JP6680108B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP6680108B2
JP6680108B2 JP2016127283A JP2016127283A JP6680108B2 JP 6680108 B2 JP6680108 B2 JP 6680108B2 JP 2016127283 A JP2016127283 A JP 2016127283A JP 2016127283 A JP2016127283 A JP 2016127283A JP 6680108 B2 JP6680108 B2 JP 6680108B2
Authority
JP
Japan
Prior art keywords
single crystal
oxygen concentration
magnetic field
crystal
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016127283A
Other languages
Japanese (ja)
Other versions
JP2018002496A (en
Inventor
康裕 齋藤
康裕 齋藤
最勝寺 俊昭
俊昭 最勝寺
一美 田邉
一美 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2016127283A priority Critical patent/JP6680108B2/en
Priority to TW106105220A priority patent/TWI635199B/en
Priority to CN201780040672.7A priority patent/CN109415843A/en
Priority to DE112017003224.5T priority patent/DE112017003224B4/en
Priority to KR1020187030618A priority patent/KR102157389B1/en
Priority to PCT/JP2017/006782 priority patent/WO2018003167A1/en
Publication of JP2018002496A publication Critical patent/JP2018002496A/en
Application granted granted Critical
Publication of JP6680108B2 publication Critical patent/JP6680108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコン単結晶の製造方法に関するものである。   The present invention relates to a method for manufacturing a silicon single crystal.

水平磁場印加チョクラルスキー法(HMCZ法)において、坩堝内の融液の表面部では対流が起こり易くし、坩堝の底部では対流を抑制することにより、結晶成長軸方向の酸素濃度分布を均一にすることが提案されている(特許文献1)。   In the horizontal magnetic field applied Czochralski method (HMCZ method), convection is likely to occur at the surface of the melt in the crucible, and convection is suppressed at the bottom of the crucible to make the oxygen concentration distribution uniform in the crystal growth axis direction. It has been proposed to do so (Patent Document 1).

特開平9−188590号公報JP, 9-188590, A

ところで、ウェーハの外周端部から10mm程度以内の範囲(以下、外周部ともいう)における酸素濃度は、その他の中央部分に比べて低い。こうした外周部はデバイスプロセスにおける不良を発生させる要因となり得ることから、デバイスの歩留まりを高くするために、外周部に至るまで酸素濃度の均一化が求められている。   By the way, the oxygen concentration in a range within about 10 mm from the outer peripheral edge of the wafer (hereinafter, also referred to as outer peripheral portion) is lower than that in other central portions. Since such an outer peripheral portion may cause a defect in the device process, it is required to make the oxygen concentration uniform throughout the outer peripheral portion in order to increase the device yield.

本発明が解決しようとする課題は、シリコン単結晶の製造コストを最小限に抑制しつつウェーハ面内の酸素濃度を外周部に至るまで均一にできるシリコン単結晶の製造方法を提供することである。   The problem to be solved by the present invention is to provide a method for producing a silicon single crystal capable of uniformizing the oxygen concentration in the wafer surface to the outer peripheral portion while suppressing the production cost of the silicon single crystal to the minimum. .

第1の観点による発明は、引き上げられる単結晶の直径、水平磁場強度及び単結晶の結晶回転と、ウェーハ外周部における酸素濃度の分布特性との相関関係を、所定の製造条件について予め求めておき、許容されるウェーハ外周部における酸素濃度の分布特性、水平磁場強度の限界値及び単結晶の結晶回転の限界値と、前記相関関係とから、引き上げるべき単結晶の直径を求め、当該求められた直径の単結晶を前記所定の製造条件の下で製造することによって、上記課題を解決する。   In the invention according to the first aspect, the correlation between the diameter of the pulled single crystal, the horizontal magnetic field strength and the crystal rotation of the single crystal, and the distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer is obtained in advance under predetermined manufacturing conditions. , The allowable distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer, the limit value of the horizontal magnetic field strength and the limit value of the crystal rotation of the single crystal, and the correlation, the diameter of the single crystal to be pulled is calculated, The above problem is solved by producing a single crystal having a diameter under the predetermined production conditions.

第2の観点による発明は、引き上げられる単結晶の直径と、水平磁場強度と、単結晶の結晶回転と、ウェーハ外周部における酸素濃度の分布特性との相関関係を、所定の製造条件について予め求めておき、許容されるウェーハ外周部における酸素濃度の分布特性と、引き上げられる単結晶の直径の限界値と、単結晶の結晶回転の限界値と、前記相関関係とから、印加すべき水平磁場強度を求め、当該求められた水平磁場強度と前記所定の製造条件の下で単結晶を製造することによって、上記課題を解決する。   In the invention according to the second aspect, the correlation between the diameter of the pulled single crystal, the horizontal magnetic field strength, the crystal rotation of the single crystal, and the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer is obtained in advance for predetermined manufacturing conditions. Aside from the allowable distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer, the limit value of the diameter of the pulled single crystal, the limit value of the crystal rotation of the single crystal, and the correlation, the horizontal magnetic field strength to be applied Is solved and the above problem is solved by manufacturing a single crystal under the calculated horizontal magnetic field strength and the predetermined manufacturing conditions.

第3の観点による発明は、引き上げられる単結晶の直径と、水平磁場強度と、単結晶の結晶回転と、ウェーハ外周部における酸素濃度の分布特性との相関関係を、所定の製造条件について予め求めておき、許容されるウェーハ外周部における酸素濃度の分布特性と、引き上げられる単結晶の限界値と、水平磁場強度の限界値と、前記相関関係とから、単結晶の結晶回転を求め、当該求められた結晶回転と前記所定の製造条件の下で単結晶を製造することによって、上記課題を解決する。   In the invention according to the third aspect, the correlation between the diameter of the pulled single crystal, the horizontal magnetic field strength, the crystal rotation of the single crystal, and the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer is obtained in advance under predetermined manufacturing conditions. In advance, the distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer that is allowed, the limit value of the pulled single crystal, the limit value of the horizontal magnetic field strength, and the above correlation, determine the crystal rotation of the single crystal, and obtain the relevant value. The above problem is solved by producing a single crystal under the given crystal rotation and the above-mentioned predetermined production conditions.

特に限定はされないが、上記第1乃至第3の観点による発明において、前記相関関係は、引き上げられる単結晶の直径をD(mm)、水平磁場強度をG(ガウス)、単結晶の結晶回転をV(rpm)、ウェーハ外周部における酸素濃度の分布特性をδ(1017atoms/cm3)、a,b,c,dを定数としたときに、δ=aD+bG+cV+dなる式により定義し、予め前記定数a,b,c,dを求めておくことが望ましい。 Although not particularly limited, in the inventions according to the first to third aspects, the correlation is that the diameter of the pulled single crystal is D (mm), the horizontal magnetic field strength is G (gauss), and the crystal rotation of the single crystal. V (rpm), oxygen concentration distribution characteristics at the wafer outer periphery are defined as δ = aD + bG + cV + d, where δ (10 17 atoms / cm 3 ) and a, b, c, d are constants, It is desirable to find the constants a, b, c, d.

第1の観点による発明によれば、水平磁場強度と、単結晶の結晶回転と、ウェーハ外周部における酸素濃度の分布特性に、引き上げる単結晶の直径を加えた相関関係を予め求めておき、単結晶を製造する際においては、ウェーハ外周部における酸素濃度の分布特性の限界値と、水平磁場強度の限界値と、単結晶の結晶回転の限界値と、相関関係とから、引き上げる単結晶の最小の直径を求める。これにより、引き上げられる単結晶の直径が最小となるので、シリコン単結晶の生産コストを最小限に抑制することができる。また、ウェーハ外周部における酸素濃度の分布特性が限界値を維持するので、ウェーハ面内の酸素濃度を均一にすることができる。   According to the invention of the first aspect, the correlation in which the horizontal magnetic field strength, the crystal rotation of the single crystal, and the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer are added in advance to the diameter of the single crystal to be pulled, When manufacturing a crystal, the limit value of the distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer, the limit value of the horizontal magnetic field strength, the limit value of the crystal rotation of the single crystal, and the correlation, the minimum of the single crystal to be pulled Find the diameter of. As a result, the diameter of the pulled single crystal is minimized, so that the production cost of the silicon single crystal can be minimized. Further, since the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer maintains the limit value, the oxygen concentration in the wafer surface can be made uniform.

第2の観点による発明によれば、水平磁場強度と、単結晶の結晶回転と、ウェーハ外周部における酸素濃度の分布特性に、引き上げられる単結晶の直径を加えた相関関係を予め求めておき、単結晶を製造する際においては、ウェーハ外周部における酸素濃度の分布特性の限界値と、引き上げられる単結晶の直径の限界値と、単結晶の結晶回転の限界値と、相関関係とから、印加すべき1の水平磁場強度を求める。これにより、引き上げられる単結晶の直径が最小となるので、シリコン単結晶の生産コストを最小限に抑制することができる。また、ウェーハ外周部における酸素濃度の分布特性が限界値を維持するので、ウェーハ面内の酸素濃度を均一にすることができる。 According to the invention of the second aspect, the horizontal magnetic field strength, the crystal rotation of the single crystal, and the distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer are added in advance to obtain the correlation, When manufacturing a single crystal, the limit value of the distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer, the limit value of the diameter of the single crystal to be pulled, the limit value of the crystal rotation of the single crystal, and the correlation, The horizontal magnetic field strength of 1 to be obtained is obtained . As a result, the diameter of the pulled single crystal is minimized, so that the production cost of the silicon single crystal can be minimized. Further, since the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer maintains the limit value, the oxygen concentration in the wafer surface can be made uniform.

第3の観点による発明によれば、水平磁場強度と、単結晶の結晶回転と、ウェーハ外周部における酸素濃度の分布特性に、引き上げられる単結晶の直径を加えた相関関係を予め求めておき、単結晶を製造する際においては、ウェーハ外周部における酸素濃度の分布特性の限界値と、引き上げられる単結晶の直径の限界値と、水平磁場強度の限界値と、相関関係とから、単結晶の結晶回転を求める。これにより、引き上げられる単結晶の直径が最小となるので、シリコン単結晶の生産コストを最小限に抑制することができる。また、ウェーハ外周部における酸素濃度の分布特性が限界値を維持するので、ウェーハ面内の酸素濃度を均一にすることができる。   According to the invention of the third aspect, the horizontal magnetic field strength, the crystal rotation of the single crystal, and the distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer are added in advance to obtain the correlation, When manufacturing a single crystal, the limit value of the distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer, the limit value of the diameter of the pulled single crystal, the limit value of the horizontal magnetic field strength, and the correlation, from the single crystal Calculate the crystal rotation. As a result, the diameter of the pulled single crystal is minimized, so that the production cost of the silicon single crystal can be minimized. Further, since the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer maintains the limit value, the oxygen concentration in the wafer surface can be made uniform.

本発明のシリコン単結晶の製造方法が適用される製造装置の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing apparatus to which the manufacturing method of the silicon single crystal of this invention is applied. 図1に示す製造装置の水平磁場強度と、ウェーハ外周部における酸素濃度の分布特性との関係の一例を示すグラフである。3 is a graph showing an example of the relationship between the horizontal magnetic field strength of the manufacturing apparatus shown in FIG. 1 and the oxygen concentration distribution characteristics in the outer peripheral portion of the wafer. 図1に示す製造装置の単結晶の結晶回転と、ウェーハ外周部における酸素濃度の分布特性との関係の一例をグラフである。3 is a graph showing an example of the relationship between the crystal rotation of the single crystal of the manufacturing apparatus shown in FIG. 1 and the oxygen concentration distribution characteristics in the outer peripheral portion of the wafer. 図1に示す製造装置により製造されたシリコン単結晶のウェーハの直径方向の位置と酸素濃度との関係の一例を示すグラフである。2 is a graph showing an example of a relationship between a position in a diameter direction of a silicon single crystal wafer manufactured by the manufacturing apparatus shown in FIG. 1 and oxygen concentration. 図1に示す製造装置により引き上げられる単結晶の直径と、ウェーハ外周部における酸素濃度の分布特性との関係の一例をグラフである。3 is a graph showing an example of the relationship between the diameter of a single crystal pulled by the manufacturing apparatus shown in FIG. 1 and the oxygen concentration distribution characteristics in the outer peripheral portion of the wafer.

以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明の一実施の形態であるシリコン単結晶の製造方法が適用される製造装置の一例を示す断面図である。本実施形態の製造方法が適用されるシリコン単結晶の製造装置1(以下、単に製造装置1ともいう)は、円筒状の第1チャンバ11と、同じく円筒状の第2チャンバ12とを備え、これらは気密に接続されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing an example of a manufacturing apparatus to which a method for manufacturing a silicon single crystal according to an embodiment of the present invention is applied. A silicon single crystal manufacturing apparatus 1 (hereinafter also simply referred to as a manufacturing apparatus 1) to which the manufacturing method of the present embodiment is applied includes a cylindrical first chamber 11 and a cylindrical second chamber 12 as well. These are hermetically connected.

第1チャンバ11の内部には、シリコン融液Mを収容する石英製の坩堝21と、この石英製の坩堝21を保護する黒鉛製の坩堝22とが、支持軸23で支持されるとともに、駆動機構24によって回転及び昇降が可能とされている。また、石英製の坩堝21と黒鉛製の坩堝22とを取り囲むように、環状のヒータ25と、同じく環状の、断熱材からなる保温筒26が配置されている。坩堝21の下方にヒータを追加してもよい。   Inside the first chamber 11, a quartz crucible 21 for containing the silicon melt M and a graphite crucible 22 for protecting the quartz crucible 21 are supported by a support shaft 23 and driven. The mechanism 24 allows rotation and elevation. Further, an annular heater 25 and an annular heat insulating cylinder 26 made of a heat insulating material are arranged so as to surround the crucible 21 made of quartz and the crucible 22 made of graphite. A heater may be added below the crucible 21.

第1チャンバ11の内部であって、石英製の坩堝21の上部には、円筒状の熱遮蔽部材27が設けられている。熱遮蔽部材27は、モリブデン、タングステンなどの対価金属又はカーボンからなり、シリコン融液Mからシリコン単結晶Cへの放射を遮断するとともに、第1チャンバ11内を流れるガスを整流する。熱遮蔽部材27は、保温筒26にブラケット28を用いて固定されている。この熱遮蔽部材27の下端に、シリコン融液Mの全面と対向するように遮熱部を設け、シリコン融液Mの表面からの輻射をカットするとともにシリコン融液Mの表面を保温するようにしてもよい。   Inside the first chamber 11, inside the crucible 21 made of quartz, a cylindrical heat shield member 27 is provided. The heat shield member 27 is made of a counter metal such as molybdenum or tungsten, or carbon, and shields the radiation from the silicon melt M to the silicon single crystal C and rectifies the gas flowing in the first chamber 11. The heat shield member 27 is fixed to the heat insulating cylinder 26 with a bracket 28. A heat shield is provided at the lower end of the heat shield member 27 so as to face the entire surface of the silicon melt M so that the radiation from the surface of the silicon melt M is cut and the surface of the silicon melt M is kept warm. May be.

第1チャンバ11の上部に接続された第2チャンバ12は、育成したシリコン単結晶Cを収容し、これを取り出すためのチャンバである。第2チャンバ12の上部には、シリコン単結晶をワイヤ31で回転させながら引上げる引上げ機構32が設けられている。引上げ機構32から垂下されたワイヤ31の下端のチャックには種結晶Sが装着される。第1チャンバ11の上部に設けられたガス導入口13から、アルゴンガス等の不活性ガスが導入される。この不活性ガスは、引上げ中のシリコン単結晶Cと熱遮蔽部材27との間を通過した後、熱遮蔽部材27の下端とシリコン融液Mの融液面との間を通過し、さらに石英製の坩堝21の上端へ立ち上がった後、ガス流出口14から排出される。   The second chamber 12 connected to the upper part of the first chamber 11 is a chamber for accommodating the grown silicon single crystal C and taking it out. Above the second chamber 12, a pulling mechanism 32 for pulling up the silicon single crystal while rotating it with the wire 31 is provided. The seed crystal S is mounted on the chuck at the lower end of the wire 31 suspended from the pulling mechanism 32. An inert gas such as argon gas is introduced from the gas introduction port 13 provided in the upper part of the first chamber 11. This inert gas passes between the silicon single crystal C being pulled and the heat shield member 27, then passes between the lower end of the heat shield member 27 and the melt surface of the silicon melt M, and further quartz. After rising up to the upper end of the crucible 21 made of steel, it is discharged from the gas outlet 14.

第1チャンバ11(非磁気シールド材からなる)の外側には、第1チャンバ11を取り囲むように、石英製の坩堝21内の融液Mに磁場を与える磁場発生装置41が配置されている。磁場発生装置41は、石英製の坩堝21に向けて、水平磁場を生じさせるものであり、電磁コイルで構成されている。磁場発生装置41は、坩堝21内の融液Mに生じた熱対流を制御することで、結晶成長を安定させ、結晶成長方向における不純物分布のミクロなバラツキを抑制する。特に大口径のシリコン単結晶を製造する場合にはその効果が大きい。なお、以下に示す磁場強度は、坩堝21内の融液Mの液面の中心位置で測定した値である。   A magnetic field generator 41 that applies a magnetic field to the melt M in the crucible 21 made of quartz is arranged outside the first chamber 11 (made of a non-magnetic shield material) so as to surround the first chamber 11. The magnetic field generator 41 generates a horizontal magnetic field toward the crucible 21 made of quartz, and is composed of an electromagnetic coil. The magnetic field generator 41 controls the thermal convection generated in the melt M in the crucible 21 to stabilize crystal growth and suppress microscopic variations in impurity distribution in the crystal growth direction. Especially when producing a large diameter silicon single crystal, the effect is great. The magnetic field strengths shown below are values measured at the center position of the liquid surface of the melt M in the crucible 21.

本実施形態の製造装置1を用いて、CZ法によりシリコン単結晶を育成するには、まず、石英製の坩堝21内に、多結晶シリコンや必要に応じてドーパントからなるシリコン原料を充填し、ヒータ25をONして坩堝21内でシリコン原料を融解し、シリコン融液Mとする。続いて、磁場発生装置41をONして坩堝21への水平磁場の印加を開始しつつ、シリコン融液Mの温度を引き上げ開始温度となるように調温する。シリコン融液Mの温度と磁場強度が安定したら、ガス導入口13から不活性ガスを導入しガス排出口14から排出しながら、駆動機構24によって坩堝21を所定速度で回転させ、ワイヤ31に装着された種結晶Sをシリコン融液Mに浸漬する。そして、ワイヤ31も所定速度で回転させながら静かに引上げて種絞りを形成した後、所望の直径まで拡径し、略円柱形状の直胴部を有するシリコン単結晶Cを成長させる。   In order to grow a silicon single crystal by the CZ method using the manufacturing apparatus 1 of this embodiment, first, the crucible 21 made of quartz is filled with polycrystalline silicon or a silicon raw material made of a dopant if necessary, The heater 25 is turned on to melt the silicon raw material in the crucible 21 to form a silicon melt M. Then, the magnetic field generator 41 is turned on to start applying a horizontal magnetic field to the crucible 21, and the temperature of the silicon melt M is raised so as to reach the start temperature. When the temperature and magnetic field strength of the silicon melt M have stabilized, the driving mechanism 24 rotates the crucible 21 at a predetermined speed while introducing an inert gas from the gas inlet 13 and discharging it from the gas outlet 14, and attaches it to the wire 31. The seed crystal S thus prepared is immersed in the silicon melt M. Then, the wire 31 is also gently pulled up while being rotated at a predetermined speed to form a seed diaphragm, and then expanded to a desired diameter to grow a silicon single crystal C having a substantially cylindrical straight barrel portion.

シリコン単結晶Cの引き上げにともない坩堝21の液面が下がり、磁場発生装置41から坩堝21へ水平磁場を印加を含めてホットゾーンの条件が変動する。この液面の変動を抑制するため、シリコン単結晶Cの引き上げ中における融液Mの液面の鉛直方向の高さは、駆動機構24によって一定となるように制御される。この駆動機構24の制御は、例えば、坩堝21の位置、CCDカメラなどで測定したシリコン融液Mの液面の位置、シリコン単結晶Cの引上げ長さ、第1チャンバ11内の温度、シリコン融液Mの表面温度、不活性ガス流量等の情報に応じて実行され、これにより坩堝21の上下方向の位置が駆動機構24によって移動する。   As the silicon single crystal C is pulled up, the liquid level of the crucible 21 is lowered, and the conditions of the hot zone including the application of the horizontal magnetic field from the magnetic field generator 41 to the crucible 21 are changed. In order to suppress the fluctuation of the liquid surface, the vertical height of the liquid surface of the melt M during the pulling of the silicon single crystal C is controlled by the drive mechanism 24 to be constant. The drive mechanism 24 is controlled by, for example, the position of the crucible 21, the position of the liquid surface of the silicon melt M measured by a CCD camera, the pulling length of the silicon single crystal C, the temperature in the first chamber 11, the silicon melt, and the like. This is executed according to the information such as the surface temperature of the liquid M and the flow rate of the inert gas, whereby the vertical position of the crucible 21 is moved by the drive mechanism 24.

さて、例えば300mmウェーハを製造する場合、シリコン単結晶Cの引上げ直径は、ばらつきを考慮して300mmより僅かに大きい所定値に設定される。図4は、そのようにして製造されたシリコン単結晶Cのウェーハ状態における酸素濃度の分布特性の一例を示すグラフである。横軸は、ウェーハ中心を0とする直径方向の位置を示し、縦軸は酸素濃度(1017atoms/cm3)を示す。なお、本明細書にいう酸素濃度は、全てASTM F−121(1979)に規格されたFT−IR法(フーリエ変換赤外分光光度法)による測定値である。また本明細書にいうウェーハ外周部とは、ウェーハの外周端部から10mm内側までの領域である。以下の例では、ウェーハ外周部の酸素濃度の落込みとして、外周端部から5mmの事例を図2、3、5に示したが、これはウェーハ外周部の代表例として示したものであり、5mmの位置に限定するものではない。この例によると、ウェーハの外周部における酸素濃度は、他の部位に比べて0.5×1017atoms/cm3程度低くなっている。ウェーハの大径化にともなって水平磁場を印加し、坩堝21内の融液Mに生じた熱対流を制御することで引上げ直径の制御性を改善すると、熱対流による融液酸素の撹拌が行われ難く、酸素が蒸発した表層の融液が結晶外周部に取り込まれ、結晶外周部の酸素濃度が低下し易くなるからである。 Now, for example, when manufacturing a 300 mm wafer, the pulling diameter of the silicon single crystal C is set to a predetermined value slightly larger than 300 mm in consideration of variations. FIG. 4 is a graph showing an example of oxygen concentration distribution characteristics in a wafer state of the silicon single crystal C manufactured in this way. The horizontal axis represents the position in the diameter direction with the wafer center as 0, and the vertical axis represents the oxygen concentration (10 17 atoms / cm 3 ). The oxygen concentration referred to in this specification is a value measured by the FT-IR method (Fourier transform infrared spectrophotometric method) standardized in ASTM F-121 (1979). Further, the wafer outer peripheral portion referred to in the present specification is a region from the outer peripheral end portion of the wafer to the inner side of 10 mm. In the following example, as a drop in the oxygen concentration in the outer peripheral portion of the wafer, a case of 5 mm from the outer peripheral edge is shown in FIGS. 2, 3 and 5, which is shown as a typical example of the outer peripheral portion of the wafer. The position is not limited to 5 mm. According to this example, the oxygen concentration in the outer peripheral portion of the wafer is lower by 0.5 × 10 17 atoms / cm 3 than in other portions. When the horizontal magnetic field is applied as the diameter of the wafer increases and the convection of the melt M in the crucible 21 is controlled to improve the controllability of the pulling diameter, stirring of the melt oxygen by the thermal convection is performed. This is because the melt of the surface layer in which oxygen is evaporated is hard to be absorbed and is taken into the outer peripheral portion of the crystal, and the oxygen concentration in the outer peripheral portion of the crystal is likely to decrease.

したがって、磁場発生装置41による水平磁場強度を下げれば、ウェーハの外周部における酸素濃度の低下は抑制できる。しかしながら、磁場発生装置41による水平磁場強度を下げると、坩堝21内の融液Mに生じた熱対流の制御性が低下するので、引上げ速度の制御性が低下する。また、磁場発生装置41による水平磁場強度を下げると、坩堝21内の融液Mに生じた熱対流の制御性が低下するので、酸素濃度が上昇する。したがって、水平磁場強度を下げることにも、一定の限界値がある。   Therefore, if the horizontal magnetic field strength of the magnetic field generator 41 is reduced, it is possible to suppress the decrease in oxygen concentration in the outer peripheral portion of the wafer. However, if the horizontal magnetic field strength of the magnetic field generator 41 is lowered, the controllability of the thermal convection generated in the melt M in the crucible 21 is reduced, and thus the controllability of the pulling rate is reduced. Further, when the horizontal magnetic field strength of the magnetic field generator 41 is lowered, the controllability of the thermal convection generated in the melt M in the crucible 21 is lowered, so that the oxygen concentration is increased. Therefore, lowering the horizontal magnetic field strength also has a certain limit value.

また、引き上げる際のシリコン単結晶Cの結晶回転(ワイヤ31による単結晶の回転速度)を大きくすれば、ウェーハの外周部における酸素濃度の低下は抑制できる。しかしながら、引き上げる際のシリコン単結晶Cの結晶回転を大きくすると、シリコン単結晶Cにくねりが発生する。また、引き上げる際のシリコン単結晶Cの結晶回転を大きくすると、酸素濃度が上昇する。したがって、引き上げる際のシリコン単結晶Cの結晶回転を大きくすることにも、一定の限界値がある。   Further, if the crystal rotation of the silicon single crystal C (rotation speed of the single crystal by the wire 31) at the time of pulling is increased, it is possible to suppress the decrease in oxygen concentration in the outer peripheral portion of the wafer. However, when the crystal rotation of the silicon single crystal C during pulling is increased, the silicon single crystal C is twisted. Further, when the crystal rotation of the silicon single crystal C during pulling is increased, the oxygen concentration rises. Therefore, there is a certain limit in increasing the crystal rotation of the silicon single crystal C when pulling.

なお、引き上げるシリコン単結晶の直径は、引上げ速度などの制御ばらつきに起因する直径のばらつきを考慮した最小値が設定されているが、この直径を大きくすれば、廃棄される量が多くなって製造歩留まりが低下する。また、製造装置1の坩堝21などの大きさの制約もある。したがって、引き上げる際のシリコン単結晶Cの直径を大きくすることにも、一定の限界値がある。   Note that the diameter of the silicon single crystal to be pulled is set to the minimum value that takes into account the variation in diameter due to the variation in control such as the pulling rate. Yield decreases. Further, there is a restriction on the size of the crucible 21 of the manufacturing apparatus 1 and the like. Therefore, there is a certain limit in increasing the diameter of the silicon single crystal C when it is pulled up.

そこで、本発明者らは、水平磁場強度、シリコン単結晶Cの結晶回転及び直径のそれぞれが、結晶外周部の酸素濃度の分布特性に対してどのように影響しているか、その相関関係を検証した。   Therefore, the inventors of the present invention verified how the horizontal magnetic field strength, the crystal rotation and the diameter of the silicon single crystal C respectively affect the distribution characteristics of the oxygen concentration in the outer peripheral portion of the crystal, and the correlation thereof is verified. did.

図2は、図1に示す所定の製造装置1を用いてシリコン単結晶Cを所定条件にて製造した場合における、水平磁場強度と、ウェーハ外周部における酸素濃度の分布特性との関係の一例を示すグラフである。横軸は、磁場発生装置41による水平磁場強度(ガウス,G,右側が大、左側が小を示す。)を示し、縦軸は、ウェーハの外周端から中心に向かって5mmの位置(以下、In5ともいう)と、同じくウェーハの外周端から中心に向かって100mmの位置(以下、In10ともいう)のそれぞれにおける酸素濃度の差(Oi[In10]−Oi[In5],1017atoms/cm3)を示す。上述したとおり、水平磁場強度を下げれば酸素濃度の差はゼロに近づくことが解る。 FIG. 2 shows an example of the relationship between the horizontal magnetic field strength and the distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer when the silicon single crystal C is manufactured under the predetermined conditions using the predetermined manufacturing apparatus 1 shown in FIG. It is a graph shown. The horizontal axis indicates the horizontal magnetic field intensity (Gauss, G, right side indicates large, left side indicates small) by the magnetic field generator 41, and the vertical axis indicates a position of 5 mm from the outer peripheral edge of the wafer toward the center (hereinafter, In5) and a difference in oxygen concentration (Oi [In10] -Oi [In5], 10 17 atoms / cm 3 ) at a position 100 mm (hereinafter also referred to as In10) from the outer peripheral edge of the wafer toward the center. ) Is shown. As described above, it is understood that the difference in oxygen concentration approaches zero when the horizontal magnetic field strength is reduced.

図3は、図1に示す製造装置1を用いてシリコン単結晶Cを所定条件にて製造した場合における、単結晶の結晶回転(単結晶C自体の回転速度をいう)と、ウェーハ外周部における酸素濃度の分布特性との関係の一例をグラフである。横軸は、単結晶の結晶回転(rpm,右側が大、左側が小を示す。)を示し、縦軸は、図2と同じく酸素濃度の差(Oi[In10]−Oi[In5],1017atoms/cm3)を示す。上述したとおり、結晶回転を大きくすれば酸素濃度の差はゼロに近づくことが解る。 FIG. 3 shows the crystal rotation of the single crystal (referring to the rotation speed of the single crystal C itself) and the wafer outer peripheral portion in the case where the silicon single crystal C is manufactured under predetermined conditions using the manufacturing apparatus 1 shown in FIG. It is a graph which shows an example of the relationship with the distribution characteristic of oxygen concentration. The horizontal axis represents the crystal rotation of the single crystal (rpm, the right side indicates large, the left side indicates small), and the vertical axis indicates the oxygen concentration difference (Oi [In10] -Oi [In5], 10 as in FIG. 17 atoms / cm 3 ). As described above, it is understood that the difference in oxygen concentration approaches zero as the crystal rotation is increased.

図4は、上述したとおり300mmウェーハを製造した場合の、シリコン単結晶Cのウェーハ状態における酸素濃度の分布特性の一例を示すグラフである。図5は、図4に示す結果を用い、引上げ直径の外周部の酸素濃度の分布特性(酸素挙動)は、直径によらず変化はないと仮定した上で、増径した時の酸素濃度を推測したグラフである。横軸は引き上げる際に設定される単結晶の直径(mm,右側が大、左側が小を示す。)を示し、縦軸は、図2及び図3と同じく酸素濃度の差(Oi[In10]−Oi[In5],1017atoms/cm3)を示す。上述したとおり、引き上げる際の単結晶の直径を大きく設定すれば酸素濃度の差はゼロに近づくことが解る。 FIG. 4 is a graph showing an example of oxygen concentration distribution characteristics in the wafer state of the silicon single crystal C when a 300 mm wafer is manufactured as described above. FIG. 5 uses the results shown in FIG. 4 and assumes that the oxygen concentration distribution characteristics (oxygen behavior) at the outer peripheral portion of the pulled diameter do not change regardless of the diameter, and then the oxygen concentration when the diameter is increased is shown. This is the estimated graph. The horizontal axis represents the diameter of the single crystal (mm, the right side is large and the left side is small) set when pulling up, and the vertical axis is the difference in oxygen concentration (Oi [In10] as in FIGS. 2 and 3). -Oi [In5], 10 17 atoms / cm 3 ) is shown. As described above, it can be seen that the difference in oxygen concentration approaches zero if the diameter of the single crystal used for pulling is set large.

これら図2〜図5の結果から、結晶外周部の酸素濃度の分布特性(Oi[In10]−Oi[In5],1017atoms/cm3)は、水平磁場強度、シリコン単結晶Cの回転速度及び直径のそれぞれと相関関係があることが解ったので、本発明者らは、引き上げる際の単結晶の直径をD(mm)、水平磁場強度をG(ガウス)、引き上げる際の単結晶の結晶回転をV(rpm)、ウェーハ外周部における酸素濃度の分布特性をδ(1017atoms/cm3)、a,b,c,dを定数としたときに、
[数1]
δ=aD+bG+cV+d…(式1)
なる式により相関関係を定義した。定数a,b,c,dは、水平磁場強度、シリコン単結晶の回転速度及び直径のそれぞれに対する重みに相当する。
From these results of FIGS. 2 to 5, the oxygen concentration distribution characteristics (Oi [In10] -Oi [In5], 10 17 atoms / cm 3 ) in the outer peripheral portion of the crystal are: horizontal magnetic field strength, rotation speed of the silicon single crystal C. And the diameter of the single crystal, the present inventors have found that the diameter of the single crystal when pulled is D (mm), the horizontal magnetic field strength is G (gauss), and the crystal of the single crystal when pulled. When the rotation is V (rpm), the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer is δ (10 17 atoms / cm 3 ), and a, b, c and d are constants,
[Equation 1]
δ = aD + bG + cV + d (Equation 1)
The correlation was defined by The constants a, b, c and d correspond to weights for the horizontal magnetic field strength, the rotation speed and the diameter of the silicon single crystal, respectively.

そして、製造装置1毎の所定の製造条件の下で予め定数a,b,c,dを求めておき、ウェーハ外周部における酸素濃度の分布特性δの限界値(許容値でもよい)と、水平磁場強度の限界値と、引き上げる際の単結晶の結晶回転の限界値とを上記式1に代入し、これにより求められるシリコン単結晶の直径D(=(δ−bG−cV−d)/a)を、引上げるシリコン単結晶の直径に設定する。   Then, the constants a, b, c, and d are obtained in advance under a predetermined manufacturing condition for each manufacturing apparatus 1, and the oxygen concentration distribution characteristic δ at the outer peripheral portion of the wafer is limited to a limit value (which may be an allowable value) and a horizontal value. The limit value of the magnetic field strength and the limit value of the crystal rotation of the single crystal at the time of pulling are substituted into the above formula 1, and the diameter D (= (δ-bG-cV-d) / a of the silicon single crystal obtained by this is obtained. ) Is set to the diameter of the pulled silicon single crystal.

ここで、ウェーハ外周部における酸素濃度の分布特性δの限界値(許容値)とは、製品としてのウェーハに許容される外周部の酸素濃度の分布値(落ち込み値)の最大値であり、デバイスなどに応じて設定される製品出荷基準などである。例えばOi[In10]−Oi[In5]=0.5×1017atoms/cm3である。また、水平磁場強度の限界値とは、上述したとおり引上げ速度の制御性や酸素濃度の増加を考慮した下限値であり、経験値やシミュレーションに基づいて製造装置1毎の製造条件毎に定められる。例えば2000G,3000G又は4000Gである。また、引き上げる際の単結晶の結晶回転の限界値とは、くねりや酸素濃度の増加を考慮した上限値であり、経験値やシミュレーションに基づいて製造装置1毎の製造条件毎に定められる。例えば8rpm,9rpm,10rpm,12rpm又は15rpmである。 Here, the limit value (permissible value) of the distribution characteristic δ of the oxygen concentration in the outer peripheral portion of the wafer is the maximum value of the distribution value (falling value) of the oxygen concentration in the outer peripheral portion that is allowed for the wafer as a product. For example, product shipping standards set according to the above. For example, Oi [In10] -Oi [In5] = 0.5 × 10 17 atoms / cm 3 . Further, the limit value of the horizontal magnetic field strength is the lower limit value in consideration of the controllability of the pulling speed and the increase of oxygen concentration as described above, and is set for each manufacturing condition of each manufacturing apparatus 1 based on empirical values and simulations. . For example, 2000G, 3000G or 4000G. Further, the limit value of the crystal rotation of the single crystal at the time of pulling is an upper limit value in consideration of the bending and the increase of the oxygen concentration, and is set for each manufacturing condition of each manufacturing apparatus 1 based on empirical values and simulations. For example, 8 rpm, 9 rpm, 10 rpm, 12 rpm or 15 rpm.

図2〜図5に示す実例を回帰分析することにより、式1の定数a,b,c,dの一例を求めたところ、下記のとおりであった。
[数2]
δ=−0.0166D+0.0005G−0.4836V+8.1984…(式2)
An example of the constants a, b, c, and d in the equation 1 was obtained by regression analysis of the examples shown in FIGS. 2 to 5 and was as follows.
[Equation 2]
δ = −0.0166D + 0.0005G−0.4836V + 8.11984 (Formula 2)

上記式2において、ウェーハ外周部における酸素濃度の分布特性δの限界値(許容値)を0.1×1017atoms/cm3、水平磁場強度の限界値を2500G、引き上げる際の単結晶の結晶回転の限界値を8rpmとして上記式2に代入すると、これにより求められるシリコン単結晶の直径Dは、330mmとなる。この直径Dを設定値としてシリコン単結晶を製造すれば、ウェーハ外周部における酸素濃度の分布特性δが0.5×1017atoms/cm3以下であることを満足し、引上げ速度の制御性が良好で、酸素濃度の増加やくねりも抑制され、さらに規定直径のウェーハに加工する際に廃棄される外周部の量が最小となるインゴットを得ることができる。 In the above formula 2, the limit value (allowable value) of the distribution characteristic δ of the oxygen concentration in the outer peripheral portion of the wafer is 0.1 × 10 17 atoms / cm 3 , the limit value of the horizontal magnetic field strength is 2500 G, and a single crystal crystal when pulled up When the rotation limit value is set to 8 rpm and the value is substituted into the above formula 2, the diameter D of the silicon single crystal obtained by this is 330 mm. When a silicon single crystal is manufactured with the diameter D set as a set value, it is satisfied that the oxygen concentration distribution characteristic δ in the outer peripheral portion of the wafer is 0.5 × 10 17 atoms / cm 3 or less, and the controllability of the pulling rate is improved. It is possible to obtain an ingot that is good, suppresses an increase in oxygen concentration and bending, and further minimizes the amount of the outer peripheral portion that is discarded when processing a wafer having a specified diameter.

上述した例においては、式2にウェーハ外周部における酸素濃度の分布特性δの限界値、水平磁場強度の限界値、及び引き上げる際の単結晶の結晶回転の限界値を代入し、これによりシリコン単結晶の直径Dを求めたが、これに代えて、式2にウェーハ外周部における酸素濃度の分布特性δの限界値、シリコン単結晶の直径の限界値、及び引き上げる際の単結晶の結晶回転の限界値を代入し、これにより水平磁場強度を求め、求められた水平磁場強度を設定してシリコン単結晶を製造してもよい。またこれに代えて、式2にウェーハ外周部における酸素濃度の分布特性δの限界値、シリコン単結晶の直径の限界値、及び水平磁場強度の限界値を代入し、これにより引き上げる際の単結晶の結晶回転を求め、求められた結晶回転を設定してシリコン単結晶を製造してもよい。   In the above-mentioned example, the limit value of the distribution characteristic δ of the oxygen concentration in the outer peripheral portion of the wafer, the limit value of the horizontal magnetic field strength, and the limit value of the crystal rotation of the single crystal at the time of pulling are substituted into the equation 2 to obtain the silicon single crystal. The diameter D of the crystal was determined. Instead of this, in Equation 2, the limit value of the distribution characteristic δ of the oxygen concentration in the outer peripheral portion of the wafer, the limit value of the diameter of the silicon single crystal, and the crystal rotation of the single crystal at the time of pulling A silicon single crystal may be manufactured by substituting a limit value, obtaining a horizontal magnetic field strength by this, and setting the obtained horizontal magnetic field strength. Further, instead of this, the limit value of the distribution characteristic δ of the oxygen concentration in the outer peripheral portion of the wafer, the limit value of the diameter of the silicon single crystal, and the limit value of the horizontal magnetic field strength are substituted into equation 2, and the single crystal when pulling up The silicon single crystal may be manufactured by obtaining the crystal rotation of the above and setting the obtained crystal rotation.

1…シリコン単結晶の製造装置
11…第1チャンバ
12…第2チャンバ
13…ガス導入口
14…ガス排出口
21…石英製の坩堝
22…黒鉛製の坩堝
23…支持軸
24…駆動機構
25…ヒータ
26…保温筒
27…熱遮蔽部材
28…ブラケット
31…ワイヤ
32…引上げ機構
41…磁場発生装置
M…シリコン融液
C…シリコン単結晶
S…種結晶
DESCRIPTION OF SYMBOLS 1 ... Silicon single crystal manufacturing apparatus 11 ... 1st chamber 12 ... 2nd chamber 13 ... Gas introduction port 14 ... Gas discharge port 21 ... Quartz crucible 22 ... Graphite crucible 23 ... Support shaft 24 ... Drive mechanism 25 ... Heater 26 ... Insulating cylinder 27 ... Heat shielding member 28 ... Bracket 31 ... Wire 32 ... Pulling mechanism 41 ... Magnetic field generator M ... Silicon melt C ... Silicon single crystal S ... Seed crystal

Claims (4)

CZ法により引き上げる際の単結晶の直径と、融液に印加する水平磁場強度と、引き上げる際の単結晶の結晶回転と、ウェーハ外周部における酸素濃度の分布特性と、の相関関係を、所定の製造条件について予め求め、
前記ウェーハ外周部における酸素濃度の分布特性の限界値と、前記水平磁場強度の限界値と、前記引き上げる際の単結晶の結晶回転の限界値と、前記相関関係とから、引き上げる際の単結晶の最小の直径を求め、
当該求められた最小の直径を目標直径としてシリコン単結晶を前記所定の製造条件の下で製造するシリコン単結晶の製造方法。
The correlation between the diameter of the single crystal when pulled by the CZ method, the strength of the horizontal magnetic field applied to the melt, the crystal rotation of the single crystal when pulled, and the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer is determined by a predetermined value. Obtained in advance about manufacturing conditions,
Limit value of the distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer, the limit value of the horizontal magnetic field strength, the limit value of the crystal rotation of the single crystal when pulling, and the correlation, from the single crystal when pulling Find the smallest diameter,
A method for producing a silicon single crystal, in which the obtained minimum diameter is used as a target diameter to produce a silicon single crystal under the predetermined production conditions.
CZ法により引き上げる際の単結晶の直径と、融液に印加する水平磁場強度と、引き上げる際の単結晶の結晶回転と、ウェーハ外周部における酸素濃度の分布特性と、の相関関係を、所定の製造条件について予め求め、
前記ウェーハ外周部における酸素濃度の分布特性の限界値と、前記引き上げる際の単結晶の直径の限界値と、前記引き上げる際の単結晶の結晶回転の限界値と、前記相関関係とから、印加する1の水平磁場強度を求め、
当該求められた1の水平磁場強度と前記所定の製造条件の下で単結晶を製造するシリコン単結晶の製造方法。
The correlation between the diameter of the single crystal when pulled by the CZ method, the strength of the horizontal magnetic field applied to the melt, the crystal rotation of the single crystal when pulled, and the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer is determined by a predetermined value. Obtained in advance about manufacturing conditions,
Limit value of the distribution characteristics of the oxygen concentration in the outer peripheral portion of the wafer, the limit value of the diameter of the single crystal when pulling, the limit value of the crystal rotation of the single crystal when pulling, from the correlation, apply Find the horizontal magnetic field strength of 1 ,
A method for producing a silicon single crystal, wherein a single crystal is produced under the obtained horizontal magnetic field strength of 1 and the predetermined production conditions.
CZ法により引き上げる際の単結晶の直径と、融液に印加する水平磁場強度と、引き上げる際の単結晶の結晶回転と、ウェーハ外周部における酸素濃度の分布特性と、の相関関係を、所定の製造条件について予め求め、
前記ウェーハ外周部における酸素濃度の分布特性の限界値と、前記引き上げる際の単結晶の直径の限界値と、前記水平磁場強度の限界値と、前記相関関係とから、前記引き上げる際の単結晶の結晶回転を求め、
当該求められた結晶回転と前記所定の製造条件の下で単結晶を製造するシリコン単結晶の製造方法。
The correlation between the diameter of the single crystal when pulled by the CZ method, the strength of the horizontal magnetic field applied to the melt, the crystal rotation of the single crystal when pulled, and the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer is determined by a predetermined value. Obtained in advance about manufacturing conditions,
Limit value of the distribution characteristics of the oxygen concentration in the wafer outer peripheral portion, the limit value of the diameter of the single crystal in the pulling, the limit value of the horizontal magnetic field strength, and the correlation, from the single crystal in the pulling Seek crystal rotation,
A method for producing a silicon single crystal, which comprises producing the single crystal under the obtained crystal rotation and the predetermined production conditions.
前記引き上げる際の単結晶の直径をD(mm)、水平磁場強度をG(ガウス)、前記引き上げる際の単結晶の結晶回転をV(rpm)、前記ウェーハ外周部における酸素濃度の分布特性をδ(1017atoms/cm3)、a,b,c,dを定数としたときに、δ=aD+bG+cV+dなる式により前記相関関係を定義し、前記所定の製造条件の下で予め前記定数a,b,c,dを求めておく請求項1〜3のいずれか一項に記載のシリコン単結晶の製造方法。 The diameter of the single crystal at the time of pulling up is D (mm), the horizontal magnetic field strength is G (gauss), the crystal rotation of the single crystal at the time of pulling up is V (rpm), and the distribution characteristic of the oxygen concentration in the outer peripheral portion of the wafer is δ. (10 17 atoms / cm 3 ), where a, b, c, d are constants, the correlation is defined by the equation δ = aD + bG + cV + d, and the constants a, b are previously set under the predetermined manufacturing conditions. , C, d are determined in advance, The method for producing a silicon single crystal according to claim 1.
JP2016127283A 2016-06-28 2016-06-28 Method for producing silicon single crystal Active JP6680108B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016127283A JP6680108B2 (en) 2016-06-28 2016-06-28 Method for producing silicon single crystal
TW106105220A TWI635199B (en) 2016-06-28 2017-02-17 Manufacturing method of single crystal silicon
CN201780040672.7A CN109415843A (en) 2016-06-28 2017-02-23 The manufacturing method of monocrystalline silicon
DE112017003224.5T DE112017003224B4 (en) 2016-06-28 2017-02-23 Process for the production of silicon single crystal
KR1020187030618A KR102157389B1 (en) 2016-06-28 2017-02-23 Silicon single crystal manufacturing method
PCT/JP2017/006782 WO2018003167A1 (en) 2016-06-28 2017-02-23 Method for producing silicon monocrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127283A JP6680108B2 (en) 2016-06-28 2016-06-28 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2018002496A JP2018002496A (en) 2018-01-11
JP6680108B2 true JP6680108B2 (en) 2020-04-15

Family

ID=60786799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127283A Active JP6680108B2 (en) 2016-06-28 2016-06-28 Method for producing silicon single crystal

Country Status (6)

Country Link
JP (1) JP6680108B2 (en)
KR (1) KR102157389B1 (en)
CN (1) CN109415843A (en)
DE (1) DE112017003224B4 (en)
TW (1) TWI635199B (en)
WO (1) WO2018003167A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7249913B2 (en) * 2019-08-28 2023-03-31 グローバルウェーハズ・ジャパン株式会社 Manufacturing method of silicon single crystal
CN112831836A (en) * 2020-12-30 2021-05-25 上海新昇半导体科技有限公司 Crystal pulling method and crystal pulling apparatus
CN115404541B (en) * 2022-10-18 2023-08-25 四川晶科能源有限公司 Crystal pulling method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244799B2 (en) 1981-10-26 1990-10-05 Sony Corp KETSUSHOSEICHOHOHO
US5178720A (en) * 1991-08-14 1993-01-12 Memc Electronic Materials, Inc. Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
JPH06172080A (en) * 1992-12-02 1994-06-21 Kawasaki Steel Corp Method for pulling-up single crystal
JP3520883B2 (en) 1995-12-29 2004-04-19 信越半導体株式会社 Single crystal manufacturing method
JPH09235192A (en) * 1996-03-01 1997-09-09 Mitsubishi Materials Shilicon Corp Single crystal ingot low in oxygen concentration and lifting of single crystal
JP3601340B2 (en) * 1999-02-01 2004-12-15 信越半導体株式会社 Epitaxial silicon wafer, method for manufacturing the same, and substrate for epitaxial silicon wafer
JP4484540B2 (en) * 2004-02-19 2010-06-16 Sumco Techxiv株式会社 Manufacturing method of single crystal semiconductor
CN1332072C (en) * 2005-01-20 2007-08-15 上海合晶硅材料有限公司 Low oxygen control method in czochralski silicon monocrystal
KR100840751B1 (en) * 2005-07-26 2008-06-24 주식회사 실트론 High quality silicon single crystalline ingot producing method, Apparatus for growing the same, Ingot, and Wafer
KR100746374B1 (en) 2005-12-20 2007-08-03 주식회사 실트론 Crystal growing condition prediction method and single crystal ingot growing method using the same
JP5056603B2 (en) * 2008-06-11 2012-10-24 株式会社Sumco Silicon single crystal pulling method and silicon single crystal wafer obtained from ingot pulled by the method
JP2010100474A (en) * 2008-10-23 2010-05-06 Covalent Materials Corp Method for optimizing horizontal magnetic field in pulling-up silicon single crystal, and method for manufacturing silicon single crystal
KR101472349B1 (en) * 2013-05-21 2014-12-12 주식회사 엘지실트론 Silicon monocrystalline ingot and wafer for semiconductor
JP5921498B2 (en) 2013-07-12 2016-05-24 グローバルウェーハズ・ジャパン株式会社 Method for producing silicon single crystal
CN105239154A (en) * 2015-09-10 2016-01-13 上海超硅半导体有限公司 Czochralski method single-crystal silicon growth flow field control technology
DE102015226399A1 (en) 2015-12-22 2017-06-22 Siltronic Ag Silicon wafer with homogeneous radial oxygen variation

Also Published As

Publication number Publication date
DE112017003224B4 (en) 2021-09-30
WO2018003167A1 (en) 2018-01-04
TW201800626A (en) 2018-01-01
DE112017003224T5 (en) 2019-03-21
CN109415843A (en) 2019-03-01
JP2018002496A (en) 2018-01-11
KR102157389B1 (en) 2020-09-17
KR20180124975A (en) 2018-11-21
TWI635199B (en) 2018-09-11

Similar Documents

Publication Publication Date Title
TWI641731B (en) Single crystal silicon manufacturing method and device
KR101304444B1 (en) Apparatus for manufacturing semiconductor single crystal ingot using magnetic field and Method thereof
JP5240191B2 (en) Silicon single crystal pulling device
KR20100045399A (en) Manufacturing method of silicon single crystal
CN108779577B (en) Method for producing silicon single crystal
JP6680108B2 (en) Method for producing silicon single crystal
US10233564B2 (en) Manufacturing method of monocrystalline silicon and monocrystalline silicon
US10655242B2 (en) Growing apparatus and single-crystal ingot growing method using the same
JP6863506B2 (en) Method for manufacturing silicon single crystal
JP4758338B2 (en) Manufacturing method of single crystal semiconductor
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP6981371B2 (en) Method for manufacturing silicon single crystal
JP2018177593A (en) Production method and apparatus of single crystal
JP6237605B2 (en) Method for producing silicon single crystal
JP6958632B2 (en) Silicon single crystal and its manufacturing method and silicon wafer
KR101540567B1 (en) Single crystalline ingots, method and apparatus for manufacturing the ingots
JP6658421B2 (en) Method for producing silicon single crystal
JP2018002490A (en) Production method of silicon single crystal
KR20100127699A (en) Semiconductor single crystal ingot dopped by carbon and method of manufacturing the same
JP2018043904A (en) Method for manufacturing silicon single crystal
JP2020037499A (en) Heat shield member, apparatus for pulling single crystal and method for manufacturing single crystal
JP2008019128A (en) Apparatus for producing single crystal, method for producing single crystal, and single crystal
WO2022254885A1 (en) Method for producing silicon monocrystal
JP6583196B2 (en) Method and apparatus for producing silicon single crystal
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R150 Certificate of patent or registration of utility model

Ref document number: 6680108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250