車両の回転電機12と駆動回路13に電力の供給が不要となるとき、起動/停止指令58は、停止指令を電池制御部60に伝送する。これを受けて、電池制御部60は、電源装置20の動作を停止させる(S12)。図4は、動作停止した電源装置20の各リレーのオンオフを示す図である。電源装置20が動作停止すると、全てのリレーSMR−B1,SMR−G1,SMR−P,SMR−B2,SMR−G2がオフされる。
このときのV1,V2は、電池スタック22,24に電流が流れないときの端子間電圧であり、開放回路電圧OCVである。開放回路電圧OCVは、電池スタック22,24の充電状態を示すSOC(State Of Chrage)と関連付けることができる。電圧均等化処理は、一方側の電池スタック22の開放回路電圧OCVと、他方側の電池スタック24の開放回路電圧OCVとの間に電圧差ΔVがあるときに、その電圧差ΔVを小さくする処理である。そこで、以下においては、特に断らない限り、電圧すなわち端子間電圧V1,V2は、それぞれSOCと関連付けられる開放回路電圧OCVを指す。
図2に戻り、電源装置20が動作停止すると、その状態において、一方側の電池スタック22の端子間電圧V1と、他方側の電池スタック24の端子間電圧V2を取得する(S14)。この手順は、電圧検出部40,46の検出データを取得することで実行される。V1,V2が取得されると、V1,V2の間の絶対値としての電圧差ΔV=|V1−V2|を算出し、予め定めた第1の所定電圧差ΔVth1以下であるか否かが判定される(S16)。第1の所定電圧差は、5つのリレーのオンオフ制御を行うことで電圧均等化処理が可能か否かの観点から設定される。
S16の判定が否定されるときは、ΔV>ΔVth1の場合で、電圧差ΔVが過大すぎて5つのリレーのオンオフ制御によって電圧均等化処理を行うには適さない。この状態のまま、電源装置20を再起動すると、過大なΔVのために、一方側の電池スタック22と他方側の電池スタック24との間に大きな突入電流が流れる。再起動に先立って行われるプリチャージ処理ではこの電圧差ΔVは変化しないので、このΔVに起因する突入電流で、SMR−B1,SMR−G1,SMR−B2,SMR−G2の内の少なくとも1つが溶着する可能性がある。そこで、S16の判定が否定されるときは、電源装置20について、次回の再起動を禁止する(S18)。電源装置20の再起動が禁止されると、駆動回路13、回転電機12に電力が供給されないので、予め定めた診断方法によって、対応策が実施される。
S16の判定が肯定されると、次にΔVが予め定めた第2の所定電圧差ΔVth2以上であるか否かが判定される(S18)。第2の所定電圧差は、誤差範囲よりも大きな電圧差であって、5つのリレーのオンオフ制御を行うことで電圧均等化処理が可能な比較的小さな電圧差であるか否かの観点から設定される。
S18が否定されるときは、ΔVがごく小さい値であって、電圧均等化処理を行う必要がない場合であるので、電圧検出部40,46の電源をオフする(S22)。そして、適当な待機時間の経過を待って(S24)、再び電圧検出部40,46の電源をオンし(S26)、S14の手順に戻る。
S18が肯定されるときは、ΔVth1>ΔV>ΔVth2であって、ΔVが予め定めた所定値範囲内にある。この場合にS30以下の電圧均等化処理が進められる。S30とS32は、第1の電圧均等化処理の手順である。第1の電圧均等化処理において、各リレーのオンオフ設定が以下のように行われる(S30)。すなわち、一方側の電池スタック22については、SMR−B1はオフのままで、SMR−G1とSMR−Pをオンする。他方側の電池スタック24については、SMR−B1とSMR−G1をオンする。
図5は、第1の電圧均等化処理における電源装置20の各リレーのオンオフを示す図である。ここでは、V1>V2の例を示す。第1の電圧均等化処理においては、SMR−B1はオフであるが、SMR−G1とSMR−G1がオンするので、一方側の電池スタック22から電流制限抵抗35を通る電流が正極母線26側に流れる。一方側の電池スタック24においては、SMR−B2,SMR−G2がオンであるので、一方側の電池スタック22から正極母線26に流れてきた電流は、他方側の電池スタック24に流れ込む。図5において、流れる電流を太線で示し、電流の方向を矢印で示す。すなわち、高い端子間電圧V1の状態の一方側の電池スタック22から、低い端子間電圧V2の他方側の電池スタック24に向かって電流が流れ、これにより、電圧差ΔV=|V1−V2|を少なくする方向に電圧均等化が行われる。V1<V2のときは、電流の方向が反対方向となる。
第1の電圧均等化処理においてSMR−Pを用いることで、一方側の電池スタック22の端子間電圧V1と他方側の電池スタック24の端子間電圧V2の間の電圧差ΔVのために流れる電流I2を電流制限抵抗35で抑えることができる。これによって、SMR−G1,SMR−B2,SMR−G2にΔVによる過大な突入電流が流れることを防止し、リレーの溶着や耐久性低下等を防止できる。
なお、第1の電圧均等化処理においてSMR−Pを用いることは、電源装置20の起動に先立って行われるプリチャージ処理に似ているが以下の相違点がある。プリチャージ処理の場合は、他方側の電池スタック24のSMR−B2,SMR−G2がオフであるが、第1の電圧均等化処理においては、他方側の電池スタック24のSMR−B2,SMR−G2がオンである。なお、電流制限抵抗35によって制限された一方側の電池スタック22からの電流は、一般的な電圧均等化処理で用いられる均等化電流と比較すると、1桁から2桁程度大きな電流である。したがって、一般的な電圧均等化方法に比較して、短時間で電圧均等化を実行することができる。
S30において、各リレーのオンオフ設定が行われると、その状態は、予め定めた所定時間の間、維持される(S32)。予め定めた所定時間は、リレーの耐久性の観点から、次のようにして定める。まず、電池スタック22,24の端子間電圧V1,V2と、電池スタック22,24の内部抵抗と、電池スタック22,24の電池容量とに基づき、電圧差ΔV=|V1−V2|がリレーの耐久性の観点から許容できる目標電圧差ΔV0になるまでの時間を求める。そして、求められた時間を所定時間とする。電池スタック22,24の内部抵抗は、電池温度θ1,θ2から概算でき、電池スタック22,24の電池容量は、予め定まっている値を用いることができる。
所定時間に達したか否かの判定方法の1つは、電流の時間積分値と開放回路電圧OCVの変化量との関係を予め求めておき、初期の電圧差ΔVからΔV0に下降するのに要する電流の時間積分値を求める。そして、時々刻々の電流I2を時間積分し、その実積分値が、求められた電流の時間積分値以上となる時間を所定時間とし、その時間に達すると、次のS34に進む。もう1つの判定方法は、実験又はシミュレーション等で、初期の電圧差ΔVからΔV0に下降するのに要する時間を予め求めて、これを所定時間とし、その時間に達すると、次のS34に進む。
第1の電圧均等化処理における目標電圧差ΔV0は、リレーの耐久性の観点から定められるが、一例を挙げると、電池スタック22,24の各端子間電圧の数%〜1%程度である。例えば、電池スタック22,24の各端子間電圧V1,V2を約200Vとし、その2%が目標電圧差ΔV0となる場合では、目標電圧差ΔV0は約4V以下である。
S30の状態を所定時間維持すると、電池スタック22,24の端子間電圧の差である電圧差ΔVは、目標電圧差ΔV0まで低減するので、電源装置20の次の再起動のために、電源装置20の動作停止状態に戻り、全リレーがオフとされ(S34)。電圧均等化処理を終了する(S36)。
ここで、第1の電圧均等化処理は、電流制限抵抗35を経由して電圧差ΔVの低減が行われるので、電流制限抵抗35における損失が発生し、エネルギを無駄に捨てていることになって、車両の燃費低下につながる。
図6は、電流制限抵抗35によるエネルギ損失なしで電圧差ΔVを低減できる電源装置20の各リレーのオンオフを示す図である。ここでは、V1>V2の例を示す。この場合、SMR−Pはオフであるが、SMR−B1,SMR−G1がオンであるので、一方側の電池スタック22からの電流は電流制限抵抗35を介さずに正極母線26側に流れる。一方側の電池スタック24においては、SMR−B2,SMR−G2がオンであるので、一方側の電池スタック22から正極母線26に流れてきた電流は、他方側の電池スタック24に流れ込む。図6において、流れる電流を太線で示し、電流の方向を矢印で示す。図5と比較すると、流れる電流が電流制限抵抗35を介さないので、電流制限抵抗35によるエネルギ損失がない。また、電圧差ΔVを低減するように流れる電流は、図5の場合に比較して大きい電流となるので、電圧差ΔV=|V1−V2|は、図5における低減速度よりも速く、短時間で、電圧差ΔVを低減できる。以下では、図6のオンオフ状態を用いる電圧均等化方法を、単に、図6を用いる方法と呼ぶ。
しかし、図6を用いる方法においては、電池スタック22,24に通電するので、電池スタック22,24の自己発熱量が増大する。これにより電池温度θ1,θ2が上昇し、電池スタック22,24の早期劣化を生じやすくなる。これを防止するために電池スタック22,24について冷却手段を設け、これを駆動させることが考えられるが、ブロワや冷却器等の冷却手段を駆動させると、却って、車両の燃費低下や航続距離低下を招く恐れがある。そこで、図6の各リレーの設定を用いて電圧均等化処理を実行するに当たっては、電池温度θ1,θ2の上昇を考慮することが好ましい。
図7は、電流制限抵抗35による損失を最小限にしながら、電池温度θ1,θ2の上昇も考慮に入れた第2の電圧均等化処理の手順を示すフローチャートである。第2の電圧均等化処理は、第1の電圧均等化処理におけるS30までの手順を前提として、電圧差ΔVが目標電圧差ΔV0まで低減した状態から行う。そして、図6を用いる方法によって、電流制限抵抗35によるエネルギ損失なしで、目標電圧差ΔV0をさらに低減して、例えば、ΔVを、電池スタック22,24の各端子間電圧の1%程度以下とする。
図7において、図2のフローチャートと相違する処理は太枠で囲み、図2のフローチャートと相違する処理の流れは矢印付き太線で示す。S20以前の処理は、図2のフローチャートで述べた内容と同じであるので、これらの詳細な説明を省略する。S20の判定が肯定されると、図2ではS30の第1の電圧均等化処理に進むが、図7では、S20の判定が肯定されると、電池温度θ1,θ2の取得が行われる(S40)。そして、S30,S32の第1の電圧均等化処理を実行し、その後に、再度、電池温度θ1,θ2の取得が行われる(S42)。S42,S44と2回に分けて電池温度θ1,θ2の取得を行うのは、電池温度θ1,θ2を慎重に考慮するためである。電池温度θ1,θ2の取得は、電池温度検出部44,50から伝送されてくる検出データを電池制御部60が取得することで実行される。
次に、電池温度θ1,θ2のいずれか高い方の電池温度が予め定めた所定温度θth以下であるか否かが判定される。これを言い換えると、電池温度θ1及び電池温度θ2のいずれもが所定温度θth以下であるか否かが判定される(S44)。所定温度θthは、図6を用いる方法を実行すると上昇する電池温度を予め実験やシミュレーションで見積っておき、その見積られた温度上昇があっても、電池冷却手段を駆動しなくて済む温度である。
S44の判定が肯定されると、図6を用いる方法を実行しても電池冷却手段を駆動させることがないので、S48に進む。S48では、図6で述べた内容に従って、各リレーのオンオフ設定が以下のように行われる。すなわち、第1の電圧均等化処理において、オンであったSMR−Pをオフし、オフであったSMR−B1をオンする。すなわち、一方側の電池スタック22については、SMR−B1,SMR−G1がオンで、SMR−Pはオフである。他方側の電池スタック24については、SMR−B1,SMR−G1はオンのままである。
S48の実行によって、電圧差ΔVがさらに低減する。例えば、目標電圧差ΔV0が電池スタック22,24の各端子間電圧の1%程度以下となれば、電圧均等化は十分に行われているので、S34、S36に進む。S34、S36の内容は、図2で述べたので、詳細な説明を省略する。
S44の判定が否定されるときは、その状態で図6を用いる方法を実行すると電池冷却手段を駆動する可能性が高いので、S30の状態をそのまま維持し(S48)、電池温度θ1,θ2の推移を監視する。監視時間は数sから10s程度である。監視時間が経過すると、電池温度θ1及び電池温度θ2のいずれもが所定温度θth以下であるか否かが判定される(S50)。S50の内容はS44と同じであるので、詳細な説明を省略する。S50の判定が肯定されると、S46,S34,S36に進む。S50の判定が否定されると、図6を用いる方法が実行できないので、目標電圧差ΔV0をさらに低減せずに、電源装置20の動作停止状態に戻り、全リレーがオフとされるS34に進む。そして、図7の第2の電圧均等化処理が終了する(S36)。
なお、図6を用いる方法における各リレーのオンオフ設定の状態は、図3の電源装置20が動作中のときの各リレーのオンオフ設定の状態と同じである。異なるのは、電源装置20が動作中のときのV1,V2はCCVであるので、並列接続された電池スタック22,24の各開放回路電圧OCVではなく、したがって、開放回路電圧OCVの電圧差ΔVが現れないことである。電源装置20が図6を用いる方法によって第2の電圧均等化処理を実行するときは、開放回路電圧OCVの電圧差ΔVが現れ、一方側の電池スタック22と他方側の電池スタック24との間にΔVを低減する電流が流れて、電圧均等化が行われる。
本実施の形態における電池スタックの電圧均等化方法は、正極母線26と正極側リレーに接続される正極、及び、負極母線28と負極側リレーに接続される負極を有する電池スタック22,24を2つ並列接続した電源装置20に関する。電源装置20は、さらに、電流制限抵抗35を直列接続したプリチャージリレー34を一方側の電池スタックの正極側リレーにのみ並列に接続して構成されて、プリチャージリレー34以外をすべてオンして起動する。そして、全てのリレーをオフして動作を停止する。電源装置20における電池スタックの電圧均等化方法は、電源装置20の動作の停止後において(S12)、異なる電池スタック22,24間の電圧差ΔVが均等化処理を許可できる所定値範囲内であるか否かを判定する(S16、S20)。所定値範囲内の場合には、一方側の電池スタックの正極側リレーをオフのままプリチャージリレー34と負極側リレーとをオンし、かつ、他方側の電池スタックの正極側リレーと負極側リレーを共にオンする(S30)。そして、電池スタック22,24の間の電圧差ΔVが所定の電圧差に低減するまでの所定時間はその状態を維持する(S32)。
10 車両駆動システム、12 回転電機、13 駆動回路、14 インバータ、16 平滑コンデンサ、18 DC/DCコンバータ、20 電源装置、22,24 電池スタック、26 正極母線、28 負極母線、30,36 SMR−B(正極側リレー)、32,38 SMR−G(負極側リレー)、34 SMR−P(プリチャージリレー)、35 電流制限抵抗、40,46 電圧検出部、42,48 電流検出部、44,50 電池温度検出部、58 起動/停止指令、60 電池制御部。

Claims (1)

  1. 正極母線と正極側リレーに接続される正極、及び、負極母線と負極側リレーに接続される負極を有する電池スタックを2つ並列接続し、電流制限抵抗を直列接続したプリチャージリレーを一方側の前記電池スタックの前記正極側リレーにのみ並列に接続して構成されて、前記プリチャージリレー以外をすべてオンして起動し、全てのリレーをオフして動作を停止する電源装置における前記電池スタックの電圧均等化方法であって、
    前記電源装置の前記動作の停止後において、異なる前記電池スタック間の電圧差が均等化処理を許可できる所定値範囲内であるか否かを判定し、
    前記所定値範囲内の場合には、前記一方側の電池スタックの前記正極側リレーをオフのまま前記プリチャージリレーと前記負極側リレーとをオンし、かつ、他方側の前記電池スタックの前記正極側リレーと前記負極側リレーを共にオンし、前記電池スタックの間の電圧差が所定の電圧差に低減するまでの所定時間はその状態を維持する、複数の電池スタックの電圧均等化方法。
JP2016173756A 2016-09-06 2016-09-06 複数の電池スタックの電圧均等化方法 Active JP6693350B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016173756A JP6693350B2 (ja) 2016-09-06 2016-09-06 複数の電池スタックの電圧均等化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016173756A JP6693350B2 (ja) 2016-09-06 2016-09-06 複数の電池スタックの電圧均等化方法

Publications (2)

Publication Number Publication Date
JP2018042342A JP2018042342A (ja) 2018-03-15
JP6693350B2 true JP6693350B2 (ja) 2020-05-13

Family

ID=61626612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173756A Active JP6693350B2 (ja) 2016-09-06 2016-09-06 複数の電池スタックの電圧均等化方法

Country Status (1)

Country Link
JP (1) JP6693350B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102347920B1 (ko) * 2018-10-12 2022-01-05 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
CN112467811B (zh) * 2019-09-06 2023-04-07 华为技术有限公司 双电池电压均衡方法和双电池电压均衡电路
CN110901472A (zh) * 2019-12-19 2020-03-24 桑顿新能源科技有限公司 电池管理***均衡能力匹配方法、装置和计算机设备
JP2022152264A (ja) 2021-03-29 2022-10-12 本田技研工業株式会社 電力供給システムのバッテリ制御装置
CN113479113B (zh) * 2021-06-08 2023-05-16 北京海博思创科技股份有限公司 电池***控制方法、装置、设备、介质及程序产品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274832A (ja) * 2006-03-31 2007-10-18 Nissan Motor Co Ltd 電力供給装置及び電力供給装置の制御方法
JP5143185B2 (ja) * 2010-02-08 2013-02-13 三洋電機株式会社 電源装置
CN103620905A (zh) * 2011-06-17 2014-03-05 丰田自动车株式会社 电源***、具备该电源***的车辆以及电源***的控制方法
JP5772708B2 (ja) * 2012-05-11 2015-09-02 株式会社豊田自動織機 組電池の接続方法および組電池

Also Published As

Publication number Publication date
JP2018042342A (ja) 2018-03-15

Similar Documents

Publication Publication Date Title
JP6683819B2 (ja) 電源システム
JP6693350B2 (ja) 複数の電池スタックの電圧均等化方法
US10782350B2 (en) Apparatus and method for diagnosing failure of switch element
US11014469B2 (en) Power relay assembly and method controlling sequence of relays therein
JP6664005B2 (ja) 電源システム
US9096134B2 (en) Enhanced HV pre-charge heater diagnostic detection system for liquid cooled HV battery packs
JP2018042462A (ja) 蓄電装置
US20190199108A1 (en) Charging apparatus
US10320204B2 (en) Electric storage apparatus and electric-storage controlling method
JP2007165253A (ja) 電源装置、及びその制御方法
US20180083460A1 (en) System and method of managing battery by using balancing battery
JP2007325458A (ja) 車両用組電池均等化システム
US20160187427A1 (en) Method and apparatus for estimating current
JP2015033283A (ja) バランス補正装置及び蓄電装置
EP4119390A1 (en) Battery control
JP6708011B2 (ja) 電池パック
JP3654058B2 (ja) 電池検査装置
JP7167581B2 (ja) 二次電池装置
CN111391667A (zh) 用于耐噪声rc响应预测的方法和***
JP6618444B2 (ja) 電源システムの電池パック接続判定方法
US20210135298A1 (en) Battery control device and abnormality sensing method
JP7253958B2 (ja) バッテリ制御装置およびバッテリ制御方法
JP5978144B2 (ja) 蓄電池システム
JP2012165580A (ja) 蓄電装置の制御装置
JP5794608B2 (ja) 放電制御装置、放電制御方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R151 Written notification of patent or utility model registration

Ref document number: 6693350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151