JP6674352B2 - Repair method of coke oven - Google Patents

Repair method of coke oven Download PDF

Info

Publication number
JP6674352B2
JP6674352B2 JP2016160943A JP2016160943A JP6674352B2 JP 6674352 B2 JP6674352 B2 JP 6674352B2 JP 2016160943 A JP2016160943 A JP 2016160943A JP 2016160943 A JP2016160943 A JP 2016160943A JP 6674352 B2 JP6674352 B2 JP 6674352B2
Authority
JP
Japan
Prior art keywords
heat storage
block
combustion chamber
coke oven
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016160943A
Other languages
Japanese (ja)
Other versions
JP2018028030A (en
Inventor
要 高野
要 高野
武 高野
武 高野
松井 淳
淳 松井
進一 中込
進一 中込
Original Assignee
株式会社メガテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メガテック filed Critical 株式会社メガテック
Priority to JP2016160943A priority Critical patent/JP6674352B2/en
Publication of JP2018028030A publication Critical patent/JP2018028030A/en
Application granted granted Critical
Publication of JP6674352B2 publication Critical patent/JP6674352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は、コークス炉を補修するにあたって、燃焼室と蓄熱室を解体した後、新たに構築する補修方法に関するものである。   TECHNICAL FIELD The present invention relates to a repair method for newly constructing a coke oven after disassembling a combustion chamber and a heat storage chamber when repairing the coke oven.

図1はコークス炉の要部を模式的に示す垂直断面図である。一般にコークス炉は、図1に示すように、石炭を乾留する炭化室2、燃料ガスを燃焼させる燃焼室を内部に備えた壁体3、燃焼排ガスの余熱を利用して燃料ガスや燃焼用空気を予め加熱する蓄熱室4で構成され、燃焼室の壁体3と炭化室2は交互に配置される。なお、図1に示す壁体3は図5に示すような構造になっており、耐火煉瓦を積み上げた壁体3の内側に燃焼室1が形成される。   FIG. 1 is a vertical sectional view schematically showing a main part of a coke oven. Generally, as shown in FIG. 1, a coke oven has a carbonization chamber 2 for carbonizing coal, a wall body 3 having a combustion chamber for burning fuel gas therein, and a fuel gas or combustion air utilizing residual heat of combustion exhaust gas. Is preliminarily heated, and the walls 3 of the combustion chamber and the carbonization chamber 2 are arranged alternately. The wall 3 shown in FIG. 1 has a structure as shown in FIG. 5, and the combustion chamber 1 is formed inside the wall 3 on which refractory bricks are stacked.

そしてコークス炉の操業中に、炭化室2へ石炭を装入し、さらに燃焼室1で発生する燃焼熱によって乾留した後、得られたコークスを炭化室2から排出する作業が繰り返し行なわれる。その結果、耐火煉瓦で形成される壁体3が損耗し、燃焼室1から燃焼排ガスや未燃焼の燃料ガスが炭化室2内に漏出するという問題が生じる。   Then, during the operation of the coke oven, the operation of charging coal into the carbonization chamber 2 and further carbonizing the coal by the combustion heat generated in the combustion chamber 1 and then discharging the obtained coke from the carbonization chamber 2 is repeatedly performed. As a result, the wall 3 formed of the refractory brick is worn away, and a problem occurs in that the combustion exhaust gas and unburned fuel gas leak from the combustion chamber 1 into the carbonization chamber 2.

また、蓄熱室4を支持する強度部材(以下、柱体という)、および、その柱体の間に積み上げられて熱を蓄える蓄熱体も耐火煉瓦で形成されており、時間の経過とともに劣化して損傷(たとえば変形、亀裂、欠損等)や詰りが生じる。柱体や蓄熱体に損傷・詰りが生じると、燃料ガスや燃焼用空気の流れが部分的に阻害され、壁体の温度分布のばらつきが大きくなり、コークスの品質劣化の原因となる。また、蓄えられる熱量が低下し、燃料ガスの使用量の増加を招く。   In addition, a strength member (hereinafter, referred to as a column) that supports the heat storage chamber 4 and a heat storage body that is stacked between the columns and stores heat are also formed of refractory bricks, and deteriorate with time. Damage (eg, deformation, cracks, defects, etc.) and clogging may occur. If the pillars or the heat storage body are damaged or clogged, the flow of the fuel gas or the combustion air is partially obstructed, and the temperature distribution of the wall increases, which causes deterioration of coke quality. In addition, the amount of stored heat is reduced, which causes an increase in the amount of fuel gas used.

そこで、燃焼室1と蓄熱室4を適宜補修しなければならないが、コークス炉の燃焼室1と炭化室2を全て停止して補修を行なうのはコークスの生産に支障を来たす。したがって、コークス炉を操業しながら、補修の対象となる燃焼室1のみ燃焼を停止して、補修を行なう。その補修工事の手順は、
(A)補修すべき燃焼室1と蓄熱室4を解体して炉外へ搬出し、
その後、
(B)新たに燃焼室1と蓄熱室4を構築する
という2段階の工程に大別される。
Therefore, the combustion chamber 1 and the heat storage chamber 4 must be repaired as appropriate. However, if the combustion chamber 1 and the carbonization chamber 2 of the coke oven are stopped and repaired, the production of coke is hindered. Therefore, while operating the coke oven, the combustion is stopped only in the combustion chamber 1 to be repaired, and the repair is performed. The repair procedure is as follows:
(A) The combustion chamber 1 and the heat storage chamber 4 to be repaired are dismantled and taken out of the furnace,
afterwards,
(B) The process is roughly divided into a two-stage process of newly constructing the combustion chamber 1 and the heat storage chamber 4.

従来から上記(B)の工程では、作業員が炉内で耐火煉瓦を1個ずつ積み上げて燃焼室1と蓄熱室4を構築している。しかし、耐火煉瓦の積み上げを手作業で行なうので、極めて長時間を要する。しかも作業環境が高温であるから、作業員の安全を確保するための装備が必要となり、施工コストの上昇を招く。   Conventionally, in the step (B), a worker builds up the refractory bricks one by one in the furnace to construct the combustion chamber 1 and the heat storage chamber 4. However, since the refractory bricks are manually stacked, it takes an extremely long time. In addition, since the working environment is at a high temperature, equipment for ensuring the safety of the workers is required, which leads to an increase in construction costs.

従来の技術では、燃焼室1の補修が終了した後、蓄熱室端部の耐火煉瓦を取り除き、そこから作業員が入室して蓄熱体を交換していた。ところが、作業場所は狭く、かつ50℃を超える高温であるため、作業効率は非常に悪く、安全上も好ましくなかった。また、蓄熱室4の構造上、作業員が端部から入室できず、補修できないコークス炉も存在する。   In the related art, after the repair of the combustion chamber 1 is completed, the refractory brick at the end of the heat storage chamber is removed, and an operator enters the room to replace the heat storage body. However, since the working place is small and the temperature is higher than 50 ° C., the working efficiency is very poor and safety is not preferable. Further, due to the structure of the heat storage chamber 4, there is a coke oven in which a worker cannot enter from the end and cannot be repaired.

そこで、燃焼室1の補修においては、耐火煉瓦を積み上げて所定の形状(たとえば図5参照)に成形した耐火煉瓦集合体(以下、煉瓦集合体ブロックという)を、炉外の地組場で予め製作しておき、上記(B)の工程でその煉瓦集合体ブロックを炉内に搬入して、燃焼室1を構築する補修工事が普及し始めている(特許文献1参照)。煉瓦集合体ブロックを用いることによって、補修工事を効率良く行なうことが可能となり、工期の短縮を図ることができる。しかも、作業員の負荷が軽減され、安全性が向上するという効果も得られる。   Therefore, in repairing the combustion chamber 1, a refractory brick aggregate (hereinafter, referred to as a brick aggregate block) formed by stacking refractory bricks and forming a predetermined shape (for example, see FIG. 5) is preliminarily obtained at a ground site outside the furnace. Repair work has been started, in which the brick assembly block is transported into the furnace in the above step (B) to construct the combustion chamber 1 (see Patent Document 1). By using the brick aggregate block, the repair work can be performed efficiently, and the construction period can be shortened. In addition, the effect of reducing the load on the worker and improving safety can be obtained.

また、蓄熱室4の補修では、耐火煉瓦の損傷部に補修材を充填する補修技術が開発されている(特許文献2参照)。ところが、耐火煉瓦に生じた亀裂が深い場合は、その深奥部まで補修材を浸透させ難いので、亀裂を十分に補修することは困難である。耐火煉瓦の欠損が広い範囲にわたって生じた場合は、欠損に補修材を充填するのに長時間を要する。したがって、蓄熱室4の補修においても煉瓦集合体ブロックを使用すれば、工期の短縮、作業負荷の軽減、安全性の向上が期待できる。   In the repair of the heat storage chamber 4, a repair technique for filling a repaired material into a damaged portion of the refractory brick has been developed (see Patent Document 2). However, when the crack generated in the refractory brick is deep, it is difficult to allow the repair material to penetrate deeply into the deep portion, so that it is difficult to sufficiently repair the crack. If the refractory brick is damaged over a wide area, it takes a long time to fill the defect with the repair material. Therefore, if the brick assembly block is used also in the repair of the heat storage chamber 4, shortening of the construction period, reduction of the work load, and improvement of safety can be expected.

ところが、煉瓦集合体ブロックは耐火煉瓦を積み上げて、さらに固着材(たとえばモルタル等)で耐火煉瓦を接合し固着させたものである。そのため、補修時に煉瓦集合体ブロックを搬送し、さらに組み付ける際に、煉瓦集合体ブロックの破損や煉瓦脱落が生じやすく、また、補修が終了して操業を開始した後、耐火煉瓦と固着材の熱膨張量の差に起因して、耐火煉瓦の接合部(いわゆる目地)や耐火煉瓦に亀裂が生じる、あるいは煉瓦集合体ブロックが変形する等の問題が生じ易い。   However, the brick aggregate block is formed by stacking fire-resistant bricks and bonding and fixing the fire-resistant bricks with a fixing material (for example, mortar or the like). For this reason, when transporting the brick aggregate block during repair and further assembling it, the brick aggregate block is likely to be damaged or the brick will fall off, and after the repair is completed and operation starts, the heat of the refractory brick and the adhesive material will be Due to the difference in the amount of expansion, cracks are likely to occur in the joints (so-called joints) of the refractory bricks or the refractory bricks, or problems such as deformation of the brick assembly blocks are likely to occur.

特開2001-19969号公報JP 2001-19969 A 特開平10-219252号公報JP-A-10-219252

本発明は、従来の技術の問題点を解消し、コークス炉の燃焼室と蓄熱室の補修工事を効率良く行なうことが可能であり、ひいては工期の短縮、作業負荷の軽減、安全性の向上を図り、しかも、補修した後の耐用性を高めることができる補修方法を提供することを目的とする。   The present invention solves the problems of the conventional technology, and makes it possible to efficiently perform repair work on the combustion chamber and the heat storage chamber of a coke oven, thereby shortening the construction period, reducing the work load, and improving safety. It is an object of the present invention to provide a repairing method that can improve the durability after repairing.

本発明者は、補修工事を効率良く行ない、工期の短縮、作業負荷の軽減、安全性の向上を図るためには煉瓦集合体ブロックが有効であることから、その煉瓦集合体ブロックに生じる亀裂や変形を防止する技術について検討した。そして、煉瓦集合体ブロックが2種類の材料(すなわち耐火煉瓦、固着材)からなることが、亀裂や変形が生じる原因であることに着目して研究した結果、従来の煉瓦集合体ブロックと同様の形状のブロックを単一の材料で成形すれば、亀裂や変形を防止できることを見出した。つまり、単一の材料で一体的に成形したブロック(以下、一体成形ブロックという)は、全体の熱膨張量が均一であるから、亀裂や変形を防止できる。   The present inventor has conducted a repair work efficiently, shortened the construction period, reduced the work load, and improved the safety, since the brick aggregate block is effective, cracks and the like that occur in the brick aggregate block The technology to prevent deformation was studied. As a result of studying that the brick assembly block is made of two types of materials (that is, refractory bricks and adhesives), it is a cause of cracking and deformation, and as a result, it is similar to the conventional brick assembly block. It has been found that cracking and deformation can be prevented by molding a shaped block with a single material. In other words, a block integrally formed of a single material (hereinafter, referred to as an integrally formed block) has a uniform thermal expansion amount, so that cracks and deformation can be prevented.

本発明は、このような知見に基づいてなされたものである。
すなわち本発明は、コークス炉の燃焼室と蓄熱室を補修する補修方法において、燃焼室を形成する壁体、蓄熱室を形成する柱体、および柱体の間に積み上げられて熱を蓄える蓄熱体を、それぞれ複数個のブロックに分割して溶融シリカを96〜97.3質量%、リン酸塩および/または酸化カルシウムを2.5〜3.5質量%含有し、残部が不可避的不純物からなる耐熱材を型枠に流し込んで、昇温速度10〜25℃/時で1000〜1200℃の温度範囲まで昇温し、さらに24時間以上保持した後、冷却速度10〜25℃/時で室温まで冷却することによって一体的に成形した一体成形ブロックを予め製作しておき、壁体、柱体、および蓄熱体を解体して炉外へ搬出した後、一体成形ブロックを搬入して新たに壁体、柱体、および蓄熱体をそれぞれ構築するコークス炉の補修方法である。
The present invention has been made based on such findings.
That is, the present invention relates to a repair method for repairing a combustion chamber and a heat storage chamber of a coke oven, wherein a wall forming the combustion chamber, a pillar forming the heat storage chamber, and a heat storage body stacked between the pillars to store heat. Is divided into a plurality of blocks, each containing 96 to 97.3 % by mass of fused silica, 2.5 to 3.5% by mass of phosphate and / or calcium oxide, and a heat-resistant material composed of unavoidable impurities in the form. Pour in, raise the temperature to 1000-1200 ° C at a rate of 10-25 ° C / hour, hold for at least 24 hours, and then cool to room temperature at a cooling rate of 10-25 ° C / hour. After the wall, column, and heat storage body are dismantled and taken out of the furnace, the wall, column, and heat storage are newly loaded and integrated. In the coke oven repair method that builds each body is there.

本発明によれば、コークス炉の燃焼室と蓄熱室の補修工事を効率良く行なうことが可能であり、ひいては工期の短縮、作業負荷の軽減、安全性の向上を図り、しかも、補修した後の耐用性を高めることができるので、産業上格段の効果を奏する。   According to the present invention, it is possible to efficiently perform repair work on the combustion chamber and the heat storage chamber of a coke oven, thereby shortening the construction period, reducing the work load, improving safety, and further, after repair. Since the durability can be improved, an industrially significant effect is achieved.

コークス炉の要部を模式的に示す垂直断面図である。It is a vertical sectional view showing the important section of a coke oven typically. 図1中の壁体と蓄熱室を解体して炉外へ搬出した例を模式的に示す垂直断面図である。FIG. 2 is a vertical cross-sectional view schematically illustrating an example in which a wall body and a heat storage chamber in FIG. 1 are disassembled and carried out of a furnace. 一体成形ブロックを用いて蓄熱室を構築した例を模式的に示す垂直断面図である。FIG. 4 is a vertical sectional view schematically showing an example in which a heat storage chamber is constructed using an integrally formed block. 一体成形ブロックを用いて燃焼室の壁体を構築した例を模式的に示す垂直断面図である。FIG. 4 is a vertical cross-sectional view schematically illustrating an example in which a wall of a combustion chamber is constructed using an integrally formed block. 燃焼室壁体の煉瓦集合体ブロックの例を模式的に示す平面図である。It is a top view which shows typically the example of the brick aggregate block of a combustion chamber wall. 燃焼室壁体の一体成形ブロックの例を模式的に示す平面図である。It is a top view which shows typically the example of the integral molding block of a combustion chamber wall. 図3中の柱体用の一体成形ブロックの例を模式的に示す斜視図である。FIG. 4 is a perspective view schematically illustrating an example of an integrally molded block for a column in FIG. 3. 図3中の蓄熱体用の一体成形ブロックの例を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing an example of an integrally molded block for a heat storage body in FIG. 3.

図2は、図1の壁体3と蓄熱室4を解体して炉外へ搬出した例を模式的に示す垂直断面図である。図2中の符号4aは蓄熱室4を支持する耐火煉瓦の柱体、符号4bは柱体4aの間に積み上げられて熱を蓄える耐火煉瓦の蓄熱体である。   FIG. 2 is a vertical sectional view schematically showing an example in which the wall 3 and the heat storage chamber 4 of FIG. 1 are disassembled and carried out of the furnace. Reference numeral 4a in FIG. 2 denotes a refractory brick pillar that supports the heat storage chamber 4, and reference numeral 4b denotes a refractory brick regenerator stacked between the pillars 4a to store heat.

図3は、図2の蓄熱室の空間に一体成形ブロックを積み上げて、蓄熱室を構築した例を模式的に示す垂直断面図である。そして、図7は、図3中の柱体用の一体成形ブロックの例を模式的に示す斜視図、図8は、図3中の蓄熱体用の一体成形ブロックの例を模式的に示す斜視図である。   FIG. 3 is a vertical sectional view schematically showing an example in which a heat storage chamber is constructed by stacking integrally formed blocks in the space of the heat storage chamber of FIG. 7 is a perspective view schematically showing an example of an integrally formed block for a column in FIG. 3, and FIG. 8 is a perspective view schematically showing an example of an integrally formed block for a heat storage body in FIG. FIG.

柱体用の一体成形ブロック5は、耐熱材として溶融シリカ(純度97質量%以上)を96〜99質量%、バインダー(リン酸塩および/または酸化カルシウム)を2.5〜3.5質量%含有し、残部が不可避的に混入する不純物(以下、不可避的不純物という)からなる混合物を型枠に流し込んで、昇温速度10〜25℃/時で1000〜1200℃の温度範囲まで昇温し、さらに24時間以上保持した後、冷却速度10〜25℃/時で室温まで冷却することによって、一体的に成形したものである。   The integrally molded block 5 for a column contains 96 to 99% by mass of fused silica (purity of 97% by mass or more) and 2.5 to 3.5% by mass of a binder (phosphate and / or calcium oxide) as a heat-resistant material, and the balance A mixture of impurities inevitably mixed into the mold (hereinafter referred to as inevitable impurities) is poured into a mold, and heated at a rate of 10 to 25 ° C / hour to a temperature range of 1000 to 1200 ° C for another 24 hours. After holding as described above, it is integrally molded by cooling to room temperature at a cooling rate of 10 to 25 ° C./hour.

このようにして製作した柱体用の一体成形ブロック5は、熱膨張率が0.01〜0.20%と極めて小さく、しかも冷間圧縮強度が30MPa以上かつ荷重軟化点が1400℃以上と十分な強度を備えているので、亀裂や変形が発生せず、かつ後述する壁体用の一体成形ブロックの荷重を支持することができる。   The integrally molded block 5 for a column thus manufactured has a sufficiently small thermal expansion coefficient of 0.01 to 0.20%, a cold compressive strength of 30 MPa or more, and a load softening point of 1400 ° C. or more. As a result, cracks and deformation do not occur, and the load of the integrally formed block for the wall described later can be supported.

また、柱体用の一体成形ブロック5の1個分の重量が小さすぎると、炉内へ搬入する回数が増えるので、蓄熱室の補修工事の効率が低下する。一方で、重量が大きすぎると、炉内への搬入に長時間を要するので、蓄熱室の補修工事の効率が低下する。したがって、柱体用の一体成形ブロック5の1個分の重量は300〜3000kg/個の範囲内が好ましい。   If the weight of one integrated block 5 for the column is too small, the number of times of carrying into the furnace increases, so that the efficiency of the repair work of the heat storage chamber decreases. On the other hand, if the weight is too large, it takes a long time to carry into the furnace, and thus the efficiency of the repair work on the heat storage chamber decreases. Therefore, it is preferable that the weight of one integrated block 5 for a column is in the range of 300 to 3000 kg / piece.

蓄熱体用の一体成形ブロック6は、耐熱材として溶融シリカ(純度97質量%以上)を96〜99質量%、バインダー(リン酸塩および/または酸化カルシウム)を2.5〜3.5質量%含有し、残部が不可避的に混入する不純物(以下、不可避的不純物という)からなる混合物を型枠に流し込んで、昇温速度10〜25℃/時で1000〜1200℃の温度範囲まで昇温し、さらに24時間以上保持した後、冷却速度10〜25℃/時で室温まで冷却することによって、一体的に成形したものである。   The heat storage unit integrally-formed block 6 contains 96 to 99% by mass of fused silica (purity of 97% by mass or more) and 2.5 to 3.5% by mass of a binder (phosphate and / or calcium oxide) as a heat-resistant material, and the remainder. A mixture of impurities inevitably mixed into the mold (hereinafter referred to as inevitable impurities) is poured into a mold, and heated at a rate of 10 to 25 ° C / hour to a temperature range of 1000 to 1200 ° C for another 24 hours. After holding as described above, it is integrally molded by cooling to room temperature at a cooling rate of 10 to 25 ° C./hour.

このようにして製作した蓄熱体用の一体成形ブロック6は、熱膨張率が0.01〜0.20%と小さく、しかも冷間圧縮強度が30MPa以上かつ荷重軟化点が1400℃以上と十分な強度を備えているので、亀裂や変形が発生せず、かつ大量の熱を蓄えることができる。   The integrally formed block 6 for a heat storage body manufactured in this manner has a sufficient thermal expansion coefficient of 0.01 to 0.20%, a cold compressive strength of 30 MPa or more, and a load softening point of 1400 ° C. or more. As a result, cracks and deformation do not occur and a large amount of heat can be stored.

また、蓄熱体用の一体成形ブロック6の1個分の重量が小さすぎると、炉内へ搬入する回数が増えるので、蓄熱室の補修工事の効率が低下する。一方で、重量が大きすぎると、炉内への搬入に長時間を要するので、蓄熱室の補修工事の効率が低下する。したがって、蓄熱体用の一体成形ブロック6の1個分の重量は100〜2000kg/個の範囲内が好ましい。   If the weight of one unit block 6 for a heat storage unit is too small, the number of times of loading into the furnace increases, so that the efficiency of the repair work of the heat storage chamber decreases. On the other hand, if the weight is too large, it takes a long time to carry into the furnace, and thus the efficiency of the repair work on the heat storage chamber decreases. Therefore, it is preferable that the weight of one integrated molding block 6 for a heat storage element be in the range of 100 to 2000 kg / piece.

図4は、図3の蓄熱室の上部の空間に一体成形ブロック7を積み上げて、燃焼室の壁体を構築した例を模式的に示す垂直断面図である。図6は、壁体用の一体成形ブロック7の例を模式的に示す平面図である。   FIG. 4 is a vertical cross-sectional view schematically showing an example in which the integrally formed blocks 7 are stacked in the space above the heat storage chamber in FIG. 3 to form a wall of the combustion chamber. FIG. 6 is a plan view schematically showing an example of the integrally formed block 7 for a wall.

壁体用の一体成形ブロック7は、耐熱材として溶融シリカ(純度97質量%以上)を96〜99質量%、バインダー(リン酸塩および/または酸化カルシウム)を2.5〜3.5質量%含有し、残部が不可避的に混入する不純物(以下、不可避的不純物という)からなる混合物を型枠に流し込んで、昇温速度10〜25℃/時で1000〜1200℃の温度範囲まで昇温し、さらに24時間以上保持した後、冷却速度10〜25℃/時で室温まで冷却することによって、一体的に成形したものである。   The integrally formed block 7 for a wall contains 96 to 99% by mass of fused silica (purity of 97% by mass or more) and 2.5 to 3.5% by mass of a binder (phosphate and / or calcium oxide) as a heat-resistant material, and the balance A mixture of impurities inevitably mixed into the mold (hereinafter referred to as inevitable impurities) is poured into a mold, and heated at a rate of 10 to 25 ° C / hour to a temperature range of 1000 to 1200 ° C for another 24 hours. After holding as described above, it is integrally molded by cooling to room temperature at a cooling rate of 10 to 25 ° C./hour.

このようにして製作した壁体用の一体成形ブロック7は、熱膨張率が0.01〜0.20%と極めて小さく、しかも冷間圧縮強度が30MPa以上かつ荷重軟化点が1400℃以上と十分な強度を備えているので、亀裂や変形が発生せず、優れた耐用性を有する。   The integrally molded block 7 for a wall body manufactured in this way has a sufficiently small coefficient of thermal expansion of 0.01 to 0.20%, a cold compressive strength of 30 MPa or more, and a load softening point of 1400 ° C. or more. As a result, no cracking or deformation occurs, and excellent durability is provided.

また、壁体用の一体成形ブロック7の1個分の重量が小さすぎると、炉内へ搬入する回数が増えるので、燃焼室の補修工事の効率が低下する。一方で、重量が大きすぎると、炉内への搬入に長時間を要するので、燃焼室の補修工事の効率が低下する。したがって、壁体用の一体成形ブロック7の1個分の重量は300〜3000kg/個の範囲内が好ましい。   Also, if the weight of one unitary block 7 for the wall is too small, the number of times of carrying into the furnace increases, and the efficiency of the repair work of the combustion chamber decreases. On the other hand, if the weight is too large, it takes a long time to carry into the furnace, and the efficiency of repair work on the combustion chamber is reduced. Therefore, the weight of one unitary block 7 for the wall is preferably in the range of 300 to 3000 kg / unit.

図2に示すように、コークス炉(炉高6m、炉長34フリュー)の1燃焼室の壁体、およびその下方の蓄熱室の柱体と両側の蓄熱体を全て解体して炉外へ搬出(上記(A)の工程)した後、図3に示すように、柱体用の一体成形ブロックを積み上げ、さらに蓄熱体用の一体成形ブロックを積み上げて蓄熱室を構築した。   As shown in Fig. 2, the wall of one combustion chamber of a coke oven (furnace height: 6 m, furnace length: 34 flue), the column of the heat storage chamber below it, and the heat storage bodies on both sides are all dismantled and taken out of the furnace. After the above-mentioned (A) step, as shown in FIG. 3, the integrally formed blocks for the pillars were stacked, and the integrally formed blocks for the heat storage body were further stacked to construct a heat storage chamber.

使用した柱体用の一体成形ブロック(重量1500kg/個)は、純度98.4質量%の溶融シリカ:97.3質量%、リン酸塩と酸化カルシウムからなるバインダー:2.6質量%を含有し、残部が不可避的不純物である混合物を型枠に流し込んで、昇温速度17.7℃/時で1120℃まで昇温し、さらに27時間保持した後、冷却速度17.1℃/時で室温まで冷却することによって、一体的に成形したものである。   The one-piece molded block (weight 1500 kg / piece) used for the column contains 98.4% by weight of fused silica: 97.3% by weight, and a binder consisting of phosphate and calcium oxide: 2.6% by weight, and the remainder is inevitable. The mixture, which is an impurity, is poured into a mold, heated to 1120 ° C at a heating rate of 17.7 ° C / hour, held for an additional 27 hours, and then cooled to room temperature at a cooling rate of 17.1 ° C / hour. It is molded.

また、使用した蓄熱体用の一体成形ブロック(重量610kg/個)の成分と成形方法は、上記の柱体用の一体成形ブロックと同じである。
次いで、図4に示すように、蓄熱室の上部の空間に壁体用の一体成形ブロックを積み上げて、燃焼室の壁体を構築した。
使用した壁体用の一体成形ブロック(重量2200kg/個)の成分と成形方法は、上記の柱体用の一体成形ブロックと同じである。
これを発明例とする。
The components and molding method of the used heat storage element integrally formed block (weight: 610 kg / piece) are the same as those of the above-described integrally formed block for the column.
Next, as shown in FIG. 4, the integrally formed blocks for the wall were stacked in the space above the heat storage chamber to construct the wall of the combustion chamber.
The components and molding method of the used integrally molded block for the wall (weight 2200 kg / piece) are the same as those of the above-described integrally molded block for the column.
This is an example of the invention.

一方、従来は、壁体を全て解体して炉外へ搬出(上記(A)の工程)した後、作業員が耐火煉瓦を積み上げて、壁体を再構築(上記(B)の工程)していた。また蓄熱室は、上記の燃焼室の壁体の積み上げが完了した後、蓄熱室の端部の耐火煉瓦を取り除き、そこから作業員が入室して蓄熱体を交換していた。
これを従来例とする。
On the other hand, conventionally, after dismantling all the walls and carrying them out of the furnace (step (A) above), workers stack fire-resistant bricks and reconstruct the walls (step (B) above). I was In addition, after the stacking of the walls of the combustion chamber was completed, the refractory brick at the end of the heat storage chamber was removed from the heat storage chamber, and a worker entered there to replace the heat storage body.
This is a conventional example.

発明例と従来例について、上記(B)の工程に要した日数を比較したところ、発明例の所要日数Mは、従来例の所要日数Nに対してM/Nが約1/2であった。
さらに、発明例では、補修工事が終了した後、再び稼動を開始して6ケ月が経過した時に点検孔から炉内を点検したところ、一体成形ブロックの亀裂や変形は認められなかった。
When the number of days required for the step (B) was compared between the invention example and the conventional example, the required days M of the invention example was about 1/2 of the required days N of the conventional example. .
Furthermore, in the invention example, after the repair work was completed, the operation was started again, and when six months had elapsed, the inside of the furnace was inspected from the inspection hole, and no crack or deformation of the integrally molded block was found.

1 燃焼室
2 炭化室
3 壁体
4 蓄熱室
4a 柱体
4b 蓄熱体
5 柱体用の一体成形ブロック
6 蓄熱体用の一体成形ブロック
7 壁体用の一体成形ブロック
Reference Signs List 1 combustion chamber 2 carbonization chamber 3 wall 4 heat storage chamber
4a pillar
4b Thermal storage 5 Integrated block for pillar 6 Integrated block for thermal storage 7 Integrated block for wall

Claims (1)

コークス炉の燃焼室と蓄熱室を補修する補修方法において、前記燃焼室を形成する壁体、前記蓄熱室を形成する柱体、および該柱体の間に積み上げられて熱を蓄える蓄熱体を、それぞれ複数個のブロックに分割して溶融シリカを96〜97.3質量%、リン酸塩および/または酸化カルシウムを2.5〜3.5質量%含有し、残部が不可避的不純物からなる耐熱材を型枠に流し込んで、昇温速度10〜25℃/時で1000〜1200℃の温度範囲まで昇温し、さらに24時間以上保持した後、冷却速度10〜25℃/時で室温まで冷却することによって一体的に成形した一体成形ブロックを予め製作しておき、前記壁体、前記柱体、および前記蓄熱体を解体して炉外へ搬出した後、前記一体成形ブロックを搬入して新たに前記壁体、前記柱体、および前記蓄熱体をそれぞれ構築することを特徴とするコークス炉の補修方法。 In a repair method for repairing a combustion chamber and a heat storage chamber of a coke oven, a wall body forming the combustion chamber, a pillar body forming the heat storage chamber, and a heat storage body stacked between the pillar bodies to store heat, Each of the blocks is divided into a plurality of blocks to contain 96 to 97.3 % by mass of fused silica, 2.5 to 3.5% by mass of phosphate and / or calcium oxide, and the remainder is poured into a mold with a heat-resistant material composed of unavoidable impurities. The temperature is raised to a temperature range of 1000 to 1200 ° C at a rate of 10 to 25 ° C / hour, and after holding for more than 24 hours, it is cooled to room temperature at a cooling rate of 10 to 25 ° C / hour to form a single piece After previously manufacturing the integrally formed block, disassembling the wall body, the column body, and the heat storage body and carrying out the outside of the furnace, carrying in the integrally formed block and newly adding the wall body and the column Body and the heat storage And a method for repairing a coke oven.
JP2016160943A 2016-08-19 2016-08-19 Repair method of coke oven Active JP6674352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016160943A JP6674352B2 (en) 2016-08-19 2016-08-19 Repair method of coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016160943A JP6674352B2 (en) 2016-08-19 2016-08-19 Repair method of coke oven

Publications (2)

Publication Number Publication Date
JP2018028030A JP2018028030A (en) 2018-02-22
JP6674352B2 true JP6674352B2 (en) 2020-04-01

Family

ID=61249030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016160943A Active JP6674352B2 (en) 2016-08-19 2016-08-19 Repair method of coke oven

Country Status (1)

Country Link
JP (1) JP6674352B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6544331B2 (en) * 2016-09-29 2019-07-17 Jfeスチール株式会社 Dust removal method for coke oven heat storage chamber
JP7011966B2 (en) * 2018-03-30 2022-01-27 Jfeスチール株式会社 How to repair the heat storage chamber of a chamber-type coke oven
JP6760325B2 (en) * 2018-03-30 2020-09-23 Jfeスチール株式会社 How to repair the heat storage chamber of a chamber-type coke oven
JP2020070341A (en) * 2018-10-31 2020-05-07 株式会社メガテック Dismantling and constructing method of coke oven
JP7397281B2 (en) * 2019-09-05 2023-12-13 日本製鉄株式会社 Manufacturing method of precast blocks for coke ovens
JP7276044B2 (en) * 2019-09-25 2023-05-18 Jfeスチール株式会社 block refractories

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5867220B2 (en) * 2012-03-23 2016-02-24 新日鐵住金株式会社 How to rebuild a coke oven
JP2013234092A (en) * 2012-05-09 2013-11-21 Shinagawa Refractories Co Ltd Cast refractory
JP6160088B2 (en) * 2013-01-17 2017-07-12 新日鐵住金株式会社 Refractory brick for heat storage chamber of coke oven
JP6189268B2 (en) * 2014-09-02 2017-08-30 日本特殊炉材株式会社 Silica castable refractories
JP6572485B2 (en) * 2015-05-27 2019-09-11 黒崎播磨株式会社 Coke oven construction method

Also Published As

Publication number Publication date
JP2018028030A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6674352B2 (en) Repair method of coke oven
JP6573837B2 (en) Coke oven combustion chamber repair method
EP3279290B1 (en) Method for building coke oven
JP2019035024A (en) Integral molding bricks for repairing a combustion chamber of a coke oven and a method for repairing using the same
EP0527318A2 (en) Improved coke oven repair
JP6572485B2 (en) Coke oven construction method
EP2203702B1 (en) Repair of heating walls in a refractory furnace
JP3397723B2 (en) Coke oven repair method
KR20170084281A (en) Monolithic refractory crown and rider arches for glass furnace regenerators and glass furnace regenerators including the same
JP6502436B2 (en) Repair method of ceiling of coke oven
JP6844332B2 (en) Construction method of the top of the chamber-type coke oven and the structure of the top of the chamber-type coke oven
JP5991478B2 (en) Coke oven partial transshipment repair method
JP2020070341A (en) Dismantling and constructing method of coke oven
JP6543310B2 (en) Method of constructing combustion chamber adjacent to pinion wall of coke oven
JP3213337U (en) Forming block that forms horizontal tunnel of coke oven
JP6524439B2 (en) Refractory block for coke oven combustion chamber and refractory block stacking structure of coke oven combustion chamber
KR101753639B1 (en) Maintenance method for converter bottom brick of converter and converter
TWI457426B (en) Coke oven repair method
JP2018087288A (en) Method for maintaining coke oven
CN112393605A (en) Thermal state quick repairing method for cement burning system decomposing furnace
JP2017089920A (en) Prelining block
JP2019112503A (en) Method of constructing coke oven of chamber oven type, and refractory structure of coke oven of chamber oven type
US1037516A (en) Method of constructing a retort-setting.
JP2021050275A (en) Block refractory material
JP2019038884A (en) Repair method of hearth bricks of coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200306

R150 Certificate of patent or registration of utility model

Ref document number: 6674352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250