JP6684318B2 - Cooling structure of rotating electric machine - Google Patents

Cooling structure of rotating electric machine Download PDF

Info

Publication number
JP6684318B2
JP6684318B2 JP2018134903A JP2018134903A JP6684318B2 JP 6684318 B2 JP6684318 B2 JP 6684318B2 JP 2018134903 A JP2018134903 A JP 2018134903A JP 2018134903 A JP2018134903 A JP 2018134903A JP 6684318 B2 JP6684318 B2 JP 6684318B2
Authority
JP
Japan
Prior art keywords
main
electric machine
peripheral surface
annular peripheral
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018134903A
Other languages
Japanese (ja)
Other versions
JP2020014320A (en
Inventor
黎振安
蕭瑞濱
鄭立巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiwin Mikrosystem Corp
Original Assignee
Hiwin Mikrosystem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiwin Mikrosystem Corp filed Critical Hiwin Mikrosystem Corp
Priority to JP2018134903A priority Critical patent/JP6684318B2/en
Publication of JP2020014320A publication Critical patent/JP2020014320A/en
Application granted granted Critical
Publication of JP6684318B2 publication Critical patent/JP6684318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

本発明は回転電気機械に係り、特に、回転電気機械の冷却構造に関する。 The present invention relates to a rotary electric machine, and more particularly to a cooling structure for a rotary electric machine.

工業における自動化技術の急速な発展に伴い、様々な複合加工機で回転電気機械が広く使用され、高速回転による加工が行われている。回転電気機械は、ステータコアの鉄損やコイルの銅損によって熱が発生し、回転電気機械を工作機械の主軸を駆動に用いた場合には、高温によって熱変形を起こし、加工精度に重大な影響をもたらす。このため、モータハウジングには冷却通路が設計されており、現在の回転電気機械の放熱設計では、冷却液を通してハウジングと直接接触させて冷却するものが主流となっている。 With the rapid development of automation technology in industry, rotary electric machines are widely used in various multi-tasking machines, and processing by high-speed rotation is performed. Rotating electrical machines generate heat due to iron loss in the stator core and copper loss in the coils.When rotating electrical machines are used to drive the spindles of machine tools, high temperature causes thermal deformation, which seriously affects machining accuracy. Bring For this reason, a cooling passage is designed in the motor housing, and in the heat radiation design of the current rotary electric machine, the one that mainly cools by directly contacting the housing with the cooling liquid is used.

従来の冷却通路は、互いに交差せず平行な複数の列が螺旋状に通路を形成するよう設計されており、長軸の両端部にはそれぞれ、入水口と放水口が設けられ、冷却媒体が入水口から流入し、螺旋状の通路を通過して放水口から流出して熱を奪うことで、放熱・冷却するという目的を達成している。しかし、このような螺旋状の通路設計は連続式の通路に属し、冷却経路の距離が長いため、圧力損失が増加することで冷却媒体の流速が入水口から放水口に向かって徐々に減少し、冷却効率の低減を招いてしまう。 A conventional cooling passage is designed so that a plurality of parallel rows that do not intersect with each other form a spiral passage, and a water inlet and a water outlet are provided at both ends of the major axis, respectively, and a cooling medium is provided. It achieves the purpose of radiating and cooling by flowing in from the water inlet, passing through the spiral passage and flowing out from the water outlet to remove heat. However, such a spiral passage design belongs to a continuous passage, and since the distance of the cooling passage is long, the flow velocity of the cooling medium gradually decreases from the water inlet to the water outlet due to an increase in pressure loss. However, the cooling efficiency is reduced.

このため、通路内の圧力損失が低減し、且つ冷却効率が向上するような冷却通路を如何に設計するかが、回転電気機械の冷却設計における大きな課題である。 Therefore, how to design the cooling passage so that the pressure loss in the passage is reduced and the cooling efficiency is improved is a major problem in the cooling design of the rotary electric machine.

このため、本発明は、環状周面上に互い違いに配置された主分流壁体の主開口により、冷却媒体に互い違い式の経路による流れを提供し、これにより回転電気機械の放熱効率を向上させるという回転電気機械の冷却構造を提供することを主な目的としている。また、主通路の入水孔から出水孔までの通路幅が徐々に減少する設計、及び各主通路の入水孔から出水孔における副通路数が相違する設計により、出口部の放熱効果を強化して、回転電気機械全体の放熱をより均一にさせている。さらに、主分流壁体及び副分流壁体の台形状外形構造によって放熱面積を拡大することにより、全体の放熱効果を強化させている。 For this reason, the present invention provides a flow of staggered paths to the cooling medium by means of the main openings of the main flow-dividing walls which are staggered on the annular peripheral surface, thereby improving the heat dissipation efficiency of the rotating electric machine. Its main purpose is to provide a cooling structure for a rotating electric machine. In addition, the design that the passage width from the water inlet hole to the water outlet hole of the main passage is gradually reduced, and the design that the number of sub passages from the water inlet hole to the water outlet hole of each main passage is different, strengthens the heat dissipation effect of the outlet part. , The heat dissipation of the entire rotating electric machine is made more uniform. Further, the trapezoidal outer structure of the main flow dividing wall body and the sub flow dividing wall body expands the heat radiation area, thereby strengthening the overall heat radiation effect.

上記目的を達成するために、本発明が提供する回転電気機械の冷却構造は、スリーブ及び複数の主分流壁体を含み、そのうちスリーブは環状周面を備え、且つ環状周面は第一半環状周面及び第二半環状周面を含む。主分流壁体は、スリーブの環状周面上に互いに平行に設けられ、それにより複数の主通路が形成される。各主分流壁体は主開口を含み、そのうち2つの隣り合う主分流壁体の2つの主開口は、それぞれ第一半環状周面と第二半環状周面上に配置される。 To achieve the above object, a cooling structure for a rotary electric machine provided by the present invention includes a sleeve and a plurality of main distribution walls, the sleeve having an annular peripheral surface, and the annular peripheral surface having a first semi-annular surface. It includes a peripheral surface and a second semi-annular peripheral surface. The main distribution walls are provided parallel to each other on the annular peripheral surface of the sleeve, thereby forming a plurality of main passages. Each main distribution wall body includes a main opening, and two main openings of two adjacent main distribution wall bodies are respectively arranged on the first semi-annular peripheral surface and the second semi-annular peripheral surface.

本発明の1つの実施例では、回転電気機械の冷却構造は、スリーブ上に套設されるケースをさらに含み、そのうちケースは入水孔及び出水孔を含み、入水孔及び出水孔はそれぞれケースの両端に設け、且つそれぞれ両端の主通路に対応させる。 In one embodiment of the present invention, the cooling structure of the rotary electric machine further includes a case mounted on the sleeve, the case including a water inlet hole and a water outlet hole, and the water inlet hole and the water outlet hole are respectively at both ends of the case. And correspond to the main passages at both ends.

本発明の1つの実施例では、入水孔に対応する主通路の幅は、出水孔に対応する主通路の幅よりも大きく、そのうち入水孔に対応する主通路の幅と出水孔に対応する主通路の幅の比率は2〜3倍の間である。 In one embodiment of the present invention, the width of the main passage corresponding to the water inlet hole is larger than the width of the main passage corresponding to the water outlet hole, of which the width of the main passage corresponding to the water inlet hole and the main passage corresponding to the water outlet hole. The width ratio of the passages is between 2 and 3 times.

本発明の1つの実施例では、回転電気機械の冷却構造は、複数の副分流壁体をさらに含み、各主通路上に互いに平行に設けられることで、複数の副通路が形成され、そのうち各副分流壁体は、第一半環状周面及び第二半環状周面上にそれぞれ配置される2つの副開口を含む。 In one embodiment of the present invention, the cooling structure of the rotary electric machine further includes a plurality of auxiliary flow dividing walls, and the plurality of auxiliary flow passages are provided in parallel with each other to form a plurality of auxiliary passages, each of which has a plurality of auxiliary passages. The sub-dividing wall body includes two sub-openings respectively arranged on the first semi-annular peripheral surface and the second semi-annular peripheral surface.

本発明の1つの実施例では、入水孔に対応する主通路の副通路の数は、出水孔に対応する主通路の副通路の数よりも多く、そのうち入水孔に対応する主通路の副通路の数と出水孔に対応する主通路の副通路の数の比率は2〜3倍の間である。 In one embodiment of the present invention, the number of sub-passages of the main passage corresponding to the water inlet hole is larger than the number of sub-passages of the main passage corresponding to the water outlet hole, of which the sub-passage of the main passage corresponding to the water inlet hole. And the number of sub-passages of the main passage corresponding to the water discharge holes are between 2 and 3 times.

本発明の1つの実施例では、主分流壁体及び副分流壁体は、台形状外形を呈しており、そのうち各台形状外形の主分流壁体及び副分流壁体は、第一寸法を有する頂部及び第二寸法を有する底部を含み、且つ第一寸法は第二寸法よりも小さい。 In one embodiment of the present invention, the main flow dividing wall body and the sub flow dividing wall body have a trapezoidal outer shape, of which the main flow dividing wall body and the sub flow dividing wall body each having a trapezoidal outer shape have a first dimension. It includes a top and a bottom having a second dimension, and the first dimension is smaller than the second dimension.

本発明の1つの実施例では、第一寸法と第二寸法の比率は0.2〜0.8の間である。 In one embodiment of the invention, the ratio of the first dimension and the second dimension is between 0.2 and 0.8.

要約すると、本発明の回転電気機械の冷却構造は、環状周面上に互い違いに配置された主分流壁体の主開口により、冷却媒体に互い違い式の経路による流れを提供し、これにより回転電気機械の放熱効率を向上させている。また、主通路の入水孔から出水孔までの通路幅が徐々に減少する設計、及び各主通路の入水孔から出水孔における副通路数が相違する設計により、出口部の放熱効果を強化して、回転電気機械全体の放熱をより均一にさせている。さらに、主分流壁体及び副分流壁体の台形状外形構造によって放熱面積を拡大することにより、全体の放熱効果を強化させている。 In summary, the cooling structure of the rotating electric machine of the present invention provides the cooling medium with staggered paths of flow by means of the main openings of the main flow-dividing walls which are staggered on the annular peripheral surface. The heat dissipation efficiency of the machine is improved. In addition, the design that the passage width from the water inlet hole to the water outlet hole of the main passage is gradually reduced, and the design that the number of sub passages from the water inlet hole to the water outlet hole of each main passage is different, strengthens the heat dissipation effect of the outlet part. , The heat dissipation of the entire rotating electric machine is made more uniform. Further, the trapezoidal outer structure of the main flow dividing wall body and the sub flow dividing wall body expands the heat radiation area, thereby strengthening the overall heat radiation effect.

本発明の第1実施例の回転電気機械の冷却構造の分解図である。It is an exploded view of the cooling structure of the rotary electric machine of the 1st example of the present invention. 本発明の第1実施例の回転電気機械の冷却構造中の第一幅と第二幅の比率及び圧力降下と温度の関係を示すグラフである。It is a graph which shows the ratio of the 1st width and the 2nd width in the cooling structure of the rotary electric machine of 1st Example of this invention, and the relationship of pressure drop and temperature. 本発明の第2実施例の回転電気機械の冷却構造の斜視図である。It is a perspective view of the cooling structure of the rotary electric machine of 2nd Example of this invention. 本発明の第2実施例の回転電気機械の冷却構造の正面図である。It is a front view of the cooling structure of the rotary electric machine of the 2nd Example of the present invention. 本発明の第3実施例の回転電気機械の冷却構造の正面図である。It is a front view of the cooling structure of the rotary electric machine of 3rd Example of this invention.

最初に、図1を参照して、本発明の第1実施例が提供する回転電気機械の冷却構造は、スリーブ10及び複数の主分流壁体20を含む。スリーブ10は環状周面11を備え、且つ環状周面11は第一半環状周面12及び第二半環状周面13を含み、そのうち第一半環状周面12及び第二半環状周面13の配置は対称を呈している。主分流壁体20は、スリーブ10の環状周面11上に互いに平行に設けられる、それにより複数の主通路21が形成される。 First, referring to FIG. 1, a cooling structure for a rotary electric machine provided by a first embodiment of the present invention includes a sleeve 10 and a plurality of main flow dividing walls 20. The sleeve 10 includes an annular peripheral surface 11, and the annular peripheral surface 11 includes a first semi-annular peripheral surface 12 and a second semi-annular peripheral surface 13, of which the first semi-annular peripheral surface 12 and the second semi-annular peripheral surface 13 are included. The arrangement is symmetrical. The main flow dividing wall bodies 20 are provided on the annular peripheral surface 11 of the sleeve 10 in parallel with each other, whereby a plurality of main passages 21 are formed.

本実施例では、回転電気機械の冷却構造はさらにケースを含み、スリーブ10上に套設され、そのうちケースは入水孔31及び出水孔32を含み、入水孔31及び出水孔32はそれぞれケースの両端に設け、且つそれぞれ両端の主通路21に対応させる。 In the present embodiment, the cooling structure of the rotary electric machine further includes a case, which is mounted on the sleeve 10, and the case includes a water inlet hole 31 and a water outlet hole 32, and the water inlet hole 31 and the water outlet hole 32 are respectively at both ends of the case. And correspond to the main passages 21 at both ends.

各主分流壁体20は主開口22を含み、そのうち2つの隣り合う主分流壁体の2つの主開口22は、それぞれ第一半環状周面12と第二半環状周面13上に配置して、主分流壁体20の主開口22を環状周面11上で互い違いに配置させる。また、入水孔31に対応する主通路21は第一幅W1を有し、出水孔32に対応する主通路21は第二幅W2を有し、そのうち第一幅W1は第二幅W2よりも大きい。さらに説明すると、入水孔31に対応する主通路21に隣接する別の主通路21は第一幅W1よりも若干小さな通路幅を有しており、出水孔32に対応する主通路21に隣接する別の主通路21は第二幅W2よりも若干大きな通路幅を有している。すなわち、各主通路21の通路幅は、入水孔31から出水孔32の方向へ徐々に減少する設計となっているが、実際の通路幅は実際のスリーブ10の全長に応じて調製し、図2の第一幅W1と第二幅W2の比率及び圧力降下と温度の関係を示すグラフを参照すると、第一幅W1と第二幅W2の比率が2〜3倍の間である場合には、全体の温度を効果的に低下させ、且つ顕著な圧力降下が得られているため、第一幅W1と第二幅W2の比率は2〜3倍の間とするのが設計原則である。 Each main distribution wall 20 includes a main opening 22, of which two main openings 22 of two adjacent main distribution walls are respectively arranged on the first semi-annular peripheral surface 12 and the second semi-annular peripheral surface 13. Then, the main openings 22 of the main distribution wall body 20 are arranged alternately on the annular peripheral surface 11. Further, the main passage 21 corresponding to the water inlet hole 31 has a first width W1, and the main passage 21 corresponding to the water outlet hole 32 has a second width W2, of which the first width W1 is larger than the second width W2. large. More specifically, another main passage 21 adjacent to the main passage 21 corresponding to the water inlet hole 31 has a passage width slightly smaller than the first width W1 and is adjacent to the main passage 21 corresponding to the water outlet hole 32. The other main passage 21 has a passage width slightly larger than the second width W2. That is, the passage width of each main passage 21 is designed to gradually decrease in the direction from the water inlet hole 31 to the water outlet hole 32, but the actual passage width is adjusted according to the actual total length of the sleeve 10, and Referring to the graph showing the relationship between the first width W1 and the second width W2 and the pressure drop and the temperature of 2, when the ratio between the first width W1 and the second width W2 is between 2 and 3 times, Since the overall temperature is effectively reduced and a remarkable pressure drop is obtained, the design principle is that the ratio of the first width W1 and the second width W2 is between 2 and 3 times.

要約すると、本発明の第1実施例が提供する回転電気機械の冷却構造は、主分流壁体20の主開口22が環状周面11上に互い違いに配置されることによって冷却媒体に互い違い式の経路による流れを提供するものであり、従来技術における連続式の通路設計と比べてより優れた放熱効率を有する。また、主通路21の通路幅が徐々に減少する設計が入口部の流速を遅くして熱伝達係数を低くさせる一方で、出口部の流速を速めて熱伝達係数を高くさせており、それにより出口部の放熱効果が強化されて、回転電気機械全体の放熱がより均一となる。 In summary, the cooling structure of the rotary electric machine provided by the first embodiment of the present invention is staggered in the cooling medium by staggering the main openings 22 of the main flow-dividing wall body 20 on the annular peripheral surface 11. It provides flow by way and has better heat dissipation efficiency than the continuous passage design in the prior art. Further, the design in which the passage width of the main passage 21 is gradually reduced slows the flow velocity at the inlet to lower the heat transfer coefficient, while increasing the flow velocity at the outlet to increase the heat transfer coefficient. The heat dissipation effect of the outlet is enhanced, and the heat dissipation of the entire rotary electric machine becomes more uniform.

図3及び図4を参照して、本発明の第2実施例が提供する回転電気機械の冷却構造は、第1実施例が提供する回転電気機械の冷却構造と比較すると、さらに複数の副分流壁体40を含み、各主通路21上に互いに平行に設けられることで、複数の副通路41が形成される。各副分流壁体40は、第一半環状周面及び第二半環状周面上にそれぞれ配置される2つの副開口42を含む。また、入水孔31に近接する副通路41の数は出水孔32に近接する副通路41の数よりも多く、且つ比率は2〜3倍の間である。 3 and 4, the cooling structure of the rotary electric machine provided by the second embodiment of the present invention has a plurality of sub-shunts as compared with the cooling structure of the rotary electric machine provided by the first embodiment. A plurality of sub-passages 41 are formed by including the wall body 40 and being provided in parallel on each main passage 21. Each sub-dividing wall body 40 includes two sub-openings 42 respectively arranged on the first semi-annular peripheral surface and the second semi-annular peripheral surface. Further, the number of sub-passages 41 adjacent to the water inlet holes 31 is larger than the number of sub-passages 41 adjacent to the water outlet holes 32, and the ratio is between 2 and 3 times.

このため、本発明の第2実施例が提供する回転電気機械の冷却構造は、各主通路21中に複数の副通路41を並列に配置し、且つ入水孔31に近接する副通路41の数が出水孔32に近接する副通路41の数よりも多くなるよう設計することによって、入水孔31に近接する低温区域においては冷却媒体の流速を低下させ、一方で出水孔32に近接する高温区域においては冷却媒体の流速を上昇させて、出口部の放熱効果を強化し、モータ全体の放熱をより均一にさせることができる。 Therefore, in the cooling structure for a rotary electric machine provided by the second embodiment of the present invention, a plurality of sub passages 41 are arranged in parallel in each main passage 21, and the number of sub passages 41 adjacent to the water inlet hole 31 is increased. Is designed to be larger than the number of the sub-passages 41 adjacent to the water outlet hole 32, so that the flow velocity of the cooling medium is reduced in the low temperature area adjacent to the water inlet hole 31, while the high temperature area adjacent to the water outlet hole 32 is reduced. In the above, the flow velocity of the cooling medium can be increased to enhance the heat radiation effect of the outlet portion, and the heat radiation of the entire motor can be made more uniform.

図5を参照して、本発明の第3実施例が提供する回転電気機械の冷却構造と第1実施例が提供する回転電気機械の冷却構造との違いは、主分流壁体20が台形状外形を呈することにある。主分流壁体20は、頂部23及び底部24を含み、そのうち頂部23は第一寸法D1を有し、且つ底部24は第二寸法D2を有する。第一寸法D1は第二寸法D2よりも小さく、且つ第一寸法D1と第二寸法D2の比率は0.2〜0.8の間である。なお、本実施例は主分流壁体20を例として説明しているが、この構造は第2実施例の副分流壁体40にも適用可能であり、主分流壁体20と副分流壁体40のどちらも台形状外形の分流壁構造を備えるようにしてもよい。 Referring to FIG. 5, the difference between the cooling structure of the rotary electric machine provided by the third embodiment of the present invention and the cooling structure of the rotary electric machine provided by the first embodiment is that the main flow dividing wall body 20 has a trapezoidal shape. To present the outer shape. The main distribution wall 20 includes a top portion 23 and a bottom portion 24, of which the top portion 23 has a first dimension D1 and the bottom portion 24 has a second dimension D2. The first dimension D1 is smaller than the second dimension D2, and the ratio between the first dimension D1 and the second dimension D2 is between 0.2 and 0.8. Although the present embodiment has been described by taking the main distribution wall body 20 as an example, this structure is also applicable to the auxiliary distribution wall body 40 of the second embodiment, and the main distribution wall body 20 and the auxiliary distribution wall body 20. Both 40 may be provided with a trapezoidal external flow dividing wall structure.

本発明の第3実施例が提供する回転電気機械の冷却構造は、台形状外形の分流壁構造によって通路の総面積を拡大することで放熱面積を拡大し、それによって全体の放熱効果を強化させている。 The cooling structure for a rotary electric machine provided by the third embodiment of the present invention increases the total heat dissipation area by increasing the total area of the passages by the trapezoidal outer flow distribution wall structure, thereby enhancing the overall heat dissipation effect. ing.

上記の各実施例の通路構造設計に関する説明により、本発明の回転電気機械の冷却構造が達成することのできる主要な効果は以下のように要約される。 The main effects that can be achieved by the cooling structure for a rotary electric machine according to the present invention are summarized as follows from the above description of the passage structure design of each embodiment.

(1)従来技術における連続式の通路設計は、冷却経路の距離が長いため、圧力損失が増加することで冷却効率の低減を招いてしまうのに対し、本発明の回転電気機械の冷却構造は、主分流壁体20の主開口22が環状周面11上に互い違いに配置されることによって冷却媒体に互い違い式の経路による流れを提供し、放熱効率を向上させている。 (1) In the continuous passage design of the prior art, since the distance of the cooling path is long, the pressure loss increases, which leads to a reduction in cooling efficiency. By arranging the main openings 22 of the main flow-dividing wall body 20 on the annular peripheral surface 11 in an alternating manner, the cooling medium is provided with a flow of alternate paths, and heat dissipation efficiency is improved.

(2)本発明では、主通路21の入水孔31から出水孔32までの通路幅が徐々に減少する設計、及び各主通路21の入水孔31から出水孔32における副通路41の数が相違する設計により、入水孔31に近接する低温区域においては冷却媒体の流速を低下させ、一方で出水孔32に近接する高温区域においては冷却媒体の流速を上昇させて、出口部の放熱効果を強化し、回転電気機械全体の放熱をより均一にさせることができる。 (2) In the present invention, the design is such that the passage width from the water inlet hole 31 of the main passage 21 to the water outlet hole 32 gradually decreases, and the number of the sub passages 41 from the water inlet hole 31 to the water outlet hole 32 of each main passage 21 is different. With this design, the flow velocity of the cooling medium is reduced in the low temperature area near the water inlet hole 31, while the flow velocity of the cooling medium is increased in the high temperature area near the water outlet hole 32 to enhance the heat dissipation effect of the outlet portion. However, it is possible to make the heat radiation of the entire rotary electric machine more uniform.

(3)本発明では、主分流壁体20及び副分流壁体40の台形状外形構造によって放熱面積を拡大することにより、全体の放熱効果を強化させている。 (3) In the present invention, the trapezoidal outer structure of the main flow dividing wall body 20 and the sub flow dividing wall body 40 expands the heat radiation area to enhance the heat radiation effect as a whole.

Claims (8)

環状周面を備え、前記環状周面は第一半環状周面及び第二半環状周面を含む、スリーブと、
前記スリーブの前記環状周面上に互いに平行に設けられることで、複数の主通路が形成される、複数の主分流壁体とを含み、且つ各前記主分流壁体は主開口を含み、そのうち2つの隣り合う前記主分流壁体の2つの前記主開口は、それぞれ前記第一半環状周面と前記第二半環状周面上に配置され、
さらに前記スリーブ上に套設されるケースを含み、そのうちケースは入水孔及び出水孔を含み、前記入水孔及び前記出水孔はそれぞれ前記ケースの両端に設け、且つそれぞれ両端の主通路に対応させ
前記入水孔に対応する前記主通路の幅は前記出水孔に対応する前記主通路の幅よりも大きいことを特徴とする、回転電気機械の冷却構造。
A sleeve having an annular peripheral surface, the annular peripheral surface including a first semi-annular peripheral surface and a second semi-annular peripheral surface;
By being provided in parallel with each other on the annular peripheral surface of the sleeve, a plurality of main passages are formed, including a plurality of main flow dividing wall bodies, and each main flow dividing wall body includes a main opening, of which The two main openings of the two adjacent main distribution walls are respectively arranged on the first semi-annular peripheral surface and the second semi-annular peripheral surface,
The case further includes a case provided over the sleeve, the case including a water inlet hole and a water outlet hole, the water inlet hole and the water outlet hole being provided at both ends of the case and corresponding to main passages at both ends. ,
A cooling structure for a rotary electric machine, wherein a width of the main passage corresponding to the water inlet hole is larger than a width of the main passage corresponding to the water outlet hole .
前記入水孔に対応する前記主通路の幅と前記出水孔に対応する前記主通路の幅の比率は2〜3倍の間であることを特徴とする、請求項1に記載の回転電気機械の冷却構造。 The rotary electric machine according to claim 1 , wherein a ratio of a width of the main passage corresponding to the water inlet hole to a width of the main passage corresponding to the water outlet hole is between 2 and 3 times. Cooling structure. 各前記主通路上に互いに平行に設けられることで、複数の副通路が形成される、複数の副分流壁体をさらに含み、そのうち各前記副分流壁体は、2つの副開口を含み、且つ2つの前記副開口は前記第一半環状周面及び前記第二半環状周面上にそれぞれ配置されることを特徴とする、請求項1に記載の回転電気機械の冷却構造。 It further includes a plurality of auxiliary flow dividing wall bodies in which a plurality of auxiliary passages are formed by being provided in parallel with each other on each of the main passages, and each of the auxiliary flow dividing wall bodies includes two auxiliary openings, and The cooling structure for a rotary electric machine according to claim 1 , wherein the two sub-openings are respectively disposed on the first semi-annular peripheral surface and the second semi-annular peripheral surface. 前記入水孔に対応する前記主通路の前記副通路の数は前記出水孔に対応する前記主通路の前記副通路の数よりも多いことを特徴とする、請求項3に記載の回転電気機械の冷却構造。 The rotary electric machine according to claim 3 , wherein the number of the sub passages of the main passage corresponding to the water inlet hole is larger than the number of the sub passages of the main passage corresponding to the water outlet hole. Cooling structure. 前記入水孔に対応する前記主通路の前記副通路の数と前記出水孔に対応する前記主通路の前記副通路の数の比率は2〜3倍の間であることを特徴とする、請求項4に記載の回転電気機械の冷却構造。 Said sub-passage ratio of the number of the main passage corresponding to the number and the flooding hole of the auxiliary passage of the main passage corresponding to the entering water holes, characterized in that between two to three times, according Item 5. A cooling structure for a rotating electric machine according to Item 4 . 前記主分流壁体及び前記副分流壁体は台形状外形を呈することを特徴とする、請求項3に記載の回転電気機械の冷却構造。 The cooling structure for a rotary electric machine according to claim 3 , wherein the main distribution wall body and the auxiliary distribution wall body have a trapezoidal outer shape. 各前記台形状外形の前記主分流壁体及び前記副分流壁体は、頂部及び底部を含み、前記頂部は第一寸法を有し、前記底部は第二寸法D2を有し、そのうち前記第一寸法は前記第二寸法よりも小さいことを特徴とする、請求項6に記載の回転電気機械の冷却構造。 Each of the trapezoidal outer shape of the main flow dividing wall body and the sub flow dividing wall body includes a top portion and a bottom portion, the top portion has a first dimension, and the bottom portion has a second dimension D2, of which the first The cooling structure for a rotary electric machine according to claim 6 , wherein a dimension is smaller than the second dimension. 前記第一寸法と前記第二寸法の比率は0.2〜0.8の間であることを特徴とする、請求項7に記載の回転電気機械の冷却構造。 The cooling structure for a rotary electric machine according to claim 7 , wherein a ratio between the first dimension and the second dimension is between 0.2 and 0.8.
JP2018134903A 2018-07-18 2018-07-18 Cooling structure of rotating electric machine Active JP6684318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018134903A JP6684318B2 (en) 2018-07-18 2018-07-18 Cooling structure of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134903A JP6684318B2 (en) 2018-07-18 2018-07-18 Cooling structure of rotating electric machine

Publications (2)

Publication Number Publication Date
JP2020014320A JP2020014320A (en) 2020-01-23
JP6684318B2 true JP6684318B2 (en) 2020-04-22

Family

ID=69169724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134903A Active JP6684318B2 (en) 2018-07-18 2018-07-18 Cooling structure of rotating electric machine

Country Status (1)

Country Link
JP (1) JP6684318B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697737A (en) * 2020-06-30 2020-09-22 重庆新登奇机电技术有限公司 New energy automobile motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005052364A1 (en) * 2005-11-02 2007-05-03 Siemens Ag Electric motor for motor vehicle, has cup-shaped outer cover including cooling medium inlet and outlet, and housing including projection that is extended from inlet to outlet, where projection is angularly formed on both sides of housing
JP2013141334A (en) * 2011-12-28 2013-07-18 Denso Corp Rotary electric machine
JP5594350B2 (en) * 2012-11-27 2014-09-24 ダイキン工業株式会社 Electric motor
JP6302736B2 (en) * 2014-04-28 2018-03-28 日立オートモティブシステムズ株式会社 Rotating electric machine
CN206060428U (en) * 2016-08-31 2017-03-29 宁波菲仕电机技术有限公司 A kind of fluid-cooled electrical machine housing

Also Published As

Publication number Publication date
JP2020014320A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US8053938B2 (en) Enhanced motor cooling system
TWI401864B (en) A motor with internal thermal glue
KR101396655B1 (en) Synchronous reluctance machine using rotor flux barriers as cooling channels
JP6791463B1 (en) Motors and motor devices
US10523084B2 (en) Cooling system for an electric machine
JPH0819218A (en) Cooling structure for rotating electric machine
KR101394600B1 (en) Cooling system of water jacket style generator
JP6165340B2 (en) Rotating electric machine
JP5379611B2 (en) Rotating electric machine
JP2006311750A (en) Cooling apparatus for rotating electric machine
JP2019161798A (en) Cooling structure for rotary electric machine
KR102041249B1 (en) Cooling structure of rotating electric motor
JP2014155314A (en) Rotary electric machine
JP6684318B2 (en) Cooling structure of rotating electric machine
JP2019176648A (en) Stator frame, stator, and rotary electric machine
US20140139058A1 (en) Stator structure
KR20090073789A (en) Cooling device for electric motor
JP6247555B2 (en) Rotating electric machine
JP2016093014A (en) Fully closed rotary electric machine
JP6898887B2 (en) Rotating machine and stator cooling structure
CN110676981A (en) Cooling structure of rotary motor
TWI650921B (en) Liquid cooled motor shell heat dissipation structure
WO2022265009A1 (en) Rotating electric machine case and rotating electric machine
TWI697177B (en) Cooling structure of rotary motor
JP6684320B2 (en) Rotating electric machine cooling configuration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200327

R150 Certificate of patent or registration of utility model

Ref document number: 6684318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250