JP6673642B2 - Tubular body - Google Patents

Tubular body Download PDF

Info

Publication number
JP6673642B2
JP6673642B2 JP2015068445A JP2015068445A JP6673642B2 JP 6673642 B2 JP6673642 B2 JP 6673642B2 JP 2015068445 A JP2015068445 A JP 2015068445A JP 2015068445 A JP2015068445 A JP 2015068445A JP 6673642 B2 JP6673642 B2 JP 6673642B2
Authority
JP
Japan
Prior art keywords
tubular body
central axis
semi
tubular
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015068445A
Other languages
Japanese (ja)
Other versions
JP2016188663A (en
Inventor
邦宏 山部
邦宏 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2015068445A priority Critical patent/JP6673642B2/en
Publication of JP2016188663A publication Critical patent/JP2016188663A/en
Application granted granted Critical
Publication of JP6673642B2 publication Critical patent/JP6673642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pipe Accessories (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

本発明は、セラミック焼結体からなる管状体に関する。   The present invention relates to a tubular body made of a ceramic sintered body.

セラミック焼結体は、樹脂や金属に比べて耐摩耗性、耐食性、耐薬品性が比較的高いため、粉体、スラリー、流体などの物を移送するための配管部材として用いられることがある。管状の配管部材は、配置される装置等に合わせて引き回されて設置されるため、管路の中心軸が曲線状部分を備えるような形状、すなわち曲管部を有する形状となっていることが多い。   A ceramic sintered body has relatively high wear resistance, corrosion resistance, and chemical resistance as compared with resin and metal, and thus may be used as a piping member for transferring objects such as powder, slurry, and fluid. Since the tubular pipe member is drawn and installed in accordance with the device to be arranged, the pipe has a shape in which the central axis of the pipe has a curved portion, that is, a shape having a curved pipe portion. There are many.

セラミック焼結体は、例えば板金加工やモールド加工によって管路を形成することが難しく、樹脂や金属等に比べて管状の配管部材を作製することが難しい。管路を有するセラミック焼結体を形成するには、例えばバルク状のセラミック焼結体に、切削加工や研削加工などにて管路となる貫通孔を形成していく方法や、芯金による成形方法があるが、このような貫通孔を形成していく手法では、複数の曲部を有する貫通孔(管路)を形成することは難しく、形状の制約を受けるものであった。   In a ceramic sintered body, it is difficult to form a pipe by, for example, sheet metal processing or molding, and it is more difficult to produce a tubular pipe member than a resin or metal. In order to form a ceramic sintered body having a conduit, for example, a method of forming a through-hole serving as a conduit in a bulk ceramic sintered body by cutting or grinding, or molding with a core metal Although there is a method, it is difficult to form a through-hole (pipe) having a plurality of curved portions by such a method of forming a through-hole, and the shape is restricted.

このようなセラミック焼結体を用いて、複数の曲部を有する貫通孔(管路)を備えた貫通孔を有する管状体を作製する方法の一例が、例えば特許文献1や特許文献2に記載されている。特許文献1および2では、中心軸が直線状である(曲部を有さない)セラミック焼結体からなるリング状部材を複数作製し、これらリング状部材の管路を、管路の軸方向に沿って複数繋げるように配置することで、全体として曲部を有する貫通孔(管路)を備える管状体を形成している。   An example of a method of manufacturing a tubular body having a through-hole having a through-hole (pipe) having a plurality of curved portions using such a ceramic sintered body is described in, for example, Patent Documents 1 and 2. Have been. In Patent Documents 1 and 2, a plurality of ring-shaped members made of a ceramic sintered body having a straight central axis (having no curved portion) are produced, and the pipes of these ring-shaped members are set in the axial direction of the pipes. Are arranged so as to be connected to each other, thereby forming a tubular body provided with a through-hole (pipe) having a curved portion as a whole.

実開平5−13735公報Published Japanese Utility Model Application No. 5-13735 特開2011−214599公報JP 2011-214599 A

特許文献1や特許文献2に記載されている管状体のように、複数のリング状部材の管路を管路の軸方向にそって複数繋げるように配置した管路部材では、管路の内周面において、リング状部材同士の継ぎ目部分で段差や隙間が生じる。この段差や隙間は、管路の軸方向を横切るように延在し、かつ軸方向に沿って断続的に複数の部分に配置された状態となる。管路の内周面に軸方向を横切るように延在する段差や隙間、すなわち、軸方向を横切るような凹部または凸部があると、この凹部や凸部が、管路内を軸方向に沿って運ばれる流体や粉体等の流れの障害となり、管路内で不要な乱流が生じることで流体や粉体の搬送効率が低下するとった問題があった。また、この凹部や凸部で流体や粉体の流れの方向が乱れ易いので、例えば移送される粉体が管路内周面に衝突する頻度が増えてしまい、移送される流体や粉体へのコンタミの混入量が増加したり、管状体の耐久性も低下したりし易いといった課題もあった。本発明は、このような課題に鑑みてなされたのである。   Like a tubular body described in Patent Literature 1 and Patent Literature 2, in a pipe member arranged such that a plurality of pipes of ring-shaped members are connected along the axial direction of the pipe, the On the peripheral surface, a step or a gap occurs at the joint between the ring-shaped members. The steps and gaps extend so as to cross the axial direction of the pipeline, and are intermittently arranged in a plurality of portions along the axial direction. If there is a step or gap extending across the axial direction on the inner peripheral surface of the pipeline, that is, if there is a concave portion or a convex portion that crosses the axial direction, the concave portion or the convex portion There is a problem that the flow of the fluid or the powder conveyed along the flow path is obstructed, and unnecessary turbulence occurs in the pipeline, thereby lowering the transport efficiency of the fluid or the powder. In addition, since the flow direction of the fluid or the powder is easily disturbed in the concave portion or the convex portion, for example, the frequency of the transferred powder colliding with the inner peripheral surface of the pipeline increases, and the transferred fluid or the powder may There is also a problem that the amount of contaminants mixed tends to increase and the durability of the tubular body tends to decrease. The present invention has been made in view of such a problem.

上記課題を解決するために、肉厚が10mm〜100mmである管路を備える、セラミック焼結体からなる管状体であって、2つの半管状体が接合部材を介してなり、前記半管状体および前記接合部材はいずれも酸化アルミニウムを主成分とするセラミック焼結体からなり、前記管路の中心軸は曲線状部分を備え、前記曲線状部分に対応する前記接合部材は、それぞれが前記中心軸に平行な方向に沿って一直線上に連続する、複数の凹凸条部を有し、前記凹凸条部は、前記内周面から凹んだ凹状部と前記内周面から突出した凸状部とを有することを特徴とする管状体を提供する。 In order to solve the above problems, the present invention provides a tubular body made of a ceramic sintered body having a pipe having a wall thickness of 10 mm to 100 mm , wherein two semi-tubular bodies are formed via a joining member. Each of the joining members is made of a ceramic sintered body containing aluminum oxide as a main component, and the central axis of the conduit has a curved portion, and the joining members corresponding to the curved portions each have the center. Continuing on a straight line along a direction parallel to the axis, having a plurality of uneven ridges, the uneven ridges are concave portions recessed from the inner peripheral surface and convex portions protruding from the inner peripheral surface. And a tubular body characterized by having:

本発明の管状体によれば、管路の軸方向に沿って流体や粉体が流れやすく、流体や粉体を速やかに移送することができる。また、流体や粉体等の管路内での衝突が抑制できるので、流体や粉体へのコンタミの混入は比較的少なく、耐久性も比較的高い。   ADVANTAGE OF THE INVENTION According to the tubular body of this invention, a fluid and a powder are easy to flow along the axial direction of a pipeline, and a fluid and a powder can be transferred quickly. Further, since the collision of the fluid or the powder in the pipeline can be suppressed, the contamination of the fluid or the powder with the contamination is relatively small, and the durability is relatively high.

本実施形態の管状体の一例を示す、(a)および(b)は中心軸を含む面で分割した断面図であり、(b)は(a)に示すBB線での断面図であり、(c)は中心軸に直交する方向に沿った断面図であって(a)に示すCC線での断面図であり、(d)は(c)に示す領域Rの拡大図である。(A) and (b) are cross-sectional views taken along a plane including a central axis, and (b) is a cross-sectional view taken along the line BB shown in (a), showing an example of the tubular body of the present embodiment. (C) is a cross-sectional view along a direction orthogonal to the central axis, which is a cross-sectional view taken along the line CC shown in (a), and (d) is an enlarged view of a region R shown in (c). 本実施形態の管状体の他の例を示す、(a)は中心軸に平行な方向に沿って中心軸を含む面で分割した断面図であり、(b)は、AA’線における断面図である。(A) is a sectional view taken along a plane including a central axis along a direction parallel to the central axis, and (b) is a sectional view taken along line AA 'showing another example of the tubular body of the present embodiment. It is. 本実施形態の管状体の他の例を示す、(a)は中心軸に平行な方向に沿って中心軸を含む面で切断した断面図であり、(b)は、AA’線における断面図である。(A) is sectional drawing cut | disconnected by the surface containing a central axis along the direction parallel to a central axis, and (b) is sectional drawing in the AA 'line which shows the other example of the tubular body of this embodiment. It is. 本実施形態の管状体の他の例を示す、(a)は中心軸に平行な方向に沿って中心軸を含む面で切断した断面図であり、(b)は、AA’線における断面図である。(A) is sectional drawing cut | disconnected by the surface containing a central axis along the direction parallel to a central axis, and (b) is sectional drawing in the AA 'line which shows the other example of the tubular body of this embodiment. It is. 本実施形態の管状体の他の例を示す、(a)は中心軸に平行な方向に沿って中心軸を含む面で切断した断面図であり、(b)は、AA’線における断面図である。(A) is sectional drawing cut | disconnected by the surface containing a central axis along the direction parallel to a central axis, and (b) is sectional drawing in the AA 'line which shows the other example of the tubular body of this embodiment. It is. 本実施形態の管状体の他の例を示す、(a)は中心軸に平行な方向に沿って中心軸を含む面で切断した断面図であり、(b)は、AA’線における断面図である。(A) is sectional drawing cut | disconnected by the surface containing a central axis along the direction parallel to a central axis, and (b) is sectional drawing in the AA 'line which shows the other example of the tubular body of this embodiment. It is.

以下、図面を参照して、本発明の実施形態について詳細に説明する。但し、本明細書の全図において、混同を生じない限り、同一部分には同一符号を付し、その説明を適時省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, in all the drawings of the specification, the same parts are denoted by the same reference numerals unless the confusion occurs, and the description thereof will be omitted as appropriate.

図1は、本発明の管状体の一実施形態を示す図である。図1に示す管状体10は、管路1を備えるセラミック焼結体からなる管状体であって、管路1の中心軸CLは曲線状部分5(以下、曲線状部分5を曲線部5ともいう。)を備え、管路1の内周面20に、それぞれが中心軸CLに平行な方向に沿って連続する、複数の凹凸条部2を有する。   FIG. 1 is a diagram showing one embodiment of the tubular body of the present invention. A tubular body 10 shown in FIG. 1 is a tubular body made of a ceramic sintered body having a pipeline 1, and a central axis CL of the pipeline 1 is a curved portion 5 (hereinafter, the curved portion 5 is also referred to as a curved portion 5. ), And the inner peripheral surface 20 of the pipeline 1 has a plurality of uneven ridges 2 that are respectively continuous along a direction parallel to the central axis CL.

管状体10は、酸化アルミニウムを主成分とするセラミック焼結体からなる。なお、本実施形態における主成分とは、セラミック焼結体を構成する成分100質量%のうち、80質量%以上を占める成分をいう。   The tubular body 10 is made of a ceramic sintered body containing aluminum oxide as a main component. In the present embodiment, the main component refers to a component that accounts for 80% by mass or more of 100% by mass of the components constituting the ceramic sintered body.

セラミック焼結体に含まれる成分は、X線回折法を用いて組成を同定することができる。また、セラミック焼結体に含まれる各元素の量は、蛍光X線分析法またはICP(Inductively Coupled Plasma)発光分光分析法によって求めることができる。これらの方法によって求められた元素の含有量を同定された組成に換算して主成分を特定することができる。   The composition of the components contained in the ceramic sintered body can be identified using an X-ray diffraction method. The amount of each element contained in the ceramic sintered body can be determined by X-ray fluorescence analysis or ICP (Inductively Coupled Plasma) emission spectroscopy. The main component can be specified by converting the content of the element obtained by these methods into the identified composition.

管状体10は、中心軸CLに平行な方向に沿って連続する複数の凹凸条部2を内周面20に有するので、管路1内を流体や粉体の移送路として使用した場合、これら凹凸条部2の特に凸条部分が、中心軸CLに沿った流れを整える整流板のように機能する。このため、流体や粉体が中心軸CLに沿って流れ易く、流体や粉体を速やかに移送することができる。また、凹凸条部2が中心軸CLに沿って延在し、流体や粉体の流れを中心軸CLに沿った方向に整えているので、移送される流体や粉体の内周面20への衝突が抑制されており、流体や粉体へのコンタミの混入量が少なく、管状体自体の耐久性も比較的高い。   Since the tubular body 10 has a plurality of uneven ridges 2 continuous on the inner peripheral surface 20 along the direction parallel to the central axis CL, when the inside of the pipe 1 is used as a transfer path for fluid or powder, In particular, the convex ridge portion of the uneven ridge portion 2 functions as a rectifying plate that regulates the flow along the central axis CL. Therefore, the fluid or the powder easily flows along the central axis CL, and the fluid or the powder can be quickly transferred. In addition, since the uneven ridges 2 extend along the central axis CL and regulate the flow of the fluid or powder in a direction along the central axis CL, the fluid or powder is transferred to the inner peripheral surface 20 of the fluid or powder. Collision is suppressed, the amount of contaminants mixed into the fluid or powder is small, and the durability of the tubular body itself is relatively high.

管状体10は、例えば肉厚が約10mm〜100mm程度であり、管路1の内径が5mm〜100mm程度であり、この場合、凹凸条部2の凸状部は、内周面20からの突出高さが、例えば0.5mm以上2mm以下程度となっている。また、凹凸条部の凹状部は、例えば最も凹んでいる部分で、例えば内周面20から0.5mm以上2mm以下の範囲で凹んでいる。なお、管状体10の肉厚は10cmより大きくてもよく、管路の内径等も特に限定はされない。   The tubular body 10 has, for example, a thickness of about 10 mm to 100 mm, and an inner diameter of the conduit 1 of about 5 mm to 100 mm. In this case, the convex portions of the uneven ridges 2 project from the inner peripheral surface 20. The height is, for example, about 0.5 mm or more and 2 mm or less. In addition, the concave portion of the concave and convex portion is, for example, the most concave portion, and is concave, for example, in a range of 0.5 mm or more and 2 mm or less from the inner peripheral surface 20. In addition, the wall thickness of the tubular body 10 may be larger than 10 cm, and the inner diameter of the conduit is not particularly limited.

また、管状体10では、内周面20の、隣り合った凹凸条部2(凹凸条部2αおよび凹凸条部2β)に挟まれた中間領域Sでは、中心軸CLに沿った方向で段差を有さない。中間領域Sとは、隣り合った2つの凹凸条部2の間の領域であり、それぞれの凹凸条部2から内周面に沿って1cm以上離れた領域全体をいう。また段差を有さないとは、中心軸CLに沿って5mmの範囲にわたって5mm以上の段差の高さがないことをいう。   In the tubular body 10, in the intermediate region S of the inner peripheral surface 20 between the adjacent uneven ridges 2 (the uneven ridges 2α and the uneven ridges 2β), a step is formed in the direction along the central axis CL. I do not have. The intermediate region S is a region between two adjacent ridges 2, and refers to an entire region separated from the respective ridges 2 by 1 cm or more along the inner peripheral surface. Further, having no step means that there is no step height of 5 mm or more over a range of 5 mm along the central axis CL.

すなわち管状体10では、内周面20に、中心軸CLに平行な方向に沿って連続する複数の凹凸条部2を有する一方で、中間領域Sでは内周面20は中心軸CLに沿って連続する滑らかな(段差のない)曲面を有しており、この中間領域Sでは、中心軸CLに沿った方向を横切るような凹部や凸部がない。すなわち管状体10では、中心軸CLに沿って流れる流体や粉体における乱流の発生が抑制されてり、流体や粉体を速やかに移送することができる。   That is, in the tubular body 10, the inner peripheral surface 20 has a plurality of uneven ridges 2 continuous in a direction parallel to the central axis CL, while the inner peripheral surface 20 extends along the central axis CL in the intermediate region S. It has a continuous smooth (without step) curved surface, and in this intermediate region S, there are no concave portions or convex portions that cross the direction along the central axis CL. That is, in the tubular body 10, the generation of turbulence in the fluid or powder flowing along the central axis CL is suppressed, and the fluid or powder can be quickly transferred.

管状体10では、中心軸CLを対称軸として互いに対称となる位置に配置された、少なくとも2つの凹凸条部2を有する。本実施形態では、凹凸条部2αと凹凸条部2βの、2つの凹凸条部2を備えている。このように中心軸CLを対象軸とした位置に、中心軸CLに沿った流れを整える整流板として作用する2つの凹凸条部2(凹凸条部2αおよび凹凸条部2β)が配置されていることで、管路1内での流体や粉体の流れの偏りを抑制し、中心軸CLに沿った安定した流れを形成することができる。   The tubular body 10 has at least two concavo-convex ridges 2 arranged at positions symmetrical to each other with the central axis CL as the axis of symmetry. In the present embodiment, two concavo-convex strips 2 are provided, ie, the concavo-convex strip 2α and the concavo-convex strip 2β. In this manner, two concavo-convex ridges 2 (concavo-convex ridges 2α and 2β) serving as rectifying plates for adjusting the flow along the central axis CL are arranged at positions where the central axis CL is the target axis. Thereby, the bias of the flow of the fluid or the powder in the pipeline 1 can be suppressed, and a stable flow along the central axis CL can be formed.

管状体10は、2つの半管状体3a,3bが、接合部材6を介して接合されることで形成されている。管状体10では、半管状体3aおよび半管状体3bに存在する接合部材6が部分的に凸状にはみ出したり、凹状にへこんだりしているでいることで、凹凸条部2αおよび凹凸条部2βを構成している。2つの半管状体3aと半管状体3bおよび接合部材6は、いずれも酸化アルミニウムを主成分とするセラミック焼結体からなる。   The tubular body 10 is formed by joining two semi-tubular bodies 3 a and 3 b via a joining member 6. In the tubular body 10, since the joining members 6 existing in the semi-tubular bodies 3a and 3b are partially protruded or dented in a concave shape, the uneven ridges 2α and the uneven ridges are formed. 2β. Each of the two semi-tubular bodies 3a and 3b and the joining member 6 is made of a ceramic sintered body containing aluminum oxide as a main component.

接合部材6の材質や形状等について特に限定されないが、本実施形態のように、半管状体3aと半管状体3bと接合部材6とをいずれも同様の材質で構成することが好ましい。半管状体3aと半管状体3bと接合部材6とをいずれも同様の材質で構成した場合、半管状体3a、半管状体3bおよび接合部材6の線膨張係数が同じとなり、管状体10の温度が変動した場合も、半管状体3aと半管状体3bとの間で作用する熱応力が抑制されるので、管状体10の耐熱性が比較的高い。特に繰り返し温度変化が生じる用途で使用した場合、接合層の線膨張係数の違いによる剥がれが生じない為、繰り返しの温度変化に強い製品が得られる。   The material and shape of the joining member 6 are not particularly limited, but it is preferable that the semi-tubular body 3a, the semi-tubular body 3b, and the joining member 6 are all made of the same material as in the present embodiment. When the semi-tubular body 3a, the semi-tubular body 3b, and the joining member 6 are all made of the same material, the semi-tubular body 3a, the semi-tubular body 3b, and the joining member 6 have the same linear expansion coefficient, and the tubular body 10 Even when the temperature fluctuates, the thermal stress acting between the semi-tubular body 3a and the semi-tubular body 3b is suppressed, so that the heat resistance of the tubular body 10 is relatively high. In particular, when used in applications in which the temperature changes repeatedly, peeling due to the difference in the linear expansion coefficient of the bonding layer does not occur, so that a product resistant to repeated temperature changes can be obtained.

接合部材6の位置は例えば以下のようにして確認することができる。まず、管状体10を中心軸CLに直交する平面で切断し、この断面を研磨して鏡面にする。次に、例えばキーエンス社製デジタルマイクロスコープを用いて、この鏡面を観察する。この観察によって、半管状体3aと半管状体3bとに対応する相対的に気孔が少ない領域と、これら半管状体3aと半管状体3bに対応する領域に挟まれた、相対的に気孔が多い領域とを観察することができる。気孔が相対的に多い領域が接合部材6に対応する領域である。また、上述のデジタルマイクロスコープで気孔が有意に判別できない場合も、電子顕微鏡やその他
の分析手法によって結晶の状態や含有成分を分析することで、接合部材6の位置を確認することができる。すなわち、管状体10の形状から半管状体3aと半管状体3bとの境界部分は推測できるので、この境界部分の近傍を観察し、半管状体3aと半管状体3bと気孔や粒界の状態、また含まれる成分の含有率等を測定し、半管状体3aと半管状体3bと有意に相違する領域を確認することで、接合部材6の位置を確認することができる。
The position of the joining member 6 can be confirmed, for example, as follows. First, the tubular body 10 is cut along a plane perpendicular to the central axis CL, and this section is polished to a mirror surface. Next, the mirror surface is observed using, for example, a digital microscope manufactured by Keyence Corporation. According to this observation, the relatively small pores corresponding to the semi-tubular bodies 3a and 3b and the relatively small pores sandwiched between the areas corresponding to the semi-tubular bodies 3a and 3b are formed. Many areas can be observed. The region where the number of pores is relatively large is the region corresponding to the joining member 6. In addition, even when the pores cannot be significantly distinguished by the above-mentioned digital microscope, the position of the joining member 6 can be confirmed by analyzing the state of the crystal and the contained components by using an electron microscope or another analysis method. That is, since the boundary between the semi-tubular body 3a and the semi-tubular body 3b can be estimated from the shape of the tubular body 10, the vicinity of this boundary is observed, and the semi-tubular body 3a, the semi-tubular body 3b and the pores or grain boundaries are observed. The position of the joining member 6 can be confirmed by measuring the state, the content rate of the contained components, and the like, and confirming a region that is significantly different from the semi-tubular body 3a and the semi-tubular body 3b.

次に、本実施形態の管状体10の製造方法の一例について説明する。   Next, an example of a method for manufacturing the tubular body 10 of the present embodiment will be described.

まず純度が99.5%以上で、平均粒径が0.5μm以上1.3μm以下の酸化アルミニウムの粉末と、酸化カルシウム,酸化珪素および酸化マグネシウムの各粉末とを用意する。そして、酸化アルミニウムの含有量が98.5質量%以上であり、酸化カルシウム,酸化珪素および酸化マグネシウムの各粉末の合計100質量%に対して、酸化カルシウムおよび酸化珪素の含有量がそれぞれ20質量%以上37.5質量%以下であって残部が酸化マグネシウムとなるように秤量した混合粉末を水などの溶媒ともに回転ミルに投入して、純度が99.5%以上99.99%以下の酸化アルミニウムからなるセラミックスボールで混合を行なう。混合した粉末を、以下、混合粉末という。   First, a powder of aluminum oxide having a purity of 99.5% or more and an average particle diameter of 0.5 μm to 1.3 μm, and powders of calcium oxide, silicon oxide and magnesium oxide are prepared. The content of aluminum oxide is 98.5% by mass or more, and the content of calcium oxide and silicon oxide is 20% by mass with respect to the total of 100% by mass of each powder of calcium oxide, silicon oxide and magnesium oxide. A mixed powder weighed so as to be 37.5% by mass or less and the remainder being magnesium oxide was charged into a rotary mill together with a solvent such as water, and aluminum oxide having a purity of 99.5% to 99.99% was obtained. Mixing is performed using ceramic balls made of. Hereinafter, the mixed powder is referred to as a mixed powder.

次に、ポリビニルアルコール,ポリエチレングリコールやアクリル樹脂などの成形用バインダを溶媒に添加した後、混合してスラリーを得る。ここで、成形用バインダの添加量は混合粉末100質量%に対して合計2質量%以上10質量%以下とする。成形用バインダの添加量が2質量%未満であれば、成形体に求められる強度や可とう性が得られず脆い成形体となる。また、成形用バインダの添加量が10質量%を超えると焼成で成形用バインダが焼失しにくくなり、クラックなどの不具合が出るおそれが高くなる。成形用バインダの添加量を混合粉末100質量%に対して合計2質量%以上10質量%以下とすることにより、成形体に求められる強度や可とう性が得られ、クラックなどの不具合が発生しにくい成形体を得ることができる。   Next, a molding binder such as polyvinyl alcohol, polyethylene glycol or an acrylic resin is added to the solvent and mixed to obtain a slurry. Here, the added amount of the molding binder is 2% by mass or more and 10% by mass or less based on 100% by mass of the mixed powder. If the amount of the molding binder is less than 2% by mass, the strength and flexibility required for the molded article cannot be obtained, resulting in a brittle molded article. On the other hand, when the addition amount of the molding binder exceeds 10% by mass, the molding binder is less likely to be burned off by firing, and there is a high possibility that defects such as cracks may occur. By setting the total amount of the binder for molding to 2% by mass or more and 10% by mass or less with respect to 100% by mass of the mixed powder, the strength and flexibility required for the molded body can be obtained, and defects such as cracks occur. A hard molded product can be obtained.

その後、スラリーを噴霧造粒して顆粒を得た後、粉末プレス成形法や静水圧プレス成形法(ラバープレス法)を用いて成形して、半管状体3aの生成形体と半管状体3bの生成形体とを作製する。半管状体3aの生成形体および半管状体3bの生成形体は、管状体10を中心軸CLを含む仮想平面で切断した状態に対応する形状であり、プレス等によって比較的容易に形成することができる。例えばプレス成形の際、金型を中心軸CLに直交する方向に沿って移動させることで、中心軸CLがどのような曲線形状をもっていても、押圧した後に生成形体から金型を容易に離脱させることができる。成形の後、必要に応じて半管状体3aの生成形体の内側面(内周面20に対応する面)を切削して、生成形体の内側面の表面状態を整えてもよい。   After that, the slurry is spray-granulated to obtain granules, and then molded using a powder press molding method or an isostatic press molding method (rubber press method) to form the semi-tubular body 3a with the formed form and the semi-tubular body 3b. And a green form. The formed shape of the semi-tubular body 3a and the formed shape of the semi-tubular body 3b have a shape corresponding to a state where the tubular body 10 is cut along a virtual plane including the central axis CL, and can be formed relatively easily by pressing or the like. it can. For example, at the time of press molding, by moving the mold along a direction perpendicular to the center axis CL, regardless of the curved shape of the center axis CL, the mold is easily released from the formed body after being pressed after being pressed. be able to. After the molding, the inner surface (the surface corresponding to the inner peripheral surface 20) of the formed body of the semi-tubular body 3a may be cut as necessary to adjust the surface condition of the inner surface of the formed body.

次に、上述の混合粉末(または混合粉末と同じ方法で得られた粉末)と、有機溶媒(例えば、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール,プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、ポリテトラメチレングリコール、ポリエチレングリコールまたはシクロヘキサンジメタノール)と、増粘剤とを所定量秤量し、攪拌装置内の収納容器に入れ、混合・攪拌して、ペーストを作製する。   Next, the above-mentioned mixed powder (or a powder obtained by the same method as the mixed powder) and an organic solvent (for example, diethylene glycol, dipropylene glycol, triethylene glycol, propylene glycol, 1,4-butanediol, 1,5 -Pentanediol, 1,6-hexanediol, neopentyl glycol, polytetramethylene glycol, polyethylene glycol or cyclohexanedimethanol) and a thickener are weighed in predetermined amounts, placed in a storage container in a stirrer, and mixed. Stir to make a paste.

なお、ペーストにおける混合粉末の充填率は、例えば、25体積%以上35体積%以下とし、ペーストの粘度が、4Pa・s以上7Pa・s以下となるように、有機溶媒および増粘剤の量で調整する。そして、攪拌条件としては、大気中において、回転数を800rpm以上1200rpmとし、回転時間を8分以上16分以下とする。   The filling ratio of the mixed powder in the paste is, for example, 25 vol% or more and 35 vol% or less, and the amount of the organic solvent and the thickener is adjusted so that the viscosity of the paste becomes 4 Pa · s or more and 7 Pa · s or less. adjust. As the stirring conditions, in the atmosphere, the number of rotations is set to 800 rpm or more and 1200 rpm, and the rotation time is set to 8 minutes or more and 16 minutes or less.

次に、半管状体3aの生成形体の接合面にペーストを塗布した後、半管状体3bの生成
形体の接合面を半管状体3aとなる生成形体の接合面に当接し、接合面に垂直な方向から、6.1kPa以上24.5kPa以下の圧力を加える。この押圧の際、半管状体3aの生成形体の接合面と、半管状体3bの生成形体の接合面との間隙から、ペーストが部分的にはみ出し、または部分的に凹んだ形となる。
Next, after applying paste to the joining surface of the semi-tubular body 3a, the joining surface of the semi-tubular body 3b is brought into contact with the joining surface of the semi-tubular body 3a, and is perpendicular to the joining surface. Pressure from 6.1 kPa to 24.5 kPa is applied from any direction. At the time of this pressing, the paste partially protrudes from the gap between the joining surface of the formed body of the semi-tubular body 3a and the joining surface of the formed body of the semi-tubular body 3b, or assumes a partially concave shape.

次に、常温で、湿度を制御しながら、12時間以上48時間以下保持することにより、ペーストを乾燥させる。その後、大気雰囲気中で、1500℃以上1700℃以下の温度で、5時間以上8時間以下保持して焼成することにより、本実施形態の管状体を得ることができる。ペーストは焼成されて接合部材6となる。このような工程を経て、半管状体3aと半管状体3bとの間隙から、接合部材6が部分的に凸状にはみ出したり、凹状にへこんで構成された凹凸条部2αおよび凹凸条部2βが形成される。管状体10は例えばこのような工程を経て作製することができる。   Next, the paste is dried at room temperature for 12 hours to 48 hours while controlling the humidity. Thereafter, the tubular body of the present embodiment can be obtained by firing in an air atmosphere at a temperature of 1500 to 1700 ° C. for 5 to 8 hours. The paste is fired to form the joining member 6. Through such a step, the joining member 6 partially protrudes from the gap between the semi-tubular bodies 3a and 3b, or the concave-convex ridges 2α and the concave-convex ridges 2β. Is formed. The tubular body 10 can be manufactured through such a process, for example.

図2〜6はいずれも、管状体の他の実施形態について示す図である。図2〜図6は管状体における管路の形状のバリエーションを表しており、各実施形態とも凹凸条部20を備えている(各図(a)では図示せず)。   2 to 6 are views showing other embodiments of the tubular body. FIGS. 2 to 6 show variations of the shape of the conduit in the tubular body, and each of the embodiments is provided with the uneven ridge portion 20 (not shown in each drawing (a)).

図5,6に示す管状体15,16の管路1はいずれもL字状であり、図5に示す管状体15は、曲線部5に対応する領域で肉厚が部分的に厚い部分を有する。このような構成であると、流体や粉体によって損傷を受けやすい部分の寿命を延ばすことができるので、管状体15の交換頻度を抑制することができる。特に、部分的に厚い部分の肉厚は、それ以外の部分の肉厚の1.1倍以上であることが好適である。図5に示す管状体15では、曲線部5における管状体15の肉厚を調節することによって、管路1を流れる流体や粉体の速度を調節することができる。図6に示す管状体16は、中心軸CLに平行な方向における半管状体3aの外形が角管状であり、半管状体3bが半円管状である。   Each of the pipes 1 of the tubular bodies 15 and 16 shown in FIGS. 5 and 6 has an L-shape, and the tubular body 15 shown in FIG. Have. With such a configuration, the life of the portion that is easily damaged by the fluid or the powder can be extended, so that the replacement frequency of the tubular body 15 can be suppressed. In particular, the thickness of the partially thick portion is preferably 1.1 times or more the thickness of the other portions. In the tubular body 15 shown in FIG. 5, by adjusting the thickness of the tubular body 15 in the curved portion 5, the speed of the fluid or powder flowing through the conduit 1 can be adjusted. In the tubular body 16 shown in FIG. 6, the outer shape of the semi-tubular body 3a in a direction parallel to the central axis CL is a square tubular shape, and the semi-tubular body 3b is a semi-circular tubular shape.

図2,3,4に示す管状体12,13,14は、それぞれS字状,J字状、W字状である。流体や粉体を管路1に流すと、曲線部5によって、管路1を流れる流体の速度を遅くしたり、流体や粉体を滞留させたりすることができる。図2,4に示すように、管状体12,14は複数の曲線部5を備えることが可能であり、図示しないが、本実施形態の管状体は、曲率が異なる複数の曲線部を備えることもできる。   2, 3, and 4 are S-shaped, J-shaped, and W-shaped, respectively. When the fluid or the powder flows through the pipeline 1, the curved portion 5 can reduce the speed of the fluid flowing through the pipeline 1 or make the fluid or the powder stay. As shown in FIGS. 2 and 4, the tubular bodies 12 and 14 can include a plurality of curved portions 5. Although not shown, the tubular body of the present embodiment includes a plurality of curved portions having different curvatures. Can also.

本実施形態の管状体は、上述したような構成であることから、様々な用途に展開することができる。なお、図1〜6に示す管状体10〜16は、いずれも1対の半管状体3a,3bが中心軸CLに平行な方向に沿って連続する複数の凹凸条部2を介して接合されてなる管状体である。管状体の構成については特に限定されず、図1〜6の各実施形態のように2つの半管状体が組み合わされることに限定されず、例えば管状体が中心軸CLに平行な方向に沿って3分割以上の複数部分に分割された形状の部分部材が、それぞれ接合されて1つの管状体を構成してもよい。   Since the tubular body of the present embodiment has the above-described configuration, it can be developed for various uses. In each of the tubular bodies 10 to 16 shown in FIGS. 1 to 6, a pair of semi-tubular bodies 3 a and 3 b are joined via a plurality of uneven strips 2 that are continuous along a direction parallel to the central axis CL. It is a tubular body. The configuration of the tubular body is not particularly limited, and is not limited to the combination of the two semi-tubular bodies as in each of the embodiments of FIGS. 1 to 6. For example, the tubular body may extend along a direction parallel to the central axis CL. Partial members having a shape divided into three or more divided parts may be joined to each other to form one tubular body.

また、管状体の中心軸CLに垂直な方向における流路の断面は円であることが好適であるが、外周面の一部に直線部を備える形状や長軸を有する楕円状であってもよく、4隅に曲部を有する四角形状であってもよく、特に限定されない。また、管状体の軸方向に垂直な断面の外形形状は、図1〜5に示すように四角形状であることが好ましい。半管状体3a,3bを加圧接合する場合には、荷重を安定して加えることができるからである。   The cross section of the flow path in a direction perpendicular to the central axis CL of the tubular body is preferably a circle, but may be a shape having a linear portion on a part of the outer peripheral surface or an ellipse having a long axis. The shape may be a quadrangular shape having curved portions at four corners, and is not particularly limited. Further, the outer shape of the cross section perpendicular to the axial direction of the tubular body is preferably a square as shown in FIGS. This is because a load can be stably applied when the semi-tubular bodies 3a and 3b are joined by pressure.

以上、本発明の実施形態および実施例について説明したが、本発明は上述の実施形態や実施例に限定されるものでない。本発明は、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行なってもよいのはもちろんである。   Although the embodiments and examples of the present invention have been described above, the present invention is not limited to the above-described embodiments and examples. In the present invention, various improvements and changes may be made without departing from the spirit of the present invention.

1 管路
2 凹凸条部
3a、3b 半管状体
5 曲線部
6 接合部材
10,12,13,14,15,16 管状体
20 内周面
1 Pipeline 2 Irregular strip
3a, 3b Semi-tubular body 5 Curved portion 6 Joining members 10, 12, 13, 14, 15, 16 Tubular body 20 Inner peripheral surface

Claims (3)

肉厚が10mm〜100mmである管路を備える、セラミック焼結体からなる管状体であって、
2つの半管状体が接合部材を介してなり、前記半管状体および前記接合部材はいずれも酸化アルミニウムを主成分とするセラミック焼結体からなり、
前記管路の中心軸は曲線状部分を備え、
前記曲線状部分に対応する前記接合部材は、それぞれが前記中心軸に平行な方向に沿って一直線上に連続する、複数の凹凸条部を有し、前記凹凸条部は、前記2つの半管状体のそれぞれの内周面から凹んだ凹状部と前記内周面から突出した凸状部とを有することを特徴とする管状体。
A tubular body comprising a ceramic sintered body, including a pipe having a wall thickness of 10 mm to 100 mm,
The two semi-tubular bodies are formed via a joining member, and both the semi-tubular body and the joining member are formed of a ceramic sintered body mainly containing aluminum oxide,
A central axis of the conduit having a curved portion;
The joining member corresponding to the curved portion has a plurality of uneven ridges, each of which is continuous on a straight line along a direction parallel to the central axis, and the uneven ridges are the two semi-tubular shapes. A tubular body having a concave portion recessed from each inner peripheral surface of the body and a convex portion protruding from the inner peripheral surface.
前記内周面の、隣り合った前記凹凸条部に挟まれた中間領域では、
前記中心軸に沿った方向で段差を有さないことを特徴とする請求項1記載の管状体。
In the inner peripheral surface, in an intermediate region sandwiched between adjacent concavo-convex strips,
The tubular body according to claim 1, wherein the tubular body has no step in a direction along the central axis.
前記中心軸を対称軸として互いに対称となる位置に配置された、少なくとも2つの凹凸条部を有することを特徴とする請求項1または2に記載の管状体。   3. The tubular body according to claim 1, further comprising at least two concave and convex ridges disposed at positions symmetrical to each other with the central axis as a symmetric axis. 4.
JP2015068445A 2015-03-30 2015-03-30 Tubular body Active JP6673642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068445A JP6673642B2 (en) 2015-03-30 2015-03-30 Tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068445A JP6673642B2 (en) 2015-03-30 2015-03-30 Tubular body

Publications (2)

Publication Number Publication Date
JP2016188663A JP2016188663A (en) 2016-11-04
JP6673642B2 true JP6673642B2 (en) 2020-03-25

Family

ID=57240258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068445A Active JP6673642B2 (en) 2015-03-30 2015-03-30 Tubular body

Country Status (1)

Country Link
JP (1) JP6673642B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124376A1 (en) 2020-12-09 2022-06-16 京セラ株式会社 Bubble rate sensor, and flow meter and ultra-low-temperature liquid transfer tube using said bubble rate sensor
CN114857390B (en) * 2022-06-09 2024-03-29 集美大学 Elbow pipe with petal-shaped structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290689A (en) * 1991-03-20 1992-10-15 Toshiba Tungaloy Co Ltd High pressure vent pipe
JP2585008Y2 (en) * 1991-10-29 1998-11-11 積水化学工業株式会社 Pipe fittings
JPH08135884A (en) * 1994-11-11 1996-05-31 Hitachi Ltd Low thermal stress structure body
JP6092857B2 (en) * 2012-05-30 2017-03-08 京セラ株式会社 Channel member, adsorption device and cooling device using the same

Also Published As

Publication number Publication date
JP2016188663A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
CN107419226B (en) Ceramic cylindrical sputtering target material and its manufacturing method
JP6673642B2 (en) Tubular body
KR102336966B1 (en) Cylindrical sputtering target, cylindrical compact, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered compact and manufacturing method of cylindrical compact
JP2017081816A (en) Sintering-coupled ceramic article
WO2017073679A1 (en) Shower plate, semiconductor manufacturing apparatus, and shower plate manufacturing method
WO2014017661A1 (en) Flow path member, and heat exchanger and semiconductor manufacturing device using same
CN100386292C (en) Ceramic component containing inclusions
US8366071B2 (en) Sliding member, mechanical seal ring, mechanical seal and faucet valve
CN108568159A (en) Honeycomb structure
EP3176532B1 (en) Heat exchanger
JP5872504B2 (en) Method for manufacturing ceramic honeycomb structure
KR102582472B1 (en) Setter for firing
JP6030465B2 (en) Sliding member and manufacturing method thereof
JP7489489B2 (en) Air bubble rate sensor, flow meter using same, and cryogenic liquid transfer pipe
JP2014067834A (en) Electrostatic chuck and manufacturing method of the same
JP6279950B2 (en) Heat exchange member
JP2014043598A (en) METHOD FOR MANUFACTURING InZnO BASED SPUTTERING TARGET
JP6356562B2 (en) Channel member
JP2010202472A (en) Ceramic fired body and method of manufacturing the same
CN110939798A (en) Preparation method of composite anti-corrosion, wear-resistant and high-temperature-resistant pipe
EP4375471A1 (en) Spacer and multi-layered glass
EP4375470A1 (en) Spacer and multi-layered glass
JP2017117935A (en) Sample supporting member
JP2011208765A (en) Ceramic tube and manufacturing method thereof
CN102996805B (en) A kind of mechanical seal graphite stationary ring of resistance to embrittlement and manufacture method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200305

R150 Certificate of patent or registration of utility model

Ref document number: 6673642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150