JP6683166B2 - Cold rolling strip thickness control method - Google Patents

Cold rolling strip thickness control method Download PDF

Info

Publication number
JP6683166B2
JP6683166B2 JP2017081069A JP2017081069A JP6683166B2 JP 6683166 B2 JP6683166 B2 JP 6683166B2 JP 2017081069 A JP2017081069 A JP 2017081069A JP 2017081069 A JP2017081069 A JP 2017081069A JP 6683166 B2 JP6683166 B2 JP 6683166B2
Authority
JP
Japan
Prior art keywords
steel strip
roll
strength
cold rolling
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017081069A
Other languages
Japanese (ja)
Other versions
JP2018176232A (en
Inventor
植野 雅康
雅康 植野
俊郎 岡崎
俊郎 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017081069A priority Critical patent/JP6683166B2/en
Publication of JP2018176232A publication Critical patent/JP2018176232A/en
Application granted granted Critical
Publication of JP6683166B2 publication Critical patent/JP6683166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

本発明は、鋼帯の連続冷間圧延における板厚制御方法に関する。   The present invention relates to a strip thickness control method in continuous cold rolling of a steel strip.

一般に鋼帯の連続冷間圧延においては、長手方向全域で板厚を目標値に近づけるために自動板厚制御(Automatic Gauge Control:AGC)が用いられている。AGCでは圧延機出側に配置された板厚計の測定結果を用いて、目標板厚との偏差を修正するように張力やロールギャップにフィードバックする制御(モニターAGC)や、圧延機出側板厚が目標値になるように圧延機入側の板厚測定結果から圧延前の板厚変動を考慮して張力やロールギャップにフィードフォワードする制御(FF−AGC)、圧延中のロールバイト直下の板厚を圧延荷重、ミル剛性からなるゲージメータ式を用いて、操業中の実測値から随時算出し、目標値との偏差を改善するようにロールギャップを変更する制御(ゲージメータAGC)等が使用されている。   Generally, in continuous cold rolling of a steel strip, automatic thickness control (Automatic Gauge Control: AGC) is used in order to bring the strip thickness close to a target value in the entire longitudinal direction. In AGC, using the measurement results of the strip thickness gauge located on the delivery side of the rolling mill, feedback control to the tension and roll gap to correct the deviation from the target strip thickness (monitor AGC) and strip thickness on the delivery side of the rolling mill are performed. So that the target value is reached, the feed-forward control to control tension and roll gap (FF-AGC) in consideration of the thickness variation before rolling from the thickness measurement result on the rolling mill entrance side, the sheet directly under the roll bite during rolling. Using the gauge meter formula consisting of rolling load and mill rigidity, calculate the thickness at any time from the actual measurement value during operation, and use the control (gauge meter AGC) to change the roll gap to improve the deviation from the target value. Has been done.

しかしながら近年、SiやMnといった合金元素を多く含む高張力鋼板等では、熱間圧延のランアウトテーブルでの冷却ムラや、巻取り後の冷却ムラによって金属組織が変化しやすくて、鋼帯の長手方向の冷却ムラによって材質が大きく変化する場合があった。また巻取り後の鋼帯と置台とが接触する鋼帯位置での接触熱伝達による鋼帯の急激な温度低下によって大幅な硬質化が発生し、巻取り後の鋼帯周方向に特定ピッチで引張強度(以下、単に強度ということもある。)が変動する場合もある。このような鋼帯の冷間圧延を実施するとき、前述した各種のAGCを適用した場合には以下の問題が生じる。   However, in recent years, in high-strength steel sheets containing a large amount of alloying elements such as Si and Mn, the metal structure is likely to change due to uneven cooling at the run-out table of hot rolling and uneven cooling after winding, and the longitudinal direction of the steel strip. There was a case where the material changed greatly due to the uneven cooling. In addition, the contact between the steel strip after winding and the table causes contact heat transfer at the position of the steel strip, which causes the steel strip to rapidly harden due to a sudden temperature drop, and at a specific pitch in the circumferential direction of the steel strip after winding. The tensile strength (hereinafter sometimes simply referred to as strength) may fluctuate. When cold rolling of such a steel strip is carried out, the following problems occur when the above-mentioned various AGCs are applied.

すなわち、モニターAGCを用いた場合、圧延機のスタンド出側では素材強度が高い部分の板厚が厚くなり、硬い部分に続く軟らかい部分は、先行する硬い部分の板厚がフィードバックされて制御されるために、ロールギャップを閉めすぎて過薄となり、その結果、板厚変動を助長する。また、ゲージメータAGCを用いた場合も、制御の動き方はモニターAGCと同じであり、硬い部分での板厚増加分を補償しようとして、ロールギャップを閉めたとき、硬い部分につづく軟らかい部分で板厚が薄くなり過ぎて、特に、素材に発生する強度変動の周期が変化した場合には対応できない。またFF−AGCを用いた場合、板厚計の測定結果を利用するので圧延機入側での板厚変動の影響は制御可能であるが、素材の強度変動には効果がない。   That is, when the monitor AGC is used, the plate thickness of the part where the material strength is high becomes thick on the stand exit side of the rolling mill, and the soft part following the hard part is controlled by feeding back the plate thickness of the preceding hard part. As a result, the roll gap is closed too much, resulting in an excessively thin thickness, resulting in an increase in plate thickness variation. Also, when the gauge meter AGC is used, the control movement is the same as that of the monitor AGC, and when the roll gap is closed in an attempt to compensate for the increase in the plate thickness in the hard part, the soft part following the hard part is closed. This is not possible when the plate thickness becomes too thin, especially when the cycle of strength fluctuations occurring in the material changes. Further, when FF-AGC is used, since the measurement result of the plate thickness gauge is used, the influence of the plate thickness variation on the rolling mill entrance side can be controlled, but it has no effect on the material strength variation.

このような問題を解決する手段として、特許文献1には、圧延機の入側に、被圧延材の強度を測定する装置を設置し、強度測定装置によって測定された被圧延材の長手方向の強度変動に基づいて、圧延機のロールギャップ量および圧延機のワークロール回転速度を制御する方法が開示されている。   As a means for solving such a problem, in Patent Document 1, a device for measuring the strength of the material to be rolled is installed on the inlet side of the rolling mill, and the longitudinal direction of the material to be rolled measured by the strength measuring device is measured. A method of controlling the roll gap amount of a rolling mill and the work roll rotation speed of the rolling mill based on the strength fluctuation is disclosed.

特許文献1に記載された被圧延材の強度を測定する方法は、磁気誘導方式によって鋼板に磁場を作用させ、鋼板内部の磁束変化を検出することによって、被圧延材の強度変動を測定する。このような磁気を用いて、鋼板の強度を測定する方法は、非特許文献1に記載されており、鋼板を磁化したときに発生するバルクハウゼンノイズおよび鋼板透過磁束を測定することにより結晶粒径を測定し、あらかじめ求めておいた結晶粒径と機械的特性の関係から機械的強度を求めるものである。   The method for measuring the strength of the material to be rolled described in Patent Document 1 measures the strength variation of the material to be rolled by applying a magnetic field to the steel sheet by a magnetic induction method and detecting a change in magnetic flux inside the steel sheet. A method of measuring the strength of a steel sheet using such magnetism is described in Non-Patent Document 1, and the grain size is measured by measuring Barkhausen noise and the steel sheet transmission magnetic flux generated when the steel sheet is magnetized. Is measured, and the mechanical strength is determined from the relationship between the crystal grain size and the mechanical properties that have been determined in advance.

特開2016-73992号公報JP 2016-73992 JP

田辺英也,西藤勝之:鉄と鋼,79(1993),No.7,p863-868Tanabe Hideya, Saito Katsuyuki: Iron and Steel, 79 (1993), No.7, p863-868

しかしながら、特許文献1および非特許文献1に記載される、磁気誘導方式により結晶粒径を測定する方法では、フェライト−パーライト鋼のような機械的強度に対して結晶粒径の影響が支配的である鋼帯には有効であるが、近年開発されているフェライト−マルテンサイトの複相組織鋼(Dual Phase鋼)等の変態強化鋼では単純に結晶粒径の大きさで素材強度を求めることができない。さらに通常このような磁気センサーは、測定領域が小さく、鋼帯の幅方向で広い領域のデータを採取しようとすれば多数のセンサーが必要となり、装置が高価になるといった問題もある。   However, in the method of measuring the crystal grain size by the magnetic induction method described in Patent Document 1 and Non-Patent Document 1, the influence of the crystal grain size is dominant on the mechanical strength of ferrite-pearlite steel. Although effective for a certain steel strip, in transformation strengthened steels such as the recently developed ferrite-martensite multi-phase structure steels (Dual Phase steels), it is possible to simply determine the material strength by the size of the crystal grain size. Can not. Further, such a magnetic sensor usually has a small measurement area, and a large number of sensors are required to collect data of a wide area in the width direction of the steel strip, which causes a problem that the apparatus becomes expensive.

本発明は上述の問題に鑑み、連続冷間圧延において、冷延素材である熱延鋼帯の長手方向に強度変動があった場合においても、簡便で安価な方法で鋼帯の長手方向の強度変動を測定し、該測定結果を用いて冷間圧延時の板厚変動を抑制し、板厚精度を向上させることを目的とした、冷間圧延の板厚制御方法を提供する。   In view of the above problems, the present invention, in continuous cold rolling, even if there is strength variation in the longitudinal direction of the hot-rolled steel strip that is a cold-rolled material, the strength in the longitudinal direction of the steel strip in a simple and inexpensive method. Provided is a method for controlling the thickness of cold rolling for the purpose of measuring the variation and suppressing the variation of the sheet thickness during cold rolling using the measurement result to improve the sheet thickness accuracy.

上記課題を解決するため、本発明者らは鋭意検討を重ね、新たな冷間圧延方法を創案した。すなわち、本発明は、以下のとおりである。
(1) 鋼帯の連続冷間圧延において、圧延機入側の板厚および張力の測定結果ならびに3本のロールによって鋼帯に下記の式(A)に従って鋼帯の降伏応力以上となり塑性変形に至るロール押込み量δを与えて、曲げ加工を加えた曲げ荷重の測定結果から、鋼帯の引張強度変動を演算し、演算された鋼帯の長手方向強度変動に応じて、圧延機のロールギャップ量および圧延機のワークロールの回転速度のうち少なくとも一方を制御することを特徴とする冷間圧延の板厚制御方法。

Figure 0006683166
ここで、tは圧延機入側の鋼帯の板厚(mm)、
Lは3本ロールのロールピッチ(mm)、
Yは鋼帯の降伏応力(MPa)、
Eは鋼帯の弾性係数(MPa) である。
なお、数式中の「・」(なかてん)は、「×」(かける、すなわち掛け算の演算子)を意味する。 In order to solve the above problems, the present inventors have conducted extensive studies and have devised a new cold rolling method. That is, the present invention is as follows.
(1) In continuous cold rolling of the steel strip, the measurement results of the plate thickness and the tension on the rolling mill entrance side and the three rolls cause the steel strip to become more than the yield stress of the steel strip according to the following formula (A) and to be plastically deformed. The tensile strength variation of the steel strip is calculated from the measurement result of the bending load after bending by giving the roll pushing amount δ to reach the roll gap of the rolling mill according to the calculated longitudinal strength variation of the steel strip. A plate thickness control method for cold rolling, comprising controlling at least one of the amount and the rotation speed of a work roll of a rolling mill.
Figure 0006683166
Here, t is the plate thickness (mm) of the steel strip on the rolling mill entrance side,
L is the roll pitch of three rolls (mm),
Y is the yield stress (MPa) of the steel strip,
E is the elastic modulus (MPa) of the steel strip.
In addition, "." (Nakaten) in a mathematical expression means "x" (multiplication, that is, a multiplication operator).

本発明によれば、被圧延材の鋼帯に強度変動があった場合においても、連続冷間圧延での板厚変動を簡便で安価な方法で抑制し、板厚精度を向上させることが可能となるという優れた効果を奏する。   According to the present invention, even if there is strength variation in the steel strip of the material to be rolled, it is possible to suppress the sheet thickness variation in continuous cold rolling by a simple and inexpensive method and improve the sheet thickness accuracy. There is an excellent effect that

本発明の実施に用いる冷間圧延設備の一例を示す模式図である。It is a schematic diagram which shows an example of the cold rolling equipment used for implementation of this invention. 本発明に係る曲げ加工についての説明図である。It is explanatory drawing about the bending process which concerns on this invention. 本発明における強度変化の検出精度を説明するグラフである。It is a graph explaining the detection accuracy of intensity change in the present invention. 実施例での鋼帯の幅方向の降伏応力の分布の一例を示すグラフである。It is a graph which shows an example of distribution of the yield stress of the width direction of the steel strip in an example.

本発明の実施の形態について図を用いて説明する。図1は本発明の実施の形態に係る冷間圧延設備の構成の一例であり、5スタンドのタンデム式冷間圧延機の入側から第5スタンドまでの設備配列の概略を示す模式図である。入側から、鋼帯1の板厚を測定する入側板厚計2、鋼帯1に作用する張力を測定する入側張力計3、鋼帯1に曲げ加工を付与する曲げ加工装置4、タンデム式冷間圧延機5である。本例では、圧延機は4段であり、ワークロール6とバックアップロール7を有している。ワークロール6にはモータ8が接続されており、ワークロールを回転駆動している。また圧延機には油圧式または電動圧下式の圧下装置9が設けられており、圧延時のロールギャップ量を調整することができる。また各圧延機には圧延荷重を測定するロードセル(荷重計)10が設けられている。さらに圧延機の各スタンド出側には鋼帯の板厚を測定するスタンド出側板厚計11、スタンド間には張力を測定するスタンド間張力計12が設けられている。モータ8および圧下装置9は制御装置13に接続されている。制御装置13では、入側板厚計2、入側張力計3、曲げ加工装置4で検出した値から鋼帯1の強度変動を演算し、強度変動による板厚変化を補償するようにモータ8の回転速度および圧下装置9によるロールギャップ量のうち少なくとも一つを調整することで板厚を制御する。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an example of a configuration of a cold rolling facility according to an embodiment of the present invention, and is a schematic diagram showing an outline of a facility arrangement from an entry side of a five-stand tandem cold rolling mill to a fifth stand. . Entry-side thickness gauge 2 for measuring the thickness of the steel strip 1 from the entry side, entry-side tensiometer 3 for measuring the tension acting on the steel strip 1, bending device 4 for applying bending to the steel strip 1, tandem It is a cold rolling mill 5. In this example, the rolling mill has four stages and has work rolls 6 and backup rolls 7. A motor 8 is connected to the work roll 6 and rotationally drives the work roll. Further, the rolling mill is provided with a hydraulic type or electric rolling type rolling down device 9, and the roll gap amount during rolling can be adjusted. Each rolling mill is provided with a load cell (load cell) 10 for measuring rolling load. Further, a stand outlet side thickness gauge 11 for measuring the strip thickness of the steel strip is provided on each stand outlet side of the rolling mill, and an inter-stand tensiometer 12 for measuring the tension between the stands. The motor 8 and the reduction device 9 are connected to the control device 13. The control device 13 calculates the strength variation of the steel strip 1 from the values detected by the entry side plate thickness gauge 2, the entry side tensiometer 3, and the bending device 4, and the motor 8 of the motor 8 is compensated to compensate the plate thickness change due to the strength variation. The plate thickness is controlled by adjusting at least one of the rotation speed and the roll gap amount by the rolling-down device 9.

本発明の最大の特徴は被圧延材の強度変動を測定する手段として3本ロールによる曲げ加工を行い、その加工反力から素材の強度変動を演算する点である。従来の、磁気誘導式の間接的な方法で被圧延材の強度変動を演算する手法では、前述したように被圧延材の金属組織によっては、あるいは鋼帯幅方向を含んで、十分な精度で素材の強度変動を測定することが困難であった。   The greatest feature of the present invention is that bending is performed by three rolls as a means for measuring the strength fluctuation of the material to be rolled, and the strength fluctuation of the material is calculated from the processing reaction force. In the conventional method of calculating the strength variation of the material to be rolled by the magnetic induction type indirect method, as described above, depending on the metallographic structure of the material to be rolled, or including the width direction of the steel strip, there is sufficient accuracy. It was difficult to measure the strength variation of the material.

これに対し、本発明では曲げ加工時の塑性変形に必要な力を測定することによって直接的に被圧延材の強度を検出するため、金属組織等の影響は受けず、また、鋼帯幅方向全体の強度変動を測定できる。また、3本ロールによる曲げ加工の構造が極めてシンプルであることから、従来の磁気誘導式の強度測定と比べて、コストや保守面等にも優れる。   On the other hand, in the present invention, since the strength of the material to be rolled is directly detected by measuring the force necessary for plastic deformation during bending, it is not affected by the metal structure, etc. The overall strength variation can be measured. Further, since the structure of bending with three rolls is extremely simple, it is superior in cost and maintenance as compared with the conventional magnetic induction type strength measurement.

図2は3本ロール曲げ加工による具体的な被圧延材の強度変動の測定方法についての説明図である。板厚t、板幅W、降伏応力Y、弾性係数Eの鋼帯1が、半径RのロールがピッチL、押込み量δで配置された3本ロールで曲げ加工されて、張力σtで通板されている。ここで鋼帯1は中央のロールに巻付角θで巻付いており、中央のロールの押込み量δが十分に大きい場合には鋼帯1はロールに完全に巻付くため、その加工曲率半径はRに等しくなる。   FIG. 2 is an explanatory diagram of a specific method for measuring the strength variation of the material to be rolled by the three-roll bending process. A steel strip 1 having a plate thickness t, a plate width W, a yield stress Y, and an elastic modulus E is bent by three rolls having a radius R and a pitch L and an indentation amount δ, and is threaded with a tension σt. Has been done. Here, the steel strip 1 is wrapped around the central roll at a wrapping angle θ, and when the pushing amount δ of the central roll is sufficiently large, the steel strip 1 is completely wrapped around the roll. Is equal to R.

このような曲げ変形をうけた場合、中央のロールに作用する鉛直方向の力Pは式(1)で示される曲げ荷重Pbと張力の鉛直方向成分Ptが作用する。中央のロールに作用する曲げ荷重Pbは曲げモーメントをMとした場合には式(2)で求めることができる。ある加工曲率κで曲げ加工を受けた場合の曲げモーメントMは曲率係数Kと最表面が降伏曲率κeに達するときの曲げモーメントをMeとした場合には式(3)で示される。

Figure 0006683166
When subjected to such a bending deformation, the vertical force P acting on the central roll is the bending load Pb and the vertical component Pt of the tension, which are represented by the formula (1). The bending load Pb acting on the central roll can be calculated by the equation (2) when the bending moment is M. The bending moment M when bending is performed with a certain working curvature κ is represented by the equation (3) when the curvature coefficient K and the bending moment when the outermost surface reaches the yield curvature κe are Me.
Figure 0006683166

ここで曲率係数K、加工曲率κ、降伏曲率κe、曲げモーメントMeはそれぞれ式(4)、(5)、(6)、(7)で記述される。

Figure 0006683166
Here, the curvature coefficient K, the working curvature κ, the yield curvature κe, and the bending moment Me are described by equations (4), (5), (6), and (7), respectively.
Figure 0006683166

また、張力σtの鉛直方向成分Ptは式(8)で示される。

Figure 0006683166
Further, the vertical component Pt of the tension σt is expressed by the equation (8).
Figure 0006683166

これらの式(1)〜(8)を用いて、実測した板厚、張力、曲げ荷重から材料の降伏応力を未知数として逆算することによって、直接的に被圧延材の強度変動を測定することが可能となる。   Using these equations (1) to (8), the strength variation of the material to be rolled can be directly measured by back-calculating the yield stress of the material as an unknown from the actually measured plate thickness, tension, and bending load. It will be possible.

ここで重要なのは、3本ロールで測定する荷重には被圧延材の強度以外に板厚と張力の影響があるため、それらを同時に測定し演算する必要がある点である。特に被圧延材となる熱延鋼帯の先尾端部は張力が掛からない非定常圧延領域であり、板厚変動が大きくなる上、先尾端ほど冷却速度が高くなり強度変動が大きくなるため、この影響を正確に把握することが重要である。板厚計2としてはγ線やX線板厚計を用いることができる。また張力計としては図2の曲げ加工と同様の3本ロールの構成において、ロール間ピッチLを大きく取り、かつ中央ロールのパスラインへの押込み量δを小さくし、ロールへの巻付き角θを小さくすることによって、鋼帯の曲げ加工曲率を小さくし、鋼帯の変形を弾性域内とすることで中央ロールに作用する反力Pをロードセルで検出して張力のみを測定する。具体的なロール間ピッチLと押込み量δとしては図2の3本ロール曲げによってロール間での鋼帯の変形が円弧形状となるため、表面に付与されるひずみεは、板厚t、押込み量δ、ロールピッチLとした場合、幾何学的関係から式(9)で近似的に算出できる。このとき表面の応力σは弾性率をEとした場合には式(10)で表される。

Figure 0006683166
What is important here is that the load measured by the three rolls is influenced by the plate thickness and the tension in addition to the strength of the material to be rolled, and it is necessary to measure and calculate them at the same time. In particular, the tip end of the hot-rolled steel strip, which is the material to be rolled, is an unsteady rolling region where no tension is applied, and the plate thickness fluctuation increases, and the cooling speed increases toward the tip end, resulting in large strength fluctuations. , It is important to understand exactly this effect. As the plate thickness meter 2, a γ-ray or X-ray plate thickness meter can be used. Further, as the tensiometer, in the configuration of three rolls similar to the bending process of FIG. 2, the pitch L between the rolls is set large, and the pushing amount δ of the central roll into the pass line is set to be small, and the winding angle θ to the roll is set. By reducing the bending bending curvature of the steel strip, and by deforming the steel strip within the elastic region, the reaction force P acting on the central roll is detected by the load cell and only the tension is measured. As for the pitch L between rolls and the amount of indentation δ, since the deformation of the steel strip between the rolls becomes an arc shape due to the three roll bending in FIG. 2, the strain ε applied to the surface is the plate thickness t, the indentation. When the amount is δ and the roll pitch is L, it can be approximately calculated by the equation (9) from the geometrical relation. At this time, the surface stress σ is expressed by the equation (10) when the elastic modulus is E.
Figure 0006683166

ここで表面が降伏しない条件、すなわち弾性変形となる条件は、鋼帯の降伏応力をYとした場合、押込み量δとロールピッチLを式(11)の関係を満足させるように設定することになる。これにより、鋼帯の変形を弾性範囲内として、張力が測定できるわけである。

Figure 0006683166
Here, the condition that the surface does not yield, that is, the condition that elastic deformation occurs, is that when the yield stress of the steel strip is Y, the pushing amount δ and the roll pitch L are set so as to satisfy the relationship of the equation (11). Become. This allows the tension to be measured with the deformation of the steel strip within the elastic range.
Figure 0006683166

一方、曲げ加工により、素材の強度変動を検出するには、3本ロールの曲げ変形で鋼帯を塑性変形させることが重要であり、ロール間ピッチLを小さく、押込み量δを大きくして、鋼帯を中央のロール半径で決まる加工曲率にて曲げの塑性変形を与える。具体的には押込み量δとロールピッチLが式(12)の関係を満足させるように設定することで鋼帯に塑性変形を与えることができる。

Figure 0006683166
On the other hand, in order to detect the strength variation of the material by bending, it is important to plastically deform the steel strip by bending deformation of the three rolls, the pitch L between rolls is made small, and the pushing amount δ is made large. A plastic deformation of bending is applied to a steel strip with a working curvature determined by the roll radius at the center. Specifically, the plastic deformation can be applied to the steel strip by setting the pushing amount δ and the roll pitch L so as to satisfy the relationship of Expression (12).
Figure 0006683166

ここでαは1以上の数値であり、αが大きくなるほど板厚方向の塑性変形領域が大きくなり最大でロール半径で決まる加工曲率となる。αの値としては、3〜6の範囲で設定するのが好ましい。   Here, α is a numerical value of 1 or more, and the larger α becomes, the larger the plastic deformation region in the plate thickness direction becomes, and the working curvature is determined by the roll radius at the maximum. The value of α is preferably set in the range of 3 to 6.

このとき、中央ロールに作用する反力Pは鋼帯の曲げ荷重と張力の影響の両方を含んだものとなっており、前述の板厚計、張力計の測定結果を用いて式(1)〜(8)により鋼帯の降伏応力Yを演算することが可能となる。   At this time, the reaction force P acting on the central roll includes both the influence of the bending load of the steel strip and the effect of the tension, and the equation (1) is used by using the measurement results of the plate thickness meter and the tensiometer described above. From (8), it becomes possible to calculate the yield stress Y of the steel strip.

3本ロール曲げ方式での鋼帯の強度変動の検出精度を確認するため、素材強度が異なる同一板厚の鋼帯を一定張力で3本ロールにより曲げ加工した場合の曲げ荷重と素材強度の関係を調査した。素材は板厚2.4mmの引張強度(TS;Tension Stress)270MPa級、590MPa級、780MPa級、980MPa級の4種類の鋼帯を用い、張力は100MPa一定で通板した。素材強度変動を測定する3本ロール曲げ加工はロール直径200mm、ロールピッチ220mm、押込み量δは35mmの設定である。図3は、各鋼帯から引張試験片を採取して測定した降伏応力(0.2%耐力,Y)の値について、最も軟質である270MPa級鋼の降伏応力を基準として無次元化した引張試験による降伏応力比を横軸とし、曲げ加工の中央ロールに作用する荷重を測定し、前述の方法によって鋼帯の降伏応力Yを演算した値を最も軟質である270MPa級鋼の降伏応力を基準として無次元化した3本ロール曲げ加工による降伏応力比を縦軸とし、同一引張強度級の横軸の値と縦軸の値との組に対応する点をプロットしたものである。3本ロール曲げ加工の荷重から演算した降伏応力比と引張試験による降伏応力比の誤差は±5%以内であり、高い相関があることが分かる。   In order to confirm the detection accuracy of the strength fluctuation of the steel strip in the three-roll bending method, the relationship between the bending load and the material strength when the steel strips with the same plate thickness and different material strength are bent by the three-roll with a constant tension. investigated. As the material, four kinds of steel strips having a plate thickness of 2.4 mm, that is, a tensile strength (TS; In the three-roll bending process for measuring the variation in material strength, the roll diameter is 200 mm, the roll pitch is 220 mm, and the indentation amount δ is 35 mm. FIG. 3 shows the value of the yield stress (0.2% proof stress, Y) measured by taking a tensile test piece from each steel strip, and making it dimensionless based on the yield stress of the softest 270 MPa class steel. The yield stress ratio in the test is set as the horizontal axis, the load acting on the central roll of bending is measured, and the yield stress Y of the steel strip is calculated by the above-mentioned method, and the yield stress of the softest 270 MPa class steel is used as the standard. As a vertical axis, the yield stress ratio by non-dimensionalized three-roll bending is plotted as the vertical axis, and the points corresponding to the pairs of the horizontal axis value and the vertical axis value of the same tensile strength class are plotted. The error between the yield stress ratio calculated from the load of the three roll bending process and the yield stress ratio by the tensile test is within ± 5%, which shows that there is a high correlation.

具体的な制御方法としては、まず連続冷間圧延時の被圧延材の先端部が3本ロールにより曲げ加工された時点に測定した曲げ荷重から、前述の方法を用いて強度を演算し、その値を基準値としてロックオンする。次に先端部以降の鋼帯長手方向の各位置での強度変動を随時演算し、基準値で除することで鋼帯での強度変動比を演算する。鋼帯の各測定位置はトラッキングされており、演算された強度変動に応じて、圧延材の強度が高い箇所では、ロールギャップを小さくする制御、および、各スタンドのモータに速度差をつけてワークロールの回転速度を変えて張力を増加させる制御のうち少なくとも一方を実施する。逆に、被圧延材の強度が低い箇所では、ワークロールのロールギャップ量を大きくする制御、および、各スタンドのモータの速度差を設けてワークロールの回転速度を変えて張力を低減させる制御のうち少なくとも一方を実施する。   As a specific control method, first, the strength is calculated using the above-mentioned method from the bending load measured at the time when the tip of the material to be rolled during the continuous cold rolling is bent by three rolls, and Lock on with the value as the reference value. Next, the strength variation at each position in the longitudinal direction of the steel strip after the tip portion is calculated at any time and divided by the reference value to calculate the strength variation ratio in the steel strip. Each measurement position of the steel strip is tracked, and according to the calculated strength fluctuation, at the place where the strength of the rolled material is high, control is performed to reduce the roll gap, and the speed of the motor of each stand is set to make the work different. At least one of the controls for increasing the tension by changing the rotation speed of the roll is performed. On the other hand, at locations where the strength of the material to be rolled is low, control is performed to increase the roll gap amount of the work rolls, and to control the rotation speed of the work rolls by reducing the tension by providing a speed difference between the motors of the stands. Do at least one of them.

以下、本発明の効果について、実施例をもとに説明する。表1に示す成分を有し、残部がFeおよび不可避的不純物からなるスラブを熱間圧延時し、仕上げ圧延出側温度870℃、巻取り温度540℃の条件により、板厚2.8mm、板幅1200mm、TS980MPa級の熱延鋼帯とした。この熱延鋼帯を酸洗し冷延素材として、図1に示す5スタンドのタンデム式冷間圧延機によって、表2に示すように使用するAGC機能を切り替えて、板厚1.0mm(冷延総圧下率61.5%)までの冷間圧延を行った。このとき、冷間圧延機出側の鋼帯全長の板厚はX線板厚計で測定し、冷間圧延後の鋼帯の板厚と目標板厚との板厚偏差の絶対値が40μmを超える領域は板厚公差外れとして鋼帯の該当する部分を切捨てる処理を実施し、その切捨て長さから冷間圧延での歩留を評価した。   Hereinafter, the effects of the present invention will be described based on examples. A slab having the components shown in Table 1 and the balance being Fe and unavoidable impurities was hot-rolled, and the finish rolling outlet temperature was 870 ° C and the winding temperature was 540 ° C. A hot rolled steel strip having a width of 1200 mm and a TS980 MPa class was used. This hot-rolled steel strip was pickled and used as a cold-rolled material by a 5-stand tandem cold rolling mill shown in FIG. Cold rolling was performed up to a total rolling reduction of 61.5%. At this time, the plate thickness of the entire length of the steel strip on the exit side of the cold rolling mill is measured by an X-ray plate thickness gauge, and the absolute value of the plate thickness deviation between the plate thickness of the steel strip after cold rolling and the target plate thickness is 40 μm. The region exceeding the value was out of the plate thickness tolerance, and the corresponding portion of the steel strip was cut off, and the yield in cold rolling was evaluated from the cut length.

Figure 0006683166
Figure 0006683166

Figure 0006683166
Figure 0006683166

ケース1は本発明例として、冷間圧延機の入側の板厚、張力、および3本ロール曲げ加工荷重から演算した熱延鋼帯の長手方向の強度変動を補償するように圧延機をフィードフォワード制御したものである。3本ロール曲げ加工はロール直径200mm、ロールピッチ220mm、押込み量δ35mmの設定である。ケース2は比較例として、前述の3本ロール曲げ加工による強度変動を補償する制御機能を使用しなかったものである。一方、ケース3は熱延鋼帯の幅方向中央部のみについて、長手方向の強度変動を別ラインに設置した磁気式の強度測定装置であらかじめ測定し、その測定結果のみを用いて圧延機をフィードフォワード式で制御した結果である。このとき、磁気式の強度測定装置で強度を測定した領域は板幅中央部の50mm幅の狭い領域である。   Case 1, as an example of the present invention, feeds the rolling mill so as to compensate the strength variation in the longitudinal direction of the hot-rolled steel strip calculated from the plate thickness on the inlet side of the cold rolling mill, the tension, and the three-roll bending load. Forward control is performed. In the three-roll bending process, the roll diameter is 200 mm, the roll pitch is 220 mm, and the pushing amount is δ35 mm. Case 2 is a comparative example in which the control function for compensating the strength variation due to the above-described three-roll bending process is not used. On the other hand, in case 3, only the widthwise central portion of the hot-rolled steel strip was measured in advance with a magnetic strength measuring device installed in a separate line to measure the strength variation in the longitudinal direction, and the rolling mill was fed using only the measurement results. This is the result of control by the forward method. At this time, the area where the strength was measured by the magnetic strength measuring device is a narrow area of 50 mm width at the center of the plate width.

本発明例であるケース1では板厚変動が小さく、圧延後の歩留実績が98%と非常に良好であるのに対し、ケース2の比較例では歩留が90%と低下していることが分かる。またケース3の比較例ではあらかじめ鋼帯中央部の強度変動を磁気式センサーで測定していたにも関わらず、歩留は92%と低くなっている。   In Case 1 which is an example of the present invention, the variation in plate thickness is small and the yield after rolling is very good at 98%, whereas in the comparative example of Case 2 the yield is reduced to 90%. I understand. Further, in the comparative example of Case 3, although the strength variation in the central portion of the steel strip was previously measured by the magnetic sensor, the yield was as low as 92%.

図4は実施例と同一熱延条件で圧延した鋼帯(冷延素材)の幅方向の降伏応力(0.2%耐力)の分布を調査した結果の一例である。図4より、鋼帯の両エッジ部分で硬質な領域があり、ケース3では、幅中央部の狭い領域での強度変動しか測定しないため、鋼帯両エッジ部分を制御にとり入れられず効果が不十分であったわけである。   FIG. 4 is an example of the result of investigation of the distribution of the yield stress (0.2% proof stress) in the width direction of the steel strip (cold rolled material) rolled under the same hot rolling conditions as in the example. From Fig. 4, there is a hard region at both edges of the steel strip, and in case 3, since only strength variation in the narrow region at the center of the width is measured, both edges of the steel strip cannot be taken into control and the effect is unsatisfactory. That was enough.

1 鋼帯
2 入側板厚計
3 入側張力計
4 曲げ加工装置(3本のロールによる曲げ加工装置)
5 タンデム式冷間圧延機
6 ワークロール
7 バックアップロール
8 モータ
9 圧下装置
10 ロードセル(荷重計)
11 スタンド出側板厚計
12 スタンド間張力計
13 制御装置
1 Steel strip 2 Entry side plate thickness gauge 3 Entry side tension gauge 4 Bending machine (Bending machine with three rolls)
5 Tandem cold rolling mill 6 Work roll 7 Backup roll 8 Motor 9 Rolling down device 10 Load cell (load cell)
11 Stand outlet side thickness gauge 12 Inter-stand tension gauge 13 Controller

Claims (2)

鋼帯の連続冷間圧延において、圧延機入側の入側板厚計による板厚および入側張力計による張力の測定結果ならびに圧延機入側の3本のロールによって鋼帯に下記の式(A)に従って鋼帯の降伏応力以上となり塑性変形に至るロール押込み量δを与えて、曲げ加工を加えた曲げ荷重の測定結果から、鋼帯の引張強度変動を演算し、演算された鋼帯の長手方向強度変動に応じて、圧延機のロールギャップ量および圧延機のワークロールの回転速度のうち少なくとも一方を制御することを特徴とする冷間圧延の板厚制御方法。
Figure 0006683166
ここで、tは圧延機入側の鋼帯の板厚(mm)、
Lは3本ロールのロールピッチ(mm)、
Yは鋼帯の降伏応力(MPa)、
Eは鋼帯の弾性係数(MPa) である。
In the continuous cold rolling of the steel strip, the measurement results of the sheet thickness by the inlet side thickness gauge on the rolling mill inlet side and the tension by the inlet side tensiometer and the three formulas (A ), The amount of roll indentation δ that exceeds the yield stress of the steel strip and causes plastic deformation is given, and the tensile strength fluctuation of the steel strip is calculated from the measurement result of the bending load with bending, and the calculated length of the steel strip is calculated. A strip thickness control method for cold rolling, comprising controlling at least one of a roll gap amount of a rolling mill and a rotation speed of a work roll of the rolling mill according to a change in directional strength.
Figure 0006683166
Here, t is the plate thickness (mm) of the steel strip on the rolling mill entrance side,
L is the roll pitch of three rolls (mm),
Y is the yield stress (MPa) of the steel strip,
E is the elastic modulus (MPa) of the steel strip.
前記演算された鋼帯の長手方向強度変動は、連続冷間圧延時の前記鋼帯の先端部が前記圧延機入側の3本のロールにより曲げ加工された時点に測定した曲げ荷重から演算した基準値に対する先端部以外の強度変動比であることを特徴とする請求項1に記載の冷間圧延の板厚制御方法。The calculated strength variation in the longitudinal direction of the steel strip was calculated from the bending load measured when the leading end of the steel strip during continuous cold rolling was bent by three rolls on the inlet side of the rolling mill. The strip thickness control method for cold rolling according to claim 1, wherein the strength variation ratio of the portion other than the tip portion with respect to the reference value is used.
JP2017081069A 2017-04-17 2017-04-17 Cold rolling strip thickness control method Active JP6683166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081069A JP6683166B2 (en) 2017-04-17 2017-04-17 Cold rolling strip thickness control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081069A JP6683166B2 (en) 2017-04-17 2017-04-17 Cold rolling strip thickness control method

Publications (2)

Publication Number Publication Date
JP2018176232A JP2018176232A (en) 2018-11-15
JP6683166B2 true JP6683166B2 (en) 2020-04-15

Family

ID=64282146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081069A Active JP6683166B2 (en) 2017-04-17 2017-04-17 Cold rolling strip thickness control method

Country Status (1)

Country Link
JP (1) JP6683166B2 (en)

Also Published As

Publication number Publication date
JP2018176232A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US6615633B1 (en) Metal plateness controlling method and device
CN103212585B (en) A control device of a hot mill used for thin plates and a control method of the hot mill used for thin plates
JPS6121729B2 (en)
JP4685777B2 (en) Wedge setting and control method in sheet metal rolling
RU2765768C2 (en) Method and device for continuous evaluation of mechanical and microstructural properties of metal material, in particular steel, during cold deformation
JP5293022B2 (en) Temperature control method in continuous annealing furnace and continuous annealing furnace
JP6620777B2 (en) Leveling setting method for rolling mill and leveling setting apparatus for rolling mill
JP2007160395A (en) Cold tandem rolling method of high-tensile steel
JP4990747B2 (en) Temper rolling method
JP2008272783A (en) Shape control method in skin pass rolling
JP6683166B2 (en) Cold rolling strip thickness control method
JP3384330B2 (en) Thickness control method in reverse rolling mill
JP7311764B2 (en) Cold tandem rolling equipment and cold tandem rolling method
JP4927008B2 (en) Method for predicting deformation resistance of metal strip and method for setting up cold tandem rolling mill
JP4705466B2 (en) Thickness control method in cold tandem rolling
JP5967033B2 (en) Meander control device and meander control method
JP6311627B2 (en) Rolling mill control method, rolling mill control apparatus, and steel plate manufacturing method
JP3690282B2 (en) Camber and wedge prevention method in hot rolling
JP6152838B2 (en) Cold rolling apparatus, cold rolling method and manufacturing method of cold rolled steel strip
JP7280506B2 (en) Cold tandem rolling equipment and cold tandem rolling method
JP2000094023A (en) Method and device for controlling leveling in hot finishing mill
JP3771781B2 (en) Thick steel plate rolling equipment and thick steel plate rolling method
JPS60250816A (en) Method for controlling initial roll gap in cold rolling mill
JP2006198661A (en) Cold tandem mill and cold tandem rolling method
JP6269538B2 (en) Rolling mill control method, rolling mill control apparatus, and steel plate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200309

R150 Certificate of patent or registration of utility model

Ref document number: 6683166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250