JP6671636B2 - Optical power supply light source device and optical power supply system using the optical power supply light source device - Google Patents

Optical power supply light source device and optical power supply system using the optical power supply light source device Download PDF

Info

Publication number
JP6671636B2
JP6671636B2 JP2016058784A JP2016058784A JP6671636B2 JP 6671636 B2 JP6671636 B2 JP 6671636B2 JP 2016058784 A JP2016058784 A JP 2016058784A JP 2016058784 A JP2016058784 A JP 2016058784A JP 6671636 B2 JP6671636 B2 JP 6671636B2
Authority
JP
Japan
Prior art keywords
source device
light source
power supply
laser light
optical power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016058784A
Other languages
Japanese (ja)
Other versions
JP2017175763A (en
Inventor
靖志 中島
靖志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2016058784A priority Critical patent/JP6671636B2/en
Publication of JP2017175763A publication Critical patent/JP2017175763A/en
Application granted granted Critical
Publication of JP6671636B2 publication Critical patent/JP6671636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Lasers (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、光給電用光源装置に係り、更に詳細には、塵埃等によるレーザー光のパワー低下を防止できる光給電用光源装置に関する。   The present invention relates to an optical power supply light source device, and more particularly, to an optical power supply light source device capable of preventing a reduction in power of laser light due to dust or the like.

現在の電気自動車は、走行に必要なエネルギーのすべてを電池に蓄積するものであり、電気自動車の航続可能距離は搭載する電池の容量によって決まってしまう。また、電池の充電は、電池材料の化学組成の変化防止や反応速度などの制限もあるため、大量のエネルーを短時間で蓄積することは困難であり、電気自動車の普及の障害となっている。   Current electric vehicles store all of the energy required for traveling in a battery, and the cruising range of the electric vehicle is determined by the capacity of the battery mounted. In addition, the charging of batteries is also difficult to accumulate a large amount of energy in a short time because there are restrictions on the change in the chemical composition of the battery material and the reaction rate, which is an obstacle to the spread of electric vehicles. .

特許文献1の特開2010−166675号公報には、道路に設けたレーザー光供給手段から、電気自動車が備えるレーザー光受給装置にレーザー光を供給し、該レーザー光受給装置が電力に変換することで、電気自動車が電力の供給を受けながら走行することを可能にするレーザー光給電システムが提案されている。
そして、信号機や街路灯などと共に道路の上部にレーザー光供給手段を設け、上方から電気自動車にレーザー光を供給することが例示されている。
Japanese Patent Application Laid-Open No. 2010-166675 discloses that laser light is supplied from a laser light supply unit provided on a road to a laser light reception device provided in an electric vehicle, and the laser light reception device converts the laser light into electric power. There has been proposed a laser beam feeding system that enables an electric vehicle to travel while receiving electric power.
In addition, it is exemplified that a laser light supply unit is provided above a road together with a traffic light, a street light, and the like, and laser light is supplied to the electric vehicle from above.

また、特許文献2の特表2014−511507号公報には、車両の将来位置を予測し、レーザー光の指向性を高速で移動させる照明装置が提案されている。   Japanese Patent Application Publication No. 2014-511507 of Patent Document 2 proposes a lighting device that predicts the future position of a vehicle and moves the directivity of laser light at high speed.

さらに、特許文献3の特開2005−268506号公報には、ガラス容器中にフッ素系不活性液体を封入した高耐力位相共役鏡を増幅光路中に配置することで、固体レーザー材料の発熱によるレーザー光の波面歪みを補正し、レーザー光の集光性を向上できる固体レーザー増幅器が開示されている。   Further, Japanese Patent Application Laid-Open No. 2005-268506 of Patent Document 3 discloses that a high-withstand-force phase conjugate mirror in which a fluorine-based inert liquid is sealed in a glass container is disposed in an amplification optical path, so that a laser caused by heat generation of a solid-state laser material. There is disclosed a solid-state laser amplifier that can correct wavefront distortion of light and improve laser light focusing.

特開2010−166675号公報JP 2010-166675 A 特表2014−511507号公報JP 2014-511507 A 特開2005−268506号公報JP 2005-268506 A

光給電用光源装置内に塵埃や大気中の成分等が侵入すると、レーザー光発光器のレーザー光出射部に塵埃が付着したり、結露等により膜を形成する。これらの付着物はレーザー光の透過を妨げるだけでなく、光給電システムに用いられるレーザー光は高パワーであるため、レーザー光を吸収して発熱し、光源を劣化させる。   When dust or airborne components enter the light source device for optical power supply, the dust adheres to the laser light emitting portion of the laser light emitting device or forms a film due to dew condensation or the like. These deposits not only impede the transmission of the laser light, but also absorb the laser light and generate heat to deteriorate the light source because the laser light used in the optical power supply system has high power.

上記光源の劣化に対しては、レーザー光発光器に保護ガラスを設け、付着する塵埃等を上記保護ガラスで受けとめることが考えられるが、レーザー光の透過の妨げとなることは防止できず、光導波管内での保護ガラスを清掃するメンテナスは困難である。   For the deterioration of the light source, it is conceivable to provide a protective glass on the laser light emitter and catch the attached dust and the like with the protective glass. However, it is impossible to prevent the transmission of the laser light from being hindered. Maintenance to clean the protective glass inside the tube is difficult.

本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、長期に亘り、光路の清浄度を高度に維持できるメンテナンス性に優れた光給電用光源装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical power supply light source device with excellent maintainability that can maintain a high degree of cleanliness of an optical path for a long period of time. is there.

本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、内部に気相と接する液相を有する光導波管の液相中にレーザー光発光器を設けることにより、レーザー光発光器の発熱によって上記液相に対流が生じ、該対流によりレーザー光発光器上に塵埃等が堆積することを防止でき、上記目的が達成できることを見出し、本発明を完成するに至った。   The present inventors have conducted intensive studies to achieve the above object, and as a result, by providing a laser light emitter in the liquid phase of an optical waveguide having a liquid phase in contact with the gas phase inside, the laser light emitter The heat generated generates a convection in the liquid phase, and prevents the accumulation of dust and the like on the laser light emitting device due to the convection, and has found that the above object can be achieved. Thus, the present invention has been completed.

すなわち、本発明の光給電用光源装置は、内面が鏡面である中空の光導波管と、レーザー光を出射するレーザー光発光器とを備える。
そして、上記光導波管が、下端が閉塞して内部に気相と接する液相を有するものであり、上記液相中に上記レーザー光発光器を配置したものであることを特徴とする。
That is, the light source device for optical power supply of the present invention includes a hollow optical waveguide having an inner surface that is a mirror surface, and a laser light emitter that emits laser light.
The optical waveguide has a liquid phase in which the lower end is closed and in contact with the gas phase, and the laser light emitter is arranged in the liquid phase.

また、本発明の光給電システムは、上記本発明の光給電用光源装置と、該光源装置からの光を受光し発電する光給電用受光装置とを備える。   Further, an optical power supply system according to the present invention includes the above-described optical power supply light source device according to the present invention, and an optical power supply light receiving device that receives light from the light source device and generates power.

本発明によれば、内部に気相と接する液相を有する光導波管の液相中に、レーザー光発光器を設けることとしたため、長期に亘り、光路の清浄度を高度に維持できるメンテナンス性に優れた光給電用光源装置を提供することができる。   According to the present invention, since the laser light emitter is provided in the liquid phase of the optical waveguide having a liquid phase in contact with the gas phase inside, the maintenance property that can maintain a high degree of optical path cleanliness for a long time. It is possible to provide an optical power supply light source device excellent in the above.

本発明の光給電システムを説明する概略図である。It is a schematic diagram explaining the optical power supply system of the present invention. 本発明の光給電用光源装置を説明する概略図であるFIG. 2 is a schematic diagram illustrating a light source device for optical power supply of the present invention. 第1の実施形態の光給電用光源装置の要部拡大図である。It is a principal part enlarged view of the light source device for optical power supply of 1st Embodiment. 第1の実施形態の光導波管内の液体の対流を説明する図である。FIG. 3 is a diagram illustrating convection of a liquid in the optical waveguide according to the first embodiment. レーザー光の光路と液面の高さの関係を説明する図である。It is a figure explaining the relation of the optical path of laser light and the height of a liquid level. (a)は、第2の実施形態の光給電用光源装置の要部拡大図であり、(b)は、光給電用光源装置を上から見たときのレーザー光発光器と反射材の位置関係を説明する図である。(A) is an enlarged view of a main part of the light-feeding light source device of the second embodiment, and (b) is a position of the laser light emitter and the reflector when the light-feeding light source device is viewed from above. It is a figure explaining a relation. 第3の実施形態の光給電用光源装置の要部拡大図である。It is a principal part enlarged view of the light source device for optical power supply of 3rd Embodiment. 第3の実施形態の光導波管内の液体の対流を説明する図である。It is a figure explaining the convection of the liquid in the optical waveguide of a 3rd embodiment. 第4の実施形態の光給電用光源装置の要部拡大図である。It is a principal part enlarged view of the light source device for optical power supply of 4th Embodiment. 第4の実施形態の光導波管内の液体の対流を説明する図である。It is a figure explaining the convection of the liquid in the optical waveguide of a 4th embodiment. 第5の実施形態の光給電用光源装置の要部拡大図である。It is a principal part enlarged view of the light source device for optical power supply of 5th Embodiment. 第6の実施形態の光給電用光源装置の要部拡大図である。It is a principal part enlarged view of the light source device for optical power supply of 6th Embodiment. 第6の実施形態の光導波管内の液体の対流を説明する図である。It is a figure explaining the convection of the liquid in the optical waveguide of a 6th embodiment. (a)は第6の実施形態の他の光給電用光源装置の要部拡大図であり、(b)は、該光給電用光源装置を上から見たときのレーザー光発光器と反射材の位置関係を説明する図である。(A) is an enlarged view of a main part of another light source device for light feeding according to the sixth embodiment, and (b) is a laser light emitter and a reflector when the light source device for light feeding is viewed from above. It is a figure explaining the positional relationship of. 第7の実施形態の光給電用光源装置の一例を示す要部拡大図である。It is a principal part enlarged view which shows an example of the light source device for optical power supply of 7th Embodiment. 第7の実施形態の光給電用光源装置の他の一例を示す要部拡大図である。It is a principal part enlarged view which shows another example of the light source device for optical power supply of 7th Embodiment. 実施例で作製した光給電用光源装置の要部拡大図である。It is a principal part enlarged view of the light source device for optical power supply produced in the Example.

<光給電システム>
まず、本発明の光給電システムについて説明する。
本発明の光給電システム100は、電気自動車等の移動体200への給電を非接触で行うものであり、図1に示すように、光給電用光源装置1と、該光給電用光源装置からの光を受光する光給電用受光装置201とを備え、該光給電用受光装置は電気自動車等の移動体に搭載される。
具体的には、上記光給電用光源装置1はレーザー光6を出射するものであり、上記光給電用受光装置201は、上記光給電用光源装置1からのレーザー光6を受光して発電する太陽電池を有するものである。
<Optical power supply system>
First, an optical power supply system of the present invention will be described.
An optical power supply system 100 of the present invention is configured to supply power to a moving body 200 such as an electric vehicle in a non-contact manner, and as shown in FIG. And a light-receiving device 201 for receiving light. The light-receiving device for light feeding is mounted on a moving body such as an electric vehicle.
Specifically, the light-feeding light source device 1 emits laser light 6, and the light-feeding light receiving device 201 receives the laser light 6 from the light feeding light source device 1 to generate power. It has a solar cell.

レーザー光を用いて行う給電は、レーザー光の直進性が高いため送受電間距離を自由に設定でき、また送受電に伴う漏えい成分のコントロールが容易であるため汎用性が高い。   Power supply using laser light has high straightness of laser light, so that the distance between power transmission and reception can be freely set, and versatility is high because it is easy to control leakage components involved in power transmission and reception.

上記光給電用光源装置1から光給電用受光装置201に向けて照射するレーザー光6を、上記太陽電池のバンドギャップに合わせた波長の光にすることで、太陽光を照射したときよりも光電変換効率を高くすることができ、効率的な給電が可能となる。   By making the laser beam 6 emitted from the light source device 1 for light supply to the light receiving device 201 for light feed into light having a wavelength corresponding to the band gap of the solar cell, the laser light 6 becomes more photoelectrically than when sunlight is irradiated. Conversion efficiency can be increased, and efficient power supply can be achieved.

そして、電気自動車等の移動体200は、ボディーや屋根などに設けた太陽電池で受光したレーザー光6を電力に変換し、直接又はバッテリーを介してモータを駆動して走行する。   The moving body 200 such as an electric vehicle converts the laser beam 6 received by a solar cell provided on a body or a roof into electric power, and runs directly or by driving a motor via a battery.

電気自動車等の移動体200の走行に必要な大きな駆動電力を、光給電により上記移動体に供給する場合は、現状の市街地における街路灯や駐車場での保安灯に類似した形態で光給電用光源装置を設置することが、想定される代表的な普及形態の一つである。   When a large driving power required for traveling of the moving body 200 such as an electric vehicle is supplied to the moving body by optical power supply, the optical power is supplied in a form similar to a street light in a current urban area or a security light in a parking lot. Installation of a light source device is one of the typical spread modes that can be assumed.

そして、光給電用光源装置を街路灯に類似した形態とする場合、近年では電力線を埋設し、電柱を廃止することが趨勢となっている。また、光給電用光源装置のメンテナンス性の向上等を考慮すると、光給電用光源装置への電力供給は地上付近から行うこと想定される。   In the case where the light source device for optical power supply has a form similar to a street lamp, in recent years, it has become a trend to bury power lines and abolish power poles. In addition, in consideration of the improvement of the maintainability of the optical power supply light source device, it is assumed that the power supply to the optical power supply light source device is performed from near the ground.

上記光給電用光源装置1としては、以下に示す、レーザー光発光器5を地上付近に設置するものであることが好ましい。   As the light source device 1 for supplying light, it is preferable that a laser light emitter 5 described below is installed near the ground.

<光給電用光源装置>
本発明の光給電用光源装置について詳細に説明する。
上記光給電用光源装置1は、内面が鏡面である中空の光導波管2の内部に、気相3と接する液相4を有し、上記光導波管2内の液相中に配置されたレーザー光を出射するレーザー光発光器5を備える。
<Light source device for optical power supply>
The light source device for optical power supply of the present invention will be described in detail.
The light source device 1 for optical power supply has a liquid phase 4 in contact with a gas phase 3 inside a hollow optical waveguide 2 whose inner surface is a mirror surface, and is arranged in the liquid phase in the optical waveguide 2. A laser light emitter 5 for emitting laser light is provided.

街路灯型の光給電用光源装置1の例の概略図を図2に示す。上記光給電用光源装置1は、内面が光反射面であり、上部が逆U字形をした光導波管2内の地表付近にレーザー光発光器5を備え、地表に向けてレーザー光6を照射するものである。   FIG. 2 shows a schematic diagram of an example of a street light type light-supply light source device 1. The light-feeding light source device 1 is provided with a laser light emitter 5 near the ground surface in an optical waveguide 2 having an inner surface having a light reflecting surface and an inverted U-shaped upper portion, and irradiating a laser beam 6 toward the ground surface. Is what you do.

上記レーザー光発光器5は、地中又は地表付近の電力ケーブル7から電力の供給を受けてレーザー光6を出射する。
上記レーザー光発光器5が上方に向けてレーザー光6を出射すると、出射したレーザー光6は、上記光導波管2の形状に沿って進路を変えて伝播し、電気自動車等の移動体200の光給電用受光装置201に入射して電力に変換される。
The laser light emitter 5 emits laser light 6 upon receiving power supply from a power cable 7 in the ground or near the ground surface.
When the laser light emitter 5 emits the laser light 6 upward, the emitted laser light 6 propagates by changing the course along the shape of the optical waveguide 2 and the moving body 200 such as an electric vehicle. The light enters the light receiving device 201 for optical power supply and is converted into electric power.

上記街路灯型の光給電用光源装置1は、供給するレーザー光の照射位置調整のために可動部8が必要であり、また設置時の運搬容易の観点等から複数のパーツを接続して組み立てられる。   The light source device 1 for feeding light of the street light type requires the movable part 8 for adjusting the irradiation position of the laser light to be supplied, and also connects and assembles a plurality of parts from the viewpoint of easy transportation at the time of installation. Can be

しかし、上記光給電用光源装置の可動部8や接続部から、塵埃や大気中の成分などが光導波管2内部へ侵入し光源の劣化や照射レーザー光のエネルギー低下が生じる。   However, dust and components in the atmosphere enter the optical waveguide 2 from the movable part 8 and the connection part of the light source device for optical power supply, and the light source is deteriorated and the energy of the irradiation laser light is reduced.

つまり、上記可動部等にシーリング部材等を設けたとしても、気温の変化や気圧の変化、風、雨、結露、振動、地震などの自然界の環境変化や、経時劣化等の影響により、光導波管内部への塵埃等の侵入を完全に防止することはできない。   In other words, even if a sealing member or the like is provided on the movable part or the like, the optical waveguide is affected by changes in the natural environment, such as changes in air temperature and pressure, wind, rain, condensation, vibration, earthquakes, and aging. It is not possible to completely prevent dust and the like from entering the inside of the pipe.

本発明の光給電用光源装置1においては、光導波管2内に気相3と接する液相4を有するものであるため、光導波管2内に侵入した塵埃等は気相中を降下して液相により捕捉される。
そして、レーザー光発光器5の上方にはレーザー光発光器5の発熱により上昇流が生じるため、レーザー光発光器5の上方では、塵埃等が対流に乗って上昇する。
In the optical power supply light source device 1 of the present invention, since the liquid phase 4 is in contact with the gas phase 3 in the optical waveguide 2, dust and the like entering the optical waveguide 2 fall down in the gas phase. And is captured by the liquid phase.
Since an upward flow is generated above the laser light emitter 5 due to the heat generated by the laser light emitter 5, dust and the like rise above the laser light emitter 5 by convection.

したがって、塵埃等がレーザー光発光器5の出射部51に堆積することが防止され、光源の劣化及びレーザー光の透過の妨げが防止され、照射レーザー光のエネルギー低下を防止することができる。   Therefore, dust and the like are prevented from being deposited on the emission section 51 of the laser light emitter 5, deterioration of the light source and hindrance of transmission of the laser light can be prevented, and energy reduction of the irradiation laser light can be prevented.

なお、液相が気相と接しているため、光給電用光源装置1に振動等が加わることで液面に非平坦部分が発生して屈折光が生じることがある。
しかし、上記非平坦部分は定常的に形成されるものではなく、一時的に屈折光が生じたとしても光導波管2内に閉じ込められ、光導波管2内面で反射しながら伝送されるので、反射を繰り返し光照射において伝搬に障害が発生することはない。
In addition, since the liquid phase is in contact with the gas phase, non-flat portions may be generated on the liquid surface due to vibration or the like applied to the light source device 1 for optical power supply, and refracted light may be generated.
However, the non-flat portion is not always formed, and even if refracted light is temporarily generated, the non-flat portion is confined in the optical waveguide 2 and transmitted while being reflected on the inner surface of the optical waveguide 2. There is no obstruction to propagation in light irradiation by repeated reflection.

(光導波管)
上記光導波管2は内面全体が鏡面処理されたものであり、下端21が閉塞して水密封止され、液相4を構成する液体が漏洩しないものである。
(Optical waveguide)
The entire inner surface of the optical waveguide 2 is mirror-finished, the lower end 21 is closed and watertightly sealed, and the liquid constituting the liquid phase 4 does not leak.

上記光導波管2を構成する材料が、常温での熱伝導率が200W/(m・K)以上の材料であると液相4を構成する液体の冷却が促進され、レーザー光発光器5付近の液体と気相との界面付近の液体との温度差が大きくなって対流が生じ、塵埃等がレーザー光発光器5に堆積することを防止できると共に、レーザー光発光器5の冷却が促進される。   When the material forming the optical waveguide 2 is a material having a thermal conductivity of 200 W / (m · K) or more at room temperature, cooling of the liquid forming the liquid phase 4 is promoted, and the vicinity of the laser light emitter 5 is increased. The temperature difference between the liquid in the vicinity of the interface between the liquid and the gas phase becomes large, and convection occurs, so that dust and the like can be prevented from being deposited on the laser light emitter 5, and the cooling of the laser light emitter 5 is promoted. You.

上記熱伝導率が200W/(m・K)以上の材料としては、銅、アルミニウム又はこれらを主成分とする合金を挙げることができる。   Examples of the material having a thermal conductivity of 200 W / (m · K) or more include copper, aluminum, and alloys containing these as a main component.

(液相)
上記液相を構成する液体としては、レーザー光に対して透明なものであれば使用できるが、メンテナンスフリーの観点から、沸点が高く、かつ蒸気圧が低い不活性の液体であることが好ましい。
本発明において、レーザー光に対して透明とは、レーザー光から出射される波長の光の透過率(厚さ1cmの試料を通過した光の放射発散度/入射光の放射発散度)が99%以上であることをいう。
(Liquid phase)
As the liquid constituting the liquid phase, any liquid that is transparent to laser light can be used, but from the viewpoint of maintenance-free, an inert liquid having a high boiling point and a low vapor pressure is preferable.
In the present invention, “transparent to laser light” means that the transmittance of light having a wavelength emitted from laser light (radiation divergence of light passing through a sample having a thickness of 1 cm / radiation divergence of incident light) is 99%. It is the above.

上記不活性の液体としては、3M社製フロリナート(登録商標)等のフッ素系不活性液体を挙げることができる。   Examples of the inert liquid include a fluorine-based inert liquid such as Fluorinert (registered trademark) manufactured by 3M.

上記フッ素系不活性液体は、水よりも比重が大きく、水よりも沸点が高く、かつ水との溶解率は無視できるほど小さいものである。したがって、レーザー光発光器と光導波管内に侵入した水とを分離でき、フッ素系不活性液体上に溜まった水は、運転中の熱により蒸発除去することができる。
さらに、上記フッ素系不活性液体は、高エネルギーの光の照射でも分解されない特性を有し、液体が劣化しないため信頼性が向上する。加えて、高い電気絶縁性を有し、レーザー光発光器の腐食劣化を防止できるものである。
The fluorine-based inert liquid has a higher specific gravity than water, a higher boiling point than water, and a negligible solubility in water. Therefore, the laser light emitter and the water that has entered the optical waveguide can be separated, and the water accumulated on the fluorine-based inert liquid can be removed by evaporation during operation.
Further, the fluorine-based inert liquid has a property that it is not decomposed even by irradiation with high-energy light, and the liquid is not deteriorated, so that the reliability is improved. In addition, it has high electrical insulation and can prevent corrosion deterioration of the laser light emitter.

(レーザー光発光器)
上記レーザー光発光器5としては、高エネルギーのレーザー光を出射できれば特に制限はないが、小型軽量であることから半導体発光素子であることが好ましく、さらにVCSEL(Vertical Cavity Surface Emitting Lase)型レーザーであることが好ましい。
(Laser light emitter)
The laser light emitter 5 is not particularly limited as long as it can emit high-energy laser light, but is preferably a semiconductor light emitting element because of its small size and light weight, and is a VCSEL (Vertical Cavity Surface Emitting Laser) type laser. Preferably, there is.

VCSEL型レーザーの出射光は、端面発光半導体レーザーのように楕円錐状ではなく、円錐状となり、出射光の放射角(開き角)が端面発光半導体レーザーよりも小角である。
したがって、光導波管内面での反射回数を低減した導波が可能であり、端面発光レーザーのように、複数のシリンドリカルレンズを並べて用いる必要がなく、大径の光導波管により高エネルギーのレーザー光を効率よく伝播させることができる。
The emitted light of the VCSEL type laser is not an elliptical cone but a conical shape unlike the edge emitting semiconductor laser, and the emission angle (opening angle) of the emitted light is smaller than that of the edge emitting semiconductor laser.
Therefore, it is possible to conduct guided light with a reduced number of reflections on the inner surface of the optical waveguide, and it is not necessary to use a plurality of cylindrical lenses side by side as in the case of an edge emitting laser. Can be efficiently propagated.

また、レーザー光発光器5は、レーザー光の光軸61が光導波管2の管方向と平行、かつレーザー光の出射方向が気相方向になるように配置することが好ましい。レーザー光が光導波管2の管壁で反射して生ずる発熱減衰を低減できる。
さらに、光導波管内2のレーザー光発光器5が液体に浸漬された領域から液面41までの範囲を光軸61が鉛直方向になるように配置することで、前述した液面41での屈折光を低減することができる。
Further, the laser light emitter 5 is preferably arranged such that the optical axis 61 of the laser light is parallel to the tube direction of the optical waveguide 2 and the emission direction of the laser light is in the gas phase direction. Heat generation attenuation caused by reflection of the laser light on the tube wall of the optical waveguide 2 can be reduced.
Further, by arranging the range from the region where the laser light emitter 5 in the optical waveguide 2 is immersed in the liquid to the liquid surface 41 so that the optical axis 61 is in the vertical direction, the above-described refraction at the liquid surface 41 is performed. Light can be reduced.

以下、本発明を実施形態により詳細に説明するが、本発明は下記実施形態に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited to the following embodiments.

(第1の実施形態)
第1の実施形態を図3により説明する。図3は図2中の点線丸で示す部分の拡大断面図である。
本実施形態の光給電用光源装置は、中空の光導波管2中に、気相3と接する液相4を構成する液体を有し、該液体中にレーザー光発光器5が配置されたものである。
(First embodiment)
The first embodiment will be described with reference to FIG. FIG. 3 is an enlarged sectional view of a portion indicated by a dotted circle in FIG.
The light source device for optical power supply of the present embodiment has a liquid constituting a liquid phase 4 in contact with a gas phase 3 in a hollow optical waveguide 2, and a laser light emitter 5 is arranged in the liquid. It is.

上記中空の光導波管2の内面は、全面が鏡面処理されており、上記レーザー光発光器5から上方に向けて出射されたレーザー光6を反射して伝播する。また、光導波管2の下端21は閉塞し、水密封止されて上記液体の漏洩を防止する。   The entire inner surface of the hollow optical waveguide 2 is mirror-finished, and reflects and propagates the laser light 6 emitted upward from the laser light emitter 5. In addition, the lower end 21 of the optical waveguide 2 is closed and sealed in a watertight manner to prevent leakage of the liquid.

上記レーザー光発光器5は、上方に向けてレーザー光6を出射すると共に、発熱して周囲の液体を加熱する。すると、図4中矢印cで示すように、液相中にはレーザー光発光器5から上方に向けて上昇流が生じて液体が対流する。   The laser light emitter 5 emits the laser light 6 upward and generates heat to heat the surrounding liquid. Then, as shown by an arrow c in FIG. 4, an upward flow is generated upward from the laser light emitter 5 in the liquid phase, and the liquid convects.

したがって、レーザー光発光器5の上方に塵埃等が落下したとしても上昇流によってまき上げられ、レーザー光発光器5の出射部51に塵埃等が堆積することが防止される。   Therefore, even if dust or the like falls above the laser light emitter 5, the dust or the like is lifted up by the upward flow, so that dust or the like is prevented from being deposited on the emission part 51 of the laser light emitter 5.

また、塵埃等が液面に浮遊したとしても、液面41ではレーザー光6の光軸61から測方に向けて、すなわち、光導波管2の内壁に向かって流れ、塵埃等は、図5中点線で示すレーザー光の光路62から排斥されるため、レーザー光の透過の妨げとはならない。   Further, even if dust or the like floats on the liquid surface, it flows on the liquid surface 41 from the optical axis 61 of the laser beam 6 toward the measurement direction, that is, toward the inner wall of the optical waveguide 2, and the dust and the like flow in FIG. Since the laser light is excluded from the optical path 62 of the laser light indicated by the middle dotted line, it does not hinder the transmission of the laser light.

さらに、レーザー光発光器が液相4中に配置されているので、保護ガラスを設けた場合のような結露による膜付着は発生しない。   Further, since the laser light emitter is arranged in the liquid phase 4, film deposition due to dew condensation unlike the case where a protective glass is provided does not occur.

上記光導波管2の下端部には塵埃溜まり22を設けることが好ましく、レーザー光発光器5を塵埃溜まり22よりも上方に配置することで、レーザー光発光器5に塵埃等が堆積することを防止できる。   It is preferable to provide a dust reservoir 22 at the lower end of the optical waveguide 2. By arranging the laser light emitter 5 above the dust reservoir 22, dust and the like are deposited on the laser light emitter 5. Can be prevented.

上記液面41の高さhは、図5に示すように、レーザー光発光器から出射されたレーザー光のピーク強度に対して1/eの強度を有する光が、最初に光導波管の内面で反射される位置rよりも低いことが好ましい。 As shown in FIG. 5, the height h of the liquid surface 41 is such that light having an intensity of 1 / e 2 with respect to the peak intensity of the laser light emitted from the laser light emitting device firstly has an optical waveguide. Preferably, it is lower than the position r reflected by the inner surface.

レーザー光の断面強度分布はガウス分布を基本とした分布を有し、レーザー光の光軸61が最も強く、該光軸から離れるにつれて低下するが、ピーク強度に対して1/e以上の強度を有する高強度のレーザー光は、反射される際に光導波管2を加熱するエネルギーを有する。 Cross-sectional intensity distribution of the laser light has a basic and distribution of Gaussian distribution, the strongest optical axis 61 of the laser beam, but decreases with increasing distance from the optical axis, 1 / e 2 or more strength to the peak intensity The high-intensity laser light having the energy of heating the optical waveguide 2 when reflected.

特にレーザ光発光器5が光導波管2と熱結合されていない場合においては、ピーク強度に対して1/eの強度を有する高強度のレーザー光を最初に反射する位置rが液面41よりも高く、上記反射位置rと液面41とが離れていると、液面付近の光導波管が加熱されることが防止される。 In particular, when the laser light emitter 5 is not thermally coupled to the optical waveguide 2, the position r where the high-intensity laser light having an intensity of 1 / e 2 with respect to the peak intensity is first reflected is at the liquid surface 41. When the reflection position r is higher than the liquid level 41, the optical waveguide near the liquid level is prevented from being heated.

したがって、液体の冷却が促進されてレーザー光発光器5付近と液面41付近との温度差が大きくなって強い対流cが生じ、塵埃等のレーザー光発光器5への堆積が防止される。   Therefore, the cooling of the liquid is promoted, the temperature difference between the vicinity of the laser light emitter 5 and the vicinity of the liquid surface 41 increases, and a strong convection c occurs, so that the accumulation of dust and the like on the laser light emitter 5 is prevented.

(第2の実施形態)
第2の実施形態を図6により説明する。本実施形態の光給電用光源装置1は、光導波管2内の液相4中に反射材9を有する他は、上記第1の実施形態と同様である。
(Second embodiment)
A second embodiment will be described with reference to FIG. The optical power supply light source device 1 of the present embodiment is the same as the first embodiment except that the liquid phase 4 in the optical waveguide 2 has a reflecting material 9.

上記反射材9は形状が板状又は筒状であり、光導波管2の内面及び上記レーザー光の光軸61と間隔を開けて略平行、かつ、その上端が液相中に存在するように配置される。   The reflecting material 9 is plate-shaped or cylindrical in shape, is substantially parallel to the inner surface of the optical waveguide 2 and the optical axis 61 of the laser light at an interval, and has its upper end in the liquid phase. Be placed.

上記板状又は筒状の反射材9は、少なくとも光軸側の全面が鏡面であり、光導波管2の内側に小径の光導波管を形成する。上記反射材9の長さは、その下端がレーザー光発光器5の近傍まで達する長さであることが好ましい。   The plate-shaped or cylindrical reflector 9 has a mirror surface at least on the entire optical axis side, and forms a small-diameter optical waveguide inside the optical waveguide 2. The length of the reflecting material 9 is preferably such that the lower end reaches the vicinity of the laser light emitter 5.

上記反射材9により、液相中の上昇流と下降流とが分離され、下降流に乗って沈降する塵埃等がレーザー光発光器5上に入り込むことが防止されて塵埃等のレーザー光発光器5への堆積防止作用が促進される。   The reflecting material 9 separates the upward flow and the downward flow in the liquid phase, and prevents the dust and the like settling on the downward flow from entering the laser light emitter 5, and the laser light emitter such as the dust 5 is promoted.

さらに、上記反射材9はレーザー光の光軸61側が鏡面であるため、光導波路が狭くなり、放射角が大きい成分の光が減衰してホモジナイズ効果が促進され、レーザー光の放射角の狭角化と均一性とが向上する。   Further, since the reflection member 9 has a mirror surface on the optical axis 61 side of the laser light, the optical waveguide becomes narrow, the light of the component having a large radiation angle is attenuated, the homogenizing effect is promoted, and the narrow angle of the radiation angle of the laser light is reduced. And uniformity are improved.

(第3の実施形態)
第3の実施形態を図7により説明する。本実施形態の光給電用光源装置1は、光導波管2内の液相4中に多孔体10を有し、該多孔体10を図7中点線で示すレーザー光の光路62外に配置する他は、上記第1の実施形態、第2の実施形態と同様である。
本発明において、レーザー光の光路62とはピーク強度に対して1/e以上の強度を有する光の範囲をいう。
(Third embodiment)
A third embodiment will be described with reference to FIG. The light-feeding light source device 1 of the present embodiment has the porous body 10 in the liquid phase 4 in the optical waveguide 2 and arranges the porous body 10 outside the optical path 62 of the laser light indicated by the dotted line in FIG. Others are the same as the first embodiment and the second embodiment.
In the present invention, the optical path 62 of the laser light means a range of light having an intensity of 1 / e 2 or more with respect to the peak intensity.

上記多孔体10は塵埃のサイズよりも小さい空隙を有するものであり、例えば、0.3μm以下の空隙を有するものである。   The porous body 10 has a gap smaller than the size of dust, for example, has a gap of 0.3 μm or less.

塵埃のサイズよりも小さい空隙を有する多孔体は、図8に示すように、液相中の循環対流cに乗った塵埃等を捕捉し、液相中を流れる塵埃の濃度上昇を防ぎ、レーザー光の強度低下を防止する。   As shown in FIG. 8, the porous body having voids smaller than the size of the dust captures dust and the like riding on the circulating convection c in the liquid phase, prevents the concentration of dust flowing in the liquid phase from increasing, and reduces the laser light. To prevent the strength from decreasing.

(第4の実施形態)
第4の実施形態を図9により説明する。本実施形態の光給電用光源装置1は、光導波管2内の液相4中にレーザー光に対して透明な透明板を有し、該透明板11をレーザー光の光軸に対して傾けてレーザー光の光路62に配置する他は、上記第1〜3の実施形態の実施形態と同様である。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIG. The light-feeding light source device 1 of the present embodiment has a transparent plate transparent to laser light in the liquid phase 4 in the optical waveguide 2, and tilts the transparent plate 11 with respect to the optical axis of the laser light. This embodiment is the same as the first to third embodiments except that the laser beam is disposed in the optical path 62 of the laser beam.

レーザー光発光器5の発熱により生じた上昇流は、図10中、矢印で示すように、上記透明板11に当たると該透明板11に沿って斜め上方に流れて光導波管の一側部より液面41付近まで上昇する。
そして、液面付近を光導波管の他側部に向かって流れる表面流と、光導波管付近で冷却され、光導波管に沿って流れる下降流とに分かれる。そして、上記表面流は冷却されて、光導波管の他側部から光導波管に沿って流れる下降流となる。
As shown by an arrow in FIG. 10, when the upward flow generated by the heat generated by the laser light emitter 5 hits the transparent plate 11, it flows obliquely upward along the transparent plate 11 and flows from one side of the optical waveguide. It rises to near the liquid level 41.
Then, the flow is divided into a surface flow flowing near the liquid surface toward the other side of the optical waveguide, and a downward flow cooled near the optical waveguide and flowing along the optical waveguide. Then, the surface flow is cooled and becomes a downward flow flowing along the optical waveguide from the other side of the optical waveguide.

このように、本実施形態によれば、液面41において測方への液体の流れが促進され、レーザー光発光器5への塵埃等の堆積防止性能がさらに向上すると共に、レーザー光を出射しない休止中においても光導波管2内に侵入した塵埃等を透明板11でトラップすることができ、塵埃等がレーザー光発光器5上に降下することを防止できる。
さらに、光軸に対して傾いて設置した透明板は、レーザー射出口側から反射して戻ってくるレーザー光発光器5への入射を減少させることができるため、レーザー発振の安定動作を促進する効果も期待できる。
As described above, according to the present embodiment, the flow of the liquid to the measurement at the liquid surface 41 is promoted, the performance of preventing the accumulation of dust and the like on the laser light emitter 5 is further improved, and the laser light is not emitted. Even during pause, dust and the like that have entered the optical waveguide 2 can be trapped by the transparent plate 11, and dust and the like can be prevented from falling onto the laser light emitter 5.
Further, the transparent plate installed at an angle with respect to the optical axis can reduce the incidence on the laser light emitter 5 that is reflected and returned from the laser emission port side, thereby promoting a stable operation of laser oscillation. The effect can be expected.

(第5の実施形態)
第5の実施形態を図11により説明する。本実施形態の光給電用光源装置1は、レーザー光発光器の熱を排熱する排熱部材12を備える他は、上記第1〜4の実施形態の実施形態と同様である。
(Fifth embodiment)
A fifth embodiment will be described with reference to FIG. The light-feeding light source device 1 of the present embodiment is the same as the above-described first to fourth embodiments, except that the light-feeding light source device 1 includes a heat-dissipating member 12 for discharging the heat of the laser light emitter.

上記排熱部材12は、光導波管2の下部とレーザー光発光器5を熱的に接続するものや、レーザー光発光器5に冷媒を供給する冷却管等を挙げることができる。   Examples of the heat-dissipating member 12 include a member that thermally connects the lower portion of the optical waveguide 2 and the laser light emitter 5 and a cooling tube that supplies a coolant to the laser light emitter 5.

上記レーザー光発光器5と光導波管2を熱的に接続するには、熱伝導率が高い金属や結晶性の炭素シート等をこれらの界面に挿入してボルト等を用いて密着させる手法を挙げることができる。   In order to thermally connect the laser light emitter 5 and the optical waveguide 2, a method of inserting a metal or a crystalline carbon sheet having high thermal conductivity into the interface between them and bringing them into close contact with bolts or the like is used. Can be mentioned.

光導波管2の下部とレーザー光発光器5とを熱的に接続することで、光導波管の下部が加熱点、上部が放熱点となって液相中での対流cが促進される。   By thermally connecting the lower part of the optical waveguide 2 and the laser light emitter 5, the convection c in the liquid phase is promoted with the lower part of the optical waveguide serving as a heating point and the upper part serving as a heat radiation point.

また、冷却管により冷媒を供給することでレーザー光発光器5の冷却が促進され、レーザー光発光器5を安定して動作させることができる。   Further, by supplying the cooling medium through the cooling pipe, the cooling of the laser light emitter 5 is promoted, and the laser light emitter 5 can be operated stably.

(第6の実施形態)
第6の実施形態を図12により説明する。本実施形態の光給電用光源装置は、レーザー光発光器5を複数備え、該レーザー光発光器5を光導波管の内面に沿って配置したものである他は、上記第1〜5の実施形態の実施形態と同様である。
(Sixth embodiment)
A sixth embodiment will be described with reference to FIG. The light-feeding light source device of the present embodiment includes a plurality of laser light emitters 5, and the laser light emitters 5 are arranged along the inner surface of the optical waveguide. This is the same as the embodiment of the embodiment.

光導波管内に複数のレーザー光発光器5を備えることで、部品点数を増加させることなくコンパクトにレーザー光のパワーを増加させることができる。   By providing a plurality of laser light emitters 5 in the optical waveguide, the power of the laser light can be increased compactly without increasing the number of components.

また、光導波管2の内面に沿ってレーザー光発光器5を配置することで、図13中矢印で示すように、光導波管の内壁付近では上昇流が生じ、光導波管の中心部では下降流が生じて、塵埃等のレーザー光発光器5への堆積が防止される。   Further, by arranging the laser light emitter 5 along the inner surface of the optical waveguide 2, as shown by an arrow in FIG. 13, an ascending flow occurs near the inner wall of the optical waveguide, and at the center of the optical waveguide, A downward flow is generated to prevent dust and the like from being deposited on the laser light emitter 5.

また、レーザー光発光器を複数配置する場合にも、図14に示すように、上記第2の実施形態と同様、光導波管2内の液相4中に板状又は筒状の反射材9を設け、上昇流と下降流とを分離することができる。   In the case where a plurality of laser light emitters are arranged, as shown in FIG. 14, similarly to the second embodiment, the plate-like or tubular reflector 9 is provided in the liquid phase 4 in the optical waveguide 2. To separate the upward flow and the downward flow.

(第7の実施形態)
第7の実施形態の光給電用光源装置1は、上記光導波管2が外周に冷却部材13を備える他は、上記第1〜6の実施形態の実施形態と同様である。
(Seventh embodiment)
The light source device 1 for supplying light according to the seventh embodiment is the same as the first to sixth embodiments, except that the optical waveguide 2 includes a cooling member 13 on the outer periphery.

上記冷却部材13としては、例えば、放熱板や、図15に示すような、光導波管2の外周に冷媒132を供給する冷媒供給部材、図16に示すような、上記光導波管2よりも大径の外管を上記光導波管2と間隙をもって配置し、下端を開放として煙突構造を形成し上記間隙を通過する空気や水等の冷媒132により、光導波管の冷却と光導波管と外管との熱分離を向上させるもの、また、図17に示すように光導波管2外周の外管13の上下両端を光導波管2との間で気密封止し、内部に減圧にて液体の冷媒を少量含む中空気密構造を有することでヒートパイプを形成するものなどを挙げることができる。   As the cooling member 13, for example, a radiator plate or a coolant supply member that supplies a coolant 132 to the outer periphery of the optical waveguide 2 as shown in FIG. A large-diameter outer tube is arranged with a gap from the optical waveguide 2, the lower end is opened to form a chimney structure, and cooling of the optical waveguide and cooling of the optical waveguide are performed by a refrigerant 132 such as air or water passing through the gap. As shown in FIG. 17, the upper and lower ends of the outer tube 13 on the outer periphery of the optical waveguide 2 are hermetically sealed between the outer tube 13 and the optical waveguide 2 as shown in FIG. One that has a medium airtight structure containing a small amount of liquid refrigerant to form a heat pipe can be given.

光導波管2を冷却することで、液相中の対流が促進されてレーザー光発光器5への塵埃等の堆積が防止されると共に、冷却部材13を光導波管の外周に設けることによって光導波管2を保護することができ、光導波管2の強度を上記冷却部材13に持たせることで光導波管2の設計・加工が容易になる。   By cooling the optical waveguide 2, convection in the liquid phase is promoted to prevent the accumulation of dust and the like on the laser light emitter 5, and the cooling member 13 is provided on the outer periphery of the optical waveguide to provide light conduction. Since the waveguide 2 can be protected and the cooling member 13 has the strength of the optical waveguide 2, the design and processing of the optical waveguide 2 are facilitated.

厚さ10mm、幅140mm、長さ6mの構造用アルミニウム合金製の板を4枚用意し、上記アルミニウム板の片面を鏡面研磨して、表面にガラスコーティングを施した。
上記4枚のアルミニウム板を、鏡面が内側になるように合わせて、外側の突き合わせ部分を水密となるようにアルゴン溶接して、断面が四角形の光導波管2を作製した。
Four structural aluminum alloy plates having a thickness of 10 mm, a width of 140 mm, and a length of 6 m were prepared, and one surface of the aluminum plate was mirror-polished, and the surface was coated with glass.
The four aluminum plates were aligned such that the mirror surface was on the inside, and the outer butted portions were argon-welded so as to be water-tight, thereby producing the optical waveguide 2 having a square cross section.

また、表面を鏡面に研磨した厚さ0.3mmのステンレス板を用いて、1辺が60mm、長さが1mの断面が四角形の筒状の反射材9を製作した。
上記光導波管2内に上記筒状の反射材9を挿入し、反射材の下端がレーザー光発光器5の出射部51よりも上方に位置し、かつ光導波管2の内面及びレーザー光の光軸61と平行になるように間隔を開けて固定した。
In addition, a cylindrical reflecting member 9 having a side of 60 mm and a length of 1 m and a square cross section was manufactured using a 0.3 mm thick stainless steel plate whose surface was mirror-polished.
The cylindrical reflector 9 is inserted into the optical waveguide 2, the lower end of the reflector is located above the emission part 51 of the laser light emitter 5, and the inner surface of the optical waveguide 2 and the laser beam It was fixed at intervals so as to be parallel to the optical axis 61.

次に、4台のレーザー光発光器(VCSELレーザー発振器)を、レーザー光の出射方向が鉛直方向上向きになるように、光導波管の内面に沿わせて光導波管の下部に金属製のねじで固定し、上記レーザー光発光器の間の空間に開孔径0.3μmのフィルタを挿入した。   Next, four laser light emitters (VCSEL laser oscillators) are screwed on the lower part of the optical waveguide along the inner surface of the optical waveguide so that the emission direction of the laser light is vertically upward. And a filter having an opening diameter of 0.3 μm was inserted into the space between the laser light emitters.

上記レーザー光発光器5に電源供給配線を接続し、フィードスルー端子を取り付けた底蓋(150mm角、厚さ10mmのアルミニウム板)を、Oリングパッキンを挟んで光導波管の一端にねじ止めし、光導波管2の下端部を水密封止した。   A power supply wiring is connected to the laser light emitter 5, and a bottom cover (a 150 mm square, 10 mm thick aluminum plate) to which a feed-through terminal is attached is screwed to one end of the optical waveguide with an O-ring packing interposed therebetween. The lower end of the optical waveguide 2 was hermetically sealed.

次に、上記光導波管2の外側に、外径280mm厚さ12mm、長さ5mの構造用アルミニム合金製の外管を設け、上記該外管の上端及び下端を、内側に150mm角の穴が開孔した外径280mm厚さ12mmの構造用アルミニウム製の蓋で塞ぎ、気密溶接して、光導波管の外周に冷却部材13を設けた。
上記冷却部材の上部には、水供給及び/又は排気を行うバルブ・ジョイント131を取り付けた。
Next, an outer tube made of a structural aluminum alloy having an outer diameter of 280 mm, a thickness of 12 mm, and a length of 5 m is provided on the outer side of the optical waveguide 2, and the upper end and the lower end of the outer tube are formed with 150 mm square holes inside. Was sealed with a lid made of structural aluminum having an outer diameter of 280 mm and a thickness of 12 mm, and was hermetically welded to provide a cooling member 13 on the outer periphery of the optical waveguide.
A valve joint 131 for supplying and / or exhausting water was attached to the upper part of the cooling member.

上記冷却部材13に冷媒132として純水を内容積の10%程度注入し、残る空間を減圧して高温部が重力側となるヒートパイプを形成した。
なお、冷却部材中の水量及び圧力は、光給電用光源装置1の設置環境で最適の冷却能力になるように設置後調整する。
About 10% of the internal volume of pure water was injected into the cooling member 13 as the refrigerant 132, and the remaining space was decompressed to form a heat pipe in which the high temperature portion was on the gravity side.
The amount of water and the pressure in the cooling member are adjusted after installation so that the cooling power is optimal in the installation environment of the light source device 1 for supplying light.

その後、光導波管2内に、フッ素系不活性液体(フロリナート:FC−43:3M社製)を上記ヒートパイプの上部気密接合部位置(およそ、高さ5m)まで満たした。
上記フッ素系不活性液体は、沸点が174℃、蒸気圧が1.4×10−4mPaと非常に低いために蒸発しにくく、長期にわたり補充メンテナンスの必要がない。
Thereafter, the optical waveguide 2 was filled with a fluorine-based inert liquid (Fluorinert: FC-43: manufactured by 3M) up to the position of the upper airtight joint (approximately 5 m in height) of the heat pipe.
The fluorinated inert liquid has a very low boiling point of 174 ° C. and a low vapor pressure of 1.4 × 10 −4 mPa, so that it is difficult to evaporate and does not require replenishment maintenance for a long time.

また、上記フッ素系不活性液体は、可視光から赤外線領域の波長の光を吸収せず、水に対する溶解性や電気伝導性もほとんどない特徴を有するため、本発明の光給電用光源装置に用いる液体として最適である。   Further, since the fluorine-based inert liquid does not absorb light having a wavelength in the range from visible light to infrared light, and has characteristics of hardly dissolving in water or electric conductivity, it is used in the light source device for optical power supply of the present invention. Ideal as a liquid.

上記フッ素系不活性液体を用いると、結露等で光導波管内部に水がたまった場合でも、運転時のレーザー光発光器の発熱や自然蒸発で水を除去でき、光源系を常に清浄に保つことができる。   When the above-mentioned fluorine-based inert liquid is used, even if water accumulates inside the optical waveguide due to condensation or the like, water can be removed by heat generation or natural evaporation of the laser light emitter during operation, and the light source system is always kept clean. be able to.

さらに、上記フッ素系不活性液体中に完全に沈むように、上部から8cm角の石英ガラス製の透明板11をレーザー光の光軸に対して5°程度傾け、レーザー光の光路上に細いステンレスワイヤ製のステーを用いて光導波管2の内部に取り付けて、図17に示す、本発明にかかる実施例の一例となる光給電用光源装置1の柱部分を製作した。   Further, a transparent plate 11 made of quartz glass and measuring 8 cm square from the top is tilted about 5 ° with respect to the optical axis of the laser light so as to be completely submerged in the fluorine-based inert liquid. The column portion of the light-feeding light source device 1 as an example of the embodiment according to the present invention shown in FIG.

1 光給電用光源装置
2 光導波管
21 下端
22 塵埃溜まり
3 気相(気体)
4 液相(液体)
41 液面
5 レーザー光発光器
51 出射部
6 レーザー光
61 光軸
62 光路
7 電力ケーブル
8 可動部
9 反射材
10 多孔体
11 透明板
12 排熱部材
13 冷却部材
131 バルブ・ジョイント
132 冷媒
100光給電システム
200移動体
201光給電用受光装置
h 液面高さ
r 反射位置
c 対流
DESCRIPTION OF SYMBOLS 1 Light supply device for optical power supply 2 Optical waveguide 21 Lower end 22 Dust pool 3 Gas phase (gas)
4 liquid phase (liquid)
41 liquid level 5 laser light emitter 51 emission part 6 laser light 61 optical axis 62 optical path 7 power cable 8 movable part 9 reflective material 10 porous body 11 transparent plate 12 heat-dissipating member 13 cooling member 131 valve joint 132 refrigerant 100 optical power supply System 200 Moving body 201 Light receiving device for optical power supply h Liquid level r Reflection position c Convection

Claims (16)

内面が鏡面である中空の光導波管と、レーザー光を出射するレーザー光発光器とを備え、
上記光導波管が、下端が閉塞して内部に気相と接する液相を有するものであり、
上記液相中に上記気相方向へ発光する上記レーザー光発光器を備えることを特徴とする光給電用光源装置。
A hollow optical waveguide whose inner surface is a mirror surface, and a laser light emitter that emits laser light,
The optical waveguide has a liquid phase in which the lower end is closed and in contact with the gas phase inside,
An optical power supply light source device, comprising: the laser light emitter that emits light in the gas phase direction in the liquid phase.
ピーク強度に対して1/eの強度を有する光が、最初に光導波管の内面で反射される位置よりも、上記液相の液面高さが低いことを特徴とする請求項1に記載の光給電用光源装置。 Light having an intensity of 1 / e 2 with respect to the peak intensity, the first from the position that is reflected by the inner surface of the optical waveguide, the in claim 1, wherein the liquid level of the liquid phase is low The light source device for light supply according to the above . さらに上記光導波管内の液相中に反射材を有し、
上記反射材が、光導波管内面及び上記レーザー光の光軸と間隔を開けて略平行に配置され、
上記反射材の光軸側が鏡面であることを特徴とする請求項1又は2に記載の光給電用光源装置。
Further, having a reflector in the liquid phase in the optical waveguide,
The reflecting material is disposed substantially parallel to the optical waveguide inner surface and the optical axis of the laser light at an interval,
The light source device for optical power supply according to claim 1 , wherein an optical axis side of the reflector is a mirror surface.
さらに上記光導波管内の液相中に多孔体を有し、
上記多孔体をレーザー光の光路外に備えることを特徴とする請求項1〜3のいずれか1つの項に記載の光給電用光源装置。
Further, having a porous body in the liquid phase in the optical waveguide,
The light source device for optical power feeding according to any one of claims 1 to 3, wherein the porous body is provided outside the optical path of the laser light.
さらに上記光導波管内の液相中にレーザー光に対して透明な透明板を有し、
上記透明板を、レーザー光の光路上にレーザー光の光軸に対して傾けて備えることを特徴とする請求項1〜4のいずれか1つの項に記載の光給電用光源装置。
Furthermore, having a transparent plate transparent to laser light in the liquid phase in the optical waveguide,
The light source device for optical power feeding according to any one of claims 1 to 4, wherein the transparent plate is provided on the optical path of the laser light so as to be inclined with respect to the optical axis of the laser light.
さらに排熱部材を有し、
上記排熱部材が、上記レーザー光発光器の熱を排熱するものであることを特徴とする請求項1〜5のいずれか1つの項に記載の光給電用光源装置。
Furthermore, it has a heat exhaust member,
The light source device for optical power supply according to any one of claims 1 to 5, wherein the heat discharging member is configured to discharge heat of the laser light emitter.
上記排熱部材が、冷媒を供給する冷却管であることを特徴とする請求項6に記載の光給電用光源装置。 The light source device for optical power supply according to claim 6, wherein the heat-dissipating member is a cooling pipe that supplies a coolant. レーザー光発光器を複数有し、該複数のレーザー光発光器を上記光導波管の内面に沿って配置したものであることを特徴とする請求項1〜7のいずれか1つの項に記載の光給電用光源装置。 The laser light emitting device according to claim 1, further comprising a plurality of laser light emitting devices, wherein the plurality of laser light emitting devices are arranged along an inner surface of the optical waveguide . Light source device for optical power supply. 上記光導波管の外周に冷却部材を備えることを特徴とする請求項1〜8のいずれか1つの項に記載の光給電用光源装置。 The light source device for optical power feeding according to any one of claims 1 to 8 , wherein a cooling member is provided on an outer periphery of the optical waveguide. 上記冷却部材が、冷媒供給部材であることを特徴とする請求項9に記載の光給電用光源装置。 The light source device for optical power supply according to claim 9, wherein the cooling member is a coolant supply member. 上記冷却部材が、内部に常温常圧で液体の冷媒を含む中空気密構造を有するものであることを特徴とする請求項9又は10に記載の光給電用光源装置。 The optical power supply light source device according to claim 9 or 10, wherein the cooling member has a medium airtight structure containing a liquid refrigerant at normal temperature and normal pressure. 上記液相を構成する液体がフッ素系不活性液体であることを特徴とする請求項1〜11のいずれか1つの項に記載の光給電用光源装置。 The light source device for optical power supply according to any one of claims 1 to 11, wherein the liquid constituting the liquid phase is a fluorine-based inert liquid. 上記光導波管が、熱伝導率が200W/(m・K)以上の材料で成ることを特徴とする請求項1〜12のいずれか1つの項に記載の光給電用光源装置。 The light source device according to claim 1, wherein the optical waveguide is made of a material having a thermal conductivity of 200 W / (m · K) or more. 上記レーザー光発光器が半導体発光素子であることを特徴とする請求項1〜13のいずれか1つの項に記載の光給電用光源装置。 The light source device for feeding light according to any one of claims 1 to 13, wherein the laser light emitter is a semiconductor light emitting device. 上記半導体発光素子がVCSEL型レーザ(面発光レーザ)であることを特徴とする請求項14に記載の光給電用光源装置。 The light source device for supplying light according to claim 14, wherein the semiconductor light emitting element is a VCSEL type laser (surface emitting laser). 光給電用光源装置と、該光源装置からの光を受光し発電する光給電用受光装置とを備える光給電システムであって、
上記光給電用光源装置が、請求項1〜15のいずれか1つの項に記載の光給電システム。
An optical power supply system including an optical power supply light source device and an optical power supply light receiving device that receives light from the light source device and generates power.
The optical power supply system according to any one of claims 1 to 15, wherein the optical power supply light source device is provided.
JP2016058784A 2016-03-23 2016-03-23 Optical power supply light source device and optical power supply system using the optical power supply light source device Active JP6671636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058784A JP6671636B2 (en) 2016-03-23 2016-03-23 Optical power supply light source device and optical power supply system using the optical power supply light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058784A JP6671636B2 (en) 2016-03-23 2016-03-23 Optical power supply light source device and optical power supply system using the optical power supply light source device

Publications (2)

Publication Number Publication Date
JP2017175763A JP2017175763A (en) 2017-09-28
JP6671636B2 true JP6671636B2 (en) 2020-03-25

Family

ID=59972299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058784A Active JP6671636B2 (en) 2016-03-23 2016-03-23 Optical power supply light source device and optical power supply system using the optical power supply light source device

Country Status (1)

Country Link
JP (1) JP6671636B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136440B2 (en) * 2018-07-23 2022-09-13 学校法人 中央大学 laser device and generator
CN110667423B (en) * 2019-10-17 2021-08-27 北京群菱能源科技有限公司 Charging equipment convenient to maintain
CN111301188B (en) * 2020-03-17 2021-12-07 智慧互通科技股份有限公司 Laser-based vehicle wireless charging system
JP2023180609A (en) * 2022-06-10 2023-12-21 京セラ株式会社 Power reception system and power feeding device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317747A (en) * 1976-08-02 1978-02-18 Sasaki Mooru Kk Natural light inlet tube
JPS61206903U (en) * 1985-06-17 1986-12-27
JPH03236002A (en) * 1990-02-14 1991-10-22 Hisankabutsu Glass Kenkyu Kaihatsu Kk Light guiding path for energy transmission
JP3351103B2 (en) * 1993-08-02 2002-11-25 松下電器産業株式会社 Semiconductor light emitting device
JP2004031763A (en) * 2002-06-27 2004-01-29 Nichia Chem Ind Ltd Light emitting device
JP6019552B2 (en) * 2011-08-30 2016-11-02 株式会社リコー Optical device, optical scanning apparatus, and image forming apparatus
JP6330494B2 (en) * 2014-06-06 2018-05-30 日産自動車株式会社 Mobile power feeding system and mobile power feeding method
JP6421468B2 (en) * 2014-06-11 2018-11-14 日産自動車株式会社 Mobile power feeding system and mobile power feeding method

Also Published As

Publication number Publication date
JP2017175763A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6671636B2 (en) Optical power supply light source device and optical power supply system using the optical power supply light source device
JP6410794B2 (en) Method and system for controlling convection in a light-sustained plasma
US7986860B2 (en) Laser generated synthetic mega scale aperture for solar energy concentration and harnessing
EP2472525B1 (en) Laser irradiation apparatus
Yabe et al. 100 W-class solar pumped laser for sustainable magnesium-hydrogen energy cycle
CN102481665A (en) Laser-focusing head with ZnS lenses having a peripheral thickness of at least 5 mm and laser cutting unit and method using one such focusing head
US20080225912A1 (en) Solar Light Pumped Laser and Cooling Method of Solar Light Pumped Laser
US20090314347A1 (en) Solar multistage concentrator, and greenhouse
US4172740A (en) Solar energy system
WO2011030306A1 (en) Method and system of aggregating and delivering electrical power using fiber optic cables
US20090050133A1 (en) Reflector and a receiver for a solar energy collection system
CA2744497A1 (en) Device for generating electricity
JP2008140990A (en) Photoelectric converter device
FR2548832A1 (en) PHOTOELECTRIC SOLAR MODULE
KR101033523B1 (en) Linear solar energy concentrator and its application apparatuses
KR101959272B1 (en) Floating concentrated solar cell and hybrid generator system
KR101921567B1 (en) Smart maintenance unit for floating concentrated solar cell and hybrid generator system
FR2945857A1 (en) Device for transmitting heat energy to gaseous or liquid fluid in e.g. solar thermal station, has frame supporting mobile structure for aligning structure so as to maintain solar light in common optical plane of mirrors
JP4802326B2 (en) Solar pumped laser and solar pumped laser cooling method
RU2013713C1 (en) Converter of solar energy into electric power
KR101880519B1 (en) Sun tracing unit for floating concentrated solar cell and hybrid generator system
JP2006329491A (en) Solar heat collecting system
TWI797774B (en) Heat collecting device
WO2023061427A1 (en) Solar heat collection device
JP2011087416A (en) Solar thermal power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200216

R151 Written notification of patent or utility model registration

Ref document number: 6671636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151