JP6662393B2 - 半導体装置、半導体装置の製造方法 - Google Patents

半導体装置、半導体装置の製造方法 Download PDF

Info

Publication number
JP6662393B2
JP6662393B2 JP2017558828A JP2017558828A JP6662393B2 JP 6662393 B2 JP6662393 B2 JP 6662393B2 JP 2017558828 A JP2017558828 A JP 2017558828A JP 2017558828 A JP2017558828 A JP 2017558828A JP 6662393 B2 JP6662393 B2 JP 6662393B2
Authority
JP
Japan
Prior art keywords
buffer
layer
buffer portion
impurity concentration
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017558828A
Other languages
English (en)
Other versions
JPWO2017115434A1 (ja
Inventor
中村 勝光
勝光 中村
辰雄 原田
辰雄 原田
典嗣 野村
典嗣 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017115434A1 publication Critical patent/JPWO2017115434A1/ja
Application granted granted Critical
Publication of JP6662393B2 publication Critical patent/JP6662393B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • H01L21/041Making n- or p-doped regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2258Diffusion into or out of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66128Planar diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

この発明は、例えばIGBT又はダイオードなどの半導体装置およびその半導体装置の製造方法に関する。
図35A、B、Cには、それぞれ従来のトレンチゲート型IGBTおよび2種類のダイオード構造が示されている。図35中のnバッファ層15は、図6A中のref.の不純物プロファイルを有する。また、図35A、B、Cは、図1に示すパワー半導体チップ平面図のA’’−A’’’線の断面構造図である。パワー半導体は図1、35に示すように、以下の4つの構成を備える。
・アクティブセル領域1: パワー半導体チップの基本性能を保障する領域。
・中間領域2:アクティブセル領域1とエッジターミネーション領域5とがジョイントする領域でパワー半導体のダイナミック動作時の破壊耐量を保障しアクティブセル領域1の本来の性能をサポートする領域。
・エッジターミネーション領域5:staticな状態での耐圧保持、耐圧特性の安定性/信頼性面の保障およびダイナミック動作時の破壊耐量不良を抑制しアクティブセル領域本来の性能をサポートする領域。
・縦構造35:nドリフト層14に加え、図35AのIGBTではnバッファ層15とpコレクタ層16を含み、図35Bのダイオードではnバッファ層15とn+カソード層17を含み、図35Cのダイオードではnバッファ層15とn+カソード層17とpカソード層18を含む構造である。nドリフト層はn層であるが簡単化のためnドリフト層と表記する。ON状態のロスとターンオン状態のロスとターンオフ状態のロスを加えたロスであるトータルロスに関する性能、staticな状態での耐圧保持、耐圧特性の安定性、耐圧保持時の高温でのリーク特性であるオフロス、信頼性面の保障及びダイナミック動作時の制御性と破壊耐量を保障し、パワー半導体の基本性能をサポートする領域。
現在のIGBT、ダイオードでは、Siウエハ材料としてFZ(Floating Zone)法で形成され、典型的には1.0×1012〜1.0×1015cm―3程度の耐圧クラスごとに必要なnドリフト層14の濃度を有するSiウエハを用い、図4、5に示すようなウエハプロセスを実行する。このウエハプロセス中にて耐圧クラスに必要な電圧を保持するために必要なデバイスの厚み(図2中のtdevice:40〜700μm)を図4Lもしくは図5Hに示すように精度良く形成し、縦構造35を図4Mもしくは図5Iに示すウエハプロセス中にて構築するウエハプロセスを用いている。
このようにFZウエハを用い、ウエハプロセス中にて縦構造を構築するウエハプロセスが主流となりつつある背景として以下の2点を挙げることができる。
・ウエハとしてnドリフト層14をエピタキシャル法で作製するウエハでは、Siウエハコストがエピタキシャル法で形成するSi厚みに依存し非常に高くなるというデメリットがある。FZ法にてnドリフト層14の濃度のみ耐圧クラスごとに適切な値に設定し、Siウエハコストが変化しないようにウエハプロセススタート時は耐圧クラスに関係無く同じnドリフト層14厚みのSiウエハを用いることで、単価の安いウエハを採用する必要がある。
・上記FZ法で製造するウエハを活用する目的でウエハプロセス中にて耐圧クラスに必要な厚みに制御し縦構造を構築することで、8〜12inchの大口径ウエハを用いるウエハプロセスとして問題となる色々なウエハ厚みに対応するウエハプロセス工程を極力最小限化し、IGBT、ダイオードなどのパワー半導体の大口径での製造を実現する。
nドリフト層14の不純物濃度及び図2中のtdeviceの値は、IGBT又はダイオードの耐圧特性のみならずトータルロス、ダイナミック動作時の制御性及び破壊耐量にも影響するデバイスパラメータであり、その精度が求められるデバイスパラメータである。
図4、5に示すウエハプロセスの詳細は特許文献1−3に記載している内容と同じである。このようなウエハプロセスにて構築する縦構造35は、図4Lの工程および図5Hの工程時に、アルミ配線工程及びパッシベーション膜形成工程以降に、縦構造35を形成するため、縦構造を形成しない面には例えばIGBTではMOS tr.構造が形成され、アルミ配線及びパッシベーション膜が存在する。
その結果、縦構造を構成する拡散層15〜18形成時には、縦構造を形成しない面にアルミ配線が存在するため、メタルの融点より低い低温にする必要がある。例えばアルミの融点は660℃である。縦構造を構成しない面をメタルの融点より低い低温になるように、縦構造を形成しない面に熱が伝達しないような波長のレーザーを用いて、デバイス深さ方向に温度勾配をつけるアニーリング方法を用いる。このアニーリング技術は、レーザーアニールと呼ばれる方法である。
その結果、上記ウエハプロセスにて製造するIGBTとダイオードのnバッファ層15の不純物プロファイルは、図6A、6Bにref.で示す不純物プロファイルのように、Xj,nb1で示す接合深さが2.0μm程度と浅くかつnドリフト層14とnバッファ層15の接合部にかけて急峻な不純物濃度勾配を持つ特徴的な不純物プロファイルとなっている。そのような不純物濃度勾配δnb1は例えば4.52 decade cm-3/μmである。
その上、上記nバッファ層15は、上記レーザーアニーリング技術を用いるため、n層プロファイルが不純物を導入するイオン注入時の深さ方向のプロファイルを再現し、深さ方向および横方向への拡散が起きにくいというn層形成時のプロセス上の特徴がある。
日本特開平7―263692号公報 日本特許第5622814号公報 国際公開2014/054121号
このようなnバッファ層15を用いるIGBT及びダイオードでは、以下の大きな3つの性能上の問題が存在する。第一に、パワー半導体として重要な性能である電圧保持能力(以下、耐圧特性ということがある)の中で、高温状態の耐圧保持時のリーク電流増加によるオフロス増加又は高温でデバイス自身の発熱による熱暴走で制御不能になり、高温での動作保証ができない状態に至る。
第二に、IGBT、ダイオードそれぞれのターンオフ動作のようなダイナミック動作時に、デバイス内部のキャリアプラズマ状態と電界強度分布との関係から、nドリフト層14とnバッファ層15の接合部付近のキャリアプラズマ層が枯渇し、nドリフト層14とnバッファ層15の接合部の電界強度が上昇したり、ターンオフ波形上にてターンオフ動作終焉での電圧跳ね上がり現象(以下、snap-off現象)が起こりsnap-off現象に起因する発振現象を発生したり、snap-off現象にて電圧が保持可能な耐圧以上の高電圧になりデバイスが破壊したりする。キャリアプラズマ層とは、電子およびホール濃度がほぼ同じ高キャリア濃度の中性層で、n≒pであり、キャリア密度は1016cm−3より高く、nドリフト層14のドーピングキャリア濃度の2〜3桁高キャリア濃度の層である。
その結果、従来のIGBTとダイオードでは、ターンオフ動作の制御性が悪くかつターンオフ時の遮断能力の低下を招く。snap-off現象およびその後に発振現象が起きるようなIGBT又はダイオードを搭載するパワーモジュールを含むインバーターシステムでは、ノイズ発生の要因を含むことになり、誤動作の原因となる。
第三に、上記nバッファ層15形成時の特徴から、図4、5に示す縦構造35形成時のウエハプロセス中に発生するnバッファ層15を形成する面のキズ、異物が原因となり、nバッファ層15の部分的な未形成という現象が起きやすくなる。これにより、IGBT及びダイオードは耐圧不良現象に敏感になり、IGBT及びダイオードチップの耐圧特性の不良率増加を招く。
前述のように、従来のIGBT及びダイオードは、ダイナミック動作時に、デバイス内部のキャリアプラズマ状態と電界強度分布との関係から、nドリフト層14とnバッファ層15の接合部付近のキャリアプラズマ層が枯渇しやすい状態となっている。nドリフト層14とnバッファ層15の接合部付近のキャリアプラズマ層が枯渇すると、デバイス内部状態としてnドリフト層14とnバッファ層15の接合部の電界強度の上昇を招く。
ターンオフ動作時の波形について、ターンオフ動作終焉時のIGBTではdj/dt、ダイオードではdj/dtの値が大きくなり、V=Ldj/dtの関係から電圧波形にsnap-off現象およびその後に発振現象が発生し、snap-off現象にてデバイスが破壊する場合もある。その結果、IGBT、ダイオードともターンオフ動作の制御性が悪くかつターンオフ時の遮断能力が低下する。このsnap-off現象及び発振現象は、ターンオフ動作条件にも依存する。つまり、これらの現象は、nドリフト層14とnバッファ層15の接合部に空乏層が到着しやくすなる高電源電圧(VCC)条件下、デバイス内部キャリア密度が少なくなる低電流密度(J,I)条件下、又はスイッチング動作回路パラメータとして高浮遊インダクタンス(L)条件下のような種々の条件で顕著化する。
また、パワー半導体として重要な性能である電圧保持能力に関し、高温状態の耐圧保持時のリーク電流増加によるオフロス増加、又は、高温でデバイス自身の発熱による熱暴走で制御不能になり、高温での動作ができなくなる。パワー半導体の発熱成分としては、ON状態のロス、スイッチング動作ON及びOFF時のロスであるスイッチングロス、及びオフ状態のロスであるオフロスがある。上記の状況は、パワー半導体自身の3つある発熱成分の1つであるオフロスが大きくなることを意味し、パワー半導体を搭載するパワーモジュールの熱設計において問題となる。
これまでの上記問題点に対し従来のIGBT及びダイオードでは、nドリフト層14の厚みを厚くしたり、nドリフト層14の不純物濃度を上げそのバラツキを小さくしたりするなどのnドリフト層14のパラメータの適正化手段を用いる。ただし、nドリフト層14の厚みを厚くするとIGBT、ダイオードともON電圧が上昇し、トータルロスが増加するという弊害がある。一方、nドリフト層14の不純物濃度バラツキを小さくするということは、Siウエハ製造技術及び使用するSiウエハに関し制限を加えることになり、Siウエハコストの高騰を招く。このように、従来のIGBT及びダイオードには、デバイス性能を向上する上で、ジレンマともいうべき技術課題が存在する。
以上より、従来のIGBT及びダイオード技術では、ダイナミック動作時のデバイス内部状態を制御しながらターンオフ動作の制御性とターンオフ遮断能力を向上させ、パワー半導体の基本性能であるON電圧を低ON電圧化し、安定的な耐圧特性の保障を実現することが難しい。よって、FZ法で作製されるウエハを用い、かつ、Siウエハの大口径化にも対応可能なウエハプロセスにて、上記課題を解決するnバッファ層15の構造が必要である。また、ウエハプロセス中の悪影響により発生するnバッファ層15の部分的な未形成によるIGBT及びダイオードの耐圧不良という現象に対して鈍感なnバッファ層も求められる。つまり、nバッファ層15の部分的な未形成があっても耐圧不良を起こしづらいnバッファ層が求められる。
本発明は上述の問題を解決するためになされたものであり、従来のIGBT及びダイオードが保有するデバイス性能面のジレンマを解決し、パワー半導体の基本性能である耐圧特性を保証した上で、低ON電圧、安定的な耐圧特性、オフ時の低リーク電流による低オフロス化、ターンオフ動作の制御性向上、及びターンオフ遮断能力の大幅な向上ができる半導体装置及び半導体装置の製造方法を提供することを目的とする。
本願の発明にかかる半導体装置は、アクティブセル領域と、該アクティブセル領域を囲むエッジターミネーション領域と、該アクティブセル領域と該エッジターミネーション領域の中間にある中間領域と、を備え、該アクティブセル領域は、上面側にトレンチゲート型のMOS構造を有し、下面側の縦構造として、pコレクタ層、該pコレクタ層の上のnバッファ層、及び該nバッファ層の上のnドリフト層とを有し、該nバッファ層は、該pコレクタ層側に設けられた第1バッファ部分と、該nドリフト層側に設けられた第2バッファ部分と、を有し、該第1バッファ部分のピーク不純物濃度は、該第2バッファ部分のピーク不純物濃度より高く、該第2バッファ部分の該nドリフト層側の不純物濃度勾配は、該第1バッファ部分の該nドリフト層側の不純物濃度勾配よりゆるやかであり、該nバッファ層は該エッジターミネーション領域と該中間領域にも形成され、該第2バッファ部分の不純物濃度のピーク位置は、該第2バッファ部分の中央部より該第1バッファ部分と該第2バッファ部分の接合部に近く、かつ、該接合部より該nドリフト層に近いことを特徴とする。
本願の発明にかかる他の半導体装置は、アクティブセル領域と、該アクティブセル領域を囲むエッジターミネーション領域と、該アクティブセル領域と該エッジターミネーション領域の中間にある中間領域と、を備え、該アクティブセル領域は、上面側にpアノード層を有し、下面側の縦構造として、nカソード層を有するカソード層、該カソード層の上に設けられたnバッファ層、及び該nバッファ層の上のnドリフト層とを有し、該nバッファ層は、該カソード層側に設けられた第1バッファ部分と、該nドリフト層側に設けられた第2バッファ部分と、を有し、該第1バッファ部分のピーク不純物濃度は、該第2バッファ部分のピーク不純物濃度より高く、該第2バッファ部分の該nドリフト層側の不純物濃度勾配は、該第1バッファ部分の該nドリフト層側の不純物濃度勾配よりゆるやかであり、該nバッファ層は該エッジターミネーション領域と該中間領域にも形成され、該第2バッファ部分の不純物濃度のピーク位置は、該第2バッファ部分の中央部より該第1バッファ部分と該第2バッファ部分の接合部に近く、かつ、該接合部より該nドリフト層に近いことを特徴とする。
本願の発明にかかる他の半導体装置は、アクティブセル領域と、該アクティブセル領域を囲むエッジターミネーション領域と、該アクティブセル領域と該エッジターミネーション領域の中間にある中間領域と、を備え、該アクティブセル領域は、上面側にトレンチゲート型のMOS構造を有し、下面側の縦構造として、pコレクタ層、該pコレクタ層の上のnバッファ層、及び該nバッファ層の上のnドリフト層とを有し、該nバッファ層は、ピーク不純物濃度と該nバッファ層の裏面からの距離が異なる3層以上のバッファ部分を有し、複数の該バッファ部分のうち、最も該pコレクタ層側の該バッファ部分である第1バッファ部分のピーク不純物濃度が最も高く、複数の該バッファ部分の該nドリフト層側の不純物濃度勾配を比べると、最も該nドリフト層側の該バッファ部分であるトップバッファ部分の不純物濃度勾配が最もゆるやかであり、該nバッファ層は該エッジターミネーション領域と該中間領域にも形成され、該トップバッファ部分の不純物濃度のピーク位置は、該トップバッファ部分の中央部より、該トップバッファ部分と、該トップバッファ部分に隣接する該バッファ部分である隣接バッファ部分との接合部に近く、かつ、該接合部より該nドリフト層に近いことを特徴とする。
本願の発明にかかる他の半導体装置は、アクティブセル領域と、該アクティブセル領域を囲むエッジターミネーション領域と、該アクティブセル領域と該エッジターミネーション領域の中間にある中間領域と、を備え、該アクティブセル領域は、上面側にpアノード層を有し、下面側の縦構造として、nカソード層を有するカソード層、該カソード層の上に設けられたnバッファ層、及び該nバッファ層の上のnドリフト層とを有し、該nバッファ層は、ピーク不純物濃度と該nバッファ層の裏面からの距離が異なる3層以上のバッファ部分を有し、複数の該バッファ部分のうち、最も該カソード層側の該バッファ部分である第1バッファ部分のピーク不純物濃度が最も高く、複数の該バッファ部分の該nドリフト層側の不純物濃度勾配を比べると、最も該nドリフト層側の該バッファ部分であるトップバッファ部分の不純物濃度勾配が最もゆるやかであり、該nバッファ層は該エッジターミネーション領域と該中間領域にも形成され、該トップバッファ部分の不純物濃度のピーク位置は、該トップバッファ部分の中央部より、該トップバッファ部分と、該トップバッファ部分に隣接する該バッファ部分である隣接バッファ部分との接合部に近く、かつ、該接合部より該nドリフト層に近いことを特徴とする。
本願の発明にかかる半導体装置の製造方法は、アクティブセル領域と、該アクティブセル領域を囲むエッジターミネーション領域と、該アクティブセル領域と該エッジターミネーション領域の中間にある中間領域と、において、基板下面側の縦構造として、不純物がドープされた不純物層、該不純物層の上に設けられたnバッファ層、及び該nバッファ層の上のnドリフト層を有し、ピーク不純物濃度と該nバッファ層の裏面からの距離が異なる3層以上のバッファ部分を有する該nバッファ層を、複数の該バッファ部分のうち最も該不純物層側のバッファ部分である第1バッファ部分の活性化アニール完了後に、残りのバッファ部分を形成し、複数の該バッファ部分のうち最も該nドリフト層側の該バッファ部分であるトップバッファ部分の不純物濃度のピーク位置は、該トップバッファ部分の中央部より、該トップバッファ部分と、該トップバッファ部分に隣接する該バッファ部分である隣接バッファ部分との接合部に近く、かつ、該接合部より該nドリフト層に近いことを特徴とする。
本発明のその他の特徴は以下に明らかにする。
この発明によれば、複数のバッファ部分を有するバッファ層のうちnドリフト層と接するバッファ層の不純物濃度勾配はゆるやかで、例えば不純物濃度勾配を0.05〜0.50decade cm-3/μmとしたので、半導体装置の特性を改善することができる。
半導体装置の平面図である。 IGBTの断面図である。 ダイオードの断面図である。 ダイオードの断面図である。 縦構造の役割を説明する図である。 縦構造の役割を説明する図である。 縦構造の役割を説明する図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 IGBTの製造プロセスフロー図である。 ダイオードの製造プロセスフロー図である。 ダイオードの製造プロセスフロー図である。 ダイオードの製造プロセスフロー図である。 ダイオードの製造プロセスフロー図である。 ダイオードの製造プロセスフロー図である。 ダイオードの製造プロセスフロー図である。 ダイオードの製造プロセスフロー図である。 ダイオードの製造プロセスフロー図である。 ダイオードの製造プロセスフロー図である。 図2中のB−B´、C−C´及びD−D´線における不純物濃度プロファイルを示す図である。 図6A中の領域Aの拡大図である。 シミュレーションによる図6Aに示す本発明のバッファ構造を用いる図2中の6500VクラスのIGBT構造におけるブレークダウン時のデバイス内部電界強度分布を示す図である。シミュレーション条件は、BVCES=8400V、JCES=1.0×10―1A/cm、298Kである。 図7Aの領域Bの拡大図である。 図2中の6500VクラスのIGBT構造の423KにおけるJCES vs.VCES特性のnバッファ構造依存性結果に関する試作結果である。 図2中の6500VクラスのIGBT構造におけるJCES vs.オペレーション温度特性のnバッファ構造依存性結果に関する試作結果である。 図2中の6500VクラスのIGBT構造においてLsを5.8μHとしたときのターンオフ波形のnバッファ構造依存性結果に関する試作結果である。 図2中の6500VクラスのIGBT構造における図10に示すVCE(surge)とスイッチング動作時の電源電圧VCCとの関係のnバッファ構造依存性結果に関する試作結果である。 図2中の6500VクラスのIGBT構造における無負荷短絡状態の短絡波形のnバッファ構造依存性結果に関する試作結果である。 シミュレーションによる図2中の6500VクラスのIGBT構造における無負荷短絡状態の短絡波形である。 図13中のデバイス内部解析ポイントにおけるデバイス内部状態のnバッファ構造依存性を示す図である。 図13中のデバイス内部解析ポイントにおける図2A中の主接合部であるPベース層とn層との接合部、およびnドリフト層とnバッファ層の接合部それぞれの短絡状態での最大電界強度のpコレクタ層濃度依存性に関するnバッファ構造依存を示す図である。 図2中のIGBT構造における種々のデバイス特性間のトレードオフな関係を示す図である。 図2中の6500VクラスのIGBTのデバイス特性とCnb2,p/Cn―,dとの関係を示す図である。 図6A中の第2バッファ部分の濃度勾配δnb2とCnb2,p/Cn―,dとの関係を示す図である。 図6A中のnバッファ層の活性化度の実効的なトータルドーズ量に占める第2バッファ部分の活性化度の実効的なドーズ量の割合αとCnb2,p/Cn―,dとの関係を示す図である。 図2中の4500Vクラスのダイオードb構造の448KにおけるJ vs. Vの特性結果のnバッファ構造依存性結果に関する試作結果である。 図2中の4500Vクラスのダイオードb構造におけるJ vs. オペレーション温度特性のnバッファ構造依存性結果に関する試作結果である。 図2中の1700Vクラスのダイオードb構造におけるsnappyなリカバリー動作時の波形に関するnバッファ構造依存性に関する試作結果である。 図22中のVsnap-offとVCCとの関係のnバッファ構造依存性結果に関する試作結果である。 図22中のVsnap-offとオペレーション温度との関係のnバッファ構造依存性結果に関する試作結果である。 図2中の4500Vクラスのダイオードb構造についてのsnappyなリカバリー動作時のシミュレーション波形に関するnバッファ構造依存性である。 図25A中のデバイス内部解析ポイント丸1〜丸6における、図2中の4500Vクラスのダイオードb構造内の電流密度分布を示す図である。 図6Aに示す従来のバッファ構造を用いる図2の4500Vクラスのダイオードb構造中のpin diode領域における図25A中のデバイス内部解析ポイント丸1〜丸6でのデバイス内部状態を示す図である。 図6Aに示す従来のバッファ構造を用いる図2の4500Vクラスのダイオードb構造のpnp tr.領域における図25A中のデバイス内部解析ポイント丸1〜丸6でのデバイス内部状態を示す図である。 図6Aに示す本発明のバッファ構造を用いる図2の4500Vクラスのダイオードb構造中のpin diode領域における図25A中のデバイス内部解析ポイント丸1〜丸6でのデバイス内部状態を示す図である。 図6Aに示す本発明のバッファ構造を用いる図2の4500Vクラスのダイオードb構造中のpnp tr.領域における図25A中のデバイス内部解析ポイント丸1〜丸6でのデバイス内部状態を示す図である。 図2の1700Vクラスのダイオードb構造のリカバリー動作時のSOA特性のnバッファ構造依存性結果に関する試作結果である。 図2の1700Vクラスのダイオードb構造の種々のデバイス特性とCnb2,p/Cn―,dとの関係を示す図である。 図2の4500Vクラスのダイオードa構造におけるsnappyなリカバリー動作時の波形に関するnバッファ構造依存性に関する試作結果である。 図2の4500Vクラスのダイオードa構造における図28のsnap-off現象のポイントにおけるデバイス内部状態のnバッファ構造依存性を示す図である。 図2の4500Vクラスのダイオードa構造におけるVsnap-offとVCCの関係のnバッファ構造依存性結果に関する試作結果である。 図2のB−B´、C−C´及びD−D´線における本発明の不純物プロファイルを実線で示す図である。 図6A又は図31に示す本発明のnバッファ層を有するトレンチゲート型IGBTの構造図である。 図6A又は図31に示す本発明のnバッファ層を有するトレンチゲート型IGBTの構造図である。 図6A又は図31に示す本発明のnバッファ層を有するダイオードの構造図である。 図6A又は図31に示す本発明のnバッファ層を有するダイオードの構造図である。 図6A又は図31に示す本発明のnバッファ層を有するダイオードの構造図である。 図6A又は図31に示す本発明のnバッファ層を有するダイオードの構造図である。 図6A又は図31に示す本発明のnバッファ層を有するダイオードの構造図である。 図2に示す3300VクラスのIGBT構造のRBOSAについて、図32Aの本発明のnバッファ構造を有するIGBTと、図35Aに示す従来のnバッファ層を有するIGBTを比較する図である。図32Aの本発明のnバッファ構造を有するIGBTに関しては、RBSOAの温度依存性も示す。 図2に示す6500Vクラスのダイオードb構造のリカバリーSOAについて、図32Dに示す本発明のnバッファ層を有するダイオードと、図35Cに示す従来のnバッファ層を有するダイオードを比較する図である。 図6Aに示す従来のnバッファ層を有するトレンチゲート型IGBTの構造図である。 図6Aに示す従来のnバッファ層を有する図2のダイオードaの構造図である。 図6Aに示す従来のnバッファ層を有する図2のダイオードbの構造図である。
本発明の実施の形態に係る半導体装置及び半導体装置の製造方法について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
実施の形態1.
本発明は、例えば600V以上の電圧を印加するパワーモジュールのキーコンポーネントであるパワー半導体に関する。特に、以下の構造等を有するIGBT及びダイオードのようなバイポーラ系パワー半導体に関する、
(a) オフ状態の電圧遮断能力を上げかつ耐圧保持時の高温でのリーク電流低減し、低オフロス化及び高温動作を実現する縦構造、
(b) ターンオフ動作終焉での電圧跳ね上がり現象(以下、snap-off現象)及びsnap-off現象に起因する発振現象を抑制する縦構造、
(c) dynamicな破壊耐量であるターンオフ動作時の遮断能力を向上する縦構造、
(d) 半導体を製造するウエハの大口径化に対応するウエハプロセス技術に組み込める縦構造および製造技術、である。
縦構造は、IGBT又はダイオードの構成要素の中のnバッファ層15を主要な構成要素とする。縦構造とは、基板もしくはウエハ下面側に形成された構造を指す。典型的には、IGBTの縦構造はコレクタ層、nバッファ層及びドリフト層を含む。典型的なダイオードの縦構造は、nカソード層のみもしくは、nカソード層及びpカソード層を有するカソード層、カソード層の上に設けられたnバッファ層、及びnバッファ層の上のnドリフト層を備える。
IGBT又はダイオードの半導体材料としては、SiのみならずSiに比べてバンドギャップが大きいワイドバンドギャップ半導体を用いてもよい。ワイドバンドギャップ半導体としては、例えば、炭化珪素、窒化ガリウム系材料又はダイヤモンドがある。本発明の実施形態では1700〜6500Vの高耐圧クラスを例に示すが、本発明は耐圧クラスに関わらず上記目的に対して効果が得られるものである。
本発明で提案する縦構造の考え方を図3に示す。
図3における各記号の意味は以下のとおりである。
pl:charge of plasma layer(プラズマ層における電荷)
pl:electron/hole concentration in plasma layer(プラズマ層における電子/ホール密度)
V:potential
q:elementary charge(1.60218×10-19C)
ε0:dielectric constant in vacuum(8.85418×10-14F/cm)
εr:relative dielectric constant(Siでは11.9)
:ionized donor concentration(cm-3)
n,p:free electron/hole concentration (cm-3)
Jn,Jp:current density of electron/hole current(A/cm-3)
νsat(n),νsat(p):saturation drift velocity of electron/hole (cm/s)
従来のIGBT及びダイオードの縦構造の問題点に起因した上記技術課題は、特にnバッファ層15によって特徴付けられる以下のような縦構造を実現すれば解決できると考える。以下に示すコンセプトは、IGBT、ダイオード共通である。本発明の提案する縦構造を構成するnバッファ層15に関する考え方は、以下のi、ii、iiiのとおりである。
(i) ターンオフ動作時のnドリフト層14とnバッファ層15の接合部付近のキャリアプラズマ層の枯渇現象に関して、図3Aの矢印丸1に示すようにキャリアプラズマ層が残存するようにする。つまり、nバッファ層15内部でもデバイスON状態の伝導度変調現象が発生することで、キャリアプラズマ層が存在するようにnバッファ層15の低濃度化を行う。その濃度は、キャリアプラズマ層濃度は1016cmー3以上の高濃度層のため、それ以下の1015cm−3オーダーとする。
(ii) staticな状態で電界強度をnバッファ層15内部で止め、ダイナミック動作時はnバッファ層15内部を空乏層が緩やかに伸びるように、nドリフト層14とnバッファ層15の接合部付近の濃度勾配は緩やかにする。また、空乏層は、図3Bの矢印丸2に示すように残留するキャリアプラズマ層との関係でnバッファ層15中にてストップする。その際の電界強度分布の勾配は、図3Bに示すdE/dxの関係式にて表される。
(iii) 低濃度で濃度傾斜があり厚いn層とすることで、パワー半導体の基本性能である耐圧特性保証、つまり、耐圧保持時の図2AのIGBT及び図2Cのダイオードに内蔵するpnp-tr.のαpnpを下げてオフ時の低リーク電流による低オフロス化を実現する。
つまり、本発明のnバッファ層15は、耐圧特性安定化及び低オフロス化等の耐圧特性を保証した上で、デバイス内部のキャリアプラズマ状態をデバイス動作時に制御する役割を担う。その結果、IGBT及びダイオードの耐圧特性安定化と低オフロスを保証した上で、ターンオフ動作終焉でのsnap-off現象及びsnap-off現象に起因する発振現象を抑制できるので、スイッチング動作に関して制御性の良いパワー半導体を実現し、dynamicな状態での破壊耐量を向上させることができる。その上、ウエハプロセス中の悪影響により発生するnバッファ層15の部分的な未形成によるIGBT及びダイオードの耐圧不良という現象に対し鈍感になり、IGBT及びダイオードチップの不良率増加を抑制する効果を示す。
本発明の実施形態1では、IGBTにてターンオン動作時のsnap-off現象とその後の発振現象を抑制し、短絡状態の遮断能力を向上させ、オフ状態の耐圧遮断能力を上げ、かつ高温でのリーク電流低減し、低オフロス及び高温動作を実現するnバッファ層15を説明する。
図1はIGBTの平面図である。図1には、アクティブセル領域1を囲むエッジターミネーション領域5が示されている。アクティブセル領域1とエッジターミネーション領域5の中間に中間領域2がある。なお、図1のアクティブセル領域1は表面ゲート配線部3とゲートパッド部4が示されているが、ダイオードの場合はこれらはアノード層に置き換えられる。
図2には、図1のA―A’線における本発明の技術を含むトレンチゲート構造のIGBTの断面図を示す。実施の形態1の半導体装置における下面側の「縦構造」は、pコレクタ層16、pコレクタ層16の上のnバッファ層15、及びnバッファ層15の上のnドリフト層14を有している。そして、半導体装置の上面側には、トレンチゲート型のMOS構造を有している。図2に示すnドリフト層14は、不純物濃度(Cn―,d)が1.0×1012〜1.0×1015cm―3のFZ法にて作製されたFZウエハを用い形成する。最終的なnドリフト層14の厚み(図2中のtdevice)は40〜700μmである。また、図2A及び図4に示すIGBTはMOS tr.部にてトレンチ部22の一部がエミッタ電位のアルミ配線5aと同電位となる構造である。この構造の目的及び効果は、日本特許第4205128号又は日本特許第4785334号に記載されるように、IGBTの飽和電流密度の抑制、容量特性制御による無負荷端短絡状態で発振を抑制することによる短絡耐量の向上、及びエミッタ側のキャリア濃度向上による低ON電圧化を実現することである。図2A中のIGBTを構成する各拡散層は以下のパラメータになるように、図4に示すウエハプロセスにてイオン注入およびアニーリング技術を用いて形成する。
・pベース層9:ピーク不純物濃度は1.0×1016〜1.0E18cm−3、深さはnエミッタ層7より深くN層11より浅くなる接合深さ
・n層11:ピーク不純物濃度は1.0×1015〜1.0E17cm−3、深さはPベース層9より深くトレンチよりも浅い
・nエミッタ層7: ピーク不純物濃度は1.0×1018〜1.0E21cm−3、深さは0.2〜1.0μm
・p層8: 表面不純物濃度は1.0×1018〜1.0E21cm−3、深さはnエミッタ層7と同じかもしくは深くなる接合深さ
・pコレクタ層16:表面不純物濃度は1.0×1016〜1.0×1020cm−3、深さは0.3〜1.0μm
nバッファ層15は、pコレクタ層16側に設けられた第1バッファ部分nb1と、nドリフト層14側に設けられた第2バッファ部分nb2と、を有している。つまり、nバッファ層15は第1バッファ部分nb1と第2バッファ部分nb2の2つのn層を有している。第1バッファ部分nb1のピーク不純物濃度(Cnb1,p)は1.0×1016〜5.0×1016cm−3である。第1バッファ部分nb1の深さ(Xj,nb1)は1.2〜5.0μmである。第2バッファ部分nb2のピーク不純物濃度(Cnb2,p)は5.0×1013〜5.0×1014cm−3である。第2バッファ部分nb2の深さ(Xj,nb2)は10.0〜50.0μmである。Xj,nb1とXj,nb2は図6Aに示されている。
したがって、第1バッファ部分nb1のピーク不純物濃度(Cnb1,p)は、第2バッファ部分nb2のピーク不純物濃度(Cnb2,p)より高い。第1バッファ部分nb1のピーク不純物濃度(Cnb1,p)を、第2バッファ部分nb2のピーク不純物濃度(Cnb2,p)で除した値は20〜1000とすることが好ましい。
図6Aには、IGBTの断面図である図2A中のB−B’線、ダイオードの断面図である図2B、図2C中のC−C’線、及び図2C中のD−D’線に沿った深さ方向不純物プロファイルが示されている。図中のCn−,dはnドリフト層14の不純物濃度である。図6Bは図6A中の領域Aの拡大図である。図6A、6Bの横軸の0μmポイントが、図3中のpコレクタ層16、nカソード層17及びpカソード層18それぞれの表面(point B)である。
図6A、6Bにおける「new structure」というのは本発明の不純物プロファイルを示し、「ref.」というのは従来の同様な箇所の不純物プロファイルを示すものである。nバッファ層15は、ピーク不純物濃度(Cnb1,p、Cnb2,p)および深さ(Xj,nb1、Xj,nb2)の異なる2つのn層である第1バッファ部分nb1と第2バッファ部分nb2を備えている。第1バッファ部分nb1は、従来のnバッファ層15と同様な濃度勾配(δnb1)となる従来のnバッファ層15と類似な不純物プロファイルを有する。
第2バッファ部分nb2には以下の特徴がある。ピーク不純物濃度(Cnb2,p)の位置は、第2バッファ部分nb2の中央部より、第1バッファ部分nb1と第2バッファ部分nb2の接合部(Xj,nb1)側に位置している。第2バッファ部分nb2の不純物プロファイルは低濃度である。また、第2バッファ部分nb2の不純物プロファイルは、nドリフト層14と第2バッファ部分nb2の接合部(Xj,nb2)に向け深さ方向に緩い濃度勾配(δnb2)を有し、かつnドリフト層14にまで到達する程度に深く形成される。
ピーク不純物濃度(Cnb2,p)の位置を、第2バッファ部分nb2の中央部より接合部(Xj,nb1)側に位置させるため、第2バッファ部分nb2を形成するめにイオン注入又は照射技術等でイオン種をSiへ導入する際のピーク位置は、接合部(Xj,nb1)より深くなるように設定する。このように設定するのは、第2バッファ部分nb2を第1バッファ部分nb1の影響を受けずに安定して形成すること、及び後述する第2バッファ部分nb2のnドリフト層14との接合付近の所望の不純物濃度勾配を実現するためである。
図6Aには、第2バッファ部分nb2の濃度傾斜が深さ方向に緩いこととIGBTの電気特性との関係を定量的に示すために、第2バッファ部分nb2のうち接合部(Xj,nb2)付近での不純物濃度勾配(δnb2=Δlog10nb2/Δtnb2)の定義を示す。Δlog10nb2は、図6Aに示す第2バッファ部分nb2の不純物濃度(Cnb2)の変化量であり、logは底が10の常用対数である。Δtnb2は、図6Aに示す第2バッファ部分nb2の深さ(tnb2)の変化量である。
第1バッファ部分nb1と第2バッファ部分nb2それぞれの接合深さは、以下のように定義する。接合部(Xj,nb1)は、図6Bに示すように、第1バッファ部分nb1の傾斜部接線と第2バッファ部分nb2の第1バッファ部分nb1側傾斜部接線とが交差するポイントつまり、不純物濃度プロファイルの傾きが負から正へ変化するポイントである。
接合部(Xj,nb2)に関しては、図6Aに示す常用対数表示の不純物濃度と深さとの関係を示すグラフ上における、nドリフト層14の濃度延長線と、第2バッファ部分nb2の傾斜部接線とが交差するポイントと定義する。本発明のnバッファ層15およびそれを構成する第1バッファ部分nb1と第2バッファ部分nb2とは、以下の関係を満足する。第1バッファ部分nb1のピーク不純物濃度(Cnb1,p)と第2バッファ部分nb2のピーク不純物濃度(Cnb2,p)について、
nb1,p>Cnb2,p
が成立する。
接合部(Xj,nb1)と接合部(Xj,nb2)について、
j,nb1<Xj,nb2
が成立する。
第1バッファ部分nb1の不純物濃度勾配(δnb1)と第2バッファ部分nb2の不純物濃度勾配(δnb2)について、
δnb1>δnb2
が成立する。図6Aには、第1バッファ部分nb1の接合部Xj,nb1側における不純物濃度勾配(δnb1)は、第2バッファ部分nb2の接合部Xj,nb2側の不純物濃度勾配(δnb2)より大きいことが示されている。
上記関係から、本発明の第1バッファ部分nb1と第2バッファ部分nb2のそれぞれの役割と、図3に示す目標とするnバッファ層の役割との関係は以下のようになる。
・第1バッファ部分nb1:staticな状態で主接合から伸びてくる空乏層を止める役割を担い、安定的な耐圧特性、及びオフ時つまり耐圧保持時の低リーク電流による低オフロス化の効果を示す。低リーク電流による低オフロス化は例えば398K以上の高温になるほど顕著化する。
・第2バッファ部分nb2:pnp tr.のベース幅を広げる役割があり、その結果αpnpを下げ、オフ時つまり耐圧保持時の低リーク電流による低オフロス化の効果を示す。本効果は、例えば398K以上の高温になるほど顕著化する。その上、staticおよびdynamicな状態で主接合から伸びてくる空乏層の伸びるスピートをnドリフト層14内の移動時より緩やかにし、かつON状態からの残留キャリアプラズマ層を存在させ、電界強度分布を制御する役割を担う。これにより、ターンオフ動作終焉でのsnap-off現象及びsnap-off現象に起因する発振現象を抑制し、スイッチング動作に関して制御性を向上させ、dynamic状態の破壊耐量を向上させることができる。
図7Aは、本発明のnバッファ層15を用いる図2Aに示すトレンチゲート構造IGBTのstaticな状態での電圧保持時のデバイス内部の電界強度分布に関するシミュレーション結果である。模擬したデバイスは6500Vクラスのため、staticな状態での電圧は298Kで8400Vである。図7Aの横軸0μmが図2AのpointA箇所(MOS tr.部の最表面)であり、図7Aの横軸650μmポイントが図2A中のpコレクタ層16の表面であるpointB箇所を示す。
図7Bは、図7Aの領域Bの拡大図である。図7Bより、デバイスが電圧保持時、“ref.”で示す従来構造、及び“new buffer”で示す本発明のnバッファ層15を用いる構造とも第1バッファ部分nb1にて空乏層が止まっていることが分かる。更に、“new buffer”では、第2バッファ部分nb2内で電界強度分布の勾配がnドリフト層14中より変化していることが分かる。つまり、第2バッファ部分nb2により空乏層の伸びるスピートが低下している。
上記の第1バッファ部分nb1と第2バッファ部分nb2は、図4、5に示すウエハプロセス中のデバイスの厚みを精度良く形成する工程である図4Lの工程もしくは図5Hの工程の後に形成する。tdeviceは例えば40〜700μmである。第1バッファ部分nb1と第2バッファ部分nb2は、形成する順番および第2バッファ部分nb2導入時の加速エネルギーのピーク位置の設定が重要である。第1バッファ部分nb1をイオン注入とアニーリング技術にて形成した後に、第2バッファ部分nb2をイオン注入とアニーリング技術にて形成する。
第1バッファ部分nb1を形成する際のアニーリング温度は、第2バッファ部分nb2を形成する際のアニーリング温度より高温である。そのため、第2バッファ部分nb2の後に第1バッファ部分nb1を形成すると、第2バッファ部分nb2の活性化後の不純物プロファイル、及び第2バッファ部分nb2を形成するために導入される結晶欠陥の種類への悪影響があり、デバイスON状態のキャリアライフタイムへ悪影響となるため、第2バッファ部分nb2を第1バッファ部分nb1の後に形成する。デバイスON状態のキャリアとは、ここではホールである。
第2バッファ部分nb2については、第1バッファ部分nb1の形成後にイオンをSi中へ導入し、pコレクタ層16をイオン注入とアニーリング技術にて形成した後もしくはメタル29を形成した後にアニーリング工程を実施することで、上記の目標とする第2バッファ部分nb2を形成することができる。
また、第2バッファ部分nb2を形成するためにSi中へ導入するイオン種のピーク位置は、第2バッファ部分nb2の中央部より接合部(Xj,nb1)側に位置するように設定することで、目的の第1バッファ部分nb1と第2バッファ部分nb2層との関係を満足する第2バッファ部分nb2の形成を可能にする。
第1バッファ部分nb1および第2バッファ部分nb2を形成するためのイオン種については、第1バッファ部分nb1にはリンを用い、第2バッファ部分nb2にはセレン、硫黄、リン、プロトン(水素)又はヘリウムを高加速エネルギーにてSi中へ導入する。また、プロトン(水素)又はヘリウムを用いる場合は、例えば350〜450℃のアニーリングによるドナー化でn層を形成する拡散層形成プロセス技術を用いる。プロトン、ヘリウムは、イオン注入以外にもサイクロトロンを利用した照射技術でSi中へ導入することができる。プロトンをSiへ導入すると、導入時に生じる空孔欠陥に水素原子および酸素原子とが結合して複合欠陥となる。この複合欠陥には水素が含まれるため、電子供給源であるドナーとなりアニーリングにより複合欠陥密度が増加しドナー濃度が増加する。この結果、nドリフト層14よりも高不純物濃度のドナー化した層を形成し、第2バッファ部分nb2としてデバイスの動作に寄与する。ただし、形成される複合欠陥には、キャリアのライフタイムを低下させるライフタイムキラーとなる欠陥も存在するため、第2バッファ部分nb2を第1バッファ部分nb1形成後に高加速エネルギーにて不純物イオンを導入し、第2バッファ部分nb2のドナー化のためのアニーリング条件は重要である。
図8〜12、17〜19は、6500Vクラスの図2Aに示すIGBT構造を採用した試作デバイスに関する特性を示す図である。試作デバイスのIGBT構造は、図1のA’’−A’’’線の断面図である図35Aに示されている。図13〜15には、上記6500Vトレンチゲート構造IGBTの無負荷短絡状態の動作および動作時のデバイス内部状態のシミュレーション結果が示されている。図8〜11、16、17中の“ref.”が従来のnバッファ層を用いたサンプルの結果であり、“new buffer”は本発明のnバッファ層15を用いたサンプルの結果である。
図8は、static状態での6500Vトレンチゲート構造IGBTの423KでのJCES vs. VCES特性に関するnバッファ構造依存性を示す図である。図9はstatic状態でのVCES=6500V保持時のJCESとオペレーション温度との関係のnバッファ構造依存性を示す図である。比較しているサンプルはほぼ同じON電圧のサンプルである。図8,9より、本発明のnバッファ層15を用いることでIGBTに内蔵するpnp tr.のαpnpが下がり、オフ時つまり耐圧保持時のリーク電流が低減する。その結果、低オフロス化によるオフ時のチップ自身の発熱量を低減できる。
図10は、6500Vトレンチゲート構造IGBTについて例えば5.8μH程度の高L条件下における誘導負荷状態でのターンオフ動作波形のnバッファ構造依存性を示す図である。図中のVCE(surge)、Vsnap-offは、それぞれターンオフ動作時のサージ現象時の最大VCE値であるサージ電圧およびsnap-off現象発生時の最大VCE値である。図10より、本発明のnバッファ層15を用いることで、ターンオフ動作終焉時のdjc/dtが“ref.”の場合には3.49×10A/cmsecであるが、“new buffer”の場合には1.40×10A/cmsecと小さくなり、snap-off現象を抑制していることがわかる。
図11は、図10中のVCE(surge)とターンオフ動作時の電源電圧(VCC)のnバッファ構造依存性を示す図である。図11より、本発明のnバッファ層15を用いることで、従来のnバッファ層に比べIGBTのターンオフ動作時のサージ電圧の抑制が可能であることがわかる。
図10、11から、本発明のnバッファ層15は上記役割により、IGBTのターンオフ動作終焉でのサージ電圧及びsnap-off現象を抑制しかつ、サージ電圧の電圧依存性を鈍感化させ、スイッチング動作に関して制御性の良いパワー半導体を実現することが分かる。
図12は、本発明のnバッファ層15を用いる6500Vトレンチゲート構造IGBTの無負荷短絡状態でのターンオフ波形である。図12より、本発明のnバッファ層15を用いるIGBTの短絡状態のターンオフ動作には、本発明のnバッファ層の条件依存性があり、Cnb2,p/Cn―,dの値が大きくなるnバッファ層では短絡状態の遮断能力が低下することが分かる。
図13は、図12の現象のメカニズムを解明するために行った、6500Vトレンチゲート構造IGBTの無負荷短絡状態でのターンオフ波形のシミュレーション結果である。図14は、図13中に示すデバイス内部解析ポイントでのデバイス内部状態を示す図である。図14より、Cnb2,p/Cn―,d=130.0となるようなnバッファ層15の濃度が高くなる条件下では、pベース層9とnドリフト層14の接合部である主接合部でなくnドリフト層14と第2バッファ部分nb2の接合部Xj,nb2において短絡状態のデバイス内部の電界強度が高くなるという特異な電界強度分布を示すことが分かる。この場合、デバイス内部状態のアンバランス化が起きていることが分かる。
この電界強度分布のアンバランス化が発生すると、IGBTではnドリフト層14とnバッファ層15の接合部付近に局所的発熱を起こす箇所が存在し、その結果、熱破壊に至り短絡状態の遮断能力が低下する。つまり、このようなデバイス内部状態になることが、図12に示す「短絡状態における遮断能力の低下」の原因である。また、このようなデバイス内部の電界強度分布のアンバランス化は、図15に示す短絡状態の電界強度とpコレクタ層16のドーズ量と関係があり、Cnb2,p/Cn―,d値が大きくなり、pコレクタ層16のドーズ量が低ドーズ化すると発生することがわかる。つまり、nバッファ層15の濃度が高くCnb2,p/Cn―,d値が大きくなる条件では、目標とするnバッファ層15の役割の1つのnドリフト層14とnバッファ層15の接合部付近のキャリアプラズマ層の残存に関して、逆にキャリアプラズマ層が枯渇する現象が発生していることを意味している。
図16は、IGBTの種々なデバイス特性間に存在するトレードオフの関係を示すイメージ図である。図16中のRBSOA(Reverse Bias Safe Operating Area)性能軸に示すJ(break)は、誘導負荷状態でのターンオフ動作時の最大遮断電流密度である。SCSOA(Short Circuit Safe Operating Area)性能軸に示すESCおよびV(break)は、それぞれ無負荷短絡状態でのターンオフ時の最大遮断時の短絡エネルギーおよび最大遮断ゲート電圧である。
最近のIGBTは、pコレクタ層16のドーズ量をパラメータとして、ON電圧(VCE(sat))、JCES特性、ターンオフロス(EOFF)、RBSOAおよびSCSOAを制御可能である。その結果、図15に示すような無負荷短絡状態でのデバイス内部状態のアンバランス化にpコレクタ層16ドーズ量依存性があると、図16に示すようなIGBTの種々なデバイス特性の許容可能範囲が狭くなることを意味する。種々なデバイス特性の許容可能範囲が狭くなることは、IGBTとしての性能が低下することを意味する。よって、本発明のnバッファ層15をIGBTに用いるにあたり、図12、14〜16のようなことが発生しない領域にnバッファ層15のパラメータを設定する必要がある。
図17は、本発明のnバッファ層15を用いる6500Vトレンチゲート構造IGBTの種々なデバイス特性と、Cnb2,p/Cn―,dとの関係を示す図である。図中には、BVCESおよびVCE(surge)特性のターゲットを示す。BVCESのターゲットは、213Kで例えば6500Vの定格耐圧を保証するという観点から298Kにおいて7500V以上とする。VCE(surge)のターゲットは、定格耐圧以下を目標とする性能指数の観点から、6500V以下とする。
図17におけるCnb2,p/Cn―,d=0.1のポイントには、従来のnバッファ層での結果をプロットする。図17に示すIGBTの種々なデバイス特性とCnb2,p/Cn―,dとの関係から、IGBTの種々なデバイス特性を満足するCnb2,p/Cn―,dの範囲は、2.0〜100.0であることがわかる。Cnb2,p/Cn―,d値が大きくなると、ダイナミックな状態でのnドリフト層14と第2バッファ部分nb2の接合部の電界強度が高くなり、ターンオフ時のサージ電圧が高くなり、無負荷短絡状態でのターンオフ遮断が低下する。また、Cnb2,p/Cn―,d値が小さくなると、空乏層がnバッファ層15中を伸びやすく第1バッファ部分nb1にあたりやすくなる結果、従来のnバッファ層の示す特性に近くなる挙動を示す。特に本発明のnバッファ層15は、Cnb2,p/Cn−,dが10.0〜90.0になるように設計することで、IGBTの種々のデバイス特性のバランスをとることができる。加えて、本発明のnバッファ層15によれば、図17から、BVCES特性の第2バッファ部分nb2の濃度依存性が無くなることが分かる。つまり、耐圧特性が、nバッファ層15の濃度に対して鈍感化するメリットがある。
図18、19は、上記のIGBTのデバイス特性とCnb2,p/Cn―,dとの関係から本発明のnバッファ層15に関する種々のパラメータの最適な領域を示すことで、IGBTの種々のデバイス特性のバランスがとれるnバッファ層15の構造パラメータを明らかにする図である。
図18は、図6Aに示す接合部Xj,nb2付近での第2バッファ部分nb2の不純物濃度勾配(δnb2=Δlog10nb2/Δtnb2)とCnb2,p/Cn―,dとの関係を示す図である。図18から、IGBTの種々のデバイス特性のバランスのとれるCnb2,p/Cn―,dの範囲は2.0〜100.0である。その結果、第2バッファ部分nb2のnドリフト層側の部分における不純物濃度勾配δnb2の許容範囲は、0.05〜0.50decade cm-3/μmとなる。なお、decade cm-3/μmというのは、log10(常用対数)を縦軸としたときの傾きを表す。図6A、6Bの縦軸は不純物濃度の常用対数(log10)をとっている。
図19は、本発明のnバッファ層15の活性化後の実効トータルドーズ量に占める第2バッファ部分nb2の活性化後の実効ドーズ量の割合(α)と、Cnb2,p/Cn―,dとの関係を示す図である。縦軸のα値は、以下の関係式より算出する。
Figure 0006662393

・・・数1
ここで、
Dosenb1,effect: 第1バッファ部分nb1の活性化後の実効ドーズ量
Dosenb2,effect: 第2バッファ部分nb2の活性化後の実効ドーズ量
である。
また、各拡散層の実効ドーズ量は、各拡散層のイオン注入時のドーズ量でなく、各拡散層の活性化後に拡がり抵抗測定(Spreading Resistance Analysis)から得られる不純物濃度[cm−3]である。図17から、IGBTの種々のデバイス特性のバランスのとれるCnb2,p/Cn―,dの範囲は2.0〜100.0であり、その結果αのパラメータは、0.5〜5.0%が許容範囲となる。すなわち、nバッファ層の活性化後の実効ドーズ量に占める第2バッファ部分nb2の活性化後の実効ドーズ量の割合αは、0.5〜5.0%とする。したがって、第1バッファ部分nb1の活性化後の実効ドーズ量は、第2バッファ部分nb2の活性化後の実効ドーズ量よりも大きい。
以上から、図6Aに示す不純物プロファイルを有するnバッファ層15は、本発明の技術目標である、IGBTの安定的な耐圧特性、オフ時つまり耐圧保持時の低リーク電流による低オフロス化、ターンオフ動作の制御性向上、及び無負荷状態でのターンオフ遮断能力の大幅な向上を実現可能なものである。
その上、本発明のnバッファ層15の形成プロセスでは、第2バッファ部分nb2形成時にn型拡散層を形成する不純物が深さ方向のみならず横方向にも拡散する特徴を有する。その結果、前述した従来のnバッファ層の問題の1つであるnバッファ層形成時の特徴とウエハプロセス中の悪影響により発生するnバッファ層15の部分的な未形成に起因したIGBT又はダイオードの耐圧不良現象に対し、第2バッファ部分nb2を形成することでnバッファ層の未形成領域が無くなる。よって、IGBT又はダイオードチップの不良率増加を抑制することができ、歩留り向上が見込める。
本発明の実施の形態1及び以下の実施の形態に係る半導体装置と半導体装置の製造方法は、本発明の特徴を失わない範囲で変形することができるものである。なお、以下の実施の形態に係る半導体装置と半導体装置の製造方法については、実施の形態1との共通点が多いので主として実施の形態1との相違点を中心に説明する。
実施の形態2.
実施の形態2に係る半導体装置は、図2Cに示すとおり、カソード側構造としてnカソード層17とpカソード層18を備えるダイオードにおいて、オフ状態の耐圧遮断能力を上げ、高温でのリーク電流低減による低オフロスと高温動作を実現し、ターンオン又はリカバリー動作時のsnap-off現象及びその後の発振現象を抑制する安全動作領域の保証温度を拡大し、リカバリー時の破壊耐量の向上を実現するためのnバッファ層15を備える。
図2Cは、図1をダイオードの平面図と模擬して見たときのA―A’線における断面図である。図2Cに示すnドリフト層14は、不純物濃度Cn―,dが1.0×1012〜1.0×1015cm−3であり、FZ法にて作製されたFZウエハを用い形成する。最終的なnドリフト層14の厚みすなわち図2中のtdeviceは、40〜700μmである。図2C中のダイオードを構成する各拡散層は以下のパラメータになるように、図5に示すウエハプロセスにてイオン注入およびアニーリング技術を用いて形成する。
・pアノード層10:表面不純物濃度が1.0×1016cm−3以上、ピーク不純物濃度が2.0×1016〜1.0E18cm−3、深さが2.0〜10.0μm、pアノード層10は基板の上面側に形成される。
・nカソード層17:表面不純物濃度が1.0×1018から1.0×1021cm−3、深さは0.3〜1.0μm
・pカソード層18:表面不純物濃度が1.0×1016〜1.0×1020cm―3、深さは0.3〜1.0μm
nバッファ層15は、pカソード層18側に設けられた第1バッファ部分nb1と、nドリフト層14側に設けられた第2バッファ部分nb2と、を有している。第1バッファ部分nb1のピーク不純物濃度Cnb1,pは1.0×1016〜5.0×1016cm−3である。第1バッファ部分nb1の深さXj,nb1は1.2〜5.0μmである。第2バッファ部分nb2のピーク不純物濃度Cnb2,pは5.0×1013〜5.0×1014cm−3である。第2バッファ部分nb2の深さXj,nb2は4.0〜50μmである。したがって、第1バッファ部分nb1のピーク不純物濃度は、第2バッファ部分nb2のピーク不純物濃度より高い。
図2Cのダイオード構造は、図2Bのダイオード構造に対し、pカソード層18を有することで、日本特許第5256357号又は日本特開2014―241433号(US8686469)に示すように、リカバリー動作時の後半にpカソード層18からのホール注入を促進し、カソード側の電界強度緩和によるリカバリー動作中のsnap-off現象及びその後の発振現象を抑制したり、リカバリー動作時の破壊耐量を向上させたりすることができる。
pカソード層18とnカソード層17は、リカバリー動作中のsnap-off現象及びその後の発振現象の抑制効果を保有しつつ良好なダイオード動作を保証する観点から、日本特許第5256357号又は日本特開2014―241433号(US8686469)に示す関係を満足するように配置する。また、図2Cのダイオードを等価回路で表現すると、pinダイオードとpnp tr.とが並列に接続する回路となる。その際、nドリフト層14は可変抵抗領域である。
図20〜24、26は、1700V又は4500Vクラスの図2Cに示すダイオード構造にて試作したデバイスの試作結果である。このデバイスは、図1のA’’‐A’’’線の断面図である図35Cに示す断面構造を有する。図25は、上記4500Vクラスの耐圧を有する図2Cのダイオードに関し、snappyなリカバリー動作及び動作時のデバイス内部状態をシミュレーションした結果を示す図である。図中の“ref.”が従来のnバッファ層15を用いたサンプルのシミュレーション結果を示す、“new buffer”が本発明のnバッファ層15を用いたサンプルのシミュレーション結果を示す。
図20は、試作した4500Vクラスの耐圧を有する図2Cのダイオードの448KにおけるJ vs. V特性のnバッファ構造依存性を示す図である。図21は、逆電圧Vを4500Vで保持したときのリーク電流密度Jとオペレーション温度との関係を示す。比較しているサンプルは、ほぼ同じON電圧のサンプルである。図20、21より、本発明のnバッファ層15を用いることで図2Cに示すダイオードに内蔵するpnp tr.のαpnpが下がり、オフ時つまり耐圧保持時のリーク電流が低減し、その結果、低オフロス化によるオフ時のチップ発熱量を低減できる。また、本発明のnバッファ層15を用いることで、4500Vクラスでも448Kにて熱暴走せずに5000V以上の電圧を保持することが可能である。
図22は、1700Vクラスの耐圧を有する図2Cのダイオードの213から233Kという低温でのsnappyなリカバリー動作に関し、nバッファ構造の依存性を示す図である。図中のVsnap-offは、リカバリー動作時のovershoot voltageである。図2Cのダイオードは、リカバリー動作時のsnap-off現象を抑制する効果あるため、後述する図2Bのリカバリー動作にて観察されるsnap-off現象は観察されない。ただし、図2Cの構成に従来のnバッファ層を採用すると、リカバリー動作後半に巨大なテール電流が発生し、さらに低温で動作させると図にあるように巨大なテール電流領域にて破壊に至る。図2Cの構成に本発明のnバッファ層15を用いると、図22に示すように上記のような現象が発生せず、213Kという低温状態でもダイオードのリカバリー動作を保証する結果となっている。
図23は、1700Vクラスの耐圧を有する図2Cに示すダイオードにおける、Vsnap-offとVCCとの関係のnバッファ構造依存性を示す図である。デバイスのオペレーション温度は298Kとした。図中の丸囲みされた×印はデバイスが破壊したポイントを示す。また、Vsnap-offは定格耐圧以下を目標とする性能指数であるため、図23中にはVsnap-off値の目標値は1700V以下であることを明示した。本発明のnバッファ層15に関しては、実施形態1にて示すパラメータCnb2,p/Cn―,dを変数とするサンプルの結果を示す。図23より、本発明のnバッファ層15を採用した図2Cのダイオードでは、Cnb2,p/Cn―,d=130のサンプルにて、Vsnap-off値が目標値である1700Vより高くなり、最終的にデバイス破壊に至っている。本挙動は、Cnb2,p/Cn―,d値が大きくなるようなnバッファ層15の濃度が高くなる条件では、リカバリー動作後半でpカソード層18からのホール注入が抑制され、nドリフト層14と第2バッファ部分nb2の接合部付近のキャリアプラズマ層が枯渇し、同該接合部の電界強度が高くなった結果である。後述するが、本発明のnバッファ層15を用いるダイオードについては、実施形態1のように、特性を良好にするために、Cnb2,p/Cn―,d値の許容範囲を限定しなければならない。
図24は、1700Vクラスの耐圧を有する図2Cに示すダイオードにおける、Vsnap-offとオペレーション温度との関係のnバッファ構造依存性を示す図である。図中の丸囲みされた×印はデバイスが破壊したポイントを示す。図24より、本発明のnバッファ層15を用いる図2Cのダイオードでは、Cnb2,p/Cn−,d=130のサンプルにて298Kの温度でVsnap-offが高くなり破壊している。また、従来のnバッファ層を用いる場合でも、図22からわかるように233Kにて破壊する。ただし、Cnb2,p/Cn−,d値を適切な値とする本発明のnバッファ層15を用いる場合は、図22のようにリカバリー動作時に巨大なテール電流が発生せず213Kの低温でも正常なリカバリー動作を示す。つまり、本発明のnバッファ層15を用いる図2Cのダイオードによれば、リカバリー動作を保証する動作保証温度範囲を低温側へ拡大することができる。
以上のように、図2Cのダイオード構造にて低温側でのsnappyなリカバリー動作を保証するには、リカバリー後半での巨大なテール電流を抑制する必要がある。図25には、従来のnバッファ層を用いる4500Vクラスの図2Cのダイオードと、本発明のnバッファ層15を用いる4500Vクラスの図2Cのダイオードについての、動作時のデバイス内部状態、すなわち電流密度分布、電界強度分布、及びキャリア濃度分布のシミュレーション結果である。
図25B−25Fに示すリカバリー動作時のダイオード内部状態は、図25Aの解析ポイント丸1〜丸6における内部状態である。図25B−25Fは、図2Cに示すようにpinダイオード19とpnpトランジスタ20に分割し、それぞれのデバイスの内部状態を示すものである。図25B−25Fに示す“point A”と“point B”は、図2C中のpoint Aおよびpoint Bの箇所を意味する。また、図25C−25FにおけるEF point1というのは、図25Aの解析ポイント丸1における電界強度を示す。
図25Aのシミュレーション結果から、図22のように従来のnバッファ層15を用いる図2Cの構造では、リカバリー後半に巨大なテール電流を発生していることがわかる。従来のnバッファ層を有する図2Cのダイオード構造は、以下のようなステップでsnappyなリカバリー動作条件下で特徴的なリカバリー動作をし、リカバリー動作後半にて巨大なテール電流を発生してデバイス破壊に至る。
ステップ1:pinダイオード領域とpnpトランジスタ領域それぞれが律速する動作時間が存在し、pinダイオード領域の動作が収束するJRRポイントである図25Aのポイント丸1を越えたあたりからpnpトランジスタ領域の動作が律速するという動作モードとなる。
ステップ2:カソード側はホール注入を促進するためキャリア濃度が上昇し、カソード側の電界を緩和しながら、pアノード層10とnドリフト層14の主接合部の電界強度が上昇しインパクトイオン化が促進する。
ステップ3:主接合部にて促進したインパクトイオン化により発生する電子がnドリフト層14へ注入されpnpトランジスタのベース電流が増加し、リカバリー波形上に巨大なテール電流が発生する。
ステップ4:巨大なテール電流が発生し、同時にpnpトランジスタの動作が動作しはじめ制御できなくなり、デバイス破壊へ至る。
これに対し、本発明のnバッファ層15を用いる図2Cのダイオード構造では、上記ステップ3のモードが発生せず、pアノード層10とnドリフト層14の主接合部の電界強度の上昇が無くリカバリー動作を終了する。その結果、図25Bのnew structureの電流密度分布のように、図2Cのダイオードに内蔵するpnpトランジスタの動作を最小に抑制し、巨大なテール電流が発生せず、リカバリー動作を終える。そのため、図22、24に示すように本発明のnバッファ層15を用いる図2Cのダイオードでは、低温でのsnappyなリカバリー動作時に巨大なテール電流が発生せず、リカバリー動作を保証する保証温度範囲を低温側へ拡大することができる。
図26は、1700Vクラスの図2Cに示すダイオード構造におけるリカバリーSOA(Safe Operating Area)のnバッファ構造依存性を示す図である。本発明のnバッファ層15に関しては、Cnb2,p/Cn―,d値をパラメータとするサンプルの結果を示す。図中の縦軸のJ(break)はリカバリー動作時の最大遮断電流密度であり、max.dj/dtは遮断時の最大遮断電流密度の時間微分の最大値である。図中のVcc依存性を示す線の内側がSOAである。
図26より、本発明のnバッファ層15は、適切なCnb2,p/Cn―,d値とすることでJ(break)値が大きくなることから、従来のnバッファ層を用いる場合よりリカバリーSOAを向上できることが分かる。また、Cnb2,p/Cn―,d値の大きな本発明のnバッファ層15の場合は、Vcc=1400Vでのプロットデータより、高電圧側の遮断能力が極端に低下することがわかる。
図27には、1700Vクラスの図2Cのダイオード構造の種々のデバイス特性とCnb2,p/Cn―,dとの関係を示す図である。図中のCnb2,p/Cn―,dが0.1のポイントには、従来のnバッファ層での結果を示す。図27より、図17と同様に、ダイオードの種々の特性とCnb2,p/Cn―,dとの関係から、ダイオードの種々なデバイス特性を満足するCnb2,p/Cn―,dの範囲は、2.0〜100.0であることがわかる。Cnb2,p/Cn―,d値が大きくなると、リカバリー動作後半でのpカソード層18からのホール注入が抑制され、nドリフト層14と第2バッファ部分nb2との接合部付近のキャリアプラズマ層が枯渇し、nドリフト層14と第2バッファ部分nb2との接合部の電界強度が高くなり、リカバリー動作時のVsnap-off値が増加し、高電圧でのリカバリー動作時の遮断能力が低下する。また、Cnb2,p/Cn―,dが小さくなると、空乏層がnバッファ層15中を伸びて第1バッファ部分nb1にあたりやすくなる結果、従来のnバッファ層の示す特性に近い挙動を示す。
以上から、図6Aに示すような不純物プロファイルを有する本発明のnバッファ層15は、図2Cに示すダイオード構造でも本発明の解決するための技術目標である、安定的な耐圧特性、オフ時つまり耐圧保持時の低リーク電流による低オフロス化、snappyなリカバリー動作を保証する動作保証温度範囲の低温側への拡大、及びやリカバリー動作時の遮断能力の大幅な向上を実現できる。本発明の実施の形態1、2では、第2バッファ部分nb2のnドリフト層側の部分における不純物濃度勾配δnb2の許容範囲は、0.05〜0.50decade cm-3/μmが好ましいとした。しかし、第2バッファ部分nb2のnドリフト層側の不純物濃度勾配を、第1バッファ部分nb1のnドリフト層側の不純物濃度勾配よりゆるやかにすることで、本発明の効果を得ることができる。
実施の形態3.
本発明の実施の形態3に係る半導体装置として、図2Bに示すようなカソード側構造がnカソード層17のみのダイオードにて、リカバリー動作時のsnap-off現象及びsnap-off現象起因のその後の発振現象を抑制し、リカバリー時の破壊耐量を向上させるnバッファ層15を説明する。
図2Bには、図1中のA―A’線における本発明の技術を含むダイオードを示す。図2Bに示すnドリフト層14は、不純物濃度Cn―,dが1.0×1012〜1.0×1015cm−3のFZ法にて作製されたFZウエハを用いて形成する。最終的なnドリフト層14の厚みは、図2A中のtdeviceが40〜700μmとなる程度である。図2Bのダイオードを構成する各拡散層は以下のパラメータになるように、図5に示す図2Cのダイオードを製造するウエハプロセスと同じプロセスにてイオン注入およびアニーリング技術を用いて形成する。
・pアノード層10: 表面不純物濃度は1.0×1016cm−3以上、ピーク不純物濃度は2.0×1016〜1.0E18cm−3、深さは2.0〜10.0μm
・nカソード層17:表面不純物濃度は1.0×1018から1.0×1021cm−3、深さは0.3〜1.0μm
nバッファ層15はnカソード層17側の第1バッファ部分nb1と、nドリフト層14側の第2バッファ部分nb2を備える。第1バッファ部分nb1のピーク不純物濃度Cnb1,pは1.0×1016〜5.0×1016cm−3であり、深さXj,nb1は2.0〜5.0μmである。第2バッファ部分nb2のピーク不純物濃度Cnb2,pは5.0×1013〜5.0×1014cm−3であり、深さXj,nb2は4.0〜50μmである。
図28は、4500Vクラスの図2Bのダイオードにおける298Kでのsnappyなリカバリー動作におけるnバッファ構造依存性を示す図である。図中の“ref.”が従来のnバッファ層15を用いたサンプルの結果であり、“new buffer”が本発明のnバッファ層15を用いたサンプルの結果である。図中の丸囲みされた×印はデバイスが破壊したポイントを示す。図2Bのダイオードは、リカバリー動作時のsnap-off現象抑制効果が図2Cのダイオードに比べ小さい。その理由は、リカバリー動作後半でのカソード側に残留キャリアプラズマ層が枯渇しやすいためである。したがって、図28の従来のnバッファ層の波形のようにsnap-off現象発生しデバイス破壊に至るおそれがある。
しかしながら、本発明のnバッファ層15を用いる図2Bの構造を有するダイオードでは、リカバリー動作時の図2に示す主接合から伸びる空乏層がnドリフト層14と第2バッファ部分nb2の接合部から第2バッファ部分nb2に至ると第2バッファ層nb2のゆるやかな濃度勾配により、空乏層の伸びるスピードが低下し、従来のnバッファ層を用いる場合よりsnap-off現象が発生してもその電圧が小さくなる効果がある。さらに、従来のnバッファ層にてsnap-off現象が発生するポイントでは、カソード側に残留キャリアプラズマ層が存在していることでsnap-offポイントを遅延させることができる。
図29には、図28に示す従来のnバッファ層を用いる図2Bのダイオードでのsnap-offポイントにおけるデバイス内部状態のシミュレーション結果を示す。図中には、従来のnバッファ層15に加えて、本発明のnバッファ層15に関する内部状態も示されている。図29より、従来のnバッファ層では、カソード側に残留キャリアプラズマ層が枯渇する結果となっている。一方、本発明のnバッファ層15を用いる図2Bのダイオードでは、図3Bに示すようにカソード側にキャリアプラズマ層が存在し、図28のように従来のnバッファ層のサンプルでsnap-off現象が発生するポイントではsnap-off現象が発生しない結果となる。
図30は、4500Vクラスの図2Bのダイオードにおける298KでのVsnap-offとVCCとの関係のnバッファ構造依存性を示す図である。図中の丸囲みされた×印はデバイスが破壊したポイントを示す。図より、図2Bの構造でも本発明のnバッファ層15を用いることで、デバイスが破壊するポイントが高VCC側へシフトし、snappyなリカバリー動作時の破壊耐量が向上することがわかる。ただし、これまでの実施形態1、2のように、図2Bのダイオード構造でも本発明のnバッファ層15を用いる場合には適切なnバッファ層15のパラメータを設定する必要がある。つまり、Cnb2,p/Cn―,d値が大きくなりすぎると逆にnドリフト層14と第2バッファ部分nb2の接合部の電界強度が上昇し破壊しやすくなる。そのため、図2Bのダイオードに本発明のnバッファ層15を用いる場合でも、実施形態1、2で説明したCnb2,p/Cn―,d値の許容範囲とする必要がある。
実施の形態4.
本発明の実施の形態4に係る半導体装置は、実施の形態1−3のnバッファ層とは異なるnバッファ層を有する。図31は、実施の形態4に係る半導体装置のnバッファ層の不純物分布を示す図である。図31には、nバッファ層15が、第1バッファ部分nb1、第2バッファ部分nb2及び第3バッファ部分nb3で構成されたことが開示されている。別の見方をすれば、第2バッファ部分nb2を複数形成するということである。このような構成で、実施の形態1〜3のようなデバイス特性への効果が見込める。
この場合、複数のバッファ部分を形成するめにイオン注入又は照射技術等でイオン種をSiへ導入する際のピーク位置は、各バッファ部分の接合部(Xj,nb2〜n)より深くなるように設定する。例えば第2バッファ部分の不純物ピーク位置は第1バッファ部分と第2バッファ部分の接合部よりも深くし、第3バッファ部分の不純物ピーク位置は第2バッファ部分と第3バッファ部分の接合部よりも深くする。
ところで、基板下面側の縦構造としては、不純物がドープされた不純物層、不純物層の上に設けられたnバッファ層、及びnバッファ層の上のnドリフト層を有することが多い。不純物層というのは、IGBTの場合はコレクタ層であり、ダイオードの場合はカソード層である。そして、本発明の実施の形態4のように、nバッファ層15が、ピーク不純物濃度とnバッファ層15の裏面からの距離が異なる3層以上のバッファ部分を有する場合、複数のバッファ部分のうち最も不純物層側のバッファ部分である第1バッファ部分の活性化アニール完了後に、残りのバッファ部分を形成する。言い換えれば、複数のバッファ部分については、コレクタ層又はカソード層側のものから順次形成する。
nバッファ層15およびそれを構成する第1バッファ部分nb1と第2〜nバッファ部分nb2〜nとは、以下の関係を満足する。第2〜nバッファ部分nb2〜nというのは、nとして3より大きい整数を入れることで、第2バッファ部分nb2、第3バッファ部分nb3、第4バッファ部分nb4・・・というように、複数の部分を表現しうるものである。
複数のバッファ部分を有するnバッファ層は以下の関係を満たすように形成する。
nb1,p>Cnb2〜n,p
j,nb1<Xj,nb2〜n
δnb1>δnb2〜n
nb1,p>Cnb2〜n,pとは、複数のバッファ部分のうち、第1バッファ部分のピーク不純物濃度が最も高いことを意味する。
δnb1>δnb2〜nとは、第1バッファ部分nb1は、複数のバッファ部分のうち最も高い不純物濃度勾配を有することを意味する。また上記関係から、本実施形態のnバッファ層15を構成する第1バッファ部分nb1と第2〜nバッファ部分nb2〜nのそれぞれの役割と、図3に示す目標とするnバッファ層の役割との関係は以下のようになる。
・第1バッファ部分: staticな状態での主接合から伸びてくる空乏層を止め、安定的な耐圧特性、オフ時つまり耐圧保持時の低リーク電流による低オフロス化への役割
・第2〜nバッファ部分:pnpトランジスタのベース幅を広げる役割がありその結果αpnpを下げてオフ時つまり耐圧保持時の低リーク電流による低オフロス化の役割および、staticおよびdynamicな状態での主接合から伸びてくる空乏層の伸びるスピートをnドリフト層14内の移動時より緩やかにし、かつON状態からの残留キャリアプラズマ層を存在させ電界強度分布を制御する役割
また、実施形態1で説明したnバッファ層15のパラメータの許容範囲に関して、図31に示す不純物プロファルの場合は以下の関係となる。
nbi,p/Cnー,d値に関して、複数のバッファ部分のうち、第1バッファ部分を除く部分と、nドリフト層は、以下の関係式を満足する。
Figure 0006662393
ここで、
n―,d:nドリフト層14の不純物濃度
nbi,p:第2〜nバッファ部分nb2〜nのピーク濃度、より詳しく言えば、nバッファ層の下面に近い位置からi番目のバッファ部分におけるピーク不純物濃度
である。α値は以下のとおりである。
Figure 0006662393

ここで、
Dosenb1,effect:第1バッファ部分nb1の活性化後の実効ドーズ量
Dosenb2〜n,effect:第2〜nバッファ部分nb2〜nの活性化後の実効ドーズ量
である。第1バッファ部分nb1は、複数のバッファ部分のうち最も大きい活性化後の実効ドーズ量を有する。この関係式は、nバッファ層の活性化後の実効ドーズ量に占める、複数のバッファ部分のうち第1バッファ部分以外のバッファ部分の活性化後の実効ドーズ量の割合αは、0.5〜5%であることを示す。
IGBTでは、最もpコレクタ層側のバッファ部分は第1バッファ部分である。ダイオードでは、最もカソード層側のバッファ部分は第1バッファ部分である。また、本発明の効果を得るために、最もnドリフト層側のバッファ部分の不純物濃度勾配は0.05〜0.50decade cm-3/μmとする。このように、ピーク不純物濃度とnバッファ層の裏面からの距離が異なる3層以上のバッファ部分を有するnバッファ層15を提供することができる。なお、複数のバッファ部分のnドリフト層側の不純物濃度勾配を比べたとき、最もnドリフト層側のバッファ部分の不純物濃度勾配を最もゆるやかにすることで、本発明の効果を得ることができる。
実施の形態5.
本発明の実施の形態5に係る半導体装置は、図1に示すパワー半導体の構成要素と実施形態1〜4に示す特徴的なnバッファ層15との関係により、IGBT及びダイオードのターンオフ時の遮断能力を向上する技術に関する。
図32A、32Bおよび図32C〜32Gは、それぞれ本発明のnバッファ層15を用いたIGBTおよびダイオードの図1の構成要素を加えた図1に示すA’’―A’’’線における断面図である。図に示すように、IGBT、ダイオードともアクティブセル領域1と中間領域2からエッジターミネーション領域5にてメタル29と接する縦構造が異なる。つまり、図32に示す構造は、IGBT、ダイオードともON状態から中間領域2からエッジターミネーション領域5のコレクタ側又はカソード側からのキャリアの注入を抑制する構造となっている。
図32Aには、アクティブセル領域1ではコレクタ層16とメタル29が接し、中間領域2とエッジターミネーション領域5ではnバッファ層15がメタル29に接するIGBTが示されている。
また、図32Bに示す中間領域2からエッジターミネーション領域5にてメタル29と接する低濃度pコレクタ層16’は、アクティブセル領域1に存在するpコレクタ層16よりも表面濃度が低濃度な拡散層である。アクティブセル領域1ではpコレクタ層16がメタル29に接し、中間領域2とエッジターミネーション領域5ではpコレクタ層16より不純物濃度が低い低濃度pコレクタ層16’がメタル29と接する。つまり、中間領域2とエッジターミネーション領域5の下面側の縦構造として、nドリフト層14と、nバッファ層15と、低濃度pコレクタ層16’とを備えている。その結果、本発明の構造は、ターンオフ動作時に中間領域2に存在する主接合pn接合部の電界強度を緩和し、局所的な電界強度の上昇を抑制しインパクトイオン化による電流集中起因の局所的な温度上昇による熱破壊を抑制する作用がある。
本現象のメカニズム及び効果の詳細は、IGBTについては日本特許第5708803号と日本特許第5701447号に開示され、ダイオードについては日本特開2014-241433号(US8686469)に開示されている。図32に示す構造では、本発明のnバッファ層15を用いることで図32に示す構造固有の上記作用効果に加え、実施例1〜4に示す本発明のnバッファ層15によるデバイス性能面への効果を合わせ持つ。
図32Cには、アクティブセル領域1ではカソード層17とメタル29が接し、中間領域2とエッジターミネーション領域5ではnバッファ層15とメタル29が接するダイオードが開示されている。つまり、エッジターミネーション領域5と中間領域2の縦構造として、nドリフト層14とnバッファ層15のみを備えている。
図32Dには、アクティブセル領域1ではnカソード層17とpカソード層18がメタル29に接し、中間領域2とエッジターミネーション領域5ではpカソード層18とメタル29が接するダイオードが開示されている。つまり、エッジターミネーション領域5と中間領域2の縦構造として、nドリフト層14とnバッファ層15とpカソード層18を備えている。
図35Aには、中間領域2とエッジターミネーション領域5の下面側の縦構造として、nドリフト層14と、nバッファ層15と、pコレクタ層16とを備えたことが開示されている。また、図35Bには、中間領域2とエッジターミネーション領域5の下面側の縦構造として、nドリフト層14と、nバッファ層15と、カソード層17とを備えたことが開示されている。
図33には、3300Vクラスの図2Aに示すIGBTに対し、従来のnバッファ層15を設けたものと、図6Aに示すような本発明のnバッファ層15を設けた構造のRBSOAを示す。IGBTの構造は図32Aの構造である。本発明のnバッファ層15を用いたサンプルの結果は、動作温度依存性も同時に示す。縦軸のJ(break)およびmax. Power Densityはそれぞれターンオフ時の最大遮断電流密度と最大パワー密度を示す。図中の“new buffer”が本発明のnバッファ層15を用いたサンプルの結果である。また、図中の各パラメータのVCC依存性を示す線の内側が、SOAである。
図34は、6500Vクラスの、従来のnバッファ層15を有する図35Cのダイオードと図32D、Eに示す本発明のnバッファ層15を有する構造のリカバリーSOAを示す。縦軸のmax. dj/dtおよびmax. Power Densityは、それぞれリカバリー動作時の最大遮断電流密度の時間微分dj/dtの最大値と最大パワー密度を示す。
図34中の“new buffer”が本発明のnバッファ層15を用いたサンプルの結果である。また、図中の各パラメータのVCC依存性を示す線の内側が、SOAである。図33、34より、本発明のnバッファ層を有し中間領域2からエッジターミネーション領域5のコレクタ側、カソード側からのキャリア注入抑制するIGBTおよびダイオードは、従来のnバッファ層を有するIGBT及びダイオードよりも大幅にターンオフ時のSOAが拡大する。よって、本発明の目的の1つであるターンオフ遮断能力の大幅な向上を実現することができる。
さらに、ON状態に中間領域2からエッジターミネーション領域5のコレクタ側、カソード側からのキャリア注入を抑制する作用を示す。図31Bおよび図31C、31F及び31Gに示す構造でも、図33、34に示す効果と同様の効果は得られる。
なお、上記の各実施の形態に係る半導体装置の特徴を適宜に組み合わせて、本発明の効果を高めても良い。
1 アクティブセル領域、 2 中間領域、 5 エッジターミネーション領域、 15 nバッファ層、 nb1 第1バッファ部分、 nb2 第2バッファ部分、 35 縦構造

Claims (28)

  1. アクティブセル領域と、
    前記アクティブセル領域を囲むエッジターミネーション領域と、
    前記アクティブセル領域と前記エッジターミネーション領域の中間にある中間領域と、を備え、
    前記アクティブセル領域は、
    上面側にトレンチゲート型のMOS構造を有し、
    下面側の縦構造として、pコレクタ層、前記pコレクタ層の上のnバッファ層、及び前記nバッファ層の上のnドリフト層とを有し、
    前記nバッファ層は、前記pコレクタ層側に設けられた第1バッファ部分と、前記nドリフト層側に設けられた第2バッファ部分と、を有し、
    前記第1バッファ部分のピーク不純物濃度は、前記第2バッファ部分のピーク不純物濃度より高く、
    前記第2バッファ部分の前記nドリフト層側の不純物濃度勾配は、前記第1バッファ部分の前記nドリフト層側の不純物濃度勾配よりゆるやかであり、
    前記nバッファ層は前記エッジターミネーション領域と前記中間領域にも形成され
    前記第2バッファ部分の不純物濃度のピーク位置は、前記第2バッファ部分の中央部より前記第1バッファ部分と前記第2バッファ部分の接合部に近く、かつ、前記接合部より前記nドリフト層に近いことを特徴とする半導体装置。
  2. アクティブセル領域と、
    前記アクティブセル領域を囲むエッジターミネーション領域と、
    前記アクティブセル領域と前記エッジターミネーション領域の中間にある中間領域と、を備え、
    前記アクティブセル領域は、
    上面側にpアノード層を有し、
    下面側の縦構造として、nカソード層を有するカソード層、前記カソード層の上に設けられたnバッファ層、及び前記nバッファ層の上のnドリフト層とを有し、
    前記nバッファ層は、前記カソード層側に設けられた第1バッファ部分と、前記nドリフト層側に設けられた第2バッファ部分と、を有し、
    前記第1バッファ部分のピーク不純物濃度は、前記第2バッファ部分のピーク不純物濃度より高く、
    前記第2バッファ部分の前記nドリフト層側の不純物濃度勾配は、前記第1バッファ部分の前記nドリフト層側の不純物濃度勾配よりゆるやかであり、
    前記nバッファ層は前記エッジターミネーション領域と前記中間領域にも形成され
    前記第2バッファ部分の不純物濃度のピーク位置は、前記第2バッファ部分の中央部より前記第1バッファ部分と前記第2バッファ部分の接合部に近く、かつ、前記接合部より前記nドリフト層に近いことを特徴とする半導体装置。
  3. 前記第1バッファ部分の不純物濃度勾配は、前記第2バッファ部分の不純物濃度勾配より大きいことを特徴とする請求項1又は2に記載の半導体装置。
  4. 前記第1バッファ部分の活性化後の実効ドーズ量は、前記第2バッファ部分の活性化後の実効ドーズ量よりも大きいことを特徴とする請求項1又は2に記載の半導体装置。
  5. 前記第2バッファ部分の不純物濃度は、前記ピーク位置から前記接合部に向かって低下することを特徴とする請求項1又は2に記載の半導体装置。
  6. 前記第2バッファ部分のピーク不純物濃度を、前記nドリフト層の不純物濃度で除した値は2〜100であることを特徴とする請求項1又は2に記載の半導体装置。
  7. 前記第1バッファ部分のピーク不純物濃度を、前記第2バッファ部分のピーク不純物濃度で除した値は、20〜1000であることを特徴とする請求項1又は2に記載の半導体装置。
  8. 前記nバッファ層の活性化後の実効ドーズ量に占める前記第2バッファ部分の活性化後の実効ドーズ量の割合は、0.5〜5.0%であることを特徴とする請求項1又は2に記載の半導体装置。
  9. アクティブセル領域と、
    前記アクティブセル領域を囲むエッジターミネーション領域と、
    前記アクティブセル領域と前記エッジターミネーション領域の中間にある中間領域と、を備え、
    前記アクティブセル領域は、
    上面側にトレンチゲート型のMOS構造を有し、
    下面側の縦構造として、pコレクタ層、前記pコレクタ層の上のnバッファ層、及び前記nバッファ層の上のnドリフト層とを有し、
    前記nバッファ層は、ピーク不純物濃度と前記nバッファ層の裏面からの距離が異なる3層以上のバッファ部分を有し、
    複数の前記バッファ部分のうち、最も前記pコレクタ層側の前記バッファ部分である第1バッファ部分のピーク不純物濃度が最も高く、
    複数の前記バッファ部分の前記nドリフト層側の不純物濃度勾配を比べると、最も前記nドリフト層側の前記バッファ部分であるトップバッファ部分の不純物濃度勾配が最もゆるやかであり、
    前記nバッファ層は前記エッジターミネーション領域と前記中間領域にも形成され
    前記トップバッファ部分の不純物濃度のピーク位置は、前記トップバッファ部分の中央部より、前記トップバッファ部分と、前記トップバッファ部分に隣接する前記バッファ部分である隣接バッファ部分との接合部に近く、かつ、前記接合部より前記nドリフト層に近いことを特徴とする半導体装置。
  10. アクティブセル領域と、
    前記アクティブセル領域を囲むエッジターミネーション領域と、
    前記アクティブセル領域と前記エッジターミネーション領域の中間にある中間領域と、を備え、
    前記アクティブセル領域は、
    上面側にpアノード層を有し、
    下面側の縦構造として、nカソード層を有するカソード層、前記カソード層の上に設けられたnバッファ層、及び前記nバッファ層の上のnドリフト層とを有し、
    前記nバッファ層は、ピーク不純物濃度と前記nバッファ層の裏面からの距離が異なる3層以上のバッファ部分を有し、
    複数の前記バッファ部分のうち、最も前記カソード層側の前記バッファ部分である第1バッファ部分のピーク不純物濃度が最も高く、
    複数の前記バッファ部分の前記nドリフト層側の不純物濃度勾配を比べると、最も前記nドリフト層側の前記バッファ部分であるトップバッファ部分の不純物濃度勾配が最もゆるやかであり、
    前記nバッファ層は前記エッジターミネーション領域と前記中間領域にも形成され
    前記トップバッファ部分の不純物濃度のピーク位置は、前記トップバッファ部分の中央部より、前記トップバッファ部分と、前記トップバッファ部分に隣接する前記バッファ部分である隣接バッファ部分との接合部に近く、かつ、前記接合部より前記nドリフト層に近いことを特徴とする半導体装置。
  11. 前記第1バッファ部分は、複数の前記バッファ部分のうち最も高い不純物濃度勾配を有することを特徴とする請求項9又は10に記載の半導体装置。
  12. 前記第1バッファ部分は、複数の前記バッファ部分のうち最も大きい活性化後の実効ドーズ量を有することを特徴とする請求項9又は10に記載の半導体装置。
  13. 複数の前記バッファ部分のうち、前記第1バッファ部分を除く部分と、前記nドリフト層は、以下の関係式を満足することを特徴とする請求項9又は10に記載の半導体装置。
    Figure 0006662393
    Cnbi,pは、前記nバッファ層の下面に近い位置からi番目のバッファ部分におけるピーク不純物濃度を表し、
    Cn−,dは前記nドリフト層の不純物濃度を示す。
  14. 前記第1バッファ部分のピーク不純物濃度を、前記第1バッファ部分に隣接するバッファ部分である第2バッファ部分のピーク不純物濃度で除した値は、20〜1000であることを特徴とする請求項9又は10に記載の半導体装置。
  15. 前記nバッファ層の活性化後の実効ドーズ量に占める、複数の前記バッファ部分のうち前記第1バッファ部分以外のバッファ部分の活性化後の実効ドーズ量の割合αは、0.5〜5%であることを特徴とする請求項9又は10に記載の半導体装置。
  16. 前記カソード層は、pカソード層を有することを特徴とする請求項2又は10に記載の半導体装置。
  17. 前記エッジターミネーション領域と前記中間領域の縦構造として、前記nドリフト層と、前記nバッファ層のみを備えたことを特徴とする請求項1〜16のいずれか1項に記載の半導体装置。
  18. 前記カソード層は、pカソード層を有し、
    前記エッジターミネーション領域と前記中間領域の縦構造として、前記nドリフト層と前記nバッファ層と前記pカソード層を備えたことを特徴とする請求項2又は10に記載の半導体装置。
  19. 前記エッジターミネーション領域と前記中間領域の下面側の縦構造として、
    前記nドリフト層と、前記nバッファ層と、前記pコレクタ層より不純物濃度が低い低濃度コレクタ層と、を備えたことを特徴とする請求項1又は9に記載の半導体装置。
  20. 前記エッジターミネーション領域と前記中間領域の下面側の縦構造として、前記nドリフト層と、前記nバッファ層と、前記pコレクタ層とを備えたことを特徴とする請求項1又は9に記載の半導体装置。
  21. 前記エッジターミネーション領域と前記中間領域の下面側の縦構造として、前記nドリフト層と、前記nバッファ層と、前記カソード層とを備えたことを特徴とする請求項2又は10に記載の半導体装置。
  22. 前記アクティブセル領域と、前記エッジターミネーション領域と、前記中間領域は、ワイドバンドギャップ半導体によって形成されていることを特徴とする請求項1〜21のいずれか1項に記載の半導体装置。
  23. 前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料又はダイヤモンドであることを特徴とする請求項22に記載の半導体装置。
  24. 前記第2バッファ部分の前記nドリフト層側の部分における不純物濃度勾配は0.05〜0.50decade cm-3/μmであることを特徴とする請求項1〜8のいずれか1項に記載の半導体装置。
  25. 前記バッファ部分のうち前記nドリフト層側の部分における不純物濃度勾配は0.05〜0.50decade cm-3/μmであることを特徴とする請求項9〜15のいずれか1項に記載の半導体装置。
  26. アクティブセル領域と、前記アクティブセル領域を囲むエッジターミネーション領域と、前記アクティブセル領域と前記エッジターミネーション領域の中間にある中間領域と、において、基板下面側の縦構造として、不純物がドープされた不純物層、前記不純物層の上に設けられたnバッファ層、及び前記nバッファ層の上のnドリフト層を有し、ピーク不純物濃度と前記nバッファ層の裏面からの距離が異なる3層以上のバッファ部分を有する前記nバッファ層を、複数の前記バッファ部分のうち最も前記不純物層側のバッファ部分である第1バッファ部分の活性化アニール完了後に、残りのバッファ部分を形成し、複数の前記バッファ部分のうち最も前記nドリフト層側の前記バッファ部分であるトップバッファ部分の不純物濃度のピーク位置は、前記トップバッファ部分の中央部より、前記トップバッファ部分と、前記トップバッファ部分に隣接する前記バッファ部分である隣接バッファ部分との接合部に近く、かつ、前記接合部より前記nドリフト層に近いことを特徴とする半導体装置の製造方法。
  27. 複数の前記バッファ部分のうち、前記第1バッファ部分のピーク不純物濃度が最も高いことを特徴とする請求項26に記載の半導体装置の製造方法。
  28. 前記バッファ部分のうち前記nドリフト層側の部分における不純物濃度勾配は0.05〜0.50decade cm-3/μmであることを特徴とする請求項26又は27に記載の半導体装置の製造方法。
JP2017558828A 2015-12-28 2015-12-28 半導体装置、半導体装置の製造方法 Active JP6662393B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086557 WO2017115434A1 (ja) 2015-12-28 2015-12-28 半導体装置、半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JPWO2017115434A1 JPWO2017115434A1 (ja) 2018-05-31
JP6662393B2 true JP6662393B2 (ja) 2020-03-11

Family

ID=59224889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017558828A Active JP6662393B2 (ja) 2015-12-28 2015-12-28 半導体装置、半導体装置の製造方法

Country Status (5)

Country Link
US (1) US10411093B2 (ja)
JP (1) JP6662393B2 (ja)
CN (1) CN108431962B (ja)
DE (1) DE112015007246T5 (ja)
WO (1) WO2017115434A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319453B2 (ja) * 2014-10-03 2018-05-09 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6854654B2 (ja) * 2017-01-26 2021-04-07 ローム株式会社 半導体装置
JP6804379B2 (ja) * 2017-04-24 2020-12-23 三菱電機株式会社 半導体装置
JP7126361B2 (ja) * 2018-03-08 2022-08-26 三菱電機株式会社 半導体装置、電力変換装置、及び、半導体装置の製造方法
JP6964566B2 (ja) * 2018-08-17 2021-11-10 三菱電機株式会社 半導体装置およびその製造方法
JP7085975B2 (ja) * 2018-12-17 2022-06-17 三菱電機株式会社 半導体装置
JP7374054B2 (ja) * 2020-08-20 2023-11-06 三菱電機株式会社 半導体装置
CN115995486A (zh) * 2021-10-15 2023-04-21 长鑫存储技术有限公司 半导体结构的制作方法及半导体结构
CN116190223B (zh) * 2022-09-09 2024-05-24 安徽钜芯半导体科技股份有限公司 制备光伏模块二极管的方法和装置、光伏模块

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976256A (en) 1975-01-28 1976-08-24 Rca Corporation Automatic coil winding machine and method
JPS571447A (en) 1980-06-05 1982-01-06 Toshiomi Kido Device for treating unpolished rice
JPS578803A (en) 1980-06-20 1982-01-18 Hitachi Ltd Process control system
JPS5832246B2 (ja) 1980-07-14 1983-07-12 株式会社北川鉄工所 軟弱土層に安定硬化処理地盤を構築する方法
JP3396553B2 (ja) 1994-02-04 2003-04-14 三菱電機株式会社 半導体装置の製造方法及び半導体装置
JP4205128B2 (ja) 1996-04-11 2009-01-07 三菱電機株式会社 高耐圧半導体装置およびその製造方法
KR100447364B1 (ko) 2001-01-19 2004-09-07 미쓰비시덴키 가부시키가이샤 반도체 장치
JP3764343B2 (ja) 2001-02-28 2006-04-05 株式会社東芝 半導体装置の製造方法
US8078708B1 (en) * 2004-01-15 2011-12-13 Nortel Networks Limited Grid proxy architecture for network resources
JP4786621B2 (ja) * 2007-09-20 2011-10-05 株式会社東芝 半導体装置およびその製造方法
JP2009176772A (ja) * 2008-01-21 2009-08-06 Denso Corp 半導体装置
WO2011052787A1 (ja) 2009-11-02 2011-05-05 富士電機システムズ株式会社 半導体装置および半導体装置の製造方法
JP2011187753A (ja) * 2010-03-10 2011-09-22 Toshiba Corp 半導体装置の製造方法
JP5925991B2 (ja) 2010-05-26 2016-05-25 三菱電機株式会社 半導体装置
JP6301776B2 (ja) * 2010-05-26 2018-03-28 三菱電機株式会社 半導体装置
WO2012157772A1 (ja) 2011-05-18 2012-11-22 富士電機株式会社 半導体装置および半導体装置の製造方法
JP5817686B2 (ja) * 2011-11-30 2015-11-18 株式会社デンソー 半導体装置
JP5765251B2 (ja) * 2012-01-24 2015-08-19 三菱電機株式会社 半導体装置及びその製造方法
JP5622814B2 (ja) 2012-08-29 2014-11-12 三菱電機株式会社 半導体装置及びその製造方法
CN104685613B (zh) 2012-10-02 2017-08-04 三菱电机株式会社 半导体装置、半导体装置的制造方法
CN105283962B (zh) 2013-06-12 2018-01-19 三菱电机株式会社 半导体装置
DE112014003712T5 (de) * 2013-12-16 2016-04-28 Fuji Electric Co., Ltd. Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
KR101917486B1 (ko) * 2014-01-29 2018-11-09 미쓰비시덴키 가부시키가이샤 전력용 반도체 장치
JP6287407B2 (ja) * 2014-03-19 2018-03-07 サンケン電気株式会社 半導体装置
US9406152B2 (en) * 2014-07-17 2016-08-02 Empire Technology Development Llc Viewer optimized model compression

Also Published As

Publication number Publication date
US20180248003A1 (en) 2018-08-30
US10411093B2 (en) 2019-09-10
CN108431962A (zh) 2018-08-21
WO2017115434A1 (ja) 2017-07-06
CN108431962B (zh) 2021-05-18
JPWO2017115434A1 (ja) 2018-05-31
DE112015007246T5 (de) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6662393B2 (ja) 半導体装置、半導体装置の製造方法
US9257543B2 (en) Reverse-conducting insulated gate bipolar transistor and diode with one structure semiconductor device
JP4539011B2 (ja) 半導体装置
JP5365009B2 (ja) 半導体装置およびその製造方法
US20190019879A1 (en) Power device with a field stop layer
US9559171B2 (en) Semiconductor device
KR101917486B1 (ko) 전력용 반도체 장치
JP6289683B2 (ja) 半導体装置
KR101917485B1 (ko) 전력용 반도체 장치
US9202936B2 (en) Semiconductor device
JP6405212B2 (ja) 半導体装置
TW201432916A (zh) 半導體裝置及其製造方法
JP7271659B2 (ja) 絶縁ゲートパワー半導体装置、およびそのような装置を製造するための方法
JP2000323488A (ja) ダイオードおよびその製造方法
JP6784148B2 (ja) 半導体装置、絶縁ゲート型バイポーラトランジスタ、絶縁ゲート型バイポーラトランジスタの製造方法
JP7246983B2 (ja) 半導体装置
JP2022073497A (ja) 半導体装置および半導体装置の製造方法
JP6639739B2 (ja) 半導体装置
JP5359567B2 (ja) 半導体装置およびその製造方法
WO2019049251A1 (ja) 半導体装置
GB2612636A (en) Semiconductor device
KR102042834B1 (ko) 전력 반도체 소자 및 그 제조방법
WO2021232548A1 (zh) 功率半导体装置及其制备方法
KR102042833B1 (ko) 전력 반도체 소자 및 그 제조방법
KR20150056433A (ko) 전력 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6662393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250