JP6665822B2 - High strength steel sheet for sour resistant line pipe, method for producing the same, and high strength steel pipe using high strength steel sheet for sour resistant line pipe - Google Patents

High strength steel sheet for sour resistant line pipe, method for producing the same, and high strength steel pipe using high strength steel sheet for sour resistant line pipe Download PDF

Info

Publication number
JP6665822B2
JP6665822B2 JP2017068435A JP2017068435A JP6665822B2 JP 6665822 B2 JP6665822 B2 JP 6665822B2 JP 2017068435 A JP2017068435 A JP 2017068435A JP 2017068435 A JP2017068435 A JP 2017068435A JP 6665822 B2 JP6665822 B2 JP 6665822B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
steel
temperature
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017068435A
Other languages
Japanese (ja)
Other versions
JP2018168441A (en
Inventor
周作 太田
周作 太田
横田 智之
智之 横田
長谷 和邦
和邦 長谷
雄太 田村
雄太 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2017068435A priority Critical patent/JP6665822B2/en
Publication of JP2018168441A publication Critical patent/JP2018168441A/en
Application granted granted Critical
Publication of JP6665822B2 publication Critical patent/JP6665822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築、海洋構造物、造船、土木、建設産業用機械の分野のラインパイプに使用して好適な、鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼板およびその製造方法に関するものである。また、本発明は、上記の耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管に関するものである。   The present invention relates to a high-strength steel plate for a sour-resistant line pipe excellent in material uniformity in a steel plate, which is suitable for use in a line pipe in the fields of construction, marine structures, shipbuilding, civil engineering, and construction industrial machinery, and its production. It is about the method. The present invention also relates to a high-strength steel pipe using the above-mentioned high-strength steel plate for a sour resistant line pipe.

一般に、ラインパイプは、厚板ミルや熱延ミルによって製造された鋼板を、UOE成形、プレスベンド成形およびロール成形等によって、鋼管に成形することで製造される。   In general, a line pipe is manufactured by forming a steel plate manufactured by a thick plate mill or a hot rolling mill into a steel pipe by UOE forming, press bend forming, roll forming, or the like.

ここに、硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプは、強度、靭性、溶接性などの他に、耐水素誘起割れ性(耐HIC(Hydrogen Induced Cracking)性)や耐硫化物応力腐食割れ性(耐SSCC(Sulfide Stress Corrosion Cracking)性)といった、いわゆる耐サワー性が必要とされる。中でもHICは、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入し、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積して、分子状の水素となり、その内圧により割れを生ずるもので、油井管に対して比較的強度レベルの低いラインパイプにおいて問題とされ、多くの対策技術が開示されてきた。一方、SSCCに関しては、一般的に油井用高強度継目無鋼管や、溶接部の高硬度域で発生することが知られており、比較的硬さが低いラインパイプではあまり問題視されてこなかった。ところが近年、原油や天然ガスの採掘環境がますます厳しさを増し、硫化水素分圧の高い、あるいはpHが低い環境において、ラインパイプの母材部においてもSSCCが生じることが報告されており、鋼管内面表層部の硬さをコントロールして、より厳しい腐食環境下での耐SSCC性を向上させることの重要性が指摘されている。   Here, in addition to strength, toughness, weldability, etc., line pipes used for transporting crude oil and natural gas containing hydrogen sulfide are resistant to hydrogen-induced cracking (HIC (Hydrogen Induced Cracking)) and sulfides. So-called sour resistance such as stress corrosion cracking (SSCC (Sulfide Stress Corrosion Cracking) resistance) is required. Among them, HIC absorbs hydrogen ions due to the corrosion reaction on the surface of the steel material, penetrates into the steel as atomic hydrogen, and diffuses and accumulates around the non-metallic inclusions such as MnS and the hard second phase structure in the steel. Therefore, it becomes molecular hydrogen, and cracks occur due to its internal pressure. This has been regarded as a problem in line pipes having a relatively low strength level with respect to oil country tubular goods, and many countermeasures have been disclosed. On the other hand, SSCC is generally known to occur in high-strength seamless steel pipes for oil wells and in the high-hardness region of welds, and has not been regarded as a problem in relatively low-hardness line pipes. . However, in recent years, it has been reported that the mining environment for crude oil and natural gas has become increasingly severe, and that SSCC also occurs in the base material of line pipes in environments where the partial pressure of hydrogen sulfide is high or the pH is low. It has been pointed out that it is important to control the hardness of the inner surface layer of the steel pipe to improve the SSCC resistance under a more severe corrosive environment.

通常、ラインパイプ用高強度鋼板の製造に際しては、制御圧延と制御冷却を組み合わせた、いわゆるTMCP(Thermo-Mechanical Control Process)技術が適用されている。このTMCP技術を用いて鋼材の高強度化を行うには、制御冷却時の冷却速度を大きくすることが有効である。しかしながら、高冷却速度で制御冷却した場合、鋼板表層部が急冷されるため、鋼板内部に比べて表層部の硬さが高くなり、板厚方向の硬さ分布にばらつきが生じる。従って、鋼板内の材質均一性を確保する観点で問題となる。   Usually, when manufacturing a high-strength steel sheet for a line pipe, a so-called TMCP (Thermo-Mechanical Control Process) technique that combines controlled rolling and controlled cooling is applied. In order to increase the strength of steel using this TMCP technique, it is effective to increase the cooling rate during controlled cooling. However, when controlled cooling is performed at a high cooling rate, the surface layer of the steel sheet is rapidly cooled, so that the hardness of the surface layer becomes higher than that inside the steel sheet, and the hardness distribution in the sheet thickness direction varies. Therefore, there is a problem from the viewpoint of ensuring material uniformity in the steel sheet.

上記の問題を解決するために、例えば特許文献1,2には、圧延後の加速冷却を中断し、表面を復熱させた後に再度加速冷却を実施することによる、板厚方向の材質差が小さい鋼板の製造方法が開示されている。また、特許文献3,4には、高周波誘導加熱装置を用いて、加速冷却後の鋼板表面を内部より高温に加熱して表層部の硬さを低減した、ラインパイプ用鋼板の製造方法が開示されている。   In order to solve the above-mentioned problem, for example, Patent Documents 1 and 2 disclose accelerated cooling after rolling, and perform accelerated cooling again after reheating the surface. A method for manufacturing a small steel plate is disclosed. Patent Documents 3 and 4 disclose a method of manufacturing a steel sheet for line pipes, in which the surface of a steel sheet after accelerated cooling is heated to a higher temperature from the inside by using a high-frequency induction heating device to reduce the hardness of a surface layer portion. Have been.

他方、鋼板表面のスケール厚さにむらがあった場合、冷却時にその下部の鋼板の冷却速度にもばらつきが生じ、鋼板内の局所的な冷却停止温度のばらつきが問題となる。その結果、スケール厚さのむらによって板幅方向に鋼板材質のばらつきが生じることになる。これに対し、特許文献5,6には、冷却直前にデスケーリングを行うことにより、スケール厚さむらに起因した冷却むらを低減して、鋼板形状を改善する方法が開示されている。   On the other hand, if there is unevenness in the scale thickness of the steel sheet surface, the cooling rate of the steel sheet below the steel sheet also varies during cooling, and local dispersion of the cooling stop temperature in the steel sheet becomes a problem. As a result, the material of the steel sheet varies in the sheet width direction due to the unevenness of the scale thickness. On the other hand, Patent Documents 5 and 6 disclose methods of performing descaling immediately before cooling to reduce cooling unevenness caused by unevenness in scale thickness and improve the shape of a steel sheet.

特許第3951428号公報Japanese Patent No. 3951428 特許第3951429号公報Japanese Patent No. 3951429 特開2002−327212号公報JP 2002-327212 A 特許第3711896号公報Japanese Patent No. 371896 特開平9−57327号公報JP-A-9-57327 特許第3796133号公報Japanese Patent No. 3796133

しかしながら、本発明者らの検討によると、上記特許文献1〜6に記載の製造方法で得られる高強度鋼板では、より厳しい腐食環境下での耐HIC性及び耐SSCC性という観点で改善の余地があることが判明した。その理由としては、以下のようなものが考えられる。   However, according to the study of the present inventors, the high-strength steel sheets obtained by the manufacturing methods described in Patent Documents 1 to 6 have room for improvement in terms of HIC resistance and SSCC resistance under a more severe corrosive environment. It turned out that there is. The following can be considered as the reason.

特許文献1,2に記載の製造方法では、鋼板の成分により変態挙動が異なると、復熱による十分な材質均質化の効果が得られない場合がある。また、特許文献1,2に記載の製造方法により得られる鋼板の表層における組織がフェライト‐ベイナイト2相組織のような複相組織の場合、低荷重のマイクロビッカース試験においては、圧子がいずれの組織を押し込んで試験するかによって硬さの値のばらつきが大きく生じる。   In the production methods described in Patent Literatures 1 and 2, if the transformation behavior differs depending on the components of the steel sheet, there may be cases where the effect of sufficient material homogenization by recuperation cannot be obtained. Further, when the structure in the surface layer of the steel sheet obtained by the production methods described in Patent Documents 1 and 2 is a multi-phase structure such as a ferrite-bainite two-phase structure, in the micro Vickers test under a low load, the indenter has any structure. The hardness value greatly varies depending on whether the test is performed by pushing the test piece.

特許文献3,4に記載の製造方法は、加速冷却における表層部の冷却速度が大きいため、鋼板表面の加熱だけでは表層部の硬さを十分に低減できない場合がある。   In the manufacturing methods described in Patent Literatures 3 and 4, since the cooling rate of the surface layer in the accelerated cooling is high, the hardness of the surface layer may not be sufficiently reduced only by heating the surface of the steel sheet.

他方、特許文献5,6に記載の方法では、デスケーリングにより、熱間矯正時のスケールの押し込み疵による表面性状不良の低減や、鋼板の冷却停止温度のばらつきを低減して鋼板形状を改善しているが、均一な材質を得るための冷却条件に関しては何ら配慮がなされていない。これは、鋼板表面の冷却速度がばらつくと、鋼板の硬さにばらつきが生じるからである。すなわち、冷却速度が遅いと、鋼板表面が冷却する際に、鋼板表面と冷却水の間に気泡の膜が発生する"膜沸騰"と、気泡が膜を形成する前に冷却水によって表面から分離される"核沸騰"とが同時に発生し、鋼板表面の冷却速度にばらつきが生じる。その結果、鋼板表面の硬さにばらつきを生じることになる。特許文献5,6に記載の技術ではこの点が考慮されていない。   On the other hand, in the methods described in Patent Literatures 5 and 6, the descaling reduces the surface property defect due to the indentation flaw of the scale at the time of hot straightening, and reduces the variation of the cooling stop temperature of the steel sheet to improve the steel sheet shape. However, no consideration is given to cooling conditions for obtaining a uniform material. This is because if the cooling rate of the steel sheet surface varies, the hardness of the steel sheet varies. In other words, if the cooling rate is low, a film of bubbles is generated between the steel sheet surface and the cooling water when the steel sheet surface cools, and the bubbles are separated from the surface by the cooling water before the film forms a film. Nucleate boiling occurs at the same time, causing variations in the cooling rate of the steel sheet surface. As a result, the hardness of the steel sheet surface varies. The techniques described in Patent Documents 5 and 6 do not consider this point.

そこで本発明は、上記課題に鑑み、より厳しい腐食環境下での耐HIC性及び耐SSCC性に優れた耐サワーラインパイプ用高強度鋼板を、その有利な製造方法と共に提供することを目的とする。また、本発明は、上記耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管を提案することを目的とする。   In view of the above problems, an object of the present invention is to provide a high-strength steel sheet for a sour line pipe having excellent HIC resistance and SSCC resistance under a severer corrosive environment, together with its advantageous production method. . Another object of the present invention is to propose a high-strength steel pipe using the high-strength steel plate for a sour resistant line pipe.

本発明者らは、より厳しい腐食環境下での耐HIC性及び耐SSCC性を確保するべく、鋼材の成分組成、ミクロ組織および製造条件について、数多くの実験と検討を繰り返した。その結果、高強度鋼管の耐HIC性に加えて、耐SSCC性をさらに向上させるためには、従来知見どおり単に表層硬さを抑えることだけでは不十分であり、特に鋼板の極表層部の組織、具体的には鋼板表面下0.5mmの鋼組織を、転位密度0.5×1014〜7.0×1014(m-2)のフェライト組織とすることで、造管後のコーティング過程において硬さの上昇代を抑えることができ、結果として鋼管の耐SSCC特性が向上することを知見した。そして、極表層部はフェライト主体の組織でありながら、鋼板内部の組織はベイナイトとすることにより、表層硬さを抑えつつ、鋼板の強度を確保できる。 The present inventors have repeated many experiments and studies on the component composition, microstructure, and manufacturing conditions of a steel material in order to secure HIC resistance and SSCC resistance under a more severe corrosive environment. As a result, in order to further improve the SSCC resistance in addition to the HIC resistance of high-strength steel pipes, it is not enough to simply reduce the surface hardness as conventionally known, and in particular, the structure of the extreme surface layer of the steel sheet More specifically, a steel structure 0.5 mm below the surface of the steel sheet is formed into a ferrite structure having a dislocation density of 0.5 × 10 14 to 7.0 × 10 14 (m −2 ), so that a coating process after pipe forming is performed. It has been found that the increase in hardness can be suppressed, and as a result, the SSCC resistance of the steel pipe is improved. Then, while the extremely surface layer portion is mainly composed of ferrite, the structure inside the steel sheet is made of bainite, so that the strength of the steel sheet can be secured while suppressing the surface layer hardness.

さらに、このような鋼組織を実現するためには、制御冷却の直前に所定条件でデスケーリングを行い、しかもその後の制御冷却では鋼板表面下0.5mmにおける冷却速度を厳密にコントロールする必要があり、その条件を見出すことに成功した。本発明は、この知見をもとになされたものである。なお、特許文献5,6などの従来のデスケーリング技術は、スケールを薄くすることによってその後の冷却むらを減らすことを目的としたものにすぎない。本発明では、デスケーリングを所定条件で行うことと、制御冷却を所定条件で行うこととによって、上記のような極表層で転位密度を抑えたフェライトを形成するものである。   Furthermore, in order to realize such a steel structure, it is necessary to perform descaling under predetermined conditions immediately before controlled cooling, and to precisely control the cooling rate at 0.5 mm below the steel sheet surface in the controlled cooling thereafter. Succeeded in finding the conditions. The present invention has been made based on this finding. Note that the conventional descaling techniques such as Patent Documents 5 and 6 merely aim at reducing subsequent cooling unevenness by making the scale thinner. In the present invention, by performing de-scaling under predetermined conditions and performing controlled cooling under predetermined conditions, ferrite having a dislocation density suppressed in the extreme surface layer as described above is formed.

すなわち、本発明の要旨構成は次のとおりである。
[1]質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.50〜1.80%、P:0.001〜0.015%、S:0.0002〜0.0015%、Al:0.01〜0.08%およびCa:0.0005〜0.005%を含有し、以下の式(1)によって求められるCP値が1.00以下となり、残部がFeおよび不可避的不純物からなる成分組成を有し、
鋼板表面下0.5mmにおける鋼組織が、転位密度0.5×1014〜7.0×1014(m-2)のフェライト組織であり、
板厚中央における鋼組織がベイナイト組織であることを特徴とする耐サワーラインパイプ用高強度鋼板。
CP=4.46[%C]+2.37[%Mn]/6+(1.74[%Cu]+1.7[%Ni])/15+(1.18[%Cr]+1.95[%Mo]+1.74[%V])/5+22.36[%P] ・・・(1)
ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
That is, the gist configuration of the present invention is as follows.
[1] In mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015% , S: 0.0002 to 0.0015%, Al: 0.01 to 0.08%, and Ca: 0.0005 to 0.005%, and the CP value obtained by the following formula (1) is 1 .00 or less, and the balance has a component composition consisting of Fe and unavoidable impurities,
The steel structure at 0.5 mm below the surface of the steel sheet is a ferrite structure having a dislocation density of 0.5 × 10 14 to 7.0 × 10 14 (m −2 ),
A high-strength steel plate for a sour-resistant line pipe, wherein the steel structure at the center of the plate thickness is a bainite structure.
CP = 4.46 [% C] +2.37 [% Mn] / 6 + (1.74 [% Cu] +1.7 [% Ni]) / 15+ (1.18 [% Cr] +1.95 [% Mo] ] +1.74 [% V]) / 5 + 22.36 [% P] (1)
Here, [% X] indicates the content (% by mass) of X element in steel.

[2]前記成分組成が、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下およびMo:0.50%以下のうちから選んだ1種又は2種以上を含有する、上記[1]に記載の耐サワーラインパイプ用高強度鋼板。   [2] The component composition is further selected from among Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less by mass%. The high-strength steel sheet for a sour-resistant line pipe according to the above [1], comprising one or more kinds.

[3]前記成分組成が、さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%およびTi:0.005〜0.1%のうちから選んだ1種又は2種以上を含有する、上記[1]または[2]に記載の耐サワーラインパイプ用高強度鋼板。   [3] The component composition is further selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% by mass%. The high-strength steel sheet for sour resistant line pipe according to the above [1] or [2], comprising one or more kinds.

[4]質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.50〜1.80%、P:0.001〜0.015%、S:0.0002〜0.0015%、Al:0.01〜0.08%およびCa:0.0005〜0.005%を含有し、以下の式(1)によって求められるCP値が1.00以下となり、残部がFeおよび不可避的不純物の成分組成を有する鋼片を、1000〜1300℃の温度に加熱したのち、熱間圧延して鋼板とし、
その後前記鋼板に対して、(Ar3+20℃)以下の鋼板表面温度で、鋼板表面での噴射流の衝突圧が1MPa以上のデスケーリングを行い、
その後前記鋼板に対して、
冷却開始時の鋼板表面温度:(Ar3−100℃)以上(Ar3−10℃)以下、
鋼板表面下0.5mmにおける鋼板温度で750℃から550℃までの平均冷却速度:80℃/s以下、
鋼板平均温度で750℃から550℃までの平均冷却速度:15℃/s以上、および
鋼板平均温度で冷却停止温度:250〜550℃
の条件で制御冷却を行うことを特徴とする耐サワーラインパイプ用高強度鋼板の製造方法。
CP=4.46[%C]+2.37[%Mn]/6+(1.74[%Cu]+1.7[%Ni])/15+(1.18[%Cr]+1.95[%Mo]+1.74[%V])/5+22.36[%P] ・・・(1)
ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
[4] In mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015% , S: 0.0002 to 0.0015%, Al: 0.01 to 0.08%, and Ca: 0.0005 to 0.005%, and the CP value obtained by the following formula (1) is 1 1.00 or less, the remainder is a steel slab having a component composition of Fe and unavoidable impurities, after heating to a temperature of 1000 ~ 1300 ℃, hot-rolled into a steel sheet,
Thereafter, the steel sheet is subjected to descaling at a steel sheet surface temperature of (Ar 3 + 20 ° C.) or less and a collision pressure of a jet flow on the steel sheet surface of 1 MPa or more,
Then, for the steel plate,
Steel sheet surface temperature at the start of cooling: (Ar 3 -100 ° C) or more and (Ar 3 -10 ° C) or less,
Average cooling rate from 750 ° C. to 550 ° C. at a steel sheet temperature 0.5 mm below the steel sheet surface: 80 ° C./s or less,
Average cooling rate from 750 ° C to 550 ° C at average steel sheet temperature: 15 ° C / s or more, and cooling stop temperature at average steel sheet temperature: 250 to 550 ° C
A method for producing a high-strength steel plate for a sour-resistant line pipe, characterized in that controlled cooling is performed under the following conditions.
CP = 4.46 [% C] +2.37 [% Mn] / 6 + (1.74 [% Cu] +1.7 [% Ni]) / 15+ (1.18 [% Cr] +1.95 [% Mo] ] +1.74 [% V]) / 5 + 22.36 [% P] (1)
Here, [% X] indicates the content (% by mass) of X element in steel.

[5]前記成分組成が、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下およびMo:0.50%以下のうちから選んだ1種又は2種以上を含有する、上記[4]に記載の耐サワーラインパイプ用高強度鋼板の製造方法。   [5] The component composition is further selected from Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less by mass%. The method for producing a high-strength steel sheet for a sour resistant line pipe according to the above [4], comprising one or more kinds.

[6]前記成分組成が、さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%およびTi:0.005〜0.1%のうちから選んだ1種又は2種以上を含有する、上記[4]または[5]に記載の耐サワーラインパイプ用高強度鋼板の製造方法。   [6] The above-mentioned component composition is further selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% by mass%. The method for producing a high-strength steel sheet for a sour-resistant line pipe according to the above [4] or [5], comprising one or more kinds.

[7]上記[1]〜[3]のいずれか一項に記載の耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管。   [7] A high-strength steel pipe using the high-strength steel plate for sour resistant line pipe according to any one of the above [1] to [3].

本発明の耐サワーラインパイプ用高強度鋼板および該耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管は、より厳しい腐食環境下での耐HIC性及び耐SSCC性に優れる。また、本発明の耐サワーラインパイプ用高強度鋼板の製造方法によれば、より厳しい腐食環境下での耐HIC性及び耐SSCC性に優れた耐サワーラインパイプ用高強度鋼板を製造することができる。   The high-strength steel sheet for a sour line pipe and the high-strength steel pipe using the high-strength steel sheet for a sour line pipe according to the present invention are excellent in HIC resistance and SSCC resistance under severer corrosive environment. Further, according to the method for producing a high-strength steel plate for a sour line pipe according to the present invention, it is possible to produce a high-strength steel plate for a sour line pipe excellent in HIC resistance and SSCC resistance under a more severe corrosive environment. it can.

実施例における耐SSCC性の評価のための試験片の採取方法を説明する模式図である。It is a mimetic diagram explaining a sampling method of a test piece for SSCC resistance evaluation in an example.

以下、本開示の耐サワーラインパイプ用高強度鋼板について、具体的に説明する。   Hereinafter, the high-strength steel plate for a sour-resistant line pipe of the present disclosure will be specifically described.

[成分組成]
まず、本開示による高強度鋼板の成分組成とその限定理由について説明する。以下の説明において%で示す単位は全て質量%である。
[Component composition]
First, the component composition of the high-strength steel sheet according to the present disclosure and the reason for the limitation will be described. In the following description, all units indicated by% are mass%.

C:0.02〜0.08%
Cは、強度の向上に有効に寄与するが、含有量が0.02%未満では十分な強度が確保できず、一方0.08%を超えると加速冷却時に表層部の硬さが上昇するため、耐HIC特性および耐SSCC特性が劣化する。また、靭性も劣化する。このため、C量は0.02〜0.08%の範囲に限定する。
C: 0.02 to 0.08%
C effectively contributes to the improvement of the strength, but if the content is less than 0.02%, sufficient strength cannot be secured, while if it exceeds 0.08%, the hardness of the surface layer increases during accelerated cooling. , HIC resistance and SSCC resistance deteriorate. Further, the toughness also deteriorates. For this reason, the C content is limited to the range of 0.02 to 0.08%.

Si:0.01〜0.50%
Siは、脱酸のため添加するが、含有量が0.01%未満では脱酸効果が十分でなく、一方0.50%を超えると靭性や溶接性を劣化させるため、Si量は0.01〜0.50%の範囲に限定する。
Si: 0.01 to 0.50%
Si is added for deoxidation, but if the content is less than 0.01%, the deoxidizing effect is not sufficient, and if it exceeds 0.50%, toughness and weldability are deteriorated. It is limited to the range of 01 to 0.50%.

Mn:0.50〜1.80%
Mnは、強度、靭性の向上に有効に寄与するが、含有量が0.50%未満ではその添加効果に乏しく、一方1.80%を超えると加速冷却時に中心偏析部の硬さが上昇するため、耐HIC特性が劣化する。また、溶接性も劣化する。このため、Mn量は0.50〜1.80%の範囲に限定する。
Mn: 0.50 to 1.80%
Mn effectively contributes to the improvement of strength and toughness, but if the content is less than 0.50%, the effect of its addition is poor. On the other hand, if it exceeds 1.80%, the hardness of the central segregation part increases during accelerated cooling. Therefore, the HIC resistance deteriorates. In addition, weldability also deteriorates. For this reason, the amount of Mn is limited to the range of 0.50 to 1.80%.

P:0.001〜0.015%
Pは、不可避不純物元素であり、溶接性を劣化させるとともに、中心偏析部の硬さを上昇させることで耐HIC特性を劣化させる。0.015%を超えるとその傾向が顕著となるため、上限を0.015%に規定する。好ましくは0.008%以下である。含有量は低いほどよいが、精錬コストの観点から0.001%以上とする。
P: 0.001 to 0.015%
P is an unavoidable impurity element, and degrades the weldability and degrades the HIC resistance by increasing the hardness of the central segregation part. If it exceeds 0.015%, the tendency becomes remarkable, so the upper limit is set to 0.015%. Preferably it is 0.008% or less. The lower the content, the better, but from the viewpoint of refining cost, the content is set to 0.001% or more.

S:0.0002〜0.0015%
Sは、不可避不純物元素であり、鋼中においてはMnS介在物となり耐HIC特性を劣化させるため少ないことが好ましいが、0.0015%までは許容される。含有量は低いほどよいが、精錬コストの観点から0.0002%以上とする。
S: 0.0002-0.0015%
S is an unavoidable impurity element and is preferably small in steel because it becomes MnS inclusions and degrades the HIC resistance, but is allowed up to 0.0015%. The lower the content, the better, but from the viewpoint of refining cost, the content is set to 0.0002% or more.

Al:0.01〜0.08%
Alは、脱酸剤として添加するが、0.01%未満では添加効果がなく、一方、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al量は0.01〜0.08%の範囲に限定する。
Al: 0.01 to 0.08%
Al is added as a deoxidizing agent, but if it is less than 0.01%, there is no effect, whereas if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates. It is limited to the range of 01 to 0.08%.

Ca:0.0005〜0.005%
Caは、硫化物系介在物の形態制御による耐HIC特性向上に有効な元素であるが、0.0005%未満ではその添加効果が十分でない。一方、0.005%を超えた場合、効果が飽和するだけでなく、鋼の清浄度の低下により耐HIC特性を劣化させるので、Ca量は0.0005〜0.005%の範囲に限定する。
Ca: 0.0005 to 0.005%
Ca is an element effective for improving the HIC resistance by controlling the form of the sulfide-based inclusions, but if it is less than 0.0005%, the effect of its addition is not sufficient. On the other hand, when the content exceeds 0.005%, not only the effect is saturated, but also the HIC resistance is deteriorated due to a decrease in the cleanliness of the steel. Therefore, the Ca content is limited to the range of 0.0005 to 0.005%. .

以上、本開示の基本成分について説明したが、本開示の成分組成は、鋼板の強度や靱性の一層の改善のために、Cu,Ni,CrおよびMoのうちから選んだ1種又は2種以上を、以下の範囲で任意に含有させることができる。   Although the basic components of the present disclosure have been described above, the component composition of the present disclosure may be one or more selected from Cu, Ni, Cr, and Mo in order to further improve the strength and toughness of the steel sheet. Can be arbitrarily contained in the following range.

Cu:0.50%以下
Cuは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Cuを添加する場合は0.50%を上限とする。
Cu: 0.50% or less Cu is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more. Therefore, when Cu is added, the upper limit is 0.50%.

Ni:0.50%以下
Niは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると経済的に不利なだけでなく、溶接熱影響部の靱性が劣化するため、Niを添加する場合は0.50%を上限とする。
Ni: 0.50% or less Ni is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more. Not only is it disadvantageous, but also the toughness of the heat affected zone deteriorates, so when Ni is added, the upper limit is 0.50%.

Cr:0.50%以下
Crは、Mnと同様、低Cでも十分な強度を得るために有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Crを添加する場合は0.50%を上限とする。
Cr: 0.50% or less Cr, like Mn, is an element effective for obtaining sufficient strength even at low C, and it is preferable to contain 0.05% or more in order to obtain this effect. If the amount is too large, the weldability deteriorates. Therefore, when Cr is added, the upper limit is 0.50%.

Mo:0.50%以下
Moは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.05%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Moを添加する場合は0.50%を上限とする。
Mo: 0.50% or less Mo is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.05% or more. Therefore, when Mo is added, the upper limit is 0.50%.

本開示の成分組成は、さらに、Nb,VおよびTiのうちから選んだ1種又は2種以上を、以下の範囲で任意に含有させることもできる。   The component composition of the present disclosure may further contain one or more selected from Nb, V, and Ti within the following range.

Nb:0.005〜0.1%、V:0.005〜0.1%およびTi:0.005〜0.1%のうちから選んだ1種又は2種以上
Nb,VおよびTiはいずれも、鋼板の強度および靭性を高めるために任意に添加することができる元素である。各元素とも、含有量が0.005%未満ではその添加効果に乏しく、一方0.1%を超えると溶接部の靭性が劣化するので、添加する場合はいずれも0.005〜0.1%の範囲とするのが好ましい。
Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1%, at least one selected from the group consisting of Nb, V, and Ti. Is also an element that can be arbitrarily added to enhance the strength and toughness of the steel sheet. If the content of each element is less than 0.005%, the effect of the addition is poor, while if the content exceeds 0.1%, the toughness of the welded portion is deteriorated. It is preferable to set it in the range.

本開示は、耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管の耐SSCC性を改善するための技術を開示するものであるが、耐サワー性能として、いうまでもなく、耐HIC性能を同時に満足することが必要であるので、下記(1)式によって求められるCP値を、1.00以下とする。なお、添加しない元素は0を代入すれば良い。
CP=4.46[%C]+2.37[%Mn]/6+(1.74[%Cu]+1.7[%Ni])/15+(1.18[%Cr]+1.95[%Mo]+1.74[%V])/5+22.36[%P] ・・・(1)
ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
The present disclosure discloses a technique for improving the SSCC resistance of a high-strength steel pipe using a high-strength steel plate for a sour resistant line pipe. Since it is necessary to satisfy at the same time, the CP value obtained by the following equation (1) is set to 1.00 or less. Note that 0 may be substituted for an element that is not added.
CP = 4.46 [% C] +2.37 [% Mn] / 6 + (1.74 [% Cu] +1.7 [% Ni]) / 15+ (1.18 [% Cr] +1.95 [% Mo] ] +1.74 [% V]) / 5 + 22.36 [% P] (1)
Here, [% X] indicates the content (% by mass) of X element in steel.

ここに、上記CP値は、各合金元素の含有量から中心偏析部の材質を推定するために考案された式であり、上掲(1)式のCP値が高いほど中心偏析部の成分濃度が高くなり、中心偏析部の硬さが上昇する。従って、上記の(1)式において求められるCP値を1.00以下とすることで、HIC試験での割れ発生を抑制することが可能となる。また、CP値が低いほど中心偏析部の硬さが低くなるため、さらに高い耐HIC特性が求められる場合は、その上限を0.95とすれば良い。   Here, the CP value is a formula devised for estimating the material of the central segregation portion from the content of each alloy element. The higher the CP value of the above formula (1), the higher the component concentration of the central segregation portion. And the hardness of the center segregation part increases. Therefore, by setting the CP value obtained in the above equation (1) to 1.00 or less, it becomes possible to suppress the occurrence of cracks in the HIC test. In addition, the lower the CP value, the lower the hardness of the center segregation portion. Therefore, if higher HIC resistance is required, the upper limit may be set to 0.95.

なお、上記した元素以外の残部は、Feおよび不可避的不純物からなる。ただし、本発明の作用効果を害しない限り、他の微量元素の含有を妨げない。   The balance other than the above-mentioned elements is composed of Fe and inevitable impurities. However, the content of other trace elements is not prevented as long as the function and effect of the present invention are not impaired.

[鋼板の組織]
次に、本開示の耐サワーラインパイプ用高強度鋼板の鋼組織について説明する。引張強さが520MPa以上の高強度化を図るために、板厚中心における鋼組織は、ベイナイト組織とする必要がある。一方、表層硬さの上昇を抑制するために、表層部0.5mmの鋼組織についてはフェライト組織とする。表層部のフェライト層が厚すぎると、フェライト変態に伴うC拡散によりフェライト相直下の硬さが上昇する恐れがあるため、フェライト層は1.0mm以下が好ましい。フェライト組織中に、ベイナイトやマルテンサイト、パーライト、島状マルテンサイト、残留オーステナイトなどの異種組織が混在すると、ミクロ硬さ評価時、個別の層を評価することにより表層硬さのばらつきが大きくなるため、フェライト相以外の組織分率は少ない程良い。ただし、フェライト相以外の組織の体積分率が十分に低い場合には、それらの影響が無視できるので、ある程度の量であれば許容される。具体的に、本開示では、フェライト以外の鋼組織(ベイナイト、マルテンサイト、パーライト、島状マルテンサイト、残留オースナイト等)の合計が体積分率で5%未満であれば、大きな影響がないので許容されるものとする。
[Steel structure]
Next, the steel structure of the high-strength steel plate for a sour-resistant line pipe of the present disclosure will be described. In order to achieve a high tensile strength of 520 MPa or more, the steel structure at the center of the sheet thickness needs to have a bainite structure. On the other hand, in order to suppress an increase in surface hardness, the steel structure having a surface layer portion of 0.5 mm has a ferrite structure. If the ferrite layer in the surface portion is too thick, the hardness immediately below the ferrite phase may increase due to C diffusion accompanying the ferrite transformation, and therefore the ferrite layer is preferably 1.0 mm or less. When heterogeneous structures such as bainite, martensite, pearlite, island-like martensite, and retained austenite are mixed in the ferrite structure, the evaluation of the individual layers at the time of microhardness evaluation results in a large variation in surface layer hardness. The smaller the structural fraction other than the ferrite phase, the better. However, when the volume fraction of the structure other than the ferrite phase is sufficiently low, their influence is negligible, so that a certain amount is permissible. Specifically, in the present disclosure, if the total of the steel structures other than ferrite (bainite, martensite, pearlite, island-like martensite, retained austenite, etc.) is less than 5% by volume, there is no significant effect. Shall be accepted.

また、本開示においては、鋼板の極表層部の組織、具体的には鋼板表面下0.5mmの鋼組織を、転位密度0.5×1014〜7.0×1014(m-2)のフェライト組織とすることが肝要である。造管後のコーティング過程において転位密度が減少するため、鋼板表面下0.5mmの転位密度が7.0×1014(m-2)以下であれば、時効硬化による硬さの上昇代を最小限に抑えることができる。逆に、鋼板表面下0.5mmの転位密度が7.0×1014(m-2)を超えると、造管後のコーティング過程において転位密度が減少せず、時効硬化で硬度が大きく上昇して耐SSCC性を劣化させる。造管後に良好な耐SSCC性を得るために好ましい転位密度の範囲は6.0×1014(m-2)以下である。一方、鋼板表面下0.5mmの転位密度が0.5×1014(m-2)未満では鋼板として強度を維持できなくなる。X65グレードの強度を確保するため、2.0×1014(m-2)以上の転位密度を有することが好ましい。なお、本開示の高強度鋼板においては、鋼板表面下0.5mmの鋼組織における転位密度が上記範囲であれば、鋼板表面から深さ0.5mmの範囲の極表層部も同等の転位密度を有し、その結果、上記耐SSCC性向上の効果が得られるものである。 Further, in the present disclosure, the structure of the extreme surface layer portion of the steel sheet, specifically, the steel structure of 0.5 mm below the surface of the steel sheet is changed to a dislocation density of 0.5 × 10 14 to 7.0 × 10 14 (m −2 ). It is important to have a ferrite structure of Since the dislocation density decreases during the coating process after pipe forming, if the dislocation density at 0.5 mm below the steel sheet surface is 7.0 × 10 14 (m −2 ) or less, the increase in hardness due to age hardening is minimized. Can be minimized. Conversely, when the dislocation density at 0.5 mm below the steel sheet surface exceeds 7.0 × 10 14 (m −2 ), the dislocation density does not decrease in the coating process after pipe forming, and the hardness increases significantly by age hardening. Degrades SSCC resistance. The preferred range of dislocation density for obtaining good SSCC resistance after pipe forming is 6.0 × 10 14 (m −2 ) or less. On the other hand, if the dislocation density at 0.5 mm below the steel sheet surface is less than 0.5 × 10 14 (m −2 ), the steel sheet cannot maintain its strength. In order to secure the strength of the X65 grade, it is preferable to have a dislocation density of 2.0 × 10 14 (m −2 ) or more. Note that, in the high-strength steel sheet of the present disclosure, if the dislocation density in the steel structure of 0.5 mm below the steel sheet surface is in the above range, the same superfluous layer part in the range of 0.5 mm in depth from the steel sheet surface has the same dislocation density. As a result, the effect of improving the SSCC resistance can be obtained.

なお、鋼板表面下0.5mmでの転位密度を7.0×1014(m-2)以下とすると、表面下0.5mmでのHV0.1が230以下となる。鋼管の耐SSCC性を確保する観点から、鋼板の表層硬さを抑制することが重要であるが、鋼板の表面下0.5mmでのHV0.1を230以下にすることで、造管後コーティング過程を経たのちの、表面下0.5mmでのHV0.1を260以下に抑えることができ、耐SSCC性を確保することができる。 If the dislocation density at 0.5 mm below the surface of the steel sheet is 7.0 × 10 14 (m −2 ) or less, the HV 0.1 at 0.5 mm below the surface is 230 or less. From the viewpoint of ensuring the SSCC resistance of the steel pipe, it is important to suppress the surface hardness of the steel sheet. However, by setting the HV 0.1 at 0.5 mm below the surface of the steel sheet to 230 or less, the coating after pipe formation is reduced. HV0.1 at 0.5 mm below the surface after the process can be suppressed to 260 or less, and SSCC resistance can be secured.

本開示の高強度鋼板は、API 5LのX60グレード以上の強度を有する鋼管用の鋼板であるので、520MPa以上の引張強さを有するものとする。   Since the high-strength steel plate of the present disclosure is a steel plate for a steel pipe having a strength of X5 grade of API 5L or more, it has a tensile strength of 520 MPa or more.

[製造方法]
以下、上記耐サワーラインパイプ用高強度鋼板を製造するための製造方法および製造条件について、具体的に説明する。本開示の製造方法は、上記成分組成を有する鋼片の加熱したのち、熱間圧延して鋼板とし、その後鋼板に対して所定条件下でのデスケーリングを行い、その後当該鋼板に対して所定条件下での制御冷却を行う。
[Production method]
Hereinafter, a manufacturing method and manufacturing conditions for manufacturing the high-strength steel plate for a sour resistant line pipe will be specifically described. The manufacturing method of the present disclosure, after heating a slab having the above-described composition, hot-rolled to a steel sheet, and then descaling the steel sheet under predetermined conditions, and then performing predetermined conditions on the steel sheet. Perform controlled cooling below.

〔スラブ加熱温度〕
スラブ加熱温度:1000〜1300℃
スラブ加熱温度が1000℃未満では、炭化物の固溶が不十分で必要な強度が得られず、一方1300℃を超えると靭性が劣化するため、スラブ加熱温度は1000〜1300℃とする。なお、この温度は加熱炉の炉内温度であり、スラブは中心部までこの温度に加熱されるものとする。
[Slab heating temperature]
Slab heating temperature: 1000-1300 ° C
If the slab heating temperature is less than 1000 ° C., the required solidity cannot be obtained due to insufficient solid solution of carbides, while if it exceeds 1300 ° C., the toughness deteriorates. This temperature is the temperature inside the heating furnace, and the slab is heated to this temperature up to the center.

〔圧延終了温度〕
熱間圧延工程において、高い母材靱性を得るには、圧延終了温度は低いほどよいが、その反面、圧延能率が低下するため、鋼板表面温度における圧延終了温度は、必要な母材靱性と圧延能率を勘案して設定する必要がある。強度および耐HIC性能を向上させる観点からは、圧延終了温度を、鋼板表面温度でAr3変態点以上とすることが好ましい。ここで、Ar3変態点とは、冷却中におけるフェライト変態開始温度を意味し、例えば、鋼の成分から以下の式で求めることができる。また、高い母材靱性を得るためにはオーステナイト未再結晶温度域に相当する950℃以下の温度域での圧下率を60%以上とすることが望ましい。なお、鋼板の表面温度は放射温度計等で測定することができる。
Ar3(℃)=910−310[%C]−80[%Mn]−20[%Cu]−15[%Cr]−55[%Ni]−80[%Mo]
ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
(Rolling end temperature)
In the hot rolling step, in order to obtain high base material toughness, the lower the rolling end temperature, the better. However, on the other hand, since the rolling efficiency is reduced, the rolling end temperature at the steel sheet surface temperature is set to the required base material toughness and rolling. It is necessary to set in consideration of efficiency. From the viewpoint of improving the strength and the HIC resistance, it is preferable that the rolling end temperature be equal to or higher than the Ar 3 transformation point at the steel sheet surface temperature. Here, the Ar 3 transformation point means a ferrite transformation start temperature during cooling, and can be determined, for example, from the steel composition by the following equation. Further, in order to obtain a high base material toughness, it is desirable that the rolling reduction in a temperature range of 950 ° C. or less corresponding to the austenite non-recrystallization temperature range is 60% or more. The surface temperature of the steel sheet can be measured with a radiation thermometer or the like.
Ar 3 (° C.) = 910-310 [% C] -80 [% Mn] -20 [% Cu] -15 [% Cr] -55 [% Ni] -80 [% Mo]
Here, [% X] indicates the content (% by mass) of X element in steel.

〔デスケーリング〕
熱間圧延の終了後、制御冷却の直前に、鋼板に対してデスケーリングを行う。これは、表層部に均一にフェライトを形成させるために重要な工程の一つである。
(Descaling)
After the end of the hot rolling and immediately before the controlled cooling, the steel sheet is descaled. This is one of the important steps for uniformly forming ferrite on the surface layer.

デスケーリング開始時の鋼板表面温度:(Ar3+20℃)以下
デスケーリング開始時の鋼板表面温度が(Ar3+20℃)を超える場合、鋼板表面下0.5mmの位置までフェライトが形成されず、表層硬さの上昇、耐SSCC性の劣化を招くからである。当該鋼板表面温度の下限は特に限定されないが、フェライト層の過剰形成を避ける観点から(Ar3−30℃)以上とすることが好ましい。
Steel sheet surface temperature at the start of descaling: (Ar 3 + 20 ° C.) or less If the steel sheet surface temperature at the start of descaling exceeds (Ar 3 + 20 ° C.), no ferrite is formed up to 0.5 mm below the steel sheet surface, This is because the surface hardness increases and SSCC resistance deteriorates. The lower limit of the steel sheet surface temperature is not particularly limited, but is preferably (Ar 3 -30 ° C.) or more from the viewpoint of avoiding excessive formation of the ferrite layer.

鋼板表面での噴射流の衝突圧:1MPa以上
鋼板表面での噴射流の衝突圧が1MPa未満では、デスケーリングが不十分でスケールむらが生じる場合があり、鋼板表面下0.5mmにおいて均一なフェライト相の形成が困難となるため、1MPa以上とする。衝突圧の上限は特に限定されないが、設備能力の観点から10MPa以下とすることが好ましい。
When the collision pressure of the jet flow on the surface of the steel plate is 1 MPa or more, if the collision pressure of the jet flow on the surface of the steel plate is less than 1 MPa, the descaling may be insufficient and scale unevenness may occur. Since it is difficult to form a phase, the pressure is set to 1 MPa or more. The upper limit of the collision pressure is not particularly limited, but is preferably 10 MPa or less from the viewpoint of the equipment capacity.

〔制御冷却の冷却開始温度〕
冷却開始時の鋼板表面温度:(Ar3−100℃)以上(Ar3−10℃)以下
冷却開始時の鋼板表面温度は特に重要で、制御冷却前に鋼板表層において十分にフェライト変態させておく必要がある。Ar3変態点からの温度降下量が10℃未満であると、表層組織はフェライト−ベイナイト2相組織となり、また、鋼板表面下0.5mmでの転位密度7.0×1014(m-2)超えとなるため、耐SSCC性が劣化する。このため、冷却開始時の鋼板表面温度は、(Ar3−10℃)以下とした。好ましくは(Ar3−30℃)以下である。また、Ar3変態点からの温度降下量が100℃を超えると、板厚全域でのフェライト変態が進行し、板厚中心部ではフェライト−ベイナイト2相組織となり、強度低下が大きくなると共に耐HIC特性が劣化する。このため、冷却開始時の鋼板表面温度は(Ar3−100℃)以上とする。さらに好ましくは(Ar3−80℃)以上である。
[Cooling start temperature for control cooling]
Steel sheet surface temperature at the start of cooling: (Ar 3 -100 ° C.) or more and (Ar 3 -10 ° C.) or less The steel sheet surface temperature at the start of cooling is particularly important, and the surface of the steel sheet is sufficiently transformed into ferrite before controlled cooling. There is a need. If the amount of temperature drop from the Ar 3 transformation point is less than 10 ° C., the surface layer structure becomes a ferrite-bainite two-phase structure, and the dislocation density at a depth of 0.5 mm below the steel sheet surface is 7.0 × 10 14 (m −2). ), The SSCC resistance deteriorates. For this reason, the steel sheet surface temperature at the start of cooling was set to (Ar 3 -10 ° C.) or less. Preferably not more than (Ar 3 -30 ℃). When the temperature drop from the Ar 3 transformation point exceeds 100 ° C., the ferrite transformation proceeds in the entire thickness of the sheet, a ferrite-bainite two-phase structure is formed in the center of the sheet thickness, the strength decrease is increased, and the HIC resistance is increased. The characteristics deteriorate. For this reason, the steel sheet surface temperature at the start of cooling is (Ar 3 -100 ° C.) or higher. It is more preferably (Ar 3 -80 ° C.) or higher.

〔制御冷却の冷却速度〕
高強度化を図りつつ、鋼板内の硬さのばらつきを低減し、材質均一性を向上させるためには、表層(具体的には鋼板表面下0.5mmの深さ)での冷却速度を抑制しつつ、板厚中心の変態温度区間での冷却速度を確保する必要がある。
[Cooling rate of controlled cooling]
In order to reduce the variation in hardness in the steel sheet and improve the material uniformity while increasing the strength, the cooling rate at the surface layer (specifically, 0.5 mm below the steel sheet surface) is suppressed. At the same time, it is necessary to secure a cooling rate in the transformation temperature section at the center of the sheet thickness.

鋼板表面下0.5mmにおける鋼板温度で750℃から550℃までの平均冷却速度:80℃/s以下
鋼板表面下0.5mmにおける鋼板温度で750℃から550℃までの平均冷却速度が80℃/sを超えると、鋼板表面下0.5mmにおける転位密度7.0×1014(m-2)超えとなってしまう。その結果、鋼板表面下0.5mmのHV0.1が230を超え、造管後のコーティング過程を経たのち、表面下0.5mmでのHV0.1が260を超え、鋼管の耐SSCC性が劣化する。そのため、当該平均冷却速度は80℃/s以下とする。好ましくは60℃/s以下である。当該平均冷却速度の下限は特に限定されないが、フェライト層の過剰形成回避の観点から、10℃/s以上とすることが好ましい。
Average cooling rate from 750 ° C to 550 ° C at a steel sheet temperature of 0.5mm below the steel sheet surface: 80 ° C / s or less Average cooling rate from 750 ° C to 550 ° C at a steel sheet temperature of 0.5mm below the steel sheet surface is 80 ° C / s. If it exceeds s, the dislocation density at a depth of 0.5 mm below the steel sheet surface will exceed 7.0 × 10 14 (m −2 ). As a result, the HV0.1 at 0.5 mm below the steel plate surface exceeds 230, and after the coating process after pipe making, the HV0.1 at 0.5 mm below the surface exceeds 260, deteriorating the SSCC resistance of the steel tube. I do. Therefore, the average cooling rate is set to 80 ° C./s or less. Preferably, it is 60 ° C./s or less. The lower limit of the average cooling rate is not particularly limited, but is preferably 10 ° C./s or more from the viewpoint of avoiding excessive formation of the ferrite layer.

鋼板平均温度で750℃から550℃までの平均冷却速度:15℃/s以上
鋼板平均温度で750℃から550℃までの平均冷却速度が15℃/s未満では、板厚中央部においてベイナイト組織が得られずに、強度低下や耐HIC特性の劣化が生じたり、硬さのばらつきが大きくなったりする。このため、鋼板平均温度での冷却速度は15℃/s以上とする。鋼板強度と硬さのばらつきの観点からは、鋼板平均の冷却速度は20℃/s以上とすることが好ましい。当該平均冷却速度の上限は特に限定されないが、マルテンサイト等の硬質相形成による硬さばらつきを回避する観点から、80℃/s以下とすることが好ましい。
Average cooling rate from 750 ° C to 550 ° C at an average temperature of steel sheet: 15 ° C / s or more If the average cooling rate from 750 ° C to 550 ° C at an average temperature of the steel sheet is less than 15 ° C / s, bainite structure is formed at the center of the sheet thickness. Otherwise, the strength is reduced, the HIC resistance is degraded, and the hardness varies greatly. Therefore, the cooling rate at the average temperature of the steel sheet is set to 15 ° C./s or more. From the viewpoint of variations in the strength and hardness of the steel sheet, the average cooling rate of the steel sheet is preferably set to 20 ° C./s or more. The upper limit of the average cooling rate is not particularly limited, but is preferably 80 ° C./s or less from the viewpoint of avoiding hardness variation due to formation of a hard phase such as martensite.

なお、鋼板表面下0.5mmおよび鋼板平均温度は、物理的に直接測定することはできないが、放射温度計にて測定された冷却開始時の表面温度と目標の冷却停止時の表面温度をもとに、例えばプロセスコンピューターを用いて差分計算により板厚断面内の温度分布をリアルタイムに求めることができる。当該温度分布における鋼板表面下0.5mmでの温度を本明細書における「鋼板表面下0.5mmにおける鋼板温度」とし、当該温度分布における板厚方向の温度の平均値を本明細書における「鋼板平均温度」とする。   Although 0.5 mm below the steel sheet surface and the average steel sheet temperature cannot be directly measured physically, the surface temperature at the start of cooling measured by the radiation thermometer and the surface temperature at the target cooling stop are also measured. At the same time, for example, the temperature distribution in the thickness cross section can be obtained in real time by a difference calculation using a process computer. The temperature at 0.5 mm below the surface of the steel sheet in the temperature distribution is referred to as “the steel sheet temperature at 0.5 mm below the surface of the steel sheet” in this specification, and the average value of the temperature in the thickness direction in the temperature distribution is referred to as “the steel sheet in this specification. Average temperature ".

〔冷却停止温度〕
鋼板平均温度で冷却停止温度:250〜550℃
表層のフェライト変態が完了後、制御冷却でベイナイト変態の温度域である250〜550℃まで急冷することにより、ベイナイト相を生成させる。冷却停止温度が550℃を超えると、ベイナイト変態が不完全であり、十分な強度が得られない。また、冷却停止温度が250℃未満では、マルテンサイトや島状マルテンサイト(MA)が生成し、特に表層部の硬さ上昇が著しくなり、板厚方向の硬さのばらつきが大きくなる。そこで、鋼板内の材質均一性の劣化を抑制するため、制御冷却の冷却停止温度は鋼板平均温度で250〜550℃とする。
(Cooling stop temperature)
Cooling stop temperature at the average temperature of the steel sheet: 250 to 550 ° C
After the ferrite transformation of the surface layer is completed, the bainite phase is generated by rapid cooling to 250 to 550 ° C. which is the temperature range of bainite transformation by controlled cooling. If the cooling stop temperature exceeds 550 ° C., bainite transformation is incomplete and sufficient strength cannot be obtained. If the cooling stop temperature is lower than 250 ° C., martensite or island-like martensite (MA) is generated, and the hardness of the surface layer in particular increases remarkably, and the variation in hardness in the thickness direction increases. Therefore, in order to suppress the deterioration of the material uniformity in the steel sheet, the cooling stop temperature of the control cooling is set to 250 to 550 ° C. as the average temperature of the steel sheet.

[高強度鋼管]
本開示の高強度鋼板を、プレスベンド成形、ロール成形、UOE成形等で管状に成形した後、突き合わせ部を溶接することにより、原油や天然ガスの輸送に好適な鋼板内の材質均一性に優れた耐サワーラインパイプ用高強度鋼管(UOE鋼管、電縫鋼管、スパイラル鋼管等)を製造することができる。
[High strength steel pipe]
The high-strength steel sheet of the present disclosure is formed into a tubular shape by press bend forming, roll forming, UOE forming, and the like, and by welding the butted portions, the material uniformity in the steel sheet suitable for transporting crude oil and natural gas is excellent. It is possible to manufacture high-strength steel pipes (such as UOE steel pipes, ERW steel pipes, and spiral steel pipes) for sour resistant line pipes.

例えば、UOE鋼管は、鋼板の端部を開先加工し、Cプレス、Uプレス、Oプレスで鋼管形状に成形した後、内面溶接および外面溶接で突き合わせ部をシーム溶接し、さらに必要に応じて拡管工程を経て製造される。また、溶接方法は十分な継手強度と継手靭性が得られる方法であれば、いずれの方法でも良いが、優れた溶接品質と製造能率の観点から、サブマージアーク溶接を用いることが好ましい。   For example, UOE steel pipes, beveling the end of the steel plate, forming the steel pipe shape by C-press, U-press, O-press, then seam-welding the butt portion by internal welding and external welding, and further if necessary It is manufactured through an expansion process. In addition, any welding method may be used as long as sufficient joint strength and joint toughness can be obtained. However, from the viewpoint of excellent welding quality and production efficiency, it is preferable to use submerged arc welding.

表1に示す成分組成になる鋼(鋼種A〜I)を、連続鋳造法によりスラブとし、表2に示す温度に加熱したのち、表2に示す圧延終了温度および圧下率の熱間圧延をして、表2に示す板厚の鋼板とした。その後、表2に示す鋼板表面温度にて、鋼板表面での噴射流の衝突圧が2.0MPaとなるように鋼板にデスケーリングを行った。その後、鋼板に対して、表2に示す条件下で水冷型の制御冷却装置を用いて制御冷却を行った。   Steel (steel types A to I) having the composition shown in Table 1 was formed into a slab by a continuous casting method, heated to the temperature shown in Table 2, and then subjected to hot rolling at the rolling end temperature and rolling reduction shown in Table 2. Thus, a steel plate having a plate thickness shown in Table 2 was obtained. Then, at the steel sheet surface temperature shown in Table 2, the steel sheet was descaled such that the collision pressure of the jet flow on the steel sheet surface was 2.0 MPa. Thereafter, the steel sheet was subjected to controlled cooling using a water-cooled controlled cooling device under the conditions shown in Table 2.

[組織の特定]
得られた鋼板のミクロ組織を、光学顕微鏡および走査型電子顕微鏡により観察した。鋼板表面下0.5mmの位置での組織と、板厚中央での組織を、表2に示す。
[Identify organization]
The microstructure of the obtained steel sheet was observed with an optical microscope and a scanning electron microscope. Table 2 shows the structure at a position 0.5 mm below the surface of the steel sheet and the structure at the center of the sheet thickness.

[引張強度の測定]
圧延方向に直角な方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。結果を表2に示す。
[Measurement of tensile strength]
A tensile test was performed using a full thickness test piece in a direction perpendicular to the rolling direction as a tensile test piece, and the tensile strength was measured. Table 2 shows the results.

[ビッカース硬さの測定]
圧延方向に直角な断面について、JIS Z 2244に準拠して、鋼板表面下0.5mmの位置において50点のビッカース硬さ(HV0.1)を測定し、その平均値を求めた。ここで、通常用いられるHV10に代えてHV0.1で測定したのは、HV0.1で測定することにより圧痕が小さくなるので、より表面に近い位置での硬さ情報や、よりミクロ組織に敏感な硬さ情報をすることが可能となるからである。
[Measurement of Vickers hardness]
With respect to a cross section perpendicular to the rolling direction, Vickers hardness (HV0.1) at 50 points was measured at a position 0.5 mm below the steel sheet surface according to JIS Z 2244, and the average value was determined. Here, the measurement at HV0.1 instead of the commonly used HV10 is because the indentation is reduced by measuring at HV0.1, so that the hardness information at a position closer to the surface and the sensitivity to the microstructure are more sensitive. This is because it is possible to provide information on the hardness of the object.

[転位密度]
平均的な硬度を有する位置からX線回折用のサンプルを採取、サンプル表面を研磨してスケールを除去し、鋼板表面下0.5mmの位置においてX線回折測定を行った。転位密度はX線回折測定の半価幅βから求める歪みから換算する手法を用いた。通常のX線回折により得られる回折強度曲線では、波長の異なるKα1線とKα2線の2つが重なっているため、Rachingerの方法により分離する。歪みの抽出には、以下に示すWilliamsson−Hall法を用いる。半価幅の広がりは結晶子のサイズDとひずみεが影響し、両因子の和として次式で計算できる。β=β1+β2=(0.9λ/(D×cosθ))+2ε×tanθとなる。さらにこの式を変形し、βcosθ/λ=0.9λ/D+2ε×sinθ/λとなる。sinθ/λに対してβcosθ/λをプロットすることにより、直線の傾きからひずみεが算出される。なお、算出に用いる回折線は(110)、(211)、および(220)とする。ひずみεから転位密度の換算はρ=14.4ε2/b2を用いた。なお、θはX線回折のθ‐2θ法より算出されるピーク角度を意味し、λはX線回折で使用するX線の波長を意味する。bはFe(α)のバーガース・ベクトルで、本実施例においては、0.25nmとした。
[Dislocation density]
A sample for X-ray diffraction was collected from a position having an average hardness, the sample surface was polished to remove scale, and X-ray diffraction measurement was performed at a position of 0.5 mm below the steel sheet surface. The method of converting the dislocation density from the strain obtained from the half width β of the X-ray diffraction measurement was used. In a diffraction intensity curve obtained by ordinary X-ray diffraction, two Kα1 rays and Kα2 rays having different wavelengths are overlapped with each other, and are separated by the Rachinger method. The Williamsson-Hall method described below is used to extract the distortion. The spread of the half width is affected by the crystallite size D and the strain ε, and can be calculated by the following equation as the sum of both factors. β = β1 + β2 = (0.9λ / (D × cos θ)) + 2ε × tan θ. This equation is further transformed to βcos θ / λ = 0.9λ / D + 2ε × sin θ / λ. By plotting βcosθ / λ against sinθ / λ, strain ε is calculated from the slope of the straight line. The diffraction lines used for calculation are (110), (211), and (220). For the conversion of the dislocation density from the strain ε, ρ = 14.4 ε 2 / b 2 was used. Here, θ means the peak angle calculated by the θ-2θ method of X-ray diffraction, and λ means the wavelength of X-ray used in X-ray diffraction. b is the Burgers vector of Fe (α), which was 0.25 nm in this embodiment.

[耐SSCC性の評価]
耐SSCC性は、これら各鋼板の一部を用いて造管して評価した。造管は、鋼板の端部を開先加工し、Cプレス、Uプレス、Oプレスで鋼管形状に成形した後、内面および外面の突き合わせ部をサブマージアーク溶接でシーム溶接し、拡管工程を経て製造した。図1に示すように、得られた鋼管から切り出したクーポンをフラットニングした後、5×15×115mmのSSCC試験片を鋼管内面より採取した。このとき、被検面である内面は、最表層の状態を残すために黒皮付きのままとした。採取したSSCC試験片に、各鋼管の実際の降伏強度(0.5%YS)の90%の応力を負荷し、NACE規格 TM0177 Solution A溶液を用い、硫化水素分圧:1barにて、EFC16規格の4点曲げSSCC試験に準拠して行った。720時間の浸漬後に、割れが認められない場合を耐SSCC性が良好と判断して○、また割れが発生した場合を不良と判断して×とした。結果を表2に示す。
[Evaluation of SSCC resistance]
SSCC resistance was evaluated by forming a pipe using a part of each of these steel sheets. The pipe is manufactured by beveling the end of the steel plate, forming it into a steel pipe shape by C press, U press, and O press, then seam welding the inner and outer butt joints by submerged arc welding and then expanding the pipe. did. As shown in FIG. 1, a coupon cut out from the obtained steel pipe was flattened, and a 5 × 15 × 115 mm SSCC test piece was collected from the inner surface of the steel pipe. At this time, the inner surface, which is the surface to be inspected, was left blackened in order to leave the state of the outermost layer. A 90% stress of the actual yield strength (0.5% YS) of each steel pipe was applied to the sampled SSCC specimens, and NACE standard TM0177 Solution A solution was used, hydrogen sulfide partial pressure: 1 bar, and EFC16 standard. Was performed according to the 4-point bending SSCC test. When no cracks were observed after 720 hours of immersion, SSCC resistance was determined to be good, and when cracks occurred, it was determined to be poor, and x was determined. Table 2 shows the results.

[耐HIC性の評価]
耐HIC特性は、NACE Standard TM−02−84に準じた浸漬時間96時間のHIC試験を行い、割れが認められない場合を耐HIC特性良好と判断して○で、割れが発生した場合を×として評価した。結果を表2に示す。
[Evaluation of HIC resistance]
The HIC resistance was evaluated by performing a HIC test for a dipping time of 96 hours in accordance with NACE Standard TM-02-84. If no cracks were observed, the HIC resistance was judged to be good. Was evaluated. Table 2 shows the results.

本発明の目標範囲は、耐サワーラインパイプ用高強度鋼板として引張強度:520MPa以上、表面下0.5mm位置におけるミクロ組織はフェライト相とし、t/2位置におけるミクロ組織はベイナイト組織とし、表面下0.5mmでのHV0.1が230以下、その鋼板を用いて造管した高強度鋼管においてSSCC試験で割れが認められないこと、およびHIC試験による割れが認められないこととした。   The target range of the present invention is a high-strength steel sheet for a sour-resistant line pipe having a tensile strength of 520 MPa or more, a microstructure at a position 0.5 mm below the surface being a ferrite phase, a microstructure at a position t / 2 being a bainite structure, HV0.1 at 0.5 mm was 230 or less, and it was determined that no crack was observed in the SSCC test and no crack was observed in the HIC test in a high-strength steel pipe formed using the steel sheet.

Figure 0006665822
Figure 0006665822

Figure 0006665822
Figure 0006665822

表2に示したように、No.1〜No.9は、成分組成および製造条件が本発明の適正範囲を満足する発明例である。いずれも、鋼板として引張強度:520MPa以上、表面下0.5mm位置におけるミクロ組織はフェライト相、t/2位置におけるミクロ組織はベイナイト組織、表面下0.5mmでのHV0.1が230以下であり、その鋼板を用いて造管した高強度鋼管において耐SSCC性および耐HIC性も良好であった。   As shown in Table 2, no. 1 to No. 9 is an invention example in which the component composition and the production conditions satisfy the appropriate range of the present invention. In any case, the steel sheet has a tensile strength of 520 MPa or more, the microstructure at a position 0.5 mm below the surface is a ferrite phase, the microstructure at a position t / 2 is a bainite structure, and the HV0.1 at 0.5 mm below the surface is 230 or less. The SSCC resistance and the HIC resistance of the high-strength steel pipe formed using the steel sheet were also good.

これに対し、No.10〜No.19は、成分組成は本発明の範囲内であるが、製造条件が本発明の範囲外の比較例である。No.10は、デスケーリングを使用しなかったため、表層組織がフェライト相のみとならず、耐SSCC性に劣る。No.11は、デスケーリングの温度、冷却開始温度及び冷却速度が本発明範囲外で、表層の転位密度及び硬さが大きくなり、耐SSCC性の劣化を招いている。No.12はデスケーリングの温度、及び冷却開始温度が本発明範囲外であり、表層組織がベイナイトであるため、表層の転位密度及び硬さが大きくなり、耐SSCC性の劣化を招いている。No.13は冷却開始温度が低く、板全域でフェライトが形成され、強度不足となり、耐HIC性が劣化した。No.14はデスケーリング開始温度が高く、表層に十分フェライトが形成されなかったため、表層硬さ、転位密度が大きくなり、SSCC発生を招いた。No.15は、デスケーリング条件は範囲内であるものの、冷却開始温度が高く、表層フェライト形成が充分でなかったため、SSCCの発生を招いた。No.16は、鋼板表面下0.5mmでの冷却速度が著しく速いため、表層部にマルテンサイトが形成され、その結果表層部の硬さが上昇し、耐SSCC性も劣化した。No.17は、No.16ほど冷却速度が速くないため表層組織はフェライトであるが、本発明範囲外の冷却速度であるため、表層部硬さの上昇、耐SSCC性の劣化を招いた。No.18およびNo.19は、制御冷却条件が本発明範囲外で、ミクロ組織として板厚中心部でベイナイト組織が得られず、低強度であった。No.20〜No.23は、鋼板の成分組成が本発明の範囲外であり、HIC割れを生じた。   On the other hand, no. 10-No. 19 is a comparative example in which the component composition is within the range of the present invention, but the production conditions are out of the range of the present invention. No. In No. 10, since no descaling was used, the surface layer structure was not only a ferrite phase, and the SSCC resistance was poor. No. In No. 11, the descaling temperature, the cooling start temperature, and the cooling rate were out of the range of the present invention, and the dislocation density and hardness of the surface layer were increased, resulting in deterioration of SSCC resistance. No. In No. 12, since the descaling temperature and the cooling start temperature are out of the range of the present invention, and the surface layer structure is bainite, the dislocation density and the hardness of the surface layer are increased, and the SSCC resistance is deteriorated. In No. 13, the cooling start temperature was low, ferrite was formed throughout the plate, the strength was insufficient, and the HIC resistance was deteriorated. No. In No. 14, since the descaling start temperature was high and ferrite was not sufficiently formed on the surface layer, the surface layer hardness and dislocation density were increased, and SSCC was generated. No. In No. 15, although the descaling condition was within the range, the cooling start temperature was high and the formation of the surface ferrite was not sufficient, so that SSCC was generated. No. In No. 16, since the cooling rate at 0.5 mm below the steel sheet surface was extremely high, martensite was formed in the surface layer, and as a result, the hardness of the surface layer was increased and the SSCC resistance was also deteriorated. No. No. 17 is No. Although the cooling rate is not as fast as 16, the surface layer structure is ferrite. However, since the cooling rate is out of the range of the present invention, the hardness of the surface layer is increased and the SSCC resistance is deteriorated. No. In Nos. 18 and 19, the controlled cooling conditions were out of the range of the present invention, and no bainite structure was obtained at the center of the plate thickness as the microstructure, and the samples had low strength. In No. 20 to No. 23, the component composition of the steel sheet was out of the range of the present invention, and HIC cracking occurred.

本発明によれば、より厳しい腐食環境下での耐HIC性及び耐SSCC性に優れた耐サワーラインパイプ用高強度鋼板を供給することができる。よって、この鋼板を冷間成形して製造した鋼管(電縫鋼管、スパイラル鋼管、UOE鋼管等)は、耐サワー性を要する硫化水素を含む原油や天然ガスの輸送に好適に使用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high strength steel plate for sour line pipes excellent in HIC resistance and SSCC resistance under severer corrosion environment can be supplied. Therefore, a steel pipe (such as an electric resistance welded steel pipe, a spiral steel pipe, or a UOE steel pipe) manufactured by cold-forming this steel sheet can be suitably used for transporting crude oil or natural gas containing hydrogen sulfide that requires sour resistance. .

Claims (7)

質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.50〜1.80%、P:0.001〜0.015%、S:0.0002〜0.0015%、Al:0.01〜0.08%およびCa:0.0005〜0.005%を含有し、以下の式(1)によって求められるCP値が1.00以下となり、残部がFeおよび不可避的不純物からなる成分組成を有し、
鋼板表面下0.5mmにおける鋼組織が、転位密度0.5×1014〜7.0×1014(m-2)のフェライト組織であり、
板厚中央における鋼組織がベイナイト組織であることを特徴とする耐サワーラインパイプ用高強度鋼板。
CP=4.46[%C]+2.37[%Mn]/6+(1.74[%Cu]+1.7[%Ni])/15+(1.18[%Cr]+1.95[%Mo]+1.74[%V])/5+22.36[%P] ・・・(1)
ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
In mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015%, S: It contains 0.0002 to 0.0015%, Al: 0.01 to 0.08% and Ca: 0.0005 to 0.005%, and has a CP value of 1.00 or less determined by the following formula (1). And the balance has a component composition consisting of Fe and unavoidable impurities,
The steel structure at 0.5 mm below the surface of the steel sheet is a ferrite structure having a dislocation density of 0.5 × 10 14 to 7.0 × 10 14 (m −2 ),
A high-strength steel plate for a sour-resistant line pipe, wherein the steel structure at the center of the plate thickness is a bainite structure.
CP = 4.46 [% C] +2.37 [% Mn] / 6 + (1.74 [% Cu] +1.7 [% Ni]) / 15+ (1.18 [% Cr] +1.95 [% Mo] ] +1.74 [% V]) / 5 + 22.36 [% P] (1)
Here, [% X] indicates the content (% by mass) of X element in steel.
前記成分組成が、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下およびMo:0.50%以下のうちから選んだ1種又は2種以上を含有する、請求項1に記載の耐サワーラインパイプ用高強度鋼板。   One or more selected from the group consisting of Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less by mass%; The high-strength steel sheet for a sour-resistant line pipe according to claim 1, comprising two or more types. 前記成分組成が、さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%およびTi:0.005〜0.1%のうちから選んだ1種又は2種以上を含有する、請求項1または2に記載の耐サワーラインパイプ用高強度鋼板。   One of the above component compositions selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% by mass%. The high-strength steel sheet for a sour-resistant line pipe according to claim 1 or 2, which contains two or more kinds. 質量%で、C:0.02〜0.08%、Si:0.01〜0.50%、Mn:0.50〜1.80%、P:0.001〜0.015%、S:0.0002〜0.0015%、Al:0.01〜0.08%およびCa:0.0005〜0.005%を含有し、以下の式(1)によって求められるCP値が1.00以下となり、残部がFeおよび不可避的不純物の成分組成を有する鋼片を、1000〜1300℃の温度に加熱したのち、熱間圧延して鋼板とし、
その後前記鋼板に対して、(Ar3+20℃)以下の鋼板表面温度で、鋼板表面での噴射流の衝突圧が1MPa以上のデスケーリングを行い、
その後前記鋼板に対して、
冷却開始時の鋼板表面温度:(Ar3−100℃)以上(Ar3−10℃)以下、
鋼板表面下0.5mmにおける鋼板温度で750℃から550℃までの平均冷却速度:80℃/s以下、
鋼板平均温度で750℃から550℃までの平均冷却速度:15℃/s以上、および
鋼板平均温度で冷却停止温度:250〜550℃
の条件で制御冷却を行って、鋼板表面下0.5mmにおける鋼組織が、転位密度0.5×10 14 〜7.0×10 14 (m -2 )のフェライト組織であり、板厚中央における鋼組織がベイナイト組織である高強度鋼板を製造することを特徴とする耐サワーラインパイプ用高強度鋼板の製造方法。
CP=4.46[%C]+2.37[%Mn]/6+(1.74[%Cu]+1.7[%Ni])/15+(1.18[%Cr]+1.95[%Mo]+1.74[%V])/5+22.36[%P] ・・・(1)
ただし、[%X]はX元素の鋼中含有量(質量%)を示す。
In mass%, C: 0.02 to 0.08%, Si: 0.01 to 0.50%, Mn: 0.50 to 1.80%, P: 0.001 to 0.015%, S: It contains 0.0002 to 0.0015%, Al: 0.01 to 0.08% and Ca: 0.0005 to 0.005%, and has a CP value of 1.00 or less determined by the following formula (1). And the remainder is heated to a temperature of 1000 to 1300 ° C., after the steel slab having the component composition of Fe and unavoidable impurities is hot-rolled into a steel sheet,
Thereafter, the steel sheet is subjected to descaling at a steel sheet surface temperature of (Ar 3 + 20 ° C.) or less and a collision pressure of a jet flow on the steel sheet surface of 1 MPa or more,
Then, for the steel plate,
Steel sheet surface temperature at the start of cooling: (Ar 3 -100 ° C) or more and (Ar 3 -10 ° C) or less,
Average cooling rate from 750 ° C. to 550 ° C. at a steel sheet temperature 0.5 mm below the steel sheet surface: 80 ° C./s or less,
Average cooling rate from 750 ° C to 550 ° C at average steel sheet temperature: 15 ° C / s or more, and cooling stop temperature at average steel sheet temperature: 250 to 550 ° C
What condition row control cooling at the, steel structure in the surface of the steel sheet under 0.5mm is a ferritic structure of the dislocation density 0.5 × 10 14 ~7.0 × 10 14 (m -2), mid-thickness A method for producing a high-strength steel sheet for a sour-resistant line pipe, characterized by producing a high-strength steel sheet having a bainite structure in (a) .
CP = 4.46 [% C] +2.37 [% Mn] / 6 + (1.74 [% Cu] +1.7 [% Ni]) / 15+ (1.18 [% Cr] +1.95 [% Mo] ] +1.74 [% V]) / 5 + 22.36 [% P] (1)
Here, [% X] indicates the content (% by mass) of X element in steel.
前記成分組成が、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下およびMo:0.50%以下のうちから選んだ1種又は2種以上を含有する、請求項4に記載の耐サワーラインパイプ用高強度鋼板の製造方法。   One or more selected from the group consisting of Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, and Mo: 0.50% or less by mass%; The method for producing a high-strength steel plate for a sour resistant line pipe according to claim 4, comprising two or more types. 前記成分組成が、さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%およびTi:0.005〜0.1%のうちから選んだ1種又は2種以上を含有する、請求項4または5に記載の耐サワーラインパイプ用高強度鋼板の製造方法。   One of the above component compositions selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% by mass%. The method for producing a high-strength steel plate for a sour resistant line pipe according to claim 4 or 5, which comprises two or more types. 請求項1〜3のいずれか一項に記載の耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管。   A high-strength steel pipe using the high-strength steel plate for a sour-resistant line pipe according to claim 1.
JP2017068435A 2017-03-30 2017-03-30 High strength steel sheet for sour resistant line pipe, method for producing the same, and high strength steel pipe using high strength steel sheet for sour resistant line pipe Active JP6665822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017068435A JP6665822B2 (en) 2017-03-30 2017-03-30 High strength steel sheet for sour resistant line pipe, method for producing the same, and high strength steel pipe using high strength steel sheet for sour resistant line pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068435A JP6665822B2 (en) 2017-03-30 2017-03-30 High strength steel sheet for sour resistant line pipe, method for producing the same, and high strength steel pipe using high strength steel sheet for sour resistant line pipe

Publications (2)

Publication Number Publication Date
JP2018168441A JP2018168441A (en) 2018-11-01
JP6665822B2 true JP6665822B2 (en) 2020-03-13

Family

ID=64018470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068435A Active JP6665822B2 (en) 2017-03-30 2017-03-30 High strength steel sheet for sour resistant line pipe, method for producing the same, and high strength steel pipe using high strength steel sheet for sour resistant line pipe

Country Status (1)

Country Link
JP (1) JP6665822B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102131538B1 (en) * 2018-11-30 2020-07-08 주식회사 포스코 Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same
EP4066954A4 (en) * 2020-02-10 2023-07-05 Nippon Steel Corporation Line pipe-use electric resistance welded steel pipe
WO2021193383A1 (en) * 2020-03-26 2021-09-30 Jfeスチール株式会社 High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour-resistant line pipe
CN117280064A (en) * 2021-05-14 2023-12-22 杰富意钢铁株式会社 High-strength hot-rolled steel sheet and method for producing same, and high-strength electric resistance welded steel tube and method for producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270441B (en) * 2007-03-23 2011-05-11 宝山钢铁股份有限公司 Economy type X80 pipeline steel and producing method thereof
JP5991175B2 (en) * 2011-12-09 2016-09-14 Jfeスチール株式会社 High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5900303B2 (en) * 2011-12-09 2016-04-06 Jfeスチール株式会社 High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5991174B2 (en) * 2011-12-09 2016-09-14 Jfeスチール株式会社 High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
CN104805375B (en) * 2015-04-02 2017-03-01 江阴兴澄特种钢铁有限公司 A kind of ultra thick gauge high tenacity X80 pipeline steel and its manufacture method
EP3604584B1 (en) * 2017-03-30 2022-05-18 JFE Steel Corporation High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe

Also Published As

Publication number Publication date
JP2018168441A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6521197B2 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
JP6226062B2 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
WO2020067209A1 (en) High-strength steel sheet for sour-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe
JP6844691B2 (en) High-strength steel sheets for sour-resistant pipes and their manufacturing methods, and high-strength steel pipes using high-strength steel sheets for sour-resistant pipes
JP6665822B2 (en) High strength steel sheet for sour resistant line pipe, method for producing the same, and high strength steel pipe using high strength steel sheet for sour resistant line pipe
JP7272442B2 (en) High-strength steel plate for sour-resistant linepipe, manufacturing method thereof, and high-strength steel pipe using high-strength steel plate for sour-resistant linepipe
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
WO2020067210A1 (en) High-strength steel sheet for sour-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for sour-resistant line pipe
WO2021193383A1 (en) High-strength steel sheet for sour-resistant line pipe, manufacturing method thereof, and high-strength steel pipe made using high-strength steel sheet for sour-resistant line pipe
JPWO2019064459A1 (en) High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
RU2805165C1 (en) High-strength steel sheet for acid-resistant main pipe and method of its manufacture, and high-strength steel pipe using high-strength steel sheet for acid-resistant main pipe
RU2788419C1 (en) High-strength steel sheet for hydrogen sulfide-resistant main pipe, the method for its manufacture and high-strength steel pipe obtained using high-strength steel sheet for hydrogen sulfide-resistant main pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250