JP6667827B2 - Control method of spin-orbit interaction - Google Patents

Control method of spin-orbit interaction Download PDF

Info

Publication number
JP6667827B2
JP6667827B2 JP2016087730A JP2016087730A JP6667827B2 JP 6667827 B2 JP6667827 B2 JP 6667827B2 JP 2016087730 A JP2016087730 A JP 2016087730A JP 2016087730 A JP2016087730 A JP 2016087730A JP 6667827 B2 JP6667827 B2 JP 6667827B2
Authority
JP
Japan
Prior art keywords
spin
thin film
orbit interaction
polycrystalline
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016087730A
Other languages
Japanese (ja)
Other versions
JP2017199743A (en
Inventor
要司 国橋
要司 国橋
治樹 眞田
治樹 眞田
後藤 秀樹
秀樹 後藤
哲臣 寒川
哲臣 寒川
誠 好田
誠 好田
淳作 新田
淳作 新田
淀春 柳
淀春 柳
ミンシック ゴン
ミンシック ゴン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Tohoku University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Telegraph and Telephone Corp filed Critical Tohoku University NUC
Priority to JP2016087730A priority Critical patent/JP6667827B2/en
Publication of JP2017199743A publication Critical patent/JP2017199743A/en
Application granted granted Critical
Publication of JP6667827B2 publication Critical patent/JP6667827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hall/Mr Elements (AREA)

Description

本発明は、金属におけるスピン軌道相互作用の強さを制御するスピン軌道相互作用の制御方法に関する。   The present invention relates to a spin orbit interaction control method for controlling the strength of a spin orbit interaction in a metal.

これまで、スピン軌道相互作用の強い材料系におけるスピン流の生成には、スピンホール効果が用いられてきた。金属におけるスピン流の生成では、スピン軌道相互作用に起因する外因性スピンホール効果が用いられる。これは、スピン軌道相互作用の強いPtやTaなどの金属に電流を流すと、金属中の不純物や結晶粒界で散乱された電子スピンが、スピンの向きに依存して逆方向に散乱され、電流方向に対して垂直方向逆向きに上向きスピンと下向きスピンとが分離する効果である。   Heretofore, the spin Hall effect has been used to generate a spin current in a material system having a strong spin-orbit interaction. In generating a spin current in a metal, an extrinsic spin-Hall effect caused by spin-orbit interaction is used. This is because when an electric current is applied to a metal such as Pt or Ta having strong spin-orbit interaction, electron spins scattered in impurities or grain boundaries in the metal are scattered in the opposite direction depending on the spin direction, This is an effect that the upward spin and the downward spin are separated from each other in a direction perpendicular to the current direction.

上述したスピンホール効果は、GaAs半導体においてはじめて観測されている(非特許文献1,非特許文献2参照)。電流を流すと、流した電流と垂直方向にスピン流が流れ、スピン上向きと下向きの電子がチャネルエッジに蓄積される。また、金属においてもスピンホール効果を用いたスピン流の検出が可能となっている(非特許文献3参照)。このスピンホール効果によれば、非磁性体だけでスピン流を生み出すことが可能であるため、スピン偏極を利用するスピントロニクスにおいて重要なスピン生成・検出の技術となる。この技術を用いることで、近年、金属中のスピン偏極の検出や磁化反転などが実現できるようになってきた。   The above-described spin Hall effect has been observed for the first time in a GaAs semiconductor (see Non-Patent Documents 1 and 2). When a current is applied, a spin current flows in a direction perpendicular to the applied current, and upward and downward spin electrons are accumulated at the channel edge. In addition, it is possible to detect a spin current using spin Hall effect even in a metal (see Non-Patent Document 3). According to the spin Hall effect, it is possible to generate a spin current using only a non-magnetic material, and this is an important spin generation / detection technique in spintronics using spin polarization. By using this technique, detection of spin polarization in a metal, magnetization reversal, and the like can be realized in recent years.

ところで、金属を用いたスピンホール効果では、PtやTaそしてWなどの原子番号の大きな材料が用いられてきた。この理由は、金属におけるスピン軌道相互作用は材料の原子番号の大きさに比例するため、結晶構造よりも材料そのものに依存すると考えられたためである。   By the way, in the spin Hall effect using a metal, a material having a large atomic number such as Pt, Ta, and W has been used. This is because the spin-orbit interaction in a metal is considered to depend on the material itself rather than the crystal structure, because the spin-orbit interaction is proportional to the atomic number of the material.

Y. K. Kato et al., "Observation of the Spin Hall Effect in Semiconductors", Science, vol.306, pp.1910-1913, 2004.Y.K.Kato et al., "Observation of the Spin Hall Effect in Semiconductors", Science, vol.306, pp.1910-1913, 2004. J. Wunderlich et al., "Experimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System", Physical Review Letters, vol.94, no.4, 047204(4), 2005.J. Wunderlich et al., "Experimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System", Physical Review Letters, vol.94, no.4, 047204 (4), 2005. S. O. Valenzuela and M. Tinkham, "Direct electronic measurement of the spin Hall effect", Nature, vol.442, pp.176-179, 2009.S. O. Valenzuela and M. Tinkham, "Direct electronic measurement of the spin Hall effect", Nature, vol. 442, pp. 176-179, 2009.

上述したように、従来では、スピン流の状態は、材料固有として考えられており、材料を変えることでスピン流の向きや量を制御していた。しかし、このことは、スピン軌道相互作用を大きくするためには、材料の選択が必要になる。また、従来用いられている上述した金属材料は、必ずしも強磁性体材料との組み合わせが良いとは限らないことから、強磁性体/非磁性金属構造などを用いたメモリ素子開発においては、材料選択の幅を狭めてしまうことになる。このように、従来では、スピン流の状態制御の自由度が低いという問題があった。   As described above, conventionally, the state of the spin current is considered to be unique to the material, and the direction and amount of the spin current have been controlled by changing the material. However, this requires selection of materials in order to increase spin-orbit interaction. In addition, since the above-mentioned metal materials conventionally used are not always good in combination with a ferromagnetic material, in the development of a memory element using a ferromagnetic / non-magnetic metal structure, a material selection is required. Will be narrowed. As described above, conventionally, there is a problem that the degree of freedom in controlling the state of the spin current is low.

本発明は、以上のような問題点を解消するためになされたものであり、より高い自由度でスピン流の状態が制御できるようにすることを目的とする。   The present invention has been made to solve the above problems, and has as its object to control the state of spin current with a higher degree of freedom.

本発明に係るスピン軌道相互作用の制御方法は、単一金属から構成された金属薄膜のスピン軌道相互作用の強さを制御する方法であり、金属薄膜の厚さによりスピン軌道相互作用の強さを制御する。 The method of spin-orbit interaction in accordance with the present invention is a method of controlling the intensity of the spin-orbit interaction metallic thin film composed of a single metal, the thickness of the metallic thin film spin-orbit interaction Control strength.

また、本発明に係るスピン軌道相互作用の制御方法は、単一金属から構成された金属薄膜のスピン軌道相互作用の強さを制御する方法であり、金属薄膜の結晶状態を単結晶状態または多結晶状態のいずれかにすることによりスピン軌道相互作用の強さを制御する。 The control method of the spin-orbit interaction in accordance with the present invention is a method of controlling the intensity of the spin-orbit interaction metallic thin film composed of a single metal, a crystalline state of the metallic thin-film single-crystal state Alternatively, the strength of the spin-orbit interaction is controlled by being in either of the polycrystalline states.

上記スピン軌道相互作用の制御方法において、結晶状態に加えて金属薄膜の厚さによりスピン軌道相互作用の強さを制御するようにしてもよい。 The control method of the spin-orbit interaction, may control the intensity of the spin-orbit interaction on the thickness of the metallic thin film in addition to the crystalline state.

以上説明したことにより、本発明によれば、より高い自由度でスピン流の状態が制御できるという優れた効果が得られる。   As described above, according to the present invention, an excellent effect that the state of the spin current can be controlled with a higher degree of freedom can be obtained.

図1は、GaAs基板の上に形成した多結晶Pt薄膜のX線回折パターンを示す特性図である。FIG. 1 is a characteristic diagram showing an X-ray diffraction pattern of a polycrystalline Pt thin film formed on a GaAs substrate. 図2は、MgO基板の上に形成した単結晶Pt薄膜のX線回折パターン(a)を示す特性図およびRHEEDパターンを示す写真(b),(c)である。FIG. 2 is a characteristic diagram showing an X-ray diffraction pattern (a) of a single crystal Pt thin film formed on a MgO substrate, and photographs (b) and (c) showing RHEED patterns. 図3は、多結晶Pt薄膜(a)および単結晶Pt薄膜(b)の各々について、異なる膜厚における磁気伝導測定をした結果を示す特性図である。FIG. 3 is a characteristic diagram showing the results of magnetic conduction measurements at different film thicknesses for each of the polycrystalline Pt thin film (a) and the single crystal Pt thin film (b). 図4は、多結晶Pt薄膜のスピン緩和時間(a)、および単結晶Pt薄膜のスピン緩和時間(b)を示す特性図である。FIG. 4 is a characteristic diagram showing the spin relaxation time (a) of the polycrystalline Pt thin film and the spin relaxation time (b) of the single crystal Pt thin film. 図5は、多結晶Pt薄膜(a)および単結晶薄膜(b)の各試料について、Co薄膜に作用する有効磁場の電流密度依存性を測定した結果を示す特性図である。FIG. 5 is a characteristic diagram showing the results of measuring the current density dependence of the effective magnetic field acting on the Co thin film for each of the polycrystalline Pt thin film (a) and the single crystal thin film (b).

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明は、金属から構成された金属薄膜の厚さにより、スピン軌道相互作用の強さを制御する。   According to the present invention, the strength of spin-orbit interaction is controlled by the thickness of a metal thin film composed of a metal.

まず、金属薄膜の結晶状態を結晶状態または多結晶状態のいずれかにすることによりスピン軌道相互作用の強さを制御する。   First, the strength of the spin-orbit interaction is controlled by setting the crystalline state of the metal thin film to either the crystalline state or the polycrystalline state.

また、結晶状態に加えて金属薄膜の厚さによりスピン軌道相互作用の強さを制御する。   Further, the strength of the spin-orbit interaction is controlled by the thickness of the metal thin film in addition to the crystal state.

以下、より詳細に説明する。はじめに、金属薄膜の結晶状態によりスピン軌道相互作用を制御することについて示す。スピン軌道相互作用の強い材料としてPtが知られており、Ptを用いて単一材料におけるスピン軌道相互作用の制御について実験を実施した。まず、多結晶Pt薄膜と単結晶Pt薄膜とを作製した。   Hereinafter, this will be described in more detail. First, control of spin-orbit interaction by the crystal state of a metal thin film will be described. Pt is known as a material having a strong spin-orbit interaction, and an experiment was performed on control of spin-orbit interaction in a single material using Pt. First, a polycrystalline Pt thin film and a single crystal Pt thin film were prepared.

多結晶Pt薄膜は、主表面の面方位が(001)とされているGaAs基板の上に、公知のスパッタ法により、基板加熱をせずにPtを堆積して多結晶Pt薄膜を形成した。Pt薄膜の上には、厚さ0.6nmのAlO膜を形成した。多結晶Pt薄膜は、厚さ2nm、4nm、6nm、8nm、10nm、15nmの6種類を作製した。   The polycrystalline Pt thin film was formed by depositing Pt on a GaAs substrate having a main surface having a plane orientation of (001) without heating the substrate by a known sputtering method to form a polycrystalline Pt thin film. An AlO film having a thickness of 0.6 nm was formed on the Pt thin film. Six types of polycrystalline Pt thin films having a thickness of 2 nm, 4 nm, 6 nm, 8 nm, 10 nm, and 15 nm were prepared.

単結晶Pt薄膜は、主表面の面方位が(111)とされているMgO基板の上に、公知のスパッタ法により、基板温度条件を500℃としてPtを堆積して単結晶Pt薄膜を形成した。単結晶Pt薄膜は、厚さ3nm、4nm、5nm、6nm,10nmの4種類を作製した。   A single-crystal Pt thin film was formed by depositing Pt on a MgO substrate having a main surface having a plane orientation of (111) at a substrate temperature of 500 ° C. by a known sputtering method. . Four types of single crystal Pt thin films having a thickness of 3 nm, 4 nm, 5 nm, 6 nm, and 10 nm were prepared.

図1に示すX線回折パターンより、GaAs基板の上に形成した多結晶Pt薄膜は、多結晶であることが分かる。一方、図2(a)に示すX線回折パターンより、MgO基板の上に形成した単結晶Pt薄膜は、単一相のみが成長できていることが分かる。また、図2の(b),(c)に示すRHEEDパターンより、MgO基板の上に形成した単結晶Pt薄膜は、Pt(111)が成長して単結晶となっていることがわかる。   The X-ray diffraction pattern shown in FIG. 1 indicates that the polycrystalline Pt thin film formed on the GaAs substrate is polycrystalline. On the other hand, the X-ray diffraction pattern shown in FIG. 2A shows that the single-crystal Pt thin film formed on the MgO substrate can grow only a single phase. Further, from the RHEED patterns shown in FIGS. 2B and 2C, it can be seen that the single crystal Pt thin film formed on the MgO substrate becomes a single crystal by growing Pt (111).

膜厚を薄くすることで、電子の散乱寄与を薄膜内部の不純物や粒界に起因する状態から、薄膜表面や界面における散乱に系統的に変化させた。これら膜厚の異なるPt薄膜のスピン緩和時間を調べることで、どのようなスピン軌道相互作用が支配的かを明らかにする。電子の散乱頻度によってスピン軌道相互作用の起源が変化することから、電子の散乱頻度も同時に測定を行っている。   By reducing the film thickness, the electron scattering contribution was systematically changed from a state caused by impurities and grain boundaries inside the thin film to a scattering at the thin film surface and interface. By examining the spin relaxation times of these Pt thin films having different thicknesses, it becomes clear what kind of spin-orbit interaction is dominant. Since the origin of the spin-orbit interaction changes depending on the electron scattering frequency, the electron scattering frequency is also measured.

図3は、多結晶Pt薄膜(a)および単結晶Pt薄膜(b)の各々について、異なる膜厚における磁気伝導測定をした結果を示す特性図である。多結晶Pt薄膜および単結晶Pt薄膜のいずれにおいても、弱反局在を示している。なお、図3(b)において、厚さ10nmについては、明確な評価ができなかったために記載していない。これらのデータ解析から、多結晶Pt薄膜および単結晶Pt薄膜におけるスピン緩和時間を求めた。求めたスピン緩和時間について、図4に示す。図4において、(a)は、多結晶Pt薄膜のスピン緩和時間を示し、(b)は、単結晶Pt薄膜のスピン緩和時間を示している。   FIG. 3 is a characteristic diagram showing the results of magnetic conduction measurements at different film thicknesses for each of the polycrystalline Pt thin film (a) and the single crystal Pt thin film (b). Both the polycrystalline Pt thin film and the single-crystal Pt thin film show weak antilocalization. In FIG. 3B, a thickness of 10 nm is not described because a clear evaluation could not be performed. From these data analysis, the spin relaxation time in the polycrystalline Pt thin film and the single crystal Pt thin film was obtained. FIG. 4 shows the obtained spin relaxation times. In FIG. 4, (a) shows the spin relaxation time of the polycrystalline Pt thin film, and (b) shows the spin relaxation time of the single crystal Pt thin film.

多結晶Pt薄膜では、図4の(a)に示すように、運動量緩和時間の増大に対し、スピン緩和時間が減少し、このあと線形的に増大した。一方、単結晶Pt薄膜においては、図4の(b)に示すように、運動量緩和時間の増大にともない単調に減少する傾向を示した。   In the case of the polycrystalline Pt thin film, as shown in FIG. 4A, the spin relaxation time decreased with increasing momentum relaxation time, and then increased linearly. On the other hand, in the single crystal Pt thin film, as shown in FIG. 4B, there was a tendency to monotonously decrease as the momentum relaxation time increased.

不純物散乱およびバンド構造に起因するスピン軌道相互作用は、異なるスピン緩和の機構を与えることが知られている。EY(Elliot-Yafet)スピン緩和機構は、不純物や粒界におけるスピン依存散乱に起因し、スピン緩和時間は運動量緩和時間に比例する。DP(Dyakonov-Perel)スピン緩和機構は、バンド構造に起因したスピン軌道相互作用が生み出すスピン緩和であり、運動量緩和時間に反比例する。よって、運動量緩和時間に対するスピン緩和時間の変化を調べることでスピン緩和の起源を切り分けることが可能となる。   It is known that spin-orbit interactions due to impurity scattering and band structure provide different mechanisms for spin relaxation. The EY (Elliot-Yafet) spin relaxation mechanism is caused by spin-dependent scattering at impurities and grain boundaries, and the spin relaxation time is proportional to the momentum relaxation time. The DP (Dyakonov-Perel) spin relaxation mechanism is spin relaxation generated by spin-orbit interaction caused by the band structure, and is inversely proportional to the momentum relaxation time. Therefore, it is possible to determine the origin of spin relaxation by examining the change of the spin relaxation time with respect to the momentum relaxation time.

図4の(a)に示すように、多結晶Pt薄膜の場合、膜厚の薄い領域ではDPスピン緩和機構が支配的であるが膜厚の厚い領域ではEYスピン緩和機構が支配的であることが分かる。   As shown in FIG. 4A, in the case of a polycrystalline Pt thin film, the DP spin relaxation mechanism is dominant in a thin region, but the EY spin relaxation mechanism is dominant in a thick region. I understand.

一方、図4の(b)に示すように、単結晶Pt薄膜の場合は、全ての領域でスピン緩和時間は運動量緩和時間の逆数に比例して変化していることから、DPスピン緩和時間が支配的であること明らかとなった。   On the other hand, as shown in FIG. 4B, in the case of a single crystal Pt thin film, since the spin relaxation time changes in proportion to the reciprocal of the momentum relaxation time in all regions, the DP spin relaxation time is changed. It turned out to be dominant.

以上のことより、結晶構造が多結晶もしくは単結晶かつ膜厚の厚い領域では、スピン軌道相互作用が不純物に起因する場合(多結晶)とバンド構造に起因する場合(単結晶)があることがわかった。また、多結晶Pt薄膜では膜厚が厚い領域と薄い領域では、同様にスピン軌道相互作用の起源が異なることが明らかとなった。   As described above, in a region where the crystal structure is polycrystal or single crystal and the film thickness is large, there is a case where the spin-orbit interaction is caused by impurities (polycrystal) or a band structure (single crystal). all right. Further, it has been clarified that the origin of the spin-orbit interaction is similarly different between the thick and thin regions of the polycrystalline Pt thin film.

以上に示したように、同じ金属であっても、結晶状態によってスピン軌道相互作用の起源が異なるので、結晶状態を制御することで、スピン軌道相互作用の起源が制御できることは明らかである。単一材料においてスピン軌道相互作用の起源を変えることで、生成できるスピン流が制御可能となる。   As described above, even in the same metal, the origin of the spin-orbit interaction is different depending on the crystal state. Therefore, it is clear that the origin of the spin-orbit interaction can be controlled by controlling the crystal state. By changing the origin of the spin-orbit interaction in a single material, the spin current that can be generated can be controlled.

次に、実際に作製した試料によって、多結晶状態と単結晶状態とで、スピン流の生成量を比較した。多結晶Pt薄膜の試料は、AlO/Co/多結晶Pt/SiOx/Si構造とした。また、単結晶Pt薄膜試料は、AlO/Co/単結晶Pt/MgO構造とした。Pt薄膜はいずれも厚さ6nmとした。また、いずれの試料にも、Pt薄膜の上に接してCo薄膜を形成している。Pt薄膜で生成されるスピン流は、Co磁気モーメントにトルクを与える。Co磁気モーメントに加わるトルクは、Co薄膜に作用する有効磁場として検出することができる。 Next, the amount of spin current generated was compared between the polycrystal state and the single crystal state using the actually manufactured sample. The sample of the polycrystalline Pt thin film had an AlO / Co / polycrystalline Pt / SiO x / Si structure. The single crystal Pt thin film sample had an AlO / Co / single crystal Pt / MgO structure. Each Pt thin film had a thickness of 6 nm. In each sample, a Co thin film was formed in contact with the Pt thin film. The spin current generated in the Pt thin film gives a torque to the Co magnetic moment. The torque applied to the Co magnetic moment can be detected as an effective magnetic field acting on the Co thin film.

図5は、多結晶Pt薄膜(a)および単結晶薄膜(b)の各試料について、Co薄膜に作用する有効磁場の電流密度依存性を測定した結果を示す特性図である。多結晶Pt薄膜(a)および単結晶薄膜(b)のいずれも、電流密度の増大に伴い有効磁場は増大している。   FIG. 5 is a characteristic diagram showing the results of measuring the current density dependence of the effective magnetic field acting on the Co thin film for each of the polycrystalline Pt thin film (a) and the single crystal thin film (b). In both the polycrystalline Pt thin film (a) and the single crystal thin film (b), the effective magnetic field increases as the current density increases.

また、図5に示すように、多結晶Pt薄膜の方が単結晶Pt薄膜よりも同じ電流密度で比較すると大きな有効磁場を生み出していることが分かる。従って、多結晶Ptの方が、単結晶Pt薄膜よりも大きなスピン軌道相互作用を有していることが明らかである。この結果より、単一材料Ptを同じ膜厚にしても、Co磁気モーメントに与えるトルクを大きく変化させることが可能であることが示された。   Also, as shown in FIG. 5, it can be seen that the polycrystalline Pt thin film produces a larger effective magnetic field when compared with the single crystal Pt thin film at the same current density. Therefore, it is clear that polycrystalline Pt has a larger spin-orbit interaction than a single-crystal Pt thin film. This result indicates that the torque applied to the Co magnetic moment can be greatly changed even when the single material Pt has the same film thickness.

以上に説明したように、本発明によれば、金属薄膜の厚さ制御や、金属薄膜の結晶状態を結晶状態または多結晶状態のいずれかにすることによりスピン軌道相互作用の強さを制御するようにしたので、より高い自由度でスピン流の状態が制御できるようになる。上述した効果は、金属であれば得られる。また、よく知られているように、スピン軌道相互作用やスピンホール効果などは大きな原子番号の金属ほど大きく、Pd,Ta,W,Ir,Pt,Biなどの金属において、より顕著な効果が得られる。   As described above, according to the present invention, the thickness of the metal thin film is controlled, and the strength of the spin-orbit interaction is controlled by setting the crystalline state of the metal thin film to either the crystalline state or the polycrystalline state. As a result, the state of the spin current can be controlled with a higher degree of freedom. The above-described effects can be obtained with metals. As is well known, the spin-orbit interaction and the spin Hall effect are larger for a metal having a larger atomic number, and a more remarkable effect is obtained for a metal such as Pd, Ta, W, Ir, Pt, and Bi. Can be

例えば、磁化反転には近年、垂直磁化材料が用いられており、例えばCo/Pt垂直磁化材料ではCoとPt界面の界面磁気異方性により面直磁化を有する。これまでは、スピン軌道相互作用の強さを変えるには材料系を変える必要があり、この場合Pt界面における界面磁気異方性が利用できず、面内磁化を取ってしまうという問題があった。これに対し、本発明によれば、垂直磁化を維持しながらPtの結晶構造や膜厚を変えることで、スピン流の大きさも変えられる。このように、本発明によれば、スピン流生成効率と垂直磁化の両立が可能となり、将来の不揮発メモリの効率的な磁化反転が可能となる。   For example, in recent years, a perpendicular magnetization material has been used for magnetization reversal. For example, a Co / Pt perpendicular magnetization material has a plane perpendicular magnetization due to the interface magnetic anisotropy at the interface between Co and Pt. Until now, it was necessary to change the material system in order to change the strength of the spin-orbit interaction, and in this case, there was a problem that interfacial magnetic anisotropy at the Pt interface could not be used, and in-plane magnetization was obtained. . On the other hand, according to the present invention, the magnitude of the spin current can be changed by changing the crystal structure and the film thickness of Pt while maintaining the perpendicular magnetization. As described above, according to the present invention, it is possible to achieve both the spin current generation efficiency and the perpendicular magnetization, and it is possible to efficiently perform the magnetization reversal of the future nonvolatile memory.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。   Note that the present invention is not limited to the above-described embodiments, and many modifications and combinations can be made by those having ordinary knowledge in the art without departing from the technical concept of the present invention. That is clear.

Claims (3)

単一金属から構成された金属薄膜のスピン軌道相互作用の強さを制御するスピン軌道相互作用の制御方法であって、
記金属薄膜の厚さによりスピン軌道相互作用の強さを制御する
ことを特徴とするスピン軌道相互作用の制御方法。
A method of controlling a spin-orbit interaction that controls the strength of the spin-orbit interaction metallic thin film composed of a single metal,
The method of spin-orbit interaction, characterized by controlling the intensity of the spin-orbit interaction by thickness before Kikin genus film.
単一金属から構成された金属薄膜のスピン軌道相互作用の強さを制御するスピン軌道相互作用の制御方法であって、
記金属薄膜の結晶状態を単結晶状態または多結晶状態のいずれかにすることによりスピン軌道相互作用の強さを制御する
ことを特徴とするスピン軌道相互作用の制御方法。
A method of controlling a spin-orbit interaction that controls the strength of the spin-orbit interaction metallic thin film composed of a single metal,
The method of spin-orbit interaction, characterized by controlling the intensity of the spin-orbit interaction by the crystalline state before Kikin genus thin film either monocrystalline or polycrystalline state.
請求項2記載のスピン軌道相互作用の制御方法において、
前記結晶状態に加えて前記金属薄膜の厚さによりスピン軌道相互作用の強さを制御する
ことを特徴とするスピン軌道相互作用の制御方法。
The method for controlling spin-orbit interaction according to claim 2,
The method of spin-orbit interaction, characterized by controlling the intensity of the spin-orbit interaction by thickness before Kikin genus thin film in addition to the crystalline state.
JP2016087730A 2016-04-26 2016-04-26 Control method of spin-orbit interaction Active JP6667827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016087730A JP6667827B2 (en) 2016-04-26 2016-04-26 Control method of spin-orbit interaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016087730A JP6667827B2 (en) 2016-04-26 2016-04-26 Control method of spin-orbit interaction

Publications (2)

Publication Number Publication Date
JP2017199743A JP2017199743A (en) 2017-11-02
JP6667827B2 true JP6667827B2 (en) 2020-03-18

Family

ID=60239475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016087730A Active JP6667827B2 (en) 2016-04-26 2016-04-26 Control method of spin-orbit interaction

Country Status (1)

Country Link
JP (1) JP6667827B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203132A1 (en) * 2018-04-18 2019-10-24 国立大学法人東北大学 Magnetoresistive element, magnetic memory device, and writing and reading method for magnetic memory device
CN113167841A (en) * 2018-11-30 2021-07-23 世宗大学校产学协力团 Magnetic sensor and hall sensor using abnormal hall effect and method of manufacturing hall sensor
JP6838694B2 (en) * 2019-02-06 2021-03-03 Tdk株式会社 Spin-orbit torque type magnetization rotating element, spin-orbit torque type magnetoresistive element and magnetic memory

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5590488B2 (en) * 2010-08-27 2014-09-17 独立行政法人理化学研究所 Current-spin current conversion element
WO2013151088A1 (en) * 2012-04-04 2013-10-10 日本電気株式会社 Thermoelectric conversion element, thermoelectric conversion system, and thermoelectric conversion element fabrication method
JP6233320B2 (en) * 2013-01-24 2017-11-22 日本電気株式会社 Thermoelectric conversion element and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017199743A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
Schreier et al. Current heating induced spin Seebeck effect
Deorani et al. Observation of inverse spin Hall effect in bismuth selenide
Porter et al. Scattering mechanisms in textured FeGe thin films: Magnetoresistance and the anomalous Hall effect
Spencer et al. Helical magnetic structure and the anomalous and topological Hall effects in epitaxial B20 Fe 1− y Co y Ge films
Gupta et al. Near bulk semiconductor to metal transition in epitaxial VO2 thin films
Jiang et al. A comparative transport study of Bi2Se3 and Bi2Se3/yttrium iron garnet
JP5527669B2 (en) Ferromagnetic tunnel junction and magnetoresistive effect element using the same
Kim et al. Self-assembled multiferroic epitaxial BiFeO 3–CoFe 2 O 4 nanocomposite thin films grown by RF magnetron sputtering
JP6667827B2 (en) Control method of spin-orbit interaction
US11276728B2 (en) Multiferroic heterostructures
Hoffman et al. Tunable noncollinear antiferromagnetic resistive memory through oxide superlattice design
Li et al. High spin polarization in epitaxial Fe4N thin films using Cr and Ag as buffer layers
Narita et al. Effect of sample size on anomalous Nernst effect in chiral antiferromagnetic Mn3Sn devices
Das et al. Asymmetric spin dependent scattering at the interfaces of Si/La0. 7Sr0. 3MnO3/ZnO heterostructures
Liu et al. Tailoring the magnetic anisotropy, magnetization reversal, and anisotropic magnetoresistance of Ni films by ion sputtering
Zhang et al. Origin of the anomalous Hall effect in SrCoO 3 thin films
Aseguinolaza et al. Martensitic transformation and magnetic anisotropy in Ni-Mn-Ga/NaCl (001) thin films probed by ferromagnetic resonance
Wu et al. Epitaxial-strain effects on electronic structure and magnetic properties of hexagonal YMnO 3 thin films studied by femtosecond spectroscopy
Kilanski et al. Negative magnetoresistance and anomalous Hall effect in GeMnTe-SnMnTe spin-glass-like system
KR20230118765A (en) Magnetic tunneling junctions based on spin-orbit torque and method manufacturing thereof
Zhao et al. Strain-dependent magnetism and anomalous Hall effect in noncollinear antiferromagnetic Mn3Pt films
Binda et al. Spin–Orbit Torques and Spin Hall Magnetoresistance Generated by Twin‐Free and Amorphous Bi0. 9Sb0. 1 Topological Insulator Films
Branford et al. Temperature insensitivity of the spin-polarization in Co2MnSi films on GaAs (001)
Belmoubarik et al. Investigation of ZnO thin films deposited on ferromagnetic metallic buffer layer by molecular beam epitaxy toward realization of ZnO-based magnetic tunneling junctions
Kurt et al. Magnetic and electronic properties of thin films of Mn-Ga and Mn-Ge compounds with cubic, tetragonal and hexagonal crystal structures

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200213

R150 Certificate of patent or registration of utility model

Ref document number: 6667827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250