JP6675109B2 - 無線電力伝送システム - Google Patents

無線電力伝送システム Download PDF

Info

Publication number
JP6675109B2
JP6675109B2 JP2017551865A JP2017551865A JP6675109B2 JP 6675109 B2 JP6675109 B2 JP 6675109B2 JP 2017551865 A JP2017551865 A JP 2017551865A JP 2017551865 A JP2017551865 A JP 2017551865A JP 6675109 B2 JP6675109 B2 JP 6675109B2
Authority
JP
Japan
Prior art keywords
circuit
power
resonance
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017551865A
Other languages
English (en)
Other versions
JPWO2017086279A1 (ja
Inventor
菊地 秀雄
秀雄 菊地
Original Assignee
菊地 秀雄
秀雄 菊地
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 菊地 秀雄, 秀雄 菊地 filed Critical 菊地 秀雄
Publication of JPWO2017086279A1 publication Critical patent/JPWO2017086279A1/ja
Application granted granted Critical
Publication of JP6675109B2 publication Critical patent/JP6675109B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F2027/408Association with diode or rectifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H01F2038/146Inductive couplings in combination with capacitive coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電源回路から電力を空間を越えて負荷に給電する無線電力伝送システムに関する。
従来、電源コードや送電ケーブルを用いない非接触電力伝送装置として、例えば特許文献1のように、送電回路側の送電コイルの交流磁場と受電回路側の受電側共振回路の受電コイルの交流磁場を共鳴させて、送電回路の送電コイルから受電回路の受電コイルに無線で電力を伝送する無線電力伝送システムが提案されている。特許文献1では、受電回路を、受電コイルを含む受電側共振回路と整流回路と蓄電装置とで構成し、受電側共振回路の受電コイルが受電した交流電力を整流回路で直流電力に整流して蓄電装置に充電している。
また、特許文献2では、受電回路の負荷のインピーダンスの変動による送電側と受電側のインピーダンスの不整合を改善するために、整流回路と蓄電装置の間に直流電圧変換回路を設置して回路のインピーダンスを整合する技術が提案されている。特許文献2では、その直流電圧変換回路として、チョッパ回路を用い、チョッパ回路のスイッチング素子のスイッチを開閉するスイッチングパルスの幅を変えることでインピーダンス変換比を調整している。
特開2009−106136号公報 国際公開第2010/035321号公報
しかし、特許文献1の無線電力伝送システムでは、送電コイルと受電コイルが離れ両コイルの磁界結合の結合係数が小さくなると、受電側共振回路に流れる共振電流が小さくなり受電コイルが送電コイルから受け取る受電電力が少なくなり、受電回路が十分な大きさの無線電力を受電できなくなる問題があった。
特許文献2の無線電力伝送システムでは、整流回路と負荷の蓄電装置の間に直流電圧変換回路を挿入するので、その直流電圧変換回路のインピーダンス変換比を調整して、受電コイルから負荷側を見た負荷のインピーダンスを小さくすることができる。それにより、受電側共振回路の共振のQ値を高くして受電側共振回路の共振電流を大きくすることができ、それにより受電回路が受電する無線電力を大きくできると考える。
しかし、特許文献2のチョッパ回路を用いた直流電圧変換回路では、その出力端子に接続する負荷抵抗が大きい場合にチョッパ回路の出力電圧が異常になる等の問題がある。チョッパ回路では、負荷の状況によってそのような問題が生じた場合には受電側共振回路に流れる共振電流が安定しないという問題があった。
そのため、本発明の課題は、受電側共振回路の共振電流を安定して大きくして受電コイルが受け取る受電電力を大きくした無線電力伝送システムを提供することにある。
この課題を解決するために、本発明は、交流電流で磁界を発生させる送電コイルと、劾送電コイルの電磁誘導により誘導電圧を発生する受電コイルを有し、劾受電コイルに共振用容量を接続して構成した共振回路を有し、前記共振回路に流れる共振電流を目標値に合わせる制御を行う制御演算手段を有し、前記制御演算手段に制御されて前記共振回路に電力を加えて前記共振電流を増す受電コイル電流制御回路を有し、前記共振回路から電力を受電する負荷回路を有し、前記受電コイル電流制御回路が、前記共振回路に加える電力を前記負荷回路から供給されて動作することを特徴とする無線電力伝送システムである。
本発明は、この構成により、受電コイルに流れる共振電流を安定して大きくして受電コイルが受け取る受電電力を大きくできる効果がある。
本発明の第1の実施形態の無線電力伝送システムの送電回路と受電回路の全体回路を表す回路図である。 (a)本発明の第1の実施形態の送電回路の送電コイルに重なった受電回路の受電コイルの平面図(XY図)である。(b)本発明の第1の実施形態の送電コイルと受電コイルの配置を表す側面図(XZ図)である。 (a)本発明の第1の実施形態の受電回路の受電コイル電流制御回路の回路構成を表す回路図である。(b)本発明の第1の実施形態の、受電コイル電流制御回路のパルス電圧Vpで制御された受電回路の共振電流I2の時間変化のシミュレーション結果を示す図である。 本発明の第2の実施形態の無線電力伝送システムの送電回路と受電回路の全体回路を表す回路図である。 本発明の第3の実施形態の無線電力伝送システムの送電回路と受電回路の全体回路を表す回路図である。 本発明の第4の実施形態の受電回路の受電コイル電流制御回路の回路構成を表す回路図である。
<第1の実施形態>
図1から図3を参照して本発明の第1の実施形態を説明する。図1の様に、第1の実施形態の無線電力伝送システムは、送電回路10と受電回路20から成る。送電回路10は、電源回路30の電力を送電コイル1に導く回路である。受電回路20は、送電回路10の送電コイル1から空間を隔てて配置した受電コイル2で無線電力を受電し、受電コイル2が受電した受電電力を負荷回路40に導く回路から成る。
(送電回路)
送電回路10は、自己インダクタンスL1の送電コイル1の配線の両端を共振用容量C1でつないだ共振回路を作り、その送電コイル1の配線の中間のポート1(P1)に電源回路30を接続し、電源回路30から共振電流I1を送電コイル1に流入させる。電源回路30は、出力インピーダンスが十分に小さい定電圧回路や定電流回路等を使用することができる。なお、電源回路30を共振用容量C1に並列に接続した送電回路10を用いることもできる。
(変形例1)
送電回路10の変形例1として、送電回路10用の顕わな共振回路は設けずに、交流電流を流す電源回路30に直接に送電コイル1を接続した送電回路10を用いることもできる。
(受電回路)
受電回路20は、図1のように、自己インダクタンスL2の受電コイル2の両端に共振用容量C2をつないで構成した受電側共振回路を有する。その受電側共振回路に直列に受電コイル電流制御回路50を挿入し、更に、受電側共振回路に直列に負荷回路40を接続する。つまり、受電側共振回路の受電コイル2の配線の中間にポート2(P2)を設け、そのポート2に負荷回路40と受電コイル電流制御回路50を直列に接続する。また、受電回路20には、受電コイル電流制御回路50の動作を制御する制御演算手段60を加える。
(送電コイルから受電コイルへ無線電力を伝送)
図2(b)の側面図のように、送電回路10の送電コイル1と受電回路20の受電コイル2を空間を隔てて対向させて、図1の様に両コイルを相互インダクタンスMで誘導結合させる。それにより、送電コイル1が発生した磁界の電磁誘導により受電コイル2に誘導電圧を発生させる。その誘導電圧が受電回路20の受電側共振回路を共振させて共振電流I2を流すことで、受電コイル2が送電コイル1から無線電力を受電する。
(負荷回路)
負荷回路40は、整流回路41と直流電圧変換回路(DC/DCコンバータ)80と蓄電装置70を持つ。直流電圧変換回路80の出力電力を蓄電装置70と負荷42で消費させ、また、蓄電装置70は、受電コイル電流制御回路50に電力を供給する。
負荷回路40は、受電コイル2が送電コイル1から受電した電力を受け取る。負荷回路40は、受電側共振回路の共振電流I2を整流回路41で直流に整流する。整流回路41の出力電圧を直流電圧変換回路80で電圧変換して蓄電装置70用の電圧を形成する。そして、蓄電装置70に充電した電力を負荷42及び受電コイル電流制御回路50に供給する。
(制御演算手段)
制御演算手段60は半導体集積回路で構成した中央処理装置を備えるコンピュータ(情報処理装置)等で構成する。制御演算手段60は、共振電流センサ61や交流電圧センサ62や充電電流センサ63や充電電圧センサ64から測定値を受信する。そして、制御演算手段60は、それらの測定値に応じて受電側共振回路の共振電流I2を増減させるために、受電コイル電流制御回路50を用いて共振電流I2を制御する。また、制御演算手段60は直流電圧変換回路80の制御を行うこともできる。
制御演算手段60は、図3の様に、受電コイル電流制御回路50にパルス状のスイッチ開閉制御信号sig1を送信して受電コイル電流制御回路50の半導体スイッチング素子52のスイッチを開閉することで受電側共振回路に直列にパルス電圧Vpを加える。
パルス電圧Vpは、送電コイル1が受電コイル2に誘導する交流の誘導電圧の周期に同期させて発生させることが望ましい。制御演算手段60は、交流電圧センサ62が検出する交流電圧を受電コイル2に誘導する交流の誘導電圧と等しいとみなして、交流電圧センサ62が検出した交流電圧に、受電コイル電流制御回路50に送信するパルス状のスイッチ開閉制御信号sig1を同期させて発生させる。
(受電コイル電流制御回路50)
受電コイル電流制御回路50は、図1の様に、負荷回路40から電力を供給されて動作し、制御演算手段60に制御されて共振電流I2と同じ周期で繰り返すパルス電圧Vpを受電側共振回路に直列に加える。それにより受電コイル電流制御回路50は、受電側共振回路(受電コイル2)に流れる共振電流I2を増加あるいは減少させて増減させる制御を行なう。
受電コイル電流制御回路50は、図3(a)の様に、直流駆動電圧電源51と半導体スイッチング素子52で構成する。受電コイル電流制御回路50は、半導体スイッチング素子52を制御演算手段60からのスイッチ開閉制御信号sig1によって切り替えられることで、受電側共振回路に直列にパルス電圧Vpを加えて受電側共振回路の共振電流I2を増減させる制御を行う。
受電コイル電流制御回路50に電力を供給する電源回路は負荷回路40の蓄電装置70を電源にすることが望ましい。その理由は、蓄電装置70の出力電圧が安定しているためである。また、蓄電装置70以外の負荷回路40の部分から電力を引き出して受電コイル電流制御回路50の電源にすることも可能である。
送電コイル1が発生した磁界が電磁誘導で受電コイル2に発生する誘導電圧が受電側共振回路の共振電流I2の増加速度を加速している。受電コイル電流制御回路50は、その誘導電圧に直列にパルス電圧Vpを加えることで、その誘導電圧と、それに直列に加えたパルス電圧Vpとにより、受電側共振回路に流れる共振電流I2を時間の経過とともに増す。
受電コイル電流制御回路50が受電側共振回路に直列に加えるパルス電圧Vpが共振電流I2を変化させる速度は、パルス電圧Vpの電圧値とパルス幅の時間の積に比例する。
(電力の流れ)
送電コイル1が電磁誘導により受電コイル2に誘導する交流の誘導電圧と共振電流I2の積の受電電力が送電コイル1から受電コイル2に送電される。受電コイル電流制御回路50が共振電流I2を増加させることで、受電コイル2が送電コイル1から受電する受電電力を共振電流I2に比例させて増すことができる。
一方、受電コイル電流制御回路50が受電側共振回路に直列に加えるパルス電圧Vpと共振電流I2の積の電力が受電コイル電流制御回路50から受電側共振回路に送電される。受電コイル電流制御回路50が共振電流I2を増加させることで、受電側共振回路が受電コイル電流制御回路50から受け取る電力も共振電流I2に比例して増す。
受電コイル電流制御回路50が、送電コイル1が受電コイル2に発生する誘導電圧に直列にパルス電圧Vpを加える意味は、送電コイル1が受電側共振回路に電力を供給するのと同時に、受電コイル電流制御回路50も受電側共振回路に電力を加えることを意味する。すなわち、受電側共振回路に電力を加える源が2つある。1つの源は、受電コイル2に誘導電圧を発生する送電コイル1であり、もう1つの源は、受電側共振回路に直列にパルス電圧Vpを加える受電コイル電流制御回路50であり、詳しくは直流駆動電圧電源51である。
(電力の循環)
負荷回路40の蓄電装置70から電力を供給された受電コイル電流制御回路50が、受電側共振回路にパルス電圧Vpを加えている間は、受電コイル電流制御回路50が受電側共振回路に電力を加えていて、その間、受電コイル2に流れる共振電流I2も増す。受電コイル電流制御回路50が受電側共振回路に加えた電力は結局、負荷回路40の蓄電装置70に充電され、その蓄電装置70の電力が再び受電コイル電流制御回路50に供給されるという電力の循環がある。
ここで、送電コイル1が受電コイル2に発生させる誘導電圧が大きすぎる場合は、制御演算手段60が受電コイル電流制御回路50を制御して、共振電流I2を減少させる向きにパルス電圧Vpを加えることで、共振電流I2を減らす制御を行なうことができる。
そうして、受電コイル電流制御回路50が共振電流I2を減らすことで、送電コイル1が電磁誘導により受電コイル2に発生させる誘導電圧が受電コイル2に単位時間当たりに加えるエネルギーの量を共振電流I2に比例して小さく制御できる。
共振電流I2を、送電コイル1から受電コイル2に誘導する交流の誘導電圧に同期させるべく、受電コイル電流制御回路50が受電側共振回路に直列に加えるパルス電圧Vpを、受電コイル2に誘導する交流の誘導電圧に同期させる。すなわち、送電コイル1が受電コイル2に誘導する交流の誘導電圧の波形のピークのタイミングにパルス電圧Vpのタイミングを合わせる。
そうすることで、共振電流I2の交流電流波形がピークになるタイミングが、送電コイル1が受電コイル2に誘導する交流の誘導電圧の波形がピークになるタイミングに合う。それにより、受電コイル2が送電コイル1から受電する受電電力の無効電力を0にし、送電コイル1が受電コイル2に発生させる誘導電圧と、共振電流I2との積が全て有効電力になるように制御する。
図3を参照して受電コイル電流制御回路50が共振電流I2を制御する回路構成を詳しく説明する。図3(a)は、無線電力伝送システムの受電回路20の中の、受電側共振回路と制御演算手段60と、受電コイル電流制御回路50の回路構成をあらわす。図3(b)は、受電回路20の動作のシミュレーション結果の共振電流I2の時間変化のグラフを表す。
受電コイル電流制御回路50は、半導体スイッチング素子52が直流駆動電圧電源51の受電側共振回路への接続を切り替えるスイッチングをすることで、パルス電圧Vpを、受電コイル2と共振用容量C2が構成する受電側共振回路に直列に加える。
制御演算手段60がパルス状のスイッチ開閉制御信号sig1を送信して半導体スイッチング素子52のスイッチを開閉して発生させるパルス電圧Vpを、交流電圧センサ62が検出した交流電圧に同期させる。その結果として、共振電流I2の交流電流波形がピークになるタイミングがパルス電圧Vpのタイミングに合う。
(共振電流の制御)
送電コイル1が発生した磁界が電磁誘導で受電コイル2に発生する誘導電圧が小さい場合は、共振電流I2の増え方が緩やかである。その場合に制御演算手段60は、受電コイル電流制御回路50を用いて送電コイル1の誘導電圧に直列に、より高い電圧のパルス電圧Vpを加えることで共振電流I2の増加速度を加速させる制御を行う。それにより、図3(b)の様に、共振電流I2を速やかに所定の定常電流の値まで増加させる制御を行う。
(センサの利用)
制御演算手段60は、共振電流I2の電流波形を共振電流センサ61で測定し、測定した共振電流I2の振幅の値が目標値に達した場合に受電コイル電流制御回路50からの受電側共振回路へのパルス電圧Vpの印加を停止して共振電流I2を目標値に維持する。
共振電流I2が目標値を超えた場合は、制御演算手段60は、受電コイル電流制御回路50が共振電流I2を減らす方向に受電側共振回路に直列にパルス電圧Vpを加えて共振電流I2を減らし、共振電流I2を目標値に維持する。
こうして、制御演算手段60は、受電コイル電流制御回路50が受電回路20の共振回路にパルス電圧Vpを継続して加える時間の長さを調整することで、受電回路20の共振電流I2の増減量を調整する。これにより、受電回路20の受電コイル2に流れる共振電流I2を安定化できる効果がある。
特に、制御演算手段60が共振電流I2の目標値を大きくして、受電コイル電流制御回路50を用いて共振電流I2を大きくする制御を行うと、その共振電流I2の値と送電コイル1が受電コイル2に発生する誘導電圧の値との積の大きな受電電力を受電コイル2に受電させることができ、受電コイル2が受け取る受電電力を大きくすることができる効果がある。
(直流電圧変換回路)
本実施形態では直流電圧変換回路(DC/DCコンバータ)80を用いる。直流電圧変換回路80は、整流回路41が共振電流I2を整流して出力する直流の電圧を、異なる値の電圧に変換する回路である。直流電圧変換回路80の回路構成は、制御演算手段60が直流電圧変換回路80の制御用パルス信号のパルス幅を変えることで電圧の昇圧比を変えることができる昇圧形チョッパ回路を用いる。
本実施形態では、受電側共振回路に直列に整流回路41を接続することにより、整流回路41の出力電圧が、受電コイル2に発生する誘導電圧程度の低めの電圧になる。そのため、その電圧を昇圧する直流電圧変換回路80を用い、整流回路41の低い電圧を高い出力電圧に変換して蓄電装置70と負荷42に加えて電力を蓄電又は消費させる。
昇圧形チョッパ回路で構成した直流電圧変換回路80は、制御演算手段60が昇圧形チョッパ回路の電流スイッチを開閉させるために送信する制御用パルス信号のパルス幅を変えることで電圧の昇圧比を制御する。
昇圧形チョッパ回路で構成した直流電圧変換回路80の出力電圧は、蓄電装置70及び負荷42に殆ど電流が流れず電力が消費されない場合は、出力電圧が異常になる。本実施形態は、昇圧形チョッパ回路の出力端子を蓄電装置70に接続するのと並列に、蓄電装置70の端子に受電コイル電流制御回路50の入力端子を接続し受電コイル電流制御回路50に電力を消費させる。それにより、受電コイル電流制御回路50で適度な電力を消費させることで直流電圧変換回路80の出力電圧を正常な状態に維持できる効果がある。
(共振電流の制御例1)
制御演算手段60が受電コイル電流制御回路50を用いて受電コイル2の受電電力を制御する例として、例えば、送電コイル1に対向させる受電コイル2の位置がずれることで送電コイル1が受電コイル2に電磁誘導で発生する誘導電圧が変化する場合に、以下の様にして、受電コイル2の受電電力を一定に制御することができる。
先ず、制御演算手段60は、受電コイル2が送電コイル1から受電する受電電力の目標値を設定する。すなわち、目標値として、受電コイル2に誘導する誘導電圧と共振電流I2の積の値を目標値に設定する。
次に、共振電流I2を共振電流センサ61で測定し、受電コイル2に誘導する交流の誘導電圧を交流電圧センサ62で測定する。次に、制御演算手段60が、受電電力の目標値を誘導電圧の測定値で割り算した値を共振電流I2の目標値に設定する。
そして、制御演算手段60は受電コイル電流制御回路50を用いて、共振電流I2を目標値に維持する制御を行う。すなわち、送電コイル1が受電コイル2に誘導した誘導電圧が小さいときは共振電流I2を大きくし、誘導電圧が大きいときは共振電流I2を小さくする。それにより、受電コイル2に誘導する誘導電圧が変化する場合に、誘導電圧と共振電流I2の積の受電電力を一定に制御する。
一方、誘導電圧程度の値の整流回路41の出力電圧を、昇圧形チョッパ回路で構成した直流電圧変換回路80が、蓄電装置70及び負荷42に加えるべき電圧に変換する。制御演算手段60が昇圧形チョッパ回路に送信する制御用パルス信号のパルス幅を変えることで、その出力電圧の昇圧比を適正な昇圧比に調整する。
(共振電流の制御例2)
また、送電コイル1が受電コイル2に誘導する誘導電圧が一定の場合において、より多くの電力を受電コイル2に受電させる必要がある場合に、制御演算手段60が受電コイル電流制御回路50を用いて共振電流I2をより大きな値に制御することで、誘導電圧と共振電流I2の積の受電電力をより大きな値に制御することができる。
(共振電流の制御例3)
また、受電コイル2に流れる共振電流I2は、負荷回路40の影響で、電流の値が定常値になる以前の一時期に、電流が定常値以上に大きくなることがある。その場合に、制御演算手段60は受電コイル電流制御回路50を用いて、共振電流I2を減少させる方向にパルス電圧Vpを加えることで、共振電流I2の増加を抑え、共振電流I2を目標値に安定化させる制御を行うことができる。
(共振電流の制御例4)
また、蓄電装置70に電力が充電されるにつれて、蓄電装置70へ単位時間当たりに流入する電力の必要量が時間経過とともに変化する場合がある。その場合は、蓄電装置70の充電電圧を充電電圧センサ64で検出し、制御演算手段60が時間の経過とともに、蓄電装置70の充電電圧に応じて、受電コイル2が送電コイル1から受電する受電電力の目標値を変えて、受電コイル電流制御回路50を用いて蓄電装置70への電力の充電量を各時刻での適正な値に制御する。
こうして、制御演算手段60が受電コイル電流制御回路50を用いて共振電流I2を増加あるいは減少させて共振電流I2を自由自在に制御することで、負荷回路40が受電する受電電力を、その共振電流I2と誘導電圧の積の値に自由自在に制御することができる効果がある。
<第2の実施形態>
図4を参照して、本発明の第2の実施形態を説明する。第2の実施形態は、図4の様に、受電回路20を、共振用容量C2に並列に負荷回路40を接続した点が第1の実施形態と相違する。送電回路10には、第1の実施形態と同様な回路を用いる。
(受電回路)
第2の実施形態の受電回路20は、図4のように、自己インダクタンスL2の受電コイル2の両端に共振用容量C2をつないで構成した受電側共振回路を有する。その受電側共振回路に直列に受電コイル電流制御回路50を挿入する。第2の実施形態では、受電コイル2の両端をポート2(P2)にし、そのポート2に、共振用容量C2と受電コイル電流制御回路50を直列に接続し、その共振用容量C2に並列に負荷回路40を接続する。
図2(b)の側面図と同様に、送電回路10の送電コイル1と受電回路20の受電コイル2を対向させて、両コイルを相互インダクタンスMで誘導結合させる。それにより、送電コイル1が発生した磁界の電磁誘導により受電コイル2に誘導電圧を発生させる。その誘導電圧が受電回路20の受電側共振回路に共振電流I2を発生させる。
(負荷回路)
負荷回路40を共振用容量C2に並列に接続する。その共振用容量C2に充電された電力の一部を負荷回路40が消費する。共振用容量C2から負荷回路40に流れ出した電流を整流回路41で直流に整流して直流電圧変換回路80で電圧変換して蓄電装置70に充電する。
共振用容量C2の両端間に発生する電圧は高くなる。そのため、共振用容量C2に並列に接続した負荷回路40に入力する電圧は高くなり、負荷回路40の整流回路41の出力電圧は共振用容量C2の電圧と同様に高くなる。
そのため、本実施形態では、整流回路41の出力電圧を直流電圧変換回路80を用いて低い電圧に変換して蓄電装置70及び負荷42に加える。
(制御演算手段)
本実施形態の制御演算手段60は、共振電流センサ61と充電電流センサ63と充電電圧センサ64から測定値を受信する。
制御演算手段60は、第1の実施形態と同様に、受電コイル電流制御回路50にパルス状のスイッチ開閉制御信号sig1を送信して受電コイル電流制御回路50の半導体スイッチング素子52のスイッチを開閉することで受電側共振回路に直列にパルス電圧Vpを加える。
そのパルス電圧Vpは、送電コイル1が受電コイル2に誘導する交流の誘導電圧の周期に同期させて発生させることが望ましい。制御演算手段60は、受電側共振回路の交流の共振電流I2をその交流の誘導電圧に位相が合って同期しているとみなす。そして、共振電流I2の共振電流センサ61による測定結果の電流波形に、受電コイル電流制御回路50に送信するパルス状のスイッチ開閉制御信号sig1を同期させる。
(直流電圧変換回路)
受電コイル電流制御回路50が受電電力を制御するために共振電流I2を変化させると、共振用容量C2の電圧が共振電流I2に比例して変化する。その結果、負荷回路40の整流回路41の出力電圧は、共振用容量C2の電圧の絶対値と同程度の値に変化する。そのように変化する整流回路41の出力電圧を、直流電圧変換回路80が変換して蓄電装置70又は負荷42に一定の電圧を加える様に制御する。
直流電圧変換回路80には、制御演算手段60が送信する制御用パルス信号のパルス幅を変えることで電圧の降圧比を変えられる降圧形チョッパ回路を用いる。
降圧形チョッパ回路で構成した直流電圧変換回路80の出力電圧は、蓄電装置70及び負荷42に殆ど電流が流れず電力が消費されない場合は、出力電圧が異常になる。本実施形態は、降圧形チョッパ回路の出力端子を接続した蓄電装置70の電力を電源にして受電コイル電流制御回路50を動作させて電力を消費させる。それにより適度な電力を消費させることで、直流電圧変換回路80の出力電圧を正常な状態に維持できる効果がある。
本実施形態も第1の実施形態と同様に、制御演算手段60が受電コイル電流制御回路50を用いてパルス電圧Vpを受電側共振回路に直列に継続して加える時間を調整することで、受電側共振回路の共振電流I2を目標値まで増減させる。
(変形例2)
本実施形態の変形例2として、制御演算手段60が受電コイル電流制御回路50を用いて共振電流I2を常に一定値に制御する場合は、共振用容量C2の交流電圧及び整流回路41の出力電圧が一定値になる。その場合は、直流電圧変換回路80には、電圧の降圧比が常に一定値に固定された簡易な回路を用いる事ができる効果がある。
(共振電流の制御例5)
本実施形態において送電コイル1が受電コイル2に電磁誘導で発生する誘導電圧が変化する場合に、以下の様にして、受電コイル2の受電電力を一定に制御することができる。
先ず、制御演算手段60は、蓄電装置70の充電電力の目標値を設定する。充電電力の目標値は、受電コイル2に誘導する誘導電圧と共振電流I2の積で与えられる受電電力の目標値よりも、負荷回路40の電力が受電コイル電流制御回路50から受電側共振回路に供給され再び負荷回路40に戻る電力が循環する量だけ多めに設定する。
次に、共振電流I2を共振電流センサ61で測定し、蓄電装置70に充電する充電電流を充電電流センサ63で測定し、蓄電装置70の充電電圧を充電電圧センサ64で測定する。
制御演算手段60が、充電電圧センサ64が測定した充電電圧と充電電流センサ63が測定した充電電流の積の値を計算し、その値を充電電力の測定値とみなす。そして、制御演算手段60が、充電電力の目標値を充電電力の測定値で割り算して得た値を、共振電流センサ61が測定した共振電流I2の値に掛け算した値を共振電流I2の目標値に設定する。
そして、制御演算手段60が受電コイル電流制御回路50を用いて、共振電流I2を目標値に制御する。その結果、誘導電圧が小さいときは共振電流I2を大きくし、誘導電圧が大きいときは共振電流I2を小さくする制御が行われ、受電回路20の受電電力を一定に制御することができる。
一方、共振電流I2の大きさに応じて変化する整流回路41の出力電圧を、降圧形チョッパ回路で構成した直流電圧変換回路80が蓄電装置70及び負荷42に加えるべき所定の電圧に変換する。その電圧の降圧比は、降圧形チョッパ回路の制御用パルス信号のパルス幅を変えることで適正な降圧比に調整する。
(共振電流の制御例6)
負荷回路40の蓄電装置70に電力が充電されるにつれて、負荷回路40が必要とする電力が時間経過とともに変わる場合は、制御演算手段60が、充電電圧センサ64が検出した蓄電装置70の電圧により蓄電装置70の充電量を把握する。そして、その充電量に応じて蓄電装置70の充電電力の目標値を変えて、蓄電装置70への電力の充電量を適正な値に制御する。
<第3の実施形態>
図5を参照して本発明の第3の実施形態を説明する。第3の実施形態は、負荷回路40の前段に変圧回路を設置することで、直流電圧変換回路80の替わりにした点が先に記載した実施形態と相違する。その変圧回路の出力端子側には2次側共振用容量C4を接続して2次側共振回路を構成し、その2次側共振回路に直列に整流回路41の入力端子を接続する。
本実施形態の送電回路10には第1の実施形態と同様な回路を用い、また、受電回路20では、第1の実施形態と同様に、受電側共振回路に負荷回路40と受電コイル電流制御回路50を直列に接続する。
(受電回路)
受電回路20は、図5のように、自己インダクタンスL2の受電コイル2の両端に共振用容量C2をつないで構成した受電側共振回路を有し、その受電側共振回路の受電コイル2の配線の中間のポート2(P2)に負荷回路40と受電コイル電流制御回路50を直列に接続する。
(負荷回路40の変圧回路)
本実施形態の負荷回路40の前段の変圧回路は、入力端子側に自己インダクタンスL3の1次コイルL3を設置し、その1次コイルL3に自己インダクタンスL4の2次コイルL4を相互インダクタンスMtで誘導結合させる。この変圧回路の2次コイルL4の出力端子側に2次側共振用容量C4を接続して2次側共振回路を構成する。その2次側共振回路の共振周波数を、受電側共振回路の共振周波数と同じ周波数にする。
(共振トランス型変圧回路)
変圧回路は、1次コイルL3の漏れインダクタンス及び2次コイルL4の漏れインダクタンスと2次側共振用容量C4が受電側共振回路の共振周波数と同じ周波数で共振する共振トランス型変圧回路を構成することができる。
(変形例3)イミタンス変換回路で構成した変圧回路
また、変形例3として、変圧回路を、以下の構成のイミタンス変換回路で構成することができる。すなわち、受電コイル2の自己インダクタンスL2と変圧回路の1次コイルL3の自己インダクタンスとを合わせた総インダクタンスと受電側共振回路の共振用容量C2(あるいは、C2に直列にイミタンス変換回路の1次側用の容量を接続した総体の容量)を、受電側共振回路の共振周波数で共振させる。
この変圧回路の2次コイルL4の自己インダクタンスと2次側共振用容量C4を、受電側共振回路の共振周波数で共振させ、2次コイルL4は受電側共振回路の1次コイルL3と誘導結合させる。この回路構成の変圧回路は、1次側から見た回路のインピーダンスが2次側に接続された回路のアドミタンスに比例するイミタンス変換回路を含んでいる。変圧回路は、他の回路構成のイミタンス変換回路で構成することもできる。例えば、2つのコイル(インダクタ)の中間に1つの容量をT形に接続して構成したイミタンス変換回路を変圧回路に用いることもできる。
変圧回路の2次側共振回路に直列に整流回路41の入力端子を接続し、整流回路41の出力端子を蓄電装置70に接続する。整流回路41が出力する電力を蓄電装置70に充電し、負荷42で消費させる。更に、蓄電装置70の電力を受電コイル電流制御回路50に供給する。なお、第2の実施形態と同様に、2次側共振回路の2次側共振用容量C4に並列に整流回路41の入力端子を接続した回路構成にすることもできる。
(受電コイル電流制御回路50)
本実施形態の受電コイル電流制御回路50は、第1の実施形態と同様に、制御演算手段60に制御されて、共振電流I2と同じ周期で繰り返すパルス電圧Vpを受電側共振回路に直列に加えることで、受電側共振回路に流れる共振電流I2を増加あるいは減少させる制御を行なう。
(共振電流の制御)
制御演算手段60が、共振電流I2の目標値を設定し、受電コイル電流制御回路50を用いて共振電流I2を目標値に合わせる制御を行う。それにより共振電流I2を一定値に制御し、一定値の共振電流I2が流れる変圧回路の1次コイルL3が発生する磁界が2次コイルL4に誘導する誘導電圧を一定値に制御する。その誘導電圧が2次側共振回路に直列に接続した整流回路41に加わり、整流回路41の出力端子に発生する直流電圧が一定値になり、その一定値の直流電圧が蓄電装置70に加わる。
すなわち、送電コイル1に対向させる受電コイル2の位置がずれて送電コイル1が受電コイル2に電磁誘導で発生する誘導電圧が変動しても、制御演算手段60が受電コイル電流制御回路50を用いて受電側共振回路に流れる共振電流I2を一定値に制御することにより、変圧回路の2次コイルL4に誘導する誘導電圧が一定値になり、その結果、一定値の直流電圧が蓄電装置70に加わる。結局、蓄電装置70に加わる電圧は変わらず電圧が安定する効果がある。
そのため、本実施形態は、送電コイル1に対向させる受電コイル2の位置がずれて送電コイル1が受電コイル2に電磁誘導で発生する誘導電圧が変動しても、整流回路41から蓄電装置70に加えられる電圧を同じ電圧のままで安定させることができる。それにより、整流回路41から蓄電装置70への充電が安定して継続される効果がある。
<第4の実施形態>
第4の実施形態が先に記載した実施形態と相違する点は、受電コイル電流制御回路50が、受電側共振回路に直列に補助交流駆動電圧Vaを加えて受電側共振回路の共振電流I2を増加あるいは減少させる制御を行う点である。
図6に、第4の実施形態の受電回路20の中の受電コイル電流制御回路50の回路構成を示す。それ以外の回路全体の構成は、上記の実施形態の回路構成を用いる。すなわち、送電回路10と、受電回路20の受電側共振回路と、受電回路20の受電コイル電流制御回路50を制御する制御演算手段60と、負荷回路40は、図1又は図4又は図5の回路を用いることができる。
(受電コイル電流制御回路50)
第4の実施形態の受電コイル電流制御回路50は、交流駆動電圧電源53と半導体スイッチング素子52で構成する。制御演算手段60が受電コイル電流制御回路50の半導体スイッチング素子52をスイッチ開閉制御信号sig1で切り替えて受電側共振回路に直列に補助交流駆動電圧Vaを加えて受電側共振回路の共振電流I2を増加あるいは減少させる制御を行う。また、交流駆動電圧電源53の交流の電圧波形を計測する駆動電圧センサ65を設置することもできる。
(制御演算手段)
制御演算手段60は、受電コイル電流制御回路50の交流駆動電圧電源53の交流の周波数を交流周波数制御信号sig2で制御する。また、制御演算手段60は、制御演算手段60は、交流電圧センサ62が検出する交流電圧を受電コイル2に誘導する交流の誘導電圧と等しいとみなして、交流電圧センサ62が検出した交流電圧の値が最大になるタイミングに、補助交流駆動電圧Vaの電圧値を最大にするようにタイミングを合わせるように補助交流駆動電圧Vaの位相を制御して同期させる。
交流電圧センサ62が検出した交流電圧に補助交流駆動電圧Vaを同期させる方法は、以下の様に行うことができる。制御演算手段60は駆動電圧センサ65で交流駆動電圧電源53の交流の電圧波形を測定し、交流電圧センサ62で測定した交流電圧波形と比較する。
制御演算手段60は、補助交流駆動電圧Vaの位相が交流電圧センサ62で測定した交流電圧の位相からずれて位相差がある場合は、交流周波数制御信号sig2で指令することで、交流駆動電圧電源53の補助交流駆動電圧Vaの周波数を交流電圧センサ62で測定した交流電圧の周波数からずらす。そうして、時間の経過とともにその交流電圧との間の位相差を減少させる。
そして、補助交流駆動電圧Vaの位相が交流電圧センサ62で測定した交流電圧の位相に合った時点で、補助交流駆動電圧Vaの周波数を交流電圧センサ62で測定した交流電圧の周波数に合わせることで、位相の一致状態を維持する。
送電コイル1が発生した磁界が電磁誘導で受電コイル2に発生する誘導電圧が小さい場合は、共振電流I2の増え方が緩やかである。その場合に、制御演算手段60が受電コイル電流制御回路50の半導体スイッチング素子52をスイッチ開閉制御信号sig1で切り替えて、送電コイル1の誘導電圧に直列に、より高い交流電圧の補助交流駆動電圧Vaの印加を開始する。それにより、共振電流I2の増加速度を加速させ、共振電流I2を速やかに所定の定常電流の値まで増加させる制御を行う。
(共振電流の制御)
制御演算手段60は、共振電流I2の電流波形を共振電流センサ61で測定し、測定した共振電流I2の振幅の値が目標値に達した場合は、スイッチ開閉制御信号sig1で半導体スイッチング素子52を切ることで受電側共振回路への補助交流駆動電圧Vaの印加を停止して共振電流I2を目標値に維持する。
なお、本発明は、以上の実施形態の構成に限定されず、交流電流で磁界を発生させる送電コイル1と、その送電コイル1の電磁誘導により誘導電圧を発生する受電コイル2を有する無線電力伝送システムであって、その受電コイル2に共振用容量C2を接続して構成した共振回路(受電側共振回路)を有し、受電側共振回路に流れる共振電流I2を目標値に合わせる制御を行う制御演算手段60を有し、制御演算手段60に制御されて受電側共振回路に電力を加えて共振電流I2を増す受電コイル電流制御回路50を有する無線電力伝送システムである。そして、受電側共振回路から電力を受電する負荷回路40を有し、受電コイル電流制御回路50が負荷回路40から電力を供給されて、受電側共振回路に電力を加えて共振電流I2を増す無線電力伝送システムである。
1 送電コイル、
2 受電コイル、
10 送電回路、
20 受電回路、
30 電源回路、
40 負荷回路、
41 整流回路、
42 負荷、
50 受電コイル電流制御回路、
51 直流駆動電圧電源、
52 半導体スイッチング素子、
53 交流駆動電圧電源、
60 制御演算手段、
61 共振電流センサ、
62 交流電圧センサ、
63 充電電流センサ、
64 充電電圧センサ、
65 駆動電圧センサ、
70 蓄電装置、
80 直流電圧変換回路(DC/DCコンバータ)、
C1 送電回路の共振回路の共振用容量、
C2 受電回路の共振回路の共振用容量、
C4 変圧回路の2次側共振用容量、
h コイル間隔、
I1 送電コイルに流れる共振電流、
I2 受電コイルに流れる共振電流、
L1 送電コイルの自己インダクタンス、
L2 受電コイルの自己インダクタンス、
L3 変圧回路の1次コイル、
L4 変圧回路の2次コイル、
M、Mt 相互インダクタンス、
P1 送電回路の共振回路のポート1、
P2 受電回路の共振回路のポート2、
sig1 スイッチ開閉制御信号、
sig2 交流周波数制御信号、
Va 補助交流駆動電圧、
Vp パルス電圧

Claims (1)

  1. 交流電流で磁界を発生させる送電コイルと、劾送電コイルの電磁誘導により誘導電圧を発生する受電コイルを有し、劾受電コイルに共振用容量を接続して構成した共振回路を有し、前記共振回路に流れる共振電流を目標値に合わせる制御を行う制御演算手段を有し、前記制御演算手段に制御されて前記共振回路に電力を加えて前記共振電流を増す受電コイル電流制御回路を有し、前記共振回路から電力を受電する負荷回路を有し、前記受電コイル電流制御回路が、前記共振回路に加える電力を前記負荷回路から供給されて動作することを特徴とする無線電力伝送システム。
JP2017551865A 2015-11-17 2016-11-14 無線電力伝送システム Active JP6675109B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015225217 2015-11-17
JP2015225217 2015-11-17
PCT/JP2016/083736 WO2017086279A1 (ja) 2015-11-17 2016-11-14 無線電力伝送システム

Publications (2)

Publication Number Publication Date
JPWO2017086279A1 JPWO2017086279A1 (ja) 2018-08-30
JP6675109B2 true JP6675109B2 (ja) 2020-04-01

Family

ID=58718931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017551865A Active JP6675109B2 (ja) 2015-11-17 2016-11-14 無線電力伝送システム

Country Status (3)

Country Link
US (1) US10491045B2 (ja)
JP (1) JP6675109B2 (ja)
WO (1) WO2017086279A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7102944B2 (ja) * 2018-05-29 2022-07-20 オムロン株式会社 非接触給電装置
CN109624735B (zh) * 2019-01-22 2021-02-02 中惠创智无线供电技术有限公司 一种应用于动态无线充电***的异常车辆处理方法及***
ES2911074T3 (es) * 2019-12-13 2022-05-17 Wiferion Gmbh Transmisión de potencia inalámbrica con salida modular

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6040899B2 (ja) * 2013-04-08 2016-12-07 ソニー株式会社 電子機器および給電システム
JP2015012716A (ja) * 2013-06-28 2015-01-19 株式会社東芝 無線電力伝送システム、送電装置、および受電装置
WO2015159560A1 (ja) * 2014-04-16 2015-10-22 三菱電機株式会社 車両用充電装置
JP6402819B2 (ja) * 2015-02-20 2018-10-10 富士通株式会社 受電器、及び、電力伝送システム

Also Published As

Publication number Publication date
JPWO2017086279A1 (ja) 2018-08-30
US10491045B2 (en) 2019-11-26
WO2017086279A1 (ja) 2017-05-26
US20180331576A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP5135204B2 (ja) 非接触電力伝送システム、および該非接触電力伝送システムにおける負荷装置
KR101971203B1 (ko) 양-방향 유도 전력 전송 시스템에 대한 로드 컨트롤
KR101818773B1 (ko) 공진 방식 무선 충전 시스템용 수신 전력 변환 장치
CN101965671B (zh) 具有占空比控制的感应电源
JP6817221B2 (ja) Dc電圧源間のワイヤレス電力伝送のための装置および方法
US9024613B2 (en) Switching power supply apparatus and semiconductor device
WO2014199691A1 (ja) 給電装置、および非接触給電システム
JP5837254B2 (ja) 受電装置及び非接触給電装置
WO2014010518A1 (ja) 受電機器及び電力伝送システム
JP6675109B2 (ja) 無線電力伝送システム
US20170033693A1 (en) Inductive power transfer converters and system
JP2014220984A (ja) 電子機器および給電システム
EP2985868B1 (en) Power supply apparatus and non-contact power supply system
WO2013136431A1 (ja) 電力受電装置及び電力受電方法
US10784707B2 (en) Inductive power transfer system
WO2012176571A1 (ja) 受電装置及び非接触式給電装置
JP5602069B2 (ja) 受電装置および非接触型電力伝送装置
JP6111625B2 (ja) ワイヤレス電力伝送装置
KR102155896B1 (ko) 배터리 충전 장치 및 그 제어 방법
Neath et al. Frequency jitter control of a multiple pick-up Bidirectional Inductive Power Transfer system
JP6555401B2 (ja) 電子機器、給電システムおよび非接触給電方法
WO2014069148A1 (ja) 非接触電力伝送装置および受電機器
JP5561210B2 (ja) 非接触電力伝送装置
JP2015002598A (ja) 非接触電力伝送装置
JP6714908B1 (ja) 非接触給電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181103

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200222

R150 Certificate of patent or registration of utility model

Ref document number: 6675109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250