JP6670633B2 - 6-way switching valve - Google Patents

6-way switching valve Download PDF

Info

Publication number
JP6670633B2
JP6670633B2 JP2016037227A JP2016037227A JP6670633B2 JP 6670633 B2 JP6670633 B2 JP 6670633B2 JP 2016037227 A JP2016037227 A JP 2016037227A JP 2016037227 A JP2016037227 A JP 2016037227A JP 6670633 B2 JP6670633 B2 JP 6670633B2
Authority
JP
Japan
Prior art keywords
valve
flow path
main valve
path switching
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016037227A
Other languages
Japanese (ja)
Other versions
JP2017155766A (en
Inventor
津久井 良輔
良輔 津久井
紀幸 森田
紀幸 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2016037227A priority Critical patent/JP6670633B2/en
Publication of JP2017155766A publication Critical patent/JP2017155766A/en
Application granted granted Critical
Publication of JP6670633B2 publication Critical patent/JP6670633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Multiple-Way Valves (AREA)

Description

本発明は、弁体を移動させることにより流路の切り換えを行う流路切換弁(三方切換弁)を複数組み合わせて構成した六方切換弁に係り、特に、ヒートポンプ式冷暖房システム等において流路切換を行う流路切換弁として使用するのに好適な六方切換弁に関する。   The present invention relates to a six-way switching valve configured by combining a plurality of flow path switching valves (three-way switching valves) that switch a flow path by moving a valve element, and in particular, performs flow path switching in a heat pump type cooling / heating system or the like. The present invention relates to a six-way switching valve suitable for use as a flow path switching valve.

一般に、ルームエアコン、カーエアコン等のヒートポンプ式冷暖房システムは、圧縮機、室外熱交換器、室内熱交換器、及び膨張弁等に加えて、流路(流れ方向)切換手段としての流路切換弁を備えている。   Generally, a heat pump type cooling / heating system such as a room air conditioner and a car air conditioner includes a flow path switching valve as flow path (flow direction) switching means in addition to a compressor, an outdoor heat exchanger, an indoor heat exchanger, an expansion valve, and the like. It has.

この種の流路切換弁としては、四方切換弁がよく知られているが、それに代えて六方切換弁を用いることが考えられている。   As this type of flow path switching valve, a four-way switching valve is well known, but it has been considered to use a six-way switching valve instead.

以下に六方切換弁を備えたヒートポンプ式冷暖房システムの一例を図6を参照しながら簡単に説明する。図示例のヒートポンプ式冷暖房システム100は、運転モード(冷房運転と暖房運転)の切り換えを六方切換弁180で行うようになっており、基本的には、圧縮機110、室外熱交換器120、室内熱交換器130、冷房用膨張弁150、及び暖房用膨張弁160を備え、それらの間に6個のポートpA、pB、pC、pD、pE、pFを有する六方切換弁180が配在されている。   Hereinafter, an example of a heat pump type cooling and heating system having a six-way switching valve will be briefly described with reference to FIG. The heat pump type cooling / heating system 100 in the illustrated example switches the operation mode (cooling operation and heating operation) by the six-way switching valve 180. Basically, the compressor 110, the outdoor heat exchanger 120, and the indoor A six-way switching valve 180 including a heat exchanger 130, a cooling expansion valve 150, and a heating expansion valve 160 and having six ports pA, pB, pC, pD, pE, and pF is disposed therebetween. I have.

前記各機器間は導管(パイプ)等で形成される流路で接続されており、冷房運転モードが選択されたときには、図6(A)に示される如くに、圧縮機110から吐出された高温高圧の冷媒は、六方切換弁180のポートpAからポートpBを介して室外熱交換器120に導かれ、ここで室外空気と熱交換して凝縮し、高圧の二相冷媒となって冷房用膨張弁150に導入される。この冷房用膨張弁150により高圧の冷媒が減圧され、減圧された低圧の冷媒は、六方切換弁180のポートpEからポートpFを介して室内熱交換器130に導入され、ここで室内空気と熱交換(冷房)して蒸発し、室内熱交換器130からは低温低圧の冷媒が六方切換弁180のポートpCからポートpDを介して圧縮機110の吸入側に戻される。   The devices are connected by a flow path formed by a conduit (pipe) or the like. When the cooling operation mode is selected, as shown in FIG. The high-pressure refrigerant is guided from the port pA of the six-way switching valve 180 to the outdoor heat exchanger 120 via the port pB, where it exchanges heat with outdoor air and condenses, and becomes a high-pressure two-phase refrigerant to expand for cooling. Introduced to valve 150. The high-pressure refrigerant is depressurized by the cooling expansion valve 150, and the depressurized low-pressure refrigerant is introduced from the port pE of the six-way switching valve 180 to the indoor heat exchanger 130 via the port pF, where the indoor air and the heat are cooled. The refrigerant is exchanged (cooled) and evaporated, and the low-temperature and low-pressure refrigerant is returned from the indoor heat exchanger 130 to the suction side of the compressor 110 from the port pC of the six-way switching valve 180 via the port pD.

それに対し、暖房運転モードが選択されたときには、図6(B)に示される如くに、圧縮機110から吐出された高温高圧の冷媒は、六方切換弁180のポートpAからポートpFを介して室内熱交換器130に導かれ、ここで室内空気と熱交換(暖房)して凝縮し、高圧の二相冷媒となって暖房用膨張弁160に導入される。この暖房用膨張弁160により高圧の冷媒が減圧され、減圧された低圧の冷媒は、六方切換弁180のポートpCからポートpBを介して室外熱交換器120に導入され、ここで室外空気と熱交換して蒸発し、室外熱交換器120からは低温低圧の冷媒が六方切換弁180のポートpEからポートpDを介して圧縮機110の吸入側に戻される。   On the other hand, when the heating operation mode is selected, as shown in FIG. 6B, the high-temperature and high-pressure refrigerant discharged from the compressor 110 is supplied from the port pA of the six-way switching valve 180 to the room via the port pF. It is guided to the heat exchanger 130, where it is condensed by heat exchange (heating) with room air, and is introduced into the heating expansion valve 160 as a high-pressure two-phase refrigerant. The high-pressure refrigerant is depressurized by the heating expansion valve 160, and the depressurized low-pressure refrigerant is introduced from the port pC of the six-way switching valve 180 to the outdoor heat exchanger 120 via the port pB, where the outdoor air and the heat are cooled. The refrigerant is exchanged and evaporated, and the low-temperature low-pressure refrigerant is returned from the outdoor heat exchanger 120 to the suction side of the compressor 110 from the port pE of the six-way switching valve 180 via the port pD.

前記した如くのヒートポンプ式冷暖房システムに組み込まれる六方切換弁として、特許文献1に所載の如くの、スライド式のものが知られている。このスライド式の六方切換弁は、スライド式主弁体を内蔵する弁本体(弁ハウジング)と電磁式のパイロット弁(四方パイロット弁)とを有し、弁ハウジングに、前記ポートpA〜pFが設けられるとともに、スライド式主弁体が左右方向に摺動可能に配在されている。弁ハウジングにおけるスライド式主弁体の左右には、パイロット弁を介して圧縮機吐出側及び圧縮機吸入側に接続される、それぞれスライド式主弁体に結合された左右一対のピストン型パッキンにより画成される二つの作動室が設けられ、この二つの作動室への高圧流体(冷媒)の導入・排出を前記パイロット弁で選択的に行い、この二つの作動室の圧力差を利用して前記スライド式主弁体を左右方向に摺動させることで前記流路切換を行うようにされている。   As a six-way switching valve incorporated in the heat pump type cooling and heating system as described above, a sliding type as disclosed in Patent Document 1 is known. The sliding type six-way switching valve has a valve body (valve housing) containing a sliding main valve body and an electromagnetic pilot valve (four-way pilot valve), and the ports pA to pF are provided in the valve housing. And a sliding main valve element is slidably disposed in the left-right direction. The left and right sides of the sliding main valve body in the valve housing are connected to a compressor discharge side and a compressor suction side via a pilot valve, and are defined by a pair of left and right piston type packings respectively connected to the sliding main valve body. Two working chambers are provided, and the introduction and discharge of high-pressure fluid (refrigerant) into and out of the two working chambers are selectively performed by the pilot valve, and the pressure difference between the two working chambers is utilized by utilizing the pressure difference between the two working chambers. The flow path switching is performed by sliding the sliding main valve body in the left-right direction.

特開平8−170864号公報JP-A-8-170864

前記した如くの従来の流路切換弁においては、次のような解決すべき課題がある。   The conventional flow path switching valve as described above has the following problems to be solved.

すなわち、特許文献1に所載のスライド式の六方切換弁では、左右一対のピストン型パッキンを伴うスライド式主弁体を摺動させて流路切換を行う構成であるので、スライド式主弁体のシール面の精度確保が難しく、初期漏れが多くなるという問題や、作動の繰り返しにより摺動部分が摩耗しやすく、それに伴い、摺動部分のシール性が悪くなる等、耐久劣化によって弁漏れ量が増加するおそれもある。   That is, in the slide type six-way switching valve described in Patent Document 1, the slide type main valve body having a pair of left and right piston-type packings is slid to switch the flow path. It is difficult to ensure the accuracy of the sealing surface of the valve, and the initial leakage increases, and the sliding part is liable to wear due to repetition of the operation. May increase.

また、内容積が比較的小さな弁ハウジング内でスライド式主弁体を摺動させて流路切換を行う構成であるので、高低圧両方の流体(冷媒)の流路面積の確保が難しく、高低圧両方の流体(冷媒)において圧力損失が大きくなる嫌いがある。   Further, since the flow path is switched by sliding the slide main valve body in the valve housing having a relatively small internal volume, it is difficult to secure a flow path area for both high and low pressure fluids (refrigerants). There is a tendency to increase the pressure loss in both low-pressure fluids (refrigerants).

加えて、摺動面積の大きいスライド式主弁体を左右一対のピストン型パッキンで移動させて流路切換を行う構成であるため、作動差圧が高くなるという問題もある。   In addition, since the slide type main valve element having a large sliding area is moved by a pair of left and right piston-type packings to switch the flow path, there is a problem that the operating differential pressure increases.

上記に加えて、従来の流路切換弁、特に、前記したヒートポンプ式冷暖房システムに使用される流路切換弁では、弁ハウジング内において高温高圧の冷媒(ポートpAからポートpB、ポートpAからポートpFへ流れる冷媒)と低温低圧の冷媒(ポートpCからポートpD、ポートpEからポートpDへ流れる冷媒)とが近接した状態(スライド式主弁体の壁のみで仕切られた状態)で流されるので、それらの弁ハウジング内での熱交換量が大きくなって、システムの効率が悪くなるという問題もある。   In addition to the above, in a conventional flow path switching valve, particularly a flow path switching valve used in the above-mentioned heat pump type cooling and heating system, a high-temperature and high-pressure refrigerant (port pA to port pB, port pA to port pF ) And the low-temperature and low-pressure refrigerant (the refrigerant flowing from the port pC to the port pD and the refrigerant flowing from the port pE to the port pD) flow in close proximity (a state separated only by the wall of the sliding main valve body). There is also a problem that the amount of heat exchange in those valve housings becomes large and the efficiency of the system becomes poor.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、圧力損失や摺動部分の摩耗を効果的に抑えることができ、耐久性を向上させ得て、弁洩れし難くできるとともに、主弁体を移動させるための作動差圧も可及的に抑えることのできる六方切換弁を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to effectively suppress pressure loss and abrasion of a sliding portion, to improve durability, and to prevent valve leakage. It is another object of the present invention to provide a six-way switching valve capable of suppressing an operation differential pressure for moving a main valve body as much as possible.

また、本発明の他の目的とするところは、ヒートポンプ式冷暖房システム等の高温高圧の流体と低温低圧の流体が流される環境で使用される場合において、熱損失を低減し得てヒートポンプ式冷暖房システムの効率を向上させることのできる六方切換弁を提供することにある。   Another object of the present invention is to provide a heat pump type cooling and heating system which can reduce heat loss when used in an environment where a high temperature and high pressure fluid and a low temperature and low pressure fluid flow, such as a heat pump type cooling and heating system. It is an object of the present invention to provide a six-way switching valve capable of improving the efficiency of the valve.

前記の目的を達成すべく、本発明に係る六方切換弁は、基本的には、それぞれに2個のポートが設けられた3つの流路切換弁と、前記3つの流路切換弁のうちの2つの流路切換弁間を連通せしめる合計で3つの連通路とを備え、前記3つの流路切換弁に合計で6個設けられたポート間の連通状態が切り換えられるようにされており、前記3つの流路切換弁のそれぞれは、主弁室を画成する筒状の主弁ハウジングを有し、前記主弁室には、2個のポートが開口せしめられ、該2個のポートの間に主弁座が設けられ、該2個のポートの一端側もしくは他端側に副弁座が設けられるとともに、前記主弁座と前記副弁座に選択的に接離するポペット式の主弁体が軸線方向に移動自在に配在されており、前記3つの流路切換弁のそれぞれにおいて、前記主弁室内で前記主弁体を連動して移動させることにより、各々の流路切換弁における2個のポートが連通せしめられる第1連通状態と、前記3つの流路切換弁のうちの特定の流路切換弁における1個のポートと他の流路切換弁における1個のポートとがその間に設けられた前記連通路を介して連通せしめられる第2連通状態と、をとり得るようにされていることを特徴としている。   To achieve the above object, a six-way switching valve according to the present invention basically includes three flow path switching valves each provided with two ports, and three of the three flow path switching valves. A total of three communication passages for communicating between the two flow path switching valves are provided, and a communication state between a total of six ports provided in the three flow path switching valves is switched. Each of the three flow path switching valves has a cylindrical main valve housing that defines a main valve chamber. Two ports are opened in the main valve chamber, and the three ports are disposed between the two ports. A main valve seat, a sub-valve seat at one end or the other end of the two ports, and a poppet type main valve selectively contacting / separating from the main valve seat and the sub-valve seat. The body is arranged movably in the axial direction, and in each of the three flow path switching valves, By moving the main valve body in the valve chamber in conjunction with each other, a first communication state in which two ports of each flow path switching valve are made to communicate with each other, and a specific flow state of the three flow path switching valves. A second communication state in which one port of the passage switching valve and one port of the other passage switching valve communicate with each other through the communication passage provided therebetween. It is characterized by:

前記連通路は、好ましくは、該連通路によって連通せしめられる2つの流路切換弁に設けられた4個のポートのうちの少なくとも1個のポートと同じ高さに配置される。   The communication passage is preferably arranged at the same height as at least one of the four ports provided in the two flow path switching valves communicated by the communication passage.

前記連通路は、好ましくは、該連通路によって連通せしめられる2つの流路切換弁に設けられた4個のポートのうちの少なくとも1個のポートと対向するように配置される。   The communication passage is preferably arranged so as to face at least one of the four ports provided in the two flow path switching valves that are communicated by the communication passage.

好ましい態様では、前記3つの流路切換弁のうちの少なくとも2つの流路切換弁における前記主弁体を異なる方向に移動させることにより、前記第1連通状態と前記第2連通状態とが切り換えられるようにされる。   In a preferred aspect, the first communication state and the second communication state are switched by moving the main valve bodies of at least two of the three flow path switching valves in different directions. To be.

別の好ましい態様では、前記主弁ハウジングには、一端側から順次、高圧流体が選択的に導入・排出される容量可変の作動室、前記作動室を画成するピストン、前記主弁室が配在され、前記主弁体は、前記ピストンに連動して軸線方向に移動自在に配在されており、前記3つの流路切換弁のそれぞれにおける前記作動室への高圧流体の導入・排出を制御して前記ピストンを移動させ、前記3つの流路切換弁のそれぞれにおいて、前記主弁室内で前記主弁体を連動して移動させるようにされる。   In another preferred embodiment, the main valve housing is provided with a variable-capacity working chamber for selectively introducing and discharging a high-pressure fluid, a piston defining the working chamber, and the main valve chamber in order from one end side. The main valve body is disposed so as to be movable in the axial direction in conjunction with the piston, and controls the introduction and discharge of the high-pressure fluid to and from the working chamber in each of the three flow path switching valves. Then, the piston is moved, and in each of the three flow path switching valves, the main valve body is moved in conjunction with the main valve chamber.

別の好ましい態様では、前記3つの流路切換弁のうちの少なくとも2つの流路切換弁が軸線方向を同じ方向に向けて横並びで配置されるとともに、前記少なくとも2つの流路切換弁における前記作動室が同じ側に配置される。   In another preferred aspect, at least two of the three flow path switching valves are arranged side by side with the axial direction in the same direction, and the operation in the at least two flow path switching valves is performed. The chambers are located on the same side.

別の好ましい態様では、前記作動室には、前記流路切換弁の前記主弁室に供給される高圧流体が導入されるようにされる。   In another preferred embodiment, high-pressure fluid supplied to the main valve chamber of the flow path switching valve is introduced into the working chamber.

前記作動室への高圧流体の導入・排出の制御を、前記3つの流路切換弁のそれぞれの前記作動室に設けられたポート、及び、前記六方切換弁の高圧部分と低圧部分とに接続された単一の四方パイロット弁により行うようにされる。   The control of the introduction and discharge of the high-pressure fluid into and from the working chamber is performed by connecting the ports provided in the working chamber of each of the three flow path switching valves and the high-pressure part and the low-pressure part of the six-way switching valve. And a single four-way pilot valve.

本発明に係る六方切換弁では、各々の流路切換弁において、筒状の主弁ハウジングにより画成される主弁室内でポペット式の主弁体を連動して移動させることにより、連通するポート間(3つの流路切換弁に合計で6個設けられたポート間の連通状態、流路)が切り換えられるようにされているので、従来のスライド式主弁体を使用した六方切換弁と比べて、弁漏れを抑えられるとともに、流路面積を比較的大きくできて、圧力損失を低減できる。また、各々の流路切換弁に、主弁体を移動させるためのアクチュエータ部(ピストン等)が備えられているので、作動差圧の上昇を抑えることもできる。   In the six-way switching valve according to the present invention, in each of the flow path switching valves, a port that communicates by moving a poppet-type main valve body in conjunction with the main valve chamber defined by the cylindrical main valve housing. (The communication state between the six ports provided in the three flow path switching valves in total, the flow paths) can be switched, so that it is compared with the conventional six-way switching valve using the sliding main valve body. As a result, valve leakage can be suppressed, the flow path area can be made relatively large, and pressure loss can be reduced. Further, since each of the flow path switching valves is provided with an actuator portion (piston or the like) for moving the main valve body, it is possible to suppress an increase in the operating differential pressure.

上記に加えて、本発明に係る六方切換弁をヒートポンプ式冷暖房システム等の、高温高圧の冷媒と低温低圧の冷媒が流される環境で使用する場合、各々の流路切換弁はその間に設けられた各連通路によって比較的大きく離されて設けられているので、高温高圧の冷媒と低温低圧の冷媒とが近接した状態(スライド式主弁体の壁のみで仕切られた状態)で流される従来のものに比べて、主弁ハウジング内での熱交換量を大幅に低減でき、そのため、システムの効率を向上できるという効果も得られる。   In addition to the above, when the six-way switching valve according to the present invention is used in an environment in which a high-temperature and high-pressure refrigerant and a low-temperature and low-pressure refrigerant flow, such as a heat pump cooling and heating system, each of the flow path switching valves is provided therebetween. Conventionally, the high-temperature and high-pressure refrigerant and the low-temperature and low-pressure refrigerant flow close to each other (in a state where the refrigerant is separated only by the wall of the slide main valve body) because the communication passages are provided relatively far apart from each other. Compared with the first embodiment, the amount of heat exchange in the main valve housing can be greatly reduced, so that the effect of improving the efficiency of the system can be obtained.

また、本発明に係る六方切換弁では、各々の流路切換弁において、(ピストンの)一端側に設けられた作動室にのみ高圧流体(作動圧)を導入して、主弁体を移動させるようにされているので、六方切換弁全体の構成を簡素化できるという効果もある。   In the six-way switching valve according to the present invention, in each of the flow path switching valves, high-pressure fluid (operating pressure) is introduced only into the working chamber provided on one end side (of the piston) to move the main valve body. Thus, there is also an effect that the configuration of the entire six-way switching valve can be simplified.

上記した以外の、課題、構成、及び作用効果は、以下の実施形態により明らかにされる。   Problems, configurations, and operational effects other than those described above will be clarified by the following embodiments.

本発明に係る六方切換弁の一実施形態を示す図であり、(A)は正面図、(B)は平面図、(C)は左側面図。It is a figure which shows one Embodiment of the six-way switching valve which concerns on this invention, (A) is a front view, (B) is a top view, (C) is a left view. 図1に示される六方切換弁の第1連通状態(暖房運転時)を示す図であり、(A)は縦断面図、(B)は(A)のU−U矢視線に従う横断面図の要部を示す図。It is a figure which shows the 1st communication state (at the time of heating operation) of the six-way switching valve shown in FIG. 1, (A) is a longitudinal cross-sectional view, (B) is a cross-sectional view following the UU arrow line of (A). The figure which shows a principal part. 図1に示される六方切換弁の第2連通状態(冷房運転時)を示す図であり、(A)は縦断面図、(B)は(A)のU−U矢視線に従う横断面図の要部を示す図。2A and 2B are diagrams showing a second communication state (at the time of cooling operation) of the six-way switching valve shown in FIG. 1, wherein FIG. 1A is a longitudinal sectional view, and FIG. 1B is a transverse sectional view taken along the line U-U of FIG. The figure which shows a principal part. 図1に示される六方切換弁の四方パイロット弁を拡大して示す図であり、(A)は第1連通状態(暖房運転時)(通電OFF時)、(B)は第2連通状態(冷房運転時)(通電ON時)をそれぞれ示す縦断面図。FIG. 2 is an enlarged view of a four-way pilot valve of a six-way switching valve shown in FIG. 1, wherein (A) is a first communication state (at the time of heating operation) (at the time of energization OFF), and (B) is a second communication state (cooling). FIG. 4 is a vertical cross-sectional view showing a state during operation and a state during energization. 図1に示される六方切換弁の変形形態(の第1連通状態(暖房運転時))を示す図であり、(A)は縦断面図、(B)は(A)のU−U矢視線に従う横断面図の要部を示す図。It is a figure which shows the modification (1st communication state (at the time of heating operation)) of the six-way switching valve shown in FIG. 1, (A) is a longitudinal cross-sectional view, (B) is a U-U arrow of (A). The figure which shows the principal part of the cross-sectional view according to FIG. 流路切換弁として六方切換弁が使用されたヒートポンプ式冷暖房システムの一例における、(A)は冷房運転時、(B)は暖房運転時をそれぞれ示す概略構成図。FIG. 1A is a schematic configuration diagram illustrating an example of a cooling operation, and FIG. 2B is a diagram illustrating an example of a heating operation, in an example of a heat pump type cooling and heating system using a six-way switching valve as a flow path switching valve.

以下、本発明の実施形態を図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る六方切換弁の一実施形態を示す図であり、図1(A)は正面図、図1(B)は平面図、図1(C)は左側面図である。また、図2は、図1に示される六方切換弁の第1連通状態(暖房運転時)を示す図であり、図2(A)は縦断面図、図2(B)は図2(A)のU−U矢視線に従う横断面図の要部(後半部)を示す図、図3は、図1に示される六方切換弁の第2連通状態(冷房運転時)を示す図であり、図3(A)は縦断面図、図3(B)は図3(A)のU−U矢視線に従う横断面図の要部(後半部)を示す図である。   FIG. 1 is a view showing an embodiment of a six-way switching valve according to the present invention, wherein FIG. 1 (A) is a front view, FIG. 1 (B) is a plan view, and FIG. 1 (C) is a left side view. . 2 is a view showing a first communication state (at the time of a heating operation) of the six-way switching valve shown in FIG. 1, FIG. 2 (A) is a longitudinal sectional view, and FIG. 2 (B) is FIG. 3) is a diagram showing a main part (the latter half) of a cross-sectional view taken along the line U-U of FIG. 3, and FIG. 3 is a diagram showing a second communication state (during cooling operation) of the six-way switching valve shown in FIG. FIG. 3A is a longitudinal sectional view, and FIG. 3B is a view showing a main part (the latter half) of a transverse sectional view taken along the line U-U in FIG. 3A.

なお、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、説明が煩瑣になるのを避けるために図面に従って便宜上付けたものであり、実際にヒートポンプ式冷暖房システム等に組み込まれた状態での位置、方向を指すとは限らない。   In this specification, descriptions indicating positions and directions such as up and down, left and right, front and back, etc. are provided for convenience according to the drawings in order to avoid complicating the description, and are actually incorporated in a heat pump type cooling / heating system or the like. It does not necessarily indicate the position and direction in the closed state.

また、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、各構成部材の寸法に比べて大きくあるいは小さく描かれている場合がある。   In each of the drawings, a gap formed between members, a separation distance between members, and the like are larger than dimensions of each constituent member for easy understanding of the invention and for convenience of drawing. Or it may be drawn small.

図示実施形態の六方切換弁1は、例えば前述した図6に示されるヒートポンプ式冷暖房システム100における六方切換弁180として用いられるもので、基本的に、3つの流路切換弁(三方切換弁)10、20、30を組み合わせて構成した六方弁本体9と、パイロット弁としての単一の電磁式四方パイロット弁90とを備える。なお、本実施形態の六方切換弁1に備えられている6個のポートは、上記六方切換弁180の各ポートpA〜pFに対応させて同一の符号が付されている。   The six-way switching valve 1 of the illustrated embodiment is used, for example, as the six-way switching valve 180 in the heat pump cooling and heating system 100 shown in FIG. 6 described above, and basically includes three flow path switching valves (three-way switching valves) 10. , 20, and 30 and a single electromagnetic four-way pilot valve 90 as a pilot valve. The six ports provided in the six-way switching valve 1 of the present embodiment are assigned the same reference numerals in correspondence with the ports pA to pF of the six-way switching valve 180.

<六方弁本体9の構成>
六方弁本体9は、主に、それぞれに2個(合計で6個)のポートが設けられた3つのシリンダ型の流路切換弁10、20、30と、3つの流路切換弁10、20、30のうちの2つの流路切換弁間を連通せしめる合計で3つの連通路40、50、60とを備えている。
<Configuration of the six-way valve body 9>
The six-way valve body 9 mainly includes three cylinder-type flow path switching valves 10, 20, 30 each provided with two ports (a total of six ports), and three flow path switching valves 10, 20. , 30 are provided with a total of three communication paths 40, 50, 60 for communicating between two flow path switching valves.

流路切換弁10と流路切換弁20とは、横並びで垂設(軸線O1、O2方向を上下方向に向けて縦置きで配設)され、流路切換弁30は、流路切換弁10及び流路切換弁20の後方かつ下側で横倒しで(軸線O3方向を左右方向に向けて)配設されている。   The flow path switching valve 10 and the flow path switching valve 20 are vertically installed side-by-side (arranged vertically with the axes O1 and O2 directed vertically), and the flow path switching valve 30 is It is disposed on the rear side and below the flow path switching valve 20 sideways (with the direction of the axis O <b> 3 in the left-right direction).

また、各連通路40、50、60は、アルミあるいはステンレス等の金属製の管体で構成されており、図2及び図3を参照すればよく分かるように、流路切換弁10の中央やや上側の部分(ポートpFと同じ高さで当該ポートpEと対向する部分)と流路切換弁20の中央やや上側の部分(ポートpEより上側の部分)とが、横方向に延びる連通路40で溶接等により接続され、流路切換弁20の下部(ポートpDと同じ高さの部分)と流路切換弁30の中央やや右側の部分(ポートpCより右側の部分)とが、前後方向に延びる連通路50で溶接等により接続され、流路切換弁30の左側の部分(ポートpBに対向する部分)と流路切換弁10の下部(ポートpAより下側の部分)とが、前後方向に延びる連通路60で溶接等により接続されている。   Each of the communication passages 40, 50, and 60 is formed of a metal tube such as aluminum or stainless steel. As can be understood from FIG. 2 and FIG. An upper portion (a portion facing the port pE at the same height as the port pF) and a slightly upper portion of the flow path switching valve 20 (a portion above the port pE) are formed by a communication passage 40 extending in the lateral direction. The lower part of the flow path switching valve 20 (the part having the same height as the port pD) and the center slightly right part of the flow path switching valve 30 (the part right of the port pC) extend in the front-rear direction. The flow path switching valve 30 is connected by welding or the like in the communication path 50, and the left side portion (portion facing the port pB) of the flow path switching valve 30 and the lower portion (portion lower than the port pA) of the flow path switching valve 10 extend in the front-rear direction. Connected by welding or the like in the extended communication path 60. To have.

[流路切換弁10の構成]
前記六方弁本体9の前側かつ左側に配置された流路切換弁10は、図2及び図3を参照すればよく分かるように、アルミあるいはステンレス等の金属製とされた円筒状の主弁ハウジング11を有し、この主弁ハウジング11に、一端側(上端側)から順次、高圧流体(冷媒)が選択的に導入・排出される容量可変の作動室12、この作動室12を画成するピストン13、主弁室14が配在されている。断面凹状のピストン13の外周(に設けられた環状溝)には、ピストン13(の外周面)と主弁ハウジング11(の内周面)との摺動面隙間を封止すべく(言い換えれば、主弁ハウジング11を気密的に仕切るべく)、シール部材としてのOリング13Aが装着されている。
[Configuration of flow path switching valve 10]
The flow path switching valve 10 disposed on the front side and the left side of the six-way valve body 9 has a cylindrical main valve housing made of metal such as aluminum or stainless steel, as can be clearly understood from FIGS. The main valve housing 11 has a variable-capacity working chamber 12 into which high-pressure fluid (refrigerant) is selectively introduced and discharged sequentially from one end side (upper end side), and defines the working chamber 12. A piston 13 and a main valve chamber 14 are provided. The outer circumference of the piston 13 having a concave cross section (an annular groove provided on) is used to seal a sliding surface gap between (the outer peripheral surface of) the piston 13 and (the inner peripheral surface of) the main valve housing 11 (in other words, An O-ring 13A as a seal member is mounted for partitioning the main valve housing 11 in an airtight manner.

主弁ハウジング11の一端側開口(上端側開口)を気密的に封止するように、かしめ、溶接等により傘状の一端蓋部材11Aが固着され、その一端蓋部材11Aには、作動室12に高圧流体(冷媒)を導入・排出するためのポートp10が取り付けられている。   An umbrella-shaped one-side lid member 11A is fixed by caulking, welding, or the like so as to hermetically seal one end side opening (upper end side opening) of the main valve housing 11, and the working chamber 12 is attached to the one end lid member 11A. A port p10 for introducing / discharging a high-pressure fluid (refrigerant) is attached to the port p10.

また、主弁ハウジング11の他端側開口(下端側開口)を気密的に封止するように、かしめ、溶接等により短円柱状の他端蓋部材11Bが固着されるとともに、その他端蓋部材11B(の内面)の中央には、軸線(中心線)O1方向に沿って、段付きのガイド軸19が固定されている。   The other end cover member 11B having a short columnar shape is fixed by caulking, welding, or the like so as to hermetically seal the other end side opening (lower end side opening) of the main valve housing 11. At the center of (the inner surface of) 11B, a stepped guide shaft 19 is fixed along the axis (center line) O1 direction.

このガイド軸19は、下側から、比較的短い下部大径部19A、中間中径部19B、比較的長い上部小径部19Cを有し、その下部大径部19Aがかしめ等により他端蓋部材11Bに固定されるとともに、その上部小径部19Cは、後述する主弁体15に設けられた中央嵌挿穴15b(の下半部分)に摺動自在に内嵌されている。また、このガイド軸19には、その中央を貫通するように縦孔(縦向きの貫通孔)19aが形成されるとともに、その中間中径部19Bには、主弁室14(詳細には、後述する主弁室14における副弁座17より他端側)に開口する複数個の横孔19bが形成されている。   The guide shaft 19 has a relatively short lower large-diameter portion 19A, an intermediate middle diameter portion 19B, and a relatively long upper small-diameter portion 19C from the lower side, and the lower large-diameter portion 19A is caulked or the like to cover the other end. 11B, the upper small diameter portion 19C is slidably fitted in a central fitting hole 15b (lower half portion) provided in the main valve body 15 described later. The guide shaft 19 is formed with a vertical hole (vertical through hole) 19a so as to penetrate the center thereof, and the intermediate valve 19B has a main valve chamber 14 (in detail, A plurality of lateral holes 19b are formed in the main valve chamber 14, which will be described later, and open to the other end of the sub-valve seat 17).

前記主弁室14の上部及び上下中央部付近には、左方に向けて延びる管継手からなる2個のポート(ポートpF、ポートpA)が縦並びで開口せしめられ、主弁室14における前記2個のポートの間に、その内端下部が弁シート部とされた主弁座16が設けられ、主弁室14における前記2個のポートより他端側(ここでは、下側のポートpAの直下)には、その内端上部が弁シート部とされた副弁座17が設けられている。主弁座16及び副弁座17は、主弁ハウジング11の内周から内側に向けて突設されて形成されており、その主弁座16及び副弁座17により画成される主弁口及び副弁口の口径(弁シート部の内径)は、主弁ハウジング11の内径(つまり、作動室12やピストン13の外径)より小さくされている。   Two ports (ports pF and pA) each formed of a pipe joint extending leftward are vertically opened in the upper portion and near the center of the upper and lower portions of the main valve chamber 14. Between the two ports, a main valve seat 16 whose inner end lower portion is a valve seat portion is provided, and the other end side (here, lower port pA) of the two valve ports in the main valve chamber 14 is provided. Is provided with a sub-valve seat 17 whose upper end is a valve seat portion. The main valve seat 16 and the sub-valve seat 17 are formed so as to protrude inward from the inner periphery of the main valve housing 11, and the main valve port defined by the main valve seat 16 and the sub-valve seat 17. The diameter of the auxiliary valve port (the inner diameter of the valve seat portion) is smaller than the inner diameter of the main valve housing 11 (that is, the outer diameter of the working chamber 12 and the piston 13).

そして、主弁室14における前記主弁座16より一端側(上端側)(ここでは、主弁座16の直上)には、前記ポートpFに対向するように、前記連通路40(流路切換弁20の主弁室24の副弁座27より一端側に連通する連通路40)が横向きに連通せしめられ、前記副弁座17より他端側(下端側)(ここでは、副弁座17の直下)には、前記連通路60(流路切換弁30の主弁室34の主弁座36より他端側に連通する連通路60)が後向きに連通せしめられている。   The communication passage 40 (flow path switching) is provided at one end side (upper end side) of the main valve seat 16 in the main valve chamber 14 (here, immediately above the main valve seat 16) so as to face the port pF. The communication passage 40 communicating with one end of the sub-valve seat 27 of the main valve chamber 24 of the valve 20 is laterally communicated with the other end (lower end) of the sub-valve seat 17 (here, the sub-valve seat 17). The communication path 60 (communication path 60 communicating with the other end side from the main valve seat 36 of the main valve chamber 34 of the flow path switching valve 30) is communicated backward (just below).

また、前記主弁室14における主弁座16と副弁座17との間には、外周が窪んだ形状に形成されたポペット式の主弁体15が(主弁ハウジング11の内周と所定の間隔をあけて)軸線O1方向(上下方向)に移動自在に配在されている。   Between the main valve seat 16 and the sub-valve seat 17 in the main valve chamber 14, a poppet-type main valve body 15 having a depressed outer periphery (a predetermined distance from the inner periphery of the main valve housing 11). (At intervals), and are movably arranged in the direction of the axis O1 (vertical direction).

前記主弁体15は、主弁座16と副弁座17に選択的に接離するようになっており、図2に示される如くの、その下面外周部分が副弁座17(の弁シート部)に着座して、ポートpAとポートpFとを(主弁座16の主弁口を介して)連通させる他端(下端)位置(暖房位置)と、図3に示される如くの、その上面外周部分が主弁座16(の弁シート部)に着座して、ポートpAと連通路60とを(副弁座17の副弁口を介して)連通させ且つポートpFと連通路40とを連通させる一端(上端)位置(冷房位置)とを選択的にとり得るようにされている。なお、主弁体15が他端位置にあるときには、ポートpAとポートpFは連通路40とも連通しているが、この連通路40と流路切換弁20に設けられた各ポート(ポートpE、ポートpD)間は、主弁室24に配在された主弁体25が副弁座27に着座することにより連通しない(連通状態が遮断される)ようになっている(後で詳述)。   The main valve body 15 selectively comes into contact with and separates from the main valve seat 16 and the sub-valve seat 17, and the outer peripheral portion of the lower surface thereof has a valve seat (of the sub-valve seat 17) as shown in FIG. 3), the other end (lower end) position (heating position) for communicating the port pA and the port pF (via the main valve port of the main valve seat 16) with the port pA and the port pF, as shown in FIG. The outer peripheral portion of the upper surface is seated on (the valve seat portion of) the main valve seat 16 to communicate the port pA with the communication passage 60 (via the sub-valve port of the sub-valve seat 17) and to communicate with the port pF and the communication passage 40. At one end (upper end) position (cooling position) at which the communication is established. When the main valve body 15 is at the other end position, the port pA and the port pF are also in communication with the communication passage 40, but each of the ports (ports pE, Between the ports pD), the main valve body 25 disposed in the main valve chamber 24 does not communicate with the sub-valve seat 27 (communication state is cut off) (described later in detail). .

主弁体15は、移動時以外は主弁座16又は副弁座17に対接せしめられ、このときは主弁室14に導入された高圧の冷媒により押圧されて主弁座16又は副弁座17の弁シート部に圧接せしめられている。   The main valve body 15 is brought into contact with the main valve seat 16 or the sub-valve seat 17 except at the time of movement. At this time, the main valve body 15 is pressed by the high-pressure refrigerant introduced into the main valve chamber 14 and is pressed by the main valve seat 16 or the sub-valve. The seat 17 is pressed against the valve seat portion.

ピストン13の下面中央には、軸線O1方向に沿って、連結軸18が一体的に延設されている。この連結軸18の(他端側)先端部は、若干小径とされるとともに、その外周に雄ねじが形成されている(雄ねじ部18a)。一方、主弁体15には、その中央を貫通するように段付きの中央嵌挿穴15bが形成されており、その一部が縮径されるとともに、その内周に雌ねじが形成されている(雌ねじ部15a)。連結軸18の先端部(雄ねじ部18a)が主弁体15の中央嵌挿穴15b(の上半部分)に挿入され、その連結軸18に設けられた雄ねじと主弁体15に設けられた雌ねじとが螺着されることにより、連結軸18と主弁体15とが一体に連結され、これにより、主弁体15は、ピストン13の往復移動に伴って前記連結軸18に押し引きされて他端位置(暖房位置)と一端位置(冷房位置)との間を行き来するようにされている。   At the center of the lower surface of the piston 13, a connecting shaft 18 is integrally extended along the axis O1 direction. The distal end of the connecting shaft 18 (on the other end side) has a slightly smaller diameter, and has an external thread formed on the outer periphery thereof (an external thread portion 18a). On the other hand, the main valve body 15 is formed with a stepped central fitting hole 15b so as to penetrate the center thereof, a part of which is reduced in diameter, and a female screw is formed on the inner periphery thereof. (Female thread part 15a). The distal end portion (male thread portion 18a) of the connecting shaft 18 is inserted into the central fitting hole 15b (upper half) of the main valve body 15, and the male screw provided on the connecting shaft 18 and the main valve body 15 are provided. The connection shaft 18 and the main valve body 15 are integrally connected by screwing the female screw, whereby the main valve body 15 is pushed and pulled by the connection shaft 18 as the piston 13 reciprocates. It is designed to move back and forth between the other end position (heating position) and one end position (cooling position).

すなわち、本実施形態における流路切換弁10では、作動室12と連結軸18を有するピストン13とで、主弁体15を軸線O1方向(上下方向)に移動させる、流体圧式(詳細には、システム内の高圧冷媒と低圧冷媒の差圧を利用する流体圧式)のアクチュエータ部が構成されている。   That is, in the flow path switching valve 10 according to the present embodiment, the working chamber 12 and the piston 13 having the connecting shaft 18 move the main valve body 15 in the direction of the axis O1 (vertical direction). A fluid pressure type actuator unit that utilizes a differential pressure between a high-pressure refrigerant and a low-pressure refrigerant in the system is configured.

なお、主弁体15の中央嵌挿穴15bの下半部分には、前記したガイド軸19の上部小径部19Cが摺動自在に内嵌され、これにより、主弁体15が、軸線O1方向に沿うように(言い換えれば、軸線O1方向に対する主弁体15の傾きや位置ずれが生じないように)ガイドされて、ピストン13の往復移動に連動して上下動するようになっている。   The upper small-diameter portion 19C of the guide shaft 19 is slidably fitted in the lower half portion of the center fitting hole 15b of the main valve body 15, so that the main valve body 15 is moved in the direction of the axis O1. (In other words, the main valve body 15 is not tilted or displaced with respect to the direction of the axis O1), and moves up and down in conjunction with the reciprocation of the piston 13.

[流路切換弁20の構成]
前記六方弁本体9の前側かつ右側に配置された流路切換弁20の基本構成は、前記した流路切換弁10とほぼ同様であるため、同じ機能及び作用を有する部分には同様の符号(流路切換弁10の各部の符号に対して10を足した符号)を付して重複説明を省略する。
[Configuration of flow path switching valve 20]
The basic configuration of the flow path switching valve 20 disposed on the front side and right side of the six-way valve main body 9 is substantially the same as that of the flow path switching valve 10 described above. The reference numeral of each part of the flow path switching valve 10 is added with 10), and the redundant description is omitted.

この流路切換弁20は、流路切換弁10に対し、基本的に、主弁ハウジング21に設けられた2個のポート(ポートpE、ポートpD)と主弁ハウジング21の内周に設けられた主弁座26及び副弁座27の位置が相違している。   The flow path switching valve 20 is basically provided at two ports (ports pE and pD) provided on the main valve housing 21 and on the inner periphery of the main valve housing 21 with respect to the flow path switching valve 10. The positions of the main valve seat 26 and the sub-valve seat 27 are different.

前記流路切換弁20において、主弁室24の上下中央部付近及び下部には、右方に向けて延びる管継手からなる2個のポート(ポートpE、ポートpD)が縦並びで開口せしめられ、主弁室24における前記2個のポートの間に、その内端上部が弁シート部とされた主弁座26が設けられ、主弁室24における前記2個のポートより一端側(ここでは、上側のポートpEの直上)には、その内端下部が弁シート部とされた副弁座27が設けられている。   In the flow path switching valve 20, two ports (ports pE and pD) each formed of a pipe joint extending rightward are opened in the vicinity of the upper and lower central portions and the lower portion of the main valve chamber 24 in a vertically aligned manner. Between the two ports in the main valve chamber 24, there is provided a main valve seat 26 having an inner end upper portion serving as a valve seat portion, and one end side (here, one end side) of the two ports in the main valve chamber 24. , Just above the upper port pE) is provided with a sub-valve seat 27 having a lower inner end serving as a valve seat portion.

そして、主弁室24における前記副弁座27より一端側(上端側)(ここでは、副弁座27の直上)には、前記連通路40(流路切換弁10の主弁室14の主弁座16より一端側に連通する連通路40)が横向きに連通せしめられ、前記主弁座26より他端側(下端側)(ここでは、主弁座26の直下)には、前記ポートpDと同じ高さで、前記連通路50(流路切換弁30の主弁室34の副弁座37より一端側に連通する連通路50)が後向きに連通せしめられている。   One end side (upper end side) of the sub valve seat 27 in the main valve chamber 24 (in this case, immediately above the sub valve seat 27), the communication passage 40 (the main valve chamber 14 of the flow path switching valve 10). A communication passage 40 communicating with one end of the valve seat 16 is laterally communicated with the port pD at the other end (lower end) of the main valve seat 26 (in this case, immediately below the main valve seat 26). The communication passage 50 (the communication passage 50 communicating with one end side of the sub-valve seat 37 of the main valve chamber 34 of the flow path switching valve 30) is communicated backward at the same height.

軸線O2方向(上下方向)に移動自在に配在されたポペット式の主弁体25は、主弁座26と副弁座27に選択的に接離するようになっており、図2に示される如くの、その上面外周部分が副弁座27(の弁シート部)に着座して、ポートpEとポートpDとを(主弁座26の主弁口を介して)連通させる一端(上端)位置(暖房位置)と、図3に示される如くの、その下面外周部分が主弁座26(の弁シート部)に着座して、ポートpEと連通路40とを(副弁座27の副弁口を介して)連通させ且つポートpDと連通路50とを連通させる他端(下端)位置(冷房位置)とを選択的にとり得るようにされている。なお、主弁体25が一端位置にあるときには、ポートpEとポートpDは連通路50とも連通しているが、この連通路50と流路切換弁30に設けられた各ポート(ポートpC、ポートpB)間は、主弁室34に配在された主弁体35が副弁座37に着座することにより連通しない(連通状態が遮断される)ようになっている(後で詳述)。   A poppet-type main valve body 25 movably arranged in the direction of the axis O2 (vertical direction) selectively comes into contact with and separates from a main valve seat 26 and a sub-valve seat 27, as shown in FIG. One end (upper end) of the outer peripheral portion of the upper surface is seated on (the valve seat portion of) the sub-valve seat 27 to communicate the port pE with the port pD (via the main valve port of the main valve seat 26). The position (heating position) and, as shown in FIG. 3, the outer peripheral portion of the lower surface is seated on (the valve seat portion of) the main valve seat 26, and the port pE and the communication passage 40 are connected to each other (by the sub valve seat 27). The other end (lower end) position (cooling position) for communicating with the port pD and the communication passage 50 (via a valve port) can be selectively selected. When the main valve body 25 is at the one end position, the port pE and the port pD are also in communication with the communication passage 50, but each port (port pC, port pC) provided in the communication passage 50 and the flow path switching valve 30. During the period pB), the main valve body 35 disposed in the main valve chamber 34 does not communicate with the auxiliary valve seat 37 (communication state is cut off) (described later in detail).

主弁体25は、移動時以外は主弁座26又は副弁座27に対接せしめられ、このときは主弁室24に導入された高圧の冷媒により押圧されて主弁座26又は副弁座27の弁シート部に圧接せしめられている。   The main valve body 25 is brought into contact with the main valve seat 26 or the sub-valve seat 27 except at the time of movement. It is pressed against the valve seat of the seat 27.

[流路切換弁30の構成]
前記六方弁本体9の後側かつ下側に配置された流路切換弁30は、基本的に前記した流路切換弁20を横倒し(一端側(上端側)を右端側とし、他端側(下端側)を左端側とするように横倒し)としたもので、その基本構成は、前記した流路切換弁20とほぼ同様であるため、同じ機能及び作用を有する部分には同様の符号(流路切換弁20の各部の符号に対して10を足した符号)を付して重複説明を省略する。
[Configuration of flow path switching valve 30]
The flow path switching valve 30 disposed on the rear side and the lower side of the six-way valve main body 9 basically lays down the flow path switching valve 20 described above (one end (upper end) is the right end side, and the other end side ( The lower end side is set to the left end side) and its basic configuration is almost the same as that of the flow path switching valve 20 described above. The reference numeral of each part of the road switching valve 20 is added with 10), and the repeated description is omitted.

この流路切換弁30において、主弁室34の左右中央部付近及び左部には、後方に向けて延びる管継手からなる2個のポート(ポートpC、ポートpB)が横並びで開口せしめられ、主弁室34における前記2個のポートの間に、その内端右部が弁シート部とされた主弁座36が設けられ、主弁室34における前記2個のポートより一端側(ここでは、右側のポートpCの右隣り)には、その内端左部が弁シート部とされた副弁座37が設けられている。   In the flow path switching valve 30, two ports (ports pC and pB) formed of pipe joints extending rearward are opened side by side near the left and right central portions and the left portion of the main valve chamber 34, Between the two ports in the main valve chamber 34, a main valve seat 36 whose inner end right portion is a valve seat portion is provided, and one end side (here, the two ports) of the main valve chamber 34 is provided. , On the right side of the right port pC), there is provided a sub-valve seat 37 whose inner end left portion is a valve seat portion.

そして、主弁室34における前記副弁座37より一端側(右端側)(ここでは、副弁座37の右隣り)には、前記連通路50(流路切換弁20の主弁室24の主弁座26より他端側に連通する連通路50)が前向きに連通せしめられ、前記主弁座36より他端側(左端側)(ここでは、主弁座36の左隣り)には、前記ポートpBに対向するように、前記連通路60(流路切換弁10の主弁室14の副弁座17より他端側に連通する連通路60)が前向きに連通せしめられている。   One end side (right end side) of the sub valve seat 37 in the main valve chamber 34 (here, the right side of the sub valve seat 37) is provided with the communication passage 50 (the main valve chamber 24 of the flow path switching valve 20). A communication passage 50 that communicates with the other end side from the main valve seat 26 is communicated forward, and on the other end side (left end side) of the main valve seat 36 (here, the left side of the main valve seat 36), The communication passage 60 (communication passage 60 communicating from the sub-valve seat 17 of the main valve chamber 14 of the flow path switching valve 10 to the other end side) is communicated forward so as to face the port pB.

軸線O3方向(左右方向)に移動自在に配在されたポペット式の主弁体35は、主弁座36と副弁座37に選択的に接離するようになっており、図2に示される如くの、その右面外周部分が副弁座37(の弁シート部)に着座して、ポートpCとポートpBとを(主弁座36の主弁口を介して)連通させる一端(右端)位置(暖房位置)と、図3に示される如くの、その左面外周部分が主弁座36(の弁シート部)に着座して、ポートpCと連通路50とを(副弁座37の副弁口を介して)連通させ且つポートpBと連通路60とを連通させる他端(左端)位置(冷房位置)とを選択的にとり得るようにされている。なお、主弁体35が一端位置にあるときには、ポートpCとポートpBは連通路60とも連通しているが、この連通路60と流路切換弁10に設けられた各ポート(ポートpA、ポートpF)間は、主弁室14に配在された主弁体15が副弁座17に着座することにより連通しない(連通状態が遮断される)ようになっている。   A poppet-type main valve body 35 movably disposed in the direction of the axis O3 (left-right direction) selectively comes into contact with and separates from a main valve seat 36 and a sub-valve seat 37, as shown in FIG. One end (right end) of which the outer peripheral portion on the right side is seated on (the valve seat portion of) the sub-valve seat 37 to communicate the port pC and the port pB (via the main valve port of the main valve seat 36). The position (heating position) and the outer peripheral portion on the left side thereof as shown in FIG. 3 are seated on (the valve seat portion of) the main valve seat 36, and the port pC and the communication passage 50 are connected to each other (by the sub valve seat 37). The other end (left end) position (cooling position) where the port pB communicates with the port pB and the communication passage 60 (via a valve port) can be selectively selected. When the main valve body 35 is at the one end position, the port pC and the port pB are also in communication with the communication passage 60, but the communication passage 60 and each port (port pA, port During the period pF), the main valve body 15 disposed in the main valve chamber 14 does not communicate with the sub valve seat 17 (communication state is interrupted).

主弁体35は、移動時以外は主弁座36又は副弁座37に対接せしめられ、このときは主弁室34に導入された高圧の冷媒により押圧されて主弁座36又は副弁座37の弁シート部に圧接せしめられている。   The main valve body 35 is brought into contact with the main valve seat 36 or the sub-valve seat 37 except at the time of movement. At this time, the main valve body 35 is pressed by the high-pressure refrigerant introduced into the main valve chamber 34 so that the main valve seat 36 or the sub-valve It is pressed against the valve seat of the seat 37.

なお、本例では、各々の流路切換弁10、20、30に設けられた各ポートpA〜pFの口径、及び、各々の連通路40、50、60の通路径は、略同径に設定されている。   In this example, the diameters of the ports pA to pF provided in the flow path switching valves 10, 20, 30 and the diameters of the communication paths 40, 50, 60 are set to be substantially the same. Have been.

<六方弁本体9の動作>
次に、上記した如くの構成を有する六方弁本体9の動作を説明する。
<Operation of the six-way valve body 9>
Next, the operation of the six-way valve body 9 having the above-described configuration will be described.

各々の流路切換弁10、20、30の主弁体15、25、35が暖房位置(流路切換弁10の主弁体15が他端(下端)位置、流路切換弁20の主弁体25が一端(上端)位置、流路切換弁30の主弁体35が一端(右端)位置)(図2に示される如くの第1連通状態)にあるときにおいて、後述する四方パイロット弁90を介して、作動室22及び作動室32を吐出側高圧ポートであるポートpAに連通させるとともに、作動室12を吸入側低圧ポートであるポートpDに連通させると、作動室22及び作動室32に高温高圧の冷媒が導入されるとともに、作動室12から高温高圧の冷媒が排出される。そのため、作動室22の圧力が主弁室24の圧力より高くなり、ピストン23及び主弁体25が(ガイド軸29にガイドされながら)下方に移動し、主弁体25(の上面外周部分)が副弁座27(の弁シート部)から離れて副弁口が開かれるとともに、主弁体25(の下面外周部分)が主弁座26(の弁シート部)に着座して接当係止される。また、作動室32の圧力が主弁室34の圧力より高くなり、ピストン33及び主弁体35が(ガイド軸39にガイドされながら)左方に移動し、主弁体35(の右面外周部分)が副弁座37(の弁シート部)から離れて副弁口が開かれるとともに、主弁体35(の左面外周部分)が主弁座36(の弁シート部)に着座して接当係止される。さらに、作動室12の圧力が主弁室14の圧力より低くなり、ピストン13及び主弁体15が(ガイド軸19にガイドされながら)上方に移動し、主弁体15(の下面外周部分)が副弁座17(の弁シート部)から離れて副弁口が開かれるとともに、主弁体15(の上面外周部分)が主弁座16(の弁シート部)に着座して接当係止される。これにより、各々の流路切換弁10、20、30の主弁体15、25、35が冷房位置(流路切換弁10の主弁体15が一端(上端)位置、流路切換弁20の主弁体25が他端(下端)位置、流路切換弁30の主弁体35が他端(左端)位置)(図3に示される如くの第2連通状態)をとる。   The main valve bodies 15, 25, 35 of the respective flow path switching valves 10, 20, 30 are in the heating position (the main valve body 15 of the flow path switching valve 10 is at the other end (lower end) position, the main valve of the flow path switching valve 20) When the body 25 is at one end (upper end) position and the main valve body 35 of the flow path switching valve 30 is at one end (right end) position (first communication state as shown in FIG. 2), a four-way pilot valve 90 described later When the working chamber 22 and the working chamber 32 are communicated with the port pA, which is the discharge-side high-pressure port, and the working chamber 12 is connected with the port pD, which is the suction-side low-pressure port, the working chamber 22 and the working chamber 32 The high-temperature and high-pressure refrigerant is introduced, and the high-temperature and high-pressure refrigerant is discharged from the working chamber 12. Therefore, the pressure of the working chamber 22 becomes higher than the pressure of the main valve chamber 24, and the piston 23 and the main valve body 25 move downward (while being guided by the guide shaft 29), and (the outer peripheral portion of the upper surface of the main valve body 25). Is separated from the sub-valve seat 27 (valve seat portion), the sub-valve opening is opened, and the main valve body 25 (the outer peripheral portion of the lower surface) is seated on the main valve seat 26 (valve seat portion) to make contact. Is stopped. Further, the pressure of the working chamber 32 becomes higher than the pressure of the main valve chamber 34, the piston 33 and the main valve body 35 move to the left (while being guided by the guide shaft 39), and the outer peripheral portion of the right side of the main valve body 35 ( ) Is separated from the sub-valve seat 37 (valve seat portion) to open the sub-valve port, and the main valve body 35 (outer peripheral portion of the left surface) is seated on (contacted with) the main valve seat 36 (valve seat portion). Locked. Further, the pressure in the working chamber 12 becomes lower than the pressure in the main valve chamber 14, the piston 13 and the main valve body 15 move upward (while being guided by the guide shaft 19), and (the outer peripheral portion of the lower surface of the main valve body 15). Is separated from the sub-valve seat 17 (valve seat portion) and the sub-valve opening is opened, and the main valve body 15 (the outer peripheral portion of the upper surface) is seated on the main valve seat 16 (valve seat portion) and the contact member Is stopped. As a result, the main valve bodies 15, 25, 35 of the flow path switching valves 10, 20, 30 are in the cooling position (the main valve body 15 of the flow path switching valve 10 is at one end (upper end) position, The main valve body 25 is at the other end (lower end) position, and the main valve body 35 of the flow path switching valve 30 is at the other end (left end) position (second communication state as shown in FIG. 3).

これにより、流路切換弁10におけるポートpAと流路切換弁30におけるポートpBとがその間に設けられた連通路60を介して連通せしめられ、流路切換弁30におけるポートpCと流路切換弁20におけるポートpDとがその間に設けられた連通路50を介して連通せしめられ、流路切換弁20におけるポートpEと流路切換弁10におけるポートpFとがその間に設けられた連通路40を介して連通せしめられるので、図6に示される如くのヒートポンプ式冷暖房システム100において、冷房運転が行われる。   As a result, the port pA of the flow path switching valve 10 and the port pB of the flow path switching valve 30 are communicated via the communication path 60 provided therebetween, and the port pC of the flow path switching valve 30 and the flow path switching valve are connected. The port pD of the flow path switching valve 20 and the port pE of the flow path switching valve 10 are communicated with each other via a communication path 50 provided therebetween. The cooling operation is performed in the heat pump type cooling and heating system 100 as shown in FIG.

各々の流路切換弁10、20、30の主弁体15、25、35が冷房位置(図3に示される如くの第2連通状態)にあるときにおいて、後述する四方パイロット弁90を介して、作動室12を吐出側高圧ポートであるポートpAに連通させるとともに、作動室22及び作動室32を吸入側低圧ポートであるポートpDに連通させると、作動室12に高温高圧の冷媒が導入されるとともに、作動室22及び作動室32から高温高圧の冷媒が排出される。そのため、作動室12の圧力が主弁室14の圧力より高くなり、ピストン13及び主弁体15が(ガイド軸19にガイドされながら)下方に移動し、主弁体15(の上面外周部分)が主弁座16(の弁シート部)から離れて主弁口が開かれるとともに、主弁体15(の下面外周部分)が副弁座17(の弁シート部)に着座して接当係止される。また、作動室22の圧力が主弁室24の圧力より低くなり、ピストン23及び主弁体25が(ガイド軸29にガイドされながら)上方に移動し、主弁体25(の下面外周部分)が主弁座26(の弁シート部)から離れて主弁口が開かれるとともに、主弁体25(の上面外周部分)が副弁座27(の弁シート部)に着座して接当係止される。さらに、作動室32の圧力が主弁室34の圧力より低くなり、ピストン33及び主弁体35が(ガイド軸39にガイドされながら)右方に移動し、主弁体35(の左面外周部分)が主弁座36(の弁シート部)から離れて主弁口が開かれるとともに、主弁体35(の右面外周部分)が副弁座37(の弁シート部)に着座して接当係止される。これにより、各々の流路切換弁10、20、30の主弁体15、25、35が暖房位置(流路切換弁10の主弁体15が他端(下端)位置、流路切換弁20の主弁体25が一端(上端)位置、流路切換弁30の主弁体35が一端(右端)位置)(図2に示される如くの第1連通状態)をとる。   When the main valve bodies 15, 25, 35 of the respective flow path switching valves 10, 20, 30 are in the cooling position (the second communication state as shown in FIG. 3), a four-way pilot valve 90 described later is used. When the working chamber 12 is connected to the port pA, which is a discharge-side high-pressure port, and the working chamber 22 and the working chamber 32 are connected to a port pD, which is a suction-side low-pressure port, high-temperature and high-pressure refrigerant is introduced into the working chamber 12. At the same time, the high-temperature and high-pressure refrigerant is discharged from the working chamber 22 and the working chamber 32. Therefore, the pressure of the working chamber 12 becomes higher than the pressure of the main valve chamber 14, and the piston 13 and the main valve body 15 move downward (while being guided by the guide shaft 19), and (the outer peripheral portion of the upper surface of the main valve body 15). Is separated from the main valve seat 16 (the valve seat portion thereof), the main valve port is opened, and the main valve body 15 (the outer peripheral portion of the lower surface thereof) is seated on the sub valve seat 17 (the valve seat portion of the sub valve seat 17). Is stopped. Further, the pressure in the working chamber 22 becomes lower than the pressure in the main valve chamber 24, and the piston 23 and the main valve element 25 move upward (while being guided by the guide shaft 29), and (the outer peripheral portion of the lower surface of the main valve element 25). Is separated from (the valve seat portion of) the main valve seat 26, the main valve port is opened, and the (the outer peripheral portion of the upper surface of) the main valve body 25 is seated on (the valve seat portion of) the sub-valve seat 27 (the valve seat portion). Is stopped. Further, the pressure in the working chamber 32 becomes lower than the pressure in the main valve chamber 34, the piston 33 and the main valve body 35 move rightward (while being guided by the guide shaft 39), and the outer peripheral portion of the left side of the main valve body 35 ( ) Is separated from (the valve seat portion of) the main valve seat 36 and the main valve port is opened, and the (the outer peripheral portion on the right side of) the main valve body 35 is seated on the sub-valve seat 37 (the valve seat portion of the). Locked. Thereby, the main valve bodies 15, 25, 35 of the respective flow path switching valves 10, 20, 30 are in the heating position (the main valve body 15 of the flow path switching valve 10 is at the other end (lower end) position, and the flow path switching valve 20 (The first communication state as shown in FIG. 2) when the main valve element 25 is at one end (upper end) position and the main valve element 35 of the flow path switching valve 30 is at one end (right end) position.

これにより、流路切換弁10においてポートpAとポートpFとが連通せしめられ、流路切換弁20においてポートpEとポートpDとが連通せしめられ、流路切換弁30においてポートpCとポートpBとが連通せしめられるので、図6に示される如くのヒートポンプ式冷暖房システム100において、暖房運転が行われる。   This allows the port pA and the port pF to communicate with each other in the flow path switching valve 10, the port pE and the port pD to communicate with each other in the flow path switching valve 20, and the port pC and the port pB in the flow path switching valve 30. Since the communication is established, the heating operation is performed in the heat pump type cooling and heating system 100 as shown in FIG.

ここで、本実施形態では、流路切換弁10における主弁体15の外径(シート径)が、主弁ハウジング11の内径(つまり、ピストン13の受圧径)より小さくされ、流路切換弁20における主弁体25の外径(シート径)が、主弁ハウジング21の内径(つまり、ピストン23の受圧径)より小さくされ、流路切換弁30における主弁体35の外径(シート径)が、主弁ハウジング31の内径(つまり、ピストン33の受圧径)より小さくされているので、前記した流路切換に当たり(つまり、暖房運転から冷房運転に切り換える際、及び、冷房運転から暖房運転に切り換える際に)、簡単な構成でもって、各々の流路切換弁10、20、30の主弁体15、25、35を確実に移動させられるようになっている。   Here, in the present embodiment, the outer diameter (seat diameter) of the main valve body 15 in the flow path switching valve 10 is made smaller than the inner diameter of the main valve housing 11 (that is, the pressure receiving diameter of the piston 13). The outer diameter (seat diameter) of the main valve body 25 at 20 is smaller than the inner diameter of the main valve housing 21 (that is, the pressure receiving diameter of the piston 23), and the outer diameter (seat diameter) of the main valve body 35 at the flow path switching valve 30. ) Is made smaller than the inner diameter of the main valve housing 31 (that is, the pressure receiving diameter of the piston 33), so that the flow path is switched (that is, when switching from the heating operation to the cooling operation, and from the cooling operation to the heating operation). ), The main valve bodies 15, 25, 35 of the respective flow path switching valves 10, 20, 30 can be reliably moved with a simple configuration.

<四方パイロット弁90の構成>
パイロット弁としての四方パイロット弁90は、その構造自体はよく知られているもので、図4に拡大図示されている如くに、基端側(上端側)外周に電磁コイル91が外嵌固定された円筒状のストレートパイプからなる弁ケース92を有し、該弁ケース92に、基端側から順次、吸引子95、圧縮コイルばね96、プランジャ97が直列的に配在されている。
<Configuration of four-way pilot valve 90>
The structure of the four-way pilot valve 90 as the pilot valve is well known. As shown in an enlarged view in FIG. 4, an electromagnetic coil 91 is externally fitted and fixed to the outer periphery of the base end (upper end). The valve case 92 has a cylindrical straight pipe. A suction element 95, a compression coil spring 96, and a plunger 97 are arranged in this valve case 92 in series from the proximal end side.

弁ケース92の上端部は、吸引子95の鍔状部(外周段丘部)に溶接等により密封接合されており、吸引子95は、通電励磁用の電磁コイル91の外周を覆うカバーケース91Aにボルト92Bにより締結固定されている。   The upper end of the valve case 92 is hermetically joined by welding or the like to the flange portion (outer peripheral step portion) of the suction element 95. The suction element 95 is attached to a cover case 91 </ b> A that covers the outer circumference of the electromagnetic coil 91 for energization. It is fastened and fixed by bolts 92B.

一方、弁ケース92の下端開口部には、高圧冷媒を導入するための細管挿着口(高圧導入ポートa)を有するフィルタ付き蓋部材98が溶接、ろう付け、かしめ等により気密的に取着されており、蓋部材98とプランジャ97と弁ケース92とで囲まれる領域が弁室99となっている。弁室99には、蓋部材98の細管挿着口(高圧導入ポートa)に気密的に挿着された可撓性を有する高圧細管#aを介して前記ポート(吐出側高圧ポート)pAから高温高圧の冷媒が導入されるようになっている。   On the other hand, a lid member 98 with a filter having a thin tube insertion port (high-pressure introduction port a) for introducing high-pressure refrigerant is hermetically attached to the lower end opening of the valve case 92 by welding, brazing, caulking, or the like. A region surrounded by the lid member 98, the plunger 97, and the valve case 92 is a valve chamber 99. The valve chamber 99 is connected to the port (discharge-side high-pressure port) pA through a flexible high-pressure thin tube #a that is airtightly inserted into a thin-tube insertion port (high-pressure introduction port a) of the lid member 98. High-temperature, high-pressure refrigerant is introduced.

また、弁ケース92におけるプランジャ97と蓋部材98との間には、その内端面が平坦な弁シート面とされた弁座93がろう付け等により気密的に接合されており、この弁座93の弁シート面(内端面)には、先端側(下端側)から順次、前記した六方弁本体9の流路切換弁20の作動室22及び流路切換弁30の作動室32に細管#bを介して接続されるポートb、ポート(吸入側低圧ポート)pDに細管#cを介して接続されるポートc、流路切換弁10の作動室12に細管#dを介して接続されるポートdが弁ケース92の長手方向(上下方向)に沿って所定間隔をあけて縦並びに開口せしめられている。   Further, a valve seat 93 having a flat inner end surface formed between the plunger 97 and the lid member 98 in the valve case 92 is hermetically joined by brazing or the like. In the valve seat surface (inner end surface), the working chamber 22 of the flow path switching valve 20 and the working chamber 32 of the flow path switching valve 30 of the above-described six-way valve body 9 are sequentially provided with a thin tube #b from the front end side (lower end side). B, a port c connected to the port (suction side low pressure port) pD via a thin tube #c, and a port connected to the working chamber 12 of the flow path switching valve 10 via a thin tube #d. “d” are vertically opened at predetermined intervals along the longitudinal direction (vertical direction) of the valve case 92.

吸引子95に対向配置されたプランジャ97は、基本的には円柱状とされ、弁ケース92内を軸方向(弁ケース92の中心線Lに沿う方向)に摺動自在に配在されている。そのプランジャ97の吸引子95側とは反対側の端部には、弁体94をその自由端側で厚み方向に摺動可能に保持する弁体ホルダ94Aがその基端部を取付具94Bと共に圧入、かしめ等により取付固定されている。この弁体ホルダ94Aには、弁体94を弁座93に押し付ける方向(厚み方向)に付勢する板ばね94Cが取り付けられている。弁体94は、弁座93の弁シート面に開口するポートb、c、d間の連通状態を切り換えるべく、当該弁座93の弁シート面に対接せしめられた状態で、弁座93の弁シート面をプランジャ97の上下動に伴って摺動するようになっている。   The plunger 97 opposed to the suction element 95 is basically cylindrical, and is slidably disposed in the valve case 92 in the axial direction (along the center line L of the valve case 92). . At the end of the plunger 97 opposite to the suction element 95 side, a valve body holder 94A for holding the valve body 94 slidably in the thickness direction at its free end side has its base end together with the fixture 94B. It is attached and fixed by press fitting, caulking, or the like. A leaf spring 94C for urging the valve body 94 in a direction (thickness direction) of pressing the valve body 94 against the valve seat 93 is attached to the valve body holder 94A. The valve body 94 is brought into contact with the valve seat surface of the valve seat 93 so as to switch the communication state between the ports b, c, and d that open to the valve seat surface of the valve seat 93. The valve seat slides with the vertical movement of the plunger 97.

また、弁体94には、弁座93の弁シート面に開口する3個のポートb〜dのうちの隣り合うポートb−c間、c−d間を選択的に連通させ得るような大きさの凹部94aが設けられている。   Further, the valve element 94 has such a size that it can selectively communicate between the adjacent ports bc and cd between the three ports b to d opening on the valve seat surface of the valve seat 93. A concave portion 94a is provided.

また、圧縮コイルばね96は、吸引子95とプランジャ97との間に縮装されてプランジャ97を吸引子95から引き離す方向(図では、下方)に付勢するようになっているが、本例では、弁座93(の上端部)が、プランジャ97の下方への移動を阻止するストッパとされている。なお、このストッパの構成としては、その他の構成を採用し得ることは言うまでも無い。   The compression coil spring 96 is compressed between the suction element 95 and the plunger 97 to urge the plunger 97 in a direction (downward in the drawing) to separate the plunger 97 from the suction element 95. Here, the (upper end) of the valve seat 93 is a stopper that prevents the plunger 97 from moving downward. Needless to say, other configurations can be adopted as the configuration of the stopper.

なお、上記四方パイロット弁90は、取付具92Aを介して六方弁本体9の背面側等(図示例では、流路切換弁10の背面側)に取付けられる。   The four-way pilot valve 90 is attached to the rear side of the six-way valve main body 9 and the like (in the illustrated example, the rear side of the flow path switching valve 10) via a fixture 92A.

<四方パイロット弁90の動作>
上記した如くの構成とされた四方パイロット弁90においては、電磁コイル91への通電OFF時には、図2及び図4(A)に示される如くに、プランジャ97は圧縮コイルばね96の付勢力により、その下端が弁座93に接当する位置まで押し下げられている。この状態では、弁体94がポートbとポートc上に位置し、その凹部94aによりポートbとポートcが連通するとともに、ポートdと弁室99とが連通するので、ポート(吐出側高圧ポート)pAに流入する高圧流体が高圧細管#a→弁室99→ポートd→細管#d→ポートp10を介して作動室12に導入されるとともに、作動室22及び作動室32の高圧流体がポートp20及びポートp30→細管#b→ポートb→凹部94a→ポートc→細管#c→ポート(吸入側低圧ポート)pDへと流れて排出される。
<Operation of four-way pilot valve 90>
In the four-way pilot valve 90 configured as described above, when the power supply to the electromagnetic coil 91 is turned off, as shown in FIGS. 2 and 4A, the plunger 97 is actuated by the urging force of the compression coil spring 96. The lower end is pushed down to a position where it contacts the valve seat 93. In this state, the valve element 94 is located on the port b and the port c, and the port b and the port c communicate with each other through the concave portion 94a, and the port d and the valve chamber 99 communicate with each other. ) The high-pressure fluid flowing into the pA is introduced into the working chamber 12 through the high-pressure capillary # a → the valve chamber 99 → port d → the capillary # d → port p10, and the high-pressure fluid in the working chamber 22 and the working chamber 32 is supplied to the port. p20 and the port p30 → the thin tube # b → the port b → the concave portion 94a → the port c → the thin tube # c → the port (suction side low pressure port) pD and discharged.

それに対し、電磁コイル91への通電をONにすると、図3及び図4(B)に示される如くに、プランジャ97は吸引子95の吸引力により、その上端が吸引子95に接当する位置まで(圧縮コイルばね96の付勢力に抗して)引き寄せられる。このときには、弁体94がポートcとポートd上に位置し、その凹部94aによりポートcとポートdが連通するとともに、ポートbと弁室99とが連通するので、ポート(吐出側高圧ポート)pAに流入する高圧流体が高圧細管#a→弁室99→ポートb→細管#b→ポートp20及びポートp30を介して作動室22及び作動室32に導入されるとともに、作動室12の高圧流体がポートp10→細管#d→ポートd→凹部94a→ポートc→細管#c→ポート(吸入側低圧ポート)pDへと流れて排出される。   On the other hand, when the energization to the electromagnetic coil 91 is turned on, the plunger 97 is moved to a position where its upper end contacts the suction element 95 due to the suction force of the suction element 95 as shown in FIGS. (Against the biasing force of the compression coil spring 96). At this time, the valve body 94 is located above the port c and the port d, and the port c and the port d communicate with each other through the concave portion 94a, and the port b and the valve chamber 99 communicate with each other. The high-pressure fluid flowing into the pA is introduced into the working chambers 22 and 32 via the high-pressure capillary # a → the valve chamber 99 → port b → the capillary # b → the port p20 and the port p30. Flows from the port p10 → the thin tube # d → the port d → the concave portion 94a → the port c → the thin tube # c → the port (suction side low pressure port) pD and is discharged.

したがって、電磁コイル91への通電をOFFにすると、各流路切換弁10、20、30の主弁体15、25、35が冷房位置(第2連通状態)から暖房位置(第1連通状態)に移行し、前記した如くの流路切換が行われる一方、電磁コイル91への通電をONにすると、各流路切換弁10、20、30の主弁体15、25、35が暖房位置(第1連通状態)から冷房位置(第2連通状態)に移行し、前記した如くの流路切換が行われる。   Therefore, when the energization to the electromagnetic coil 91 is turned off, the main valve bodies 15, 25, 35 of the flow path switching valves 10, 20, 30 are moved from the cooling position (second communication state) to the heating position (first communication state). When the flow to the electromagnetic coil 91 is turned on while the flow path switching as described above is performed, the main valve bodies 15, 25, and 35 of the flow path switching valves 10, 20, and 30 move to the heating position ( The transition from the first communication state) to the cooling position (second communication state) is performed, and the flow path switching as described above is performed.

このように、本実施形態の六方切換弁1においては、電磁式四方パイロット弁90への通電をON/OFFで切り換えることで、六方切換弁1内を流通する高圧流体(高圧部分であるポートpAを流れる流体)と低圧流体(低圧部分であるポートpDを流れる流体)との差圧を利用して六方弁本体9を構成する各流路切換弁10、20、30の主弁体15、25、35を主弁室14、24、34内で連動して移動させることにより、3つの流路切換弁10、20、30に合計で6個設けられたポート間の連通状態が切り換えられ、図6に示される如くのヒートポンプ式冷暖房システム100において、暖房運転から冷房運転への切り換え、及び、冷房運転から暖房運転への切り換えを行うことができる。   As described above, in the six-way switching valve 1 of the present embodiment, the energization of the electromagnetic four-way pilot valve 90 is switched between ON and OFF, so that the high-pressure fluid flowing through the six-way switching valve 1 (the port pA, which is a high-pressure portion). The main valve bodies 15, 25 of the flow path switching valves 10, 20, 30 constituting the six-way valve main body 9 by utilizing the pressure difference between the fluid flowing through the main body 9 and the low pressure fluid (the fluid flowing through the port pD, which is a low pressure portion). , 35 in the main valve chambers 14, 24, 34 in an interlocked manner, the communication state between a total of six ports provided in the three flow path switching valves 10, 20, 30 is switched. In the heat pump type cooling and heating system 100 as shown in FIG. 6, switching from the heating operation to the cooling operation and switching from the cooling operation to the heating operation can be performed.

<六方切換弁1の作用効果>
以上の説明から理解されるように、本実施形態の六方切換弁1においては、各々の流路切換弁10、20、30において、円筒状の主弁ハウジング11、21、31により画成される主弁室14、24、34内でポペット式の主弁体15、25、35を連動して移動させることにより、連通するポート間(3つの流路切換弁に合計で6個設けられたポート間の連通状態、流路)が切り換えられるようにされているので、従来のスライド式主弁体を使用した六方切換弁と比べて、弁漏れを抑えられるとともに、流路面積を比較的大きくできて、圧力損失を低減できる。また、各々の流路切換弁10、20、30に、主弁体15、25、35を移動させるためのアクチュエータ部(ピストン等)が備えられているので、作動差圧の上昇を抑えることもできる。
<Operation and Effect of Six-way Switching Valve 1>
As understood from the above description, in the six-way switching valve 1 of the present embodiment, each of the flow path switching valves 10, 20, 30 is defined by the cylindrical main valve housings 11, 21, 31. By moving the poppet-type main valve bodies 15, 25, and 35 in the main valve chambers 14, 24, and 34 in an interlocking manner, the ports (the six ports provided in the three flow path switching valves in total) are connected. Between the two-way switching valve using a conventional slide-type main valve body, valve leakage can be suppressed, and the flow path area can be made relatively large. Thus, pressure loss can be reduced. Further, since each of the flow path switching valves 10, 20, 30 is provided with an actuator portion (piston or the like) for moving the main valve bodies 15, 25, 35, it is possible to suppress an increase in the operating differential pressure. it can.

上記に加えて、本実施形態の六方切換弁1をヒートポンプ式冷暖房システム等の、高温高圧の冷媒と低温低圧の冷媒が流される環境で使用する場合、各々の流路切換弁10、20、30はその間に設けられた各連通路40、50、60によって比較的大きく離されて設けられているので、高温高圧の冷媒と低温低圧の冷媒とが近接した状態(スライド式主弁体の壁のみで仕切られた状態)で流される従来のものに比べて、主弁ハウジング11、21、31内での熱交換量を大幅に低減でき、そのため、システムの効率を向上できるという効果も得られる。   In addition to the above, when the six-way switching valve 1 of the present embodiment is used in an environment where a high-temperature and high-pressure refrigerant and a low-temperature and low-pressure refrigerant flow, such as a heat pump cooling and heating system, each of the flow path switching valves 10, 20, and 30 is used. Are relatively separated by the communication passages 40, 50, 60 provided therebetween, so that the high-temperature and high-pressure refrigerant and the low-temperature and low-pressure refrigerant are in close proximity (only the wall of the sliding main valve body As compared with the conventional one that is flown in a state of being partitioned by the heat exchanger, the amount of heat exchange in the main valve housings 11, 21, 31 can be greatly reduced, so that the effect of improving the efficiency of the system can be obtained.

また、本実施形態の六方切換弁1では、各々の流路切換弁10、20、30において、(ピストン13、23、33の)一端側に設けられた作動室12、22、32にのみ高圧流体(作動圧)を導入して、主弁体15、25、35を移動させるようにされるとともに、主弁体15、25、35の外径(シート径)がピストン13、23、33の受圧径より小さくされているので、簡単な構成でもって、各々の流路切換弁10、20、30の主弁体15、25、35を確実に移動させることができるという効果もある。   In the six-way switching valve 1 of the present embodiment, in each of the flow path switching valves 10, 20, and 30, only the working chambers 12, 22, and 32 provided on one end side (of the pistons 13, 23, and 33) have a high pressure. Fluid (operating pressure) is introduced to move the main valve bodies 15, 25, 35, and the outer diameter (seat diameter) of the main valve bodies 15, 25, 35 Since the diameter is smaller than the pressure receiving diameter, there is also an effect that the main valve bodies 15, 25, 35 of the respective flow path switching valves 10, 20, 30 can be reliably moved with a simple configuration.

なお、上記した実施形態の六方切換弁1では、流路切換弁10にポートpA及びポートpFが設けられ、流路切換弁20にポートpE及びポートpDが設けられ、流路切換弁30にポートpC及びポートpBが設けられているが、6個のポートpA〜pFの配置構成(向きや位置等)は、図示例に限られないことは勿論である。例えば、流路切換弁10に設けられたポート(管継手)pA、pFと流路切換弁20に設けられたポート(管継手)pE、pDを後方に向けて延設し、流路切換弁30に設けられたポート(管継手)pC、pBの方向と合わせるようにして、全てのポート(管継手)pA〜pFの取付け方向を一致させるようにしてもよい。また、図5に示される六方切換弁1'の如くに、流路切換弁10にポートpA及びポートpB(ポートpBは、ポートpAの下側で、主弁室14の副弁座17より下側に開口するように形成)を設け、流路切換弁20にポートpE及びポートpF(ポートpFは、ポートpEの上側で、主弁室24の副弁座27より上側に開口するように形成)を設け、流路切換弁30にポートpC及びポートpD(ポートpDは、ポートpCの右側で、主弁室34の副弁座37より右側に開口するように形成)を設けた場合でも、上記した実施形態の六方切換弁1と同様の作用効果が得られることは詳述するまでも無い。   In the six-way switching valve 1 of the embodiment described above, the port pA and the port pF are provided in the flow path switching valve 10, the ports pE and pD are provided in the flow path switching valve 20, and the port is provided in the flow path switching valve 30. Although pC and port pB are provided, it is needless to say that the arrangement configuration (direction, position, etc.) of the six ports pA to pF is not limited to the illustrated example. For example, the ports (pipe fittings) pA and pF provided in the flow path switching valve 10 and the ports (pipe fittings) pE and pD provided in the flow path switching valve 20 are extended rearward, and the flow path switching valve is provided. The mounting directions of all the ports (pipe fittings) pA to pF may be made to coincide with the directions of the ports (pipe fittings) pC and pB provided in the 30. Further, like the six-way switching valve 1 ′ shown in FIG. 5, the port pA and the port pB (the port pB is located below the port pA and below the sub-valve seat 17 of the main valve chamber 14). The port pE and the port pF (the port pF is formed above the port pE so as to open above the sub-valve seat 27 of the main valve chamber 24). ) Is provided, and the port pC and the port pD (the port pD is formed on the right side of the port pC so as to open to the right side of the sub-valve seat 37 of the main valve chamber 34) are provided in the flow path switching valve 30. It goes without saying that the same operation and effect as those of the six-way switching valve 1 of the above-described embodiment can be obtained.

また、上記した実施形態の六方切換弁1では、四方パイロット弁90を用いて主弁体15、25、35を駆動する構成について説明したが、主弁室14、24、34内で主弁体15、25、35を駆動する構成であれば、四方パイロット弁90に代えてモータを用いて主弁体15、25、35を駆動する構成でもよい。   Further, in the six-way switching valve 1 of the above-described embodiment, the configuration in which the main valve bodies 15, 25, and 35 are driven using the four-way pilot valve 90 has been described. As long as the configuration drives 15, 25, and 35, a configuration that drives the main valve bodies 15, 25, and 35 using a motor instead of the four-way pilot valve 90 may be used.

また、本実施形態の六方切換弁1は、ヒートポンプ式冷暖房システムのみならず、他のシステム、装置、機器類にも組み込めることは勿論である。   Further, the six-way switching valve 1 of the present embodiment can of course be incorporated not only into a heat pump type cooling / heating system, but also into other systems, devices, and equipment.

1 六方切換弁
9 六方弁本体
10、20、30 流路切換弁
11、21、31 主弁ハウジング
12、22、32 作動室
13、23、33 ピストン
14、24、34 主弁室
15、25、35 主弁体
16、26、36 主弁座
17、27、37 副弁座
18、28、38 連結軸
19、29、39 ガイド軸
40、50、60 連通路
90 四方パイロット弁
pA、pB、pC、pD、pE、pF ポート
1 Six-way switching valve 9 Six-way valve body 10, 20, 30 Flow switching valve 11, 21, 31 Main valve housing 12, 22, 32 Working chamber 13, 23, 33 Piston 14, 24, 34 Main valve chamber 15, 25, 35 Main valve body 16, 26, 36 Main valve seat 17, 27, 37 Secondary valve seat 18, 28, 38 Connecting shaft 19, 29, 39 Guide shaft 40, 50, 60 Communication passage 90 Four-way pilot valve pA, pB, pC , PD, pE, pF ports

Claims (8)

それぞれに2個のポートが設けられた3つの流路切換弁と、前記3つの流路切換弁のうちの2つの流路切換弁間を連通せしめる合計で3つの連通路とを備え、前記3つの流路切換弁に合計で6個設けられたポート間の連通状態が切り換えられるようにされた六方切換弁であって、
前記3つの流路切換弁のそれぞれは、主弁室を画成する筒状の主弁ハウジングを有し、前記主弁室には、2個のポートが開口せしめられ、該2個のポートの間に主弁座が設けられ、該2個のポートの一端側もしくは他端側に副弁座が設けられるとともに、前記主弁座と前記副弁座に選択的に接離するポペット式の主弁体が軸線方向に移動自在に配在されており、
前記3つの流路切換弁のそれぞれにおいて、前記主弁室内で前記主弁体を連動して移動させることにより、
各々の流路切換弁における2個のポートが連通せしめられる第1連通状態と、
前記3つの流路切換弁のうちの特定の流路切換弁における1個のポートと他の流路切換弁における1個のポートとがその間に設けられた前記連通路を介して連通せしめられる第2連通状態と、
をとり得るようにされていることを特徴とする六方切換弁。
Three flow path switching valves each provided with two ports, and a total of three communication paths for communicating between two of the three flow path switching valves; A six-way switching valve adapted to switch a communication state between a total of six ports provided in one flow path switching valve,
Each of the three flow path switching valves has a cylindrical main valve housing that defines a main valve chamber, and two ports are opened in the main valve chamber. A main valve seat is provided between the two ports, and a sub-valve seat is provided at one end side or the other end side of the two ports, and a poppet type main body which selectively contacts and separates the main valve seat and the sub-valve seat. The valve element is arranged movably in the axial direction,
In each of the three flow path switching valves, by moving the main valve body in the main valve chamber in conjunction with each other,
A first communication state in which two ports in each flow path switching valve are communicated;
One of the three flow path switching valves, in which one port in a specific flow path switching valve and one port in another flow path switching valve are communicated via the communication passage provided therebetween. Two communication state,
6. A six-way switching valve, characterized in that it can take any of the following.
前記連通路は、該連通路によって連通せしめられる2つの流路切換弁に設けられた4個のポートのうちの少なくとも1個のポートと同じ高さに配置されていることを特徴とする請求項1に記載の六方切換弁。   The said communication passage is arrange | positioned at the same height as at least 1 port of four ports provided in the two flow-path switching valves connected by this communication passage. 2. The six-way switching valve according to 1. 前記連通路は、該連通路によって連通せしめられる2つの流路切換弁に設けられた4個のポートのうちの少なくとも1個のポートと対向するように配置されていることを特徴とする請求項1又は2に記載の六方切換弁。   The said communication path is arrange | positioned so that it may oppose at least one port of the four ports provided in the two flow-path switching valves made to communicate by this communication path. 3. The six-way switching valve according to 1 or 2. 前記3つの流路切換弁のうちの少なくとも2つの流路切換弁における前記主弁体を異なる方向に移動させることにより、前記第1連通状態と前記第2連通状態とが切り換えられるようにされていることを特徴とする請求項1から3のいずれか一項に記載の六方切換弁。   By moving the main valve bodies of at least two of the three flow path switching valves in different directions, the first communication state and the second communication state are switched. The six-way switching valve according to any one of claims 1 to 3, wherein: 前記主弁ハウジングには、一端側から順次、高圧流体が選択的に導入・排出される容量可変の作動室、前記作動室を画成するピストン、前記主弁室が配在され、
前記主弁体は、前記ピストンに連動して軸線方向に移動自在に配在されており、
前記3つの流路切換弁のそれぞれにおける前記作動室への高圧流体の導入・排出を制御して前記ピストンを移動させ、前記3つの流路切換弁のそれぞれにおいて、前記主弁室内で前記主弁体を連動して移動させるようにされていることを特徴とする請求項1から4のいずれか一項に記載の六方切換弁。
The main valve housing is provided with a variable-capacity working chamber in which high-pressure fluid is selectively introduced / discharged sequentially from one end side, a piston defining the working chamber, and the main valve chamber,
The main valve body is arranged movably in the axial direction in conjunction with the piston,
The piston is moved by controlling the introduction and discharge of the high-pressure fluid to and from the working chamber in each of the three flow path switching valves, and the main valve is provided in the main valve chamber in each of the three flow path switching valves. The six-way switching valve according to any one of claims 1 to 4, wherein the body is moved in conjunction with the body.
前記3つの流路切換弁のうちの少なくとも2つの流路切換弁が軸線方向を同じ方向に向けて横並びで配置されるとともに、前記少なくとも2つの流路切換弁における前記作動室が同じ側に配置されていることを特徴とする請求項に記載の六方切換弁。 At least two of the three flow path switching valves are arranged side by side with the axial direction in the same direction, and the working chambers of the at least two flow path switching valves are arranged on the same side. The six-way switching valve according to claim 5 , wherein the switching valve is provided. 前記作動室には、前記流路切換弁の前記主弁室に供給される高圧流体が導入されるようにされていることを特徴とする請求項5に記載の六方切換弁。   The six-way switching valve according to claim 5, wherein a high-pressure fluid supplied to the main valve chamber of the flow path switching valve is introduced into the working chamber. 前記作動室への高圧流体の導入・排出の制御を、前記3つの流路切換弁のそれぞれの前記作動室に設けられたポート、及び、前記六方切換弁の高圧部分と低圧部分とに接続された単一の四方パイロット弁により行うようにされていることを特徴とする請求項7に記載の六方切換弁。   The control of the introduction and discharge of the high-pressure fluid into and from the working chamber is performed by connecting the ports provided in the working chamber of each of the three flow path switching valves and the high-pressure part and the low-pressure part of the six-way switching valve. The six-way switching valve according to claim 7, wherein the control is performed by a single four-way pilot valve.
JP2016037227A 2016-02-29 2016-02-29 6-way switching valve Active JP6670633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037227A JP6670633B2 (en) 2016-02-29 2016-02-29 6-way switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037227A JP6670633B2 (en) 2016-02-29 2016-02-29 6-way switching valve

Publications (2)

Publication Number Publication Date
JP2017155766A JP2017155766A (en) 2017-09-07
JP6670633B2 true JP6670633B2 (en) 2020-03-25

Family

ID=59809418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037227A Active JP6670633B2 (en) 2016-02-29 2016-02-29 6-way switching valve

Country Status (1)

Country Link
JP (1) JP6670633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530074A (en) * 2019-08-30 2019-12-03 杭州师范大学钱江学院 A kind of six-way valve, heat-exchange system and its heat change method based on six-way valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083458A (en) * 2001-07-02 2003-03-19 Tgk Co Ltd Four-way selector valve
JP6321358B2 (en) * 2013-12-03 2018-05-09 株式会社不二工機 Four-way selector valve
DE202014102389U1 (en) * 2014-05-21 2014-06-20 Johnson Electric Germany GmbH & Co. KG Modular valve system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530074A (en) * 2019-08-30 2019-12-03 杭州师范大学钱江学院 A kind of six-way valve, heat-exchange system and its heat change method based on six-way valve

Also Published As

Publication number Publication date
JP2017155766A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP7071757B2 (en) Six-way switching valve
JP6465619B2 (en) Flow path switching valve
CN109578616B (en) Six-way switching valve
JP6621686B2 (en) 6-way switching valve
JP6321358B2 (en) Four-way selector valve
JP6596052B2 (en) Flow path switching valve
JP6461589B2 (en) Flow path switching valve
CN112585384B (en) Flow path switching valve
JP6928945B2 (en) Flow path switching valve and its assembly method
JP6670633B2 (en) 6-way switching valve
WO2020137191A1 (en) Flow path switching valve
JP6523662B2 (en) Flow path switching valve
JP7109057B2 (en) four-way switching valve
CN107166060B (en) Reversal valve and refrigeration system with it
JP7095914B2 (en) Flow switching valve
JP6678227B2 (en) Flow path switching valve
JP6491861B2 (en) Flow path switching valve
JP6823864B2 (en) Six-way switching valve
CN112585385B (en) Flow path switching valve
JP7140416B2 (en) Flow switching valve
JP6453040B2 (en) Flow path switching valve
JP2020045957A (en) Four-way switching valve
CN113028120A (en) Electromagnetic switching valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R150 Certificate of patent or registration of utility model

Ref document number: 6670633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250