JP6658266B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP6658266B2
JP6658266B2 JP2016088221A JP2016088221A JP6658266B2 JP 6658266 B2 JP6658266 B2 JP 6658266B2 JP 2016088221 A JP2016088221 A JP 2016088221A JP 2016088221 A JP2016088221 A JP 2016088221A JP 6658266 B2 JP6658266 B2 JP 6658266B2
Authority
JP
Japan
Prior art keywords
target
torque
intake
ecu
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016088221A
Other languages
English (en)
Other versions
JP2017198118A (ja
Inventor
啓 小島
啓 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2016088221A priority Critical patent/JP6658266B2/ja
Publication of JP2017198118A publication Critical patent/JP2017198118A/ja
Application granted granted Critical
Publication of JP6658266B2 publication Critical patent/JP6658266B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、内燃機関の制御装置に関する。
従来、ガソリンエンジン等の内燃機関の燃焼形態としては、点火プラグからの火花放電により強制的に混合気を着火させるSI(Spark Ignition)燃焼が広く一般的であったが、近年、気筒内に高温の既燃ガスを導入して混合気を自着火させる予混合圧縮自着火燃焼を燃焼形態として利用するガソリンエンジンの開発が進められている。ここで、予混合圧縮自着火燃焼は、HCCI(Homogeneous Charge Compression Ignition)燃焼と称される。
このHCCI燃焼機能を備える内燃機関において、可変動弁機構により排気バルブ閉じ時期(EVC:Exhaust Valve Closing timing)を早めて、既燃ガスの一部を気筒内に残留させ、次の吸気行程で新気と混合された混合気の温度を高くする負のバルブオーバーラップ(NVO:Negative Valve Overlap)方式がある。
特許文献1には、要求トルクから圧縮着火前温度が得られるような目標カム位相を算出し、目標カム位相と今回のカム位相との位相差から推定した次回位相における圧縮端温度が圧縮着火温度になるような補正要求トルクを算出し、この補正要求トルクに応じて燃料噴射量を制御して、ノッキングや失火を抑制して安定した燃焼を確保することが記載されている。
特許文献2には、過給機を装備する内燃機関において、要求トルクと燃焼室温度と要求回転数により目標過給圧を設定し、この目標過給圧になるように制御することが記載されている。
特開2011−220121号公報 特開2004−285997号公報
しかしながら、このような内燃機関の制御装置にあっては、要求トルクから次回位相や過給圧を算出しているため、要求トルクが急変した際に、燃料量に比べ応答性の遅い吸排気弁の位相や過給圧の変化が遅れ、残留ガス温度や排気圧力が定常とは異なることから、温度や、圧縮時の筒内ガス量(燃料分を除く)をG、燃料量をFとしたときのG/F(重量比)等の燃焼室内の状態が定常時から乖離し、失火やトルク変動が発生したり、騒音やNOx排出量が増加したりすることがある。
この対策として、応答性の遅い吸排気弁の位相や過給圧の変化に合わせて燃料噴射量を算出することが考えられるが、変化を非常に遅くしない限りは、燃焼室内の状態が定常とは異なるようになるとともに、運転者や変速機、横滑り防止装置等からの要求トルクが急変した場合に実トルクが追従できず、ショックや回転吹き上がり、横滑り等の不具合が発生することがある。
そこで、本発明は、要求トルクの急変に実トルクを追従させることができ、安定した燃焼を確保し、できるだけ熱効率の高い条件で内燃機関を運転することができる内燃機関の制御装置を提供することを目的としている。
上記課題を解決するため、本発明は、予混合圧縮自着火燃焼を行なう内燃機関の制御装置であって、ドライバーの要求トルクを満たすように、応答性の遅いデバイスを制御するための第1の目標トルクと、応答性の早いデバイスを制御するための第2の目標トルクとを算出し、前記第1の目標トルクとなるように混合気質量を制御し、前記第2の目標トルクとなるように燃料噴射量を制御し、予混合圧縮自着火燃焼時において前記内燃機関のトルクを高応答で増加制御させる必要がある場合は、前記第2の目標トルクに比べ前記第1の目標トルクを高く設定し、前記内燃機関のトルクの増加に伴って燃料噴射量を増加させる制御部を備えるものである。
このように本発明によれば、要求トルクの急変に実トルクを追従させることができ、安定した燃焼を確保することができ、できるだけ熱効率の高い条件で内燃機関を運転できる内燃機関の制御装置を提供することができる。
図1は、本発明の一実施形態に係る内燃機関の制御装置の概略構成図である。 図2は、本発明の一実施形態に係る内燃機関の制御装置の目標トルク算出部の入出力図である。 図3は、本発明の一実施形態に係る内燃機関の制御装置の過給器を制御するブロックのブロック図である。 図4は、本発明の一実施形態に係る内燃機関の制御装置の燃料噴射量を制御するブロックのブロック図である。 図5は、本発明の一実施形態に係る内燃機関の制御装置の吸気バルブ及び排気バルブを制御するブロックのブロック図である。
以下、図面を参照して、本発明の実施形態に係る内燃機関の制御装置について詳細に説明する。
図1において、本発明の一実施形態に係る内燃機関の制御装置を搭載した車両1は、内燃機関型のエンジン2と、制御部としてのECU(Electronic Control Unit)3とを含んで構成される。
エンジン2は、シリンダブロック4と、シリンダブロック4の上部に締結されたシリンダヘッド5とを含んで構成されている。シリンダブロック4には、気筒4aが形成され、この気筒の内部(以下、「筒内」という)には、上下に往復動可能なピストン6が収納されている。
また、気筒4aの上部には、燃焼室7が設けられている。燃焼室7は、ピストン6の頂面とシリンダヘッド5の下面とによって画成されている。エンジン2は、筒内でピストン6が2往復する間に、吸気行程、圧縮行程、膨張行程および排気行程からなる一連の4行程を行なう、いわゆる4サイクルのガソリンエンジンである。
ピストン6は、コネクティングロッド8を介して図示しないクランク軸と連結している。コネクティングロッド8は、ピストン6の往復運動をクランク軸の回転運動に変換する。
シリンダヘッド5には、点火プラグ50と、吸気ポート51と、排気ポート52とが設けられている。点火プラグ50は、燃焼室7内に電極を突出させた状態でシリンダヘッド5に配設され、ECU3によってその点火時期が調整される。
吸気ポート51は、燃焼室7と後述する吸気通路16aとを連通するようになっている。また、吸気ポート51には、吸気バルブ11が設けられている。
吸気バルブ11は、吸気通路16aと燃焼室7とを連通または遮断するように開閉されるようになっている。吸気バルブ11の開閉は、吸気側可変動弁機構12によって行なわれるようになっている。
吸気側可変動弁機構12としては、例えば電磁石とスプリング等から構成された電磁アクチュエータにより吸気バルブ11の開閉を行なう電磁式の可変動弁機構を用いることができる。具体的には、吸気側可変動弁機構12は、電磁石の励磁によって吸気バルブ11に固定された可動部を吸引することで、スプリングによって常時閉弁方向に付勢されている吸気バルブ11を開弁方向に移動させるようになっている。
また、吸気側可変動弁機構12は、後述するECU3と電気的に接続されており、電磁石の励磁、非励磁がECU3によって制御されるようになっている。したがって、ECU3は、吸気バルブ11の開閉時期を任意に変更でき、これにより吸気バルブ11の開弁期間を容易に調整することができる。
なお、吸気側可変動弁機構12としては、電磁アクチュエータに変えて油圧アクチュエータを用いた油圧式の可変動弁機構を用いてもよい。また、吸気側可変動弁機構12として、主カムおよび副カム等のカム部材を用いて吸気バルブ11の開閉時期を変更可能な機械式の可変動弁機構を用いても構わない。
さらに、この吸気側可変動弁機構12は、例えば電磁石に対する励磁電流がECU3によって調整されることにより、吸気バルブ11の開閉時期とともに吸気バルブ11のリフト量を連続的に変化させることが可能な構成であってもよい。
また、シリンダヘッド5の吸気ポート51側には、吸気マニホールド13が接続されている。吸気マニホールド13の吸気ポート51近傍には、インジェクタ10が設けられている。
インジェクタ10は、図示しない燃料タンクから燃料ポンプによって圧送された燃料を吸気ポート51内に噴射する、いわゆるポート噴射式の燃料噴射弁である。なお、インジェクタ10としては、ポート噴射式に限らず、燃焼室7に燃料を直接噴射する、いわゆる直噴式の燃料噴射弁であってもよい。
吸気ポート51内に噴射された燃料は、吸入空気、すなわち新気と混合されて混合気となって燃焼室7に導入される。燃焼室7に導入された混合気は、点火プラグ50による火花放電、あるいは燃焼室内での圧縮による自着火によって燃焼および爆発する。この混合気の燃焼および爆発によってピストン6が気筒4a内を往復運動し、クランクシャフトが回転する。
吸気マニホールド13の吸気が流れる吸気方向の上流側には、サージタンク14が設けられている。サージタンク14には、吸気圧を検出する吸気圧センサ15が設けられている。
サージタンク14の吸気方向の上流側には、吸気管16が接続されている。この吸気管16の内部には、吸気ポート51と連通する吸気通路16aが形成されている。吸気通路16aには、吸気方向の上流から順に、空気を圧縮するコンプレッサ17、圧縮された空気を冷却するインタークーラ18、および空気の流量を調整するスロットルバルブ19が設けられている。
スロットルバルブ19は、ECU3からの指令信号に応じてスロットル開度が制御されることで、エンジン2の吸入空気量を調整するようになっている。スロットルバルブ19には、スロットル開度を検出するためのスロットル開度センサ41が設けられている。
スロットルバルブ19の吸気方向の上流側には、後述する過給器9による過給圧を検出する過給圧センサ42と、スロットルバルブ19の吸気方向上流の吸気温を検出する吸気温センサ43とが設けられている。
一方、排気ポート52には、排気バルブ21が設けられている。排気バルブ21は、後述する排気通路23aと燃焼室7とを連通または遮断するように開閉されるようになっている。排気バルブ21の開閉は、排気側可変動弁機構22によって行なわれるようになっている。
排気側可変動弁機構22は、上述した吸気側可変動弁機構12と同様の構成であるため、詳細な説明を省略するが、電磁石の励磁、非励磁がECU3によって制御されることで、排気バルブ21の開閉時期が任意に変更される。したがって、ECU3は、排気バルブ21の開弁期間を容易に調整することができる。
また、シリンダヘッド5の排気ポート52側には、排気管23が接続されている。この排気管23の内部には、排気ポート52と連通する排気通路23aが形成されている。排気通路23aには、排気流によって駆動される排気タービン24、排気を浄化する図示しない触媒、および消音のための図示しないマフラーが設けられている。
排気タービン24は、コンプレッサ17に連結されている。排気流によって駆動された排気タービン24の動力は、コンプレッサ17が空気を圧縮するための動力として利用される。これらコンプレッサ17および排気タービン24は、過給器9を構成する。
排気タービン24を挟んで排気管23の排気が流れる排気方向の上流側と下流側との間には、バイパス通路25が設けられている。このバイパス通路25には、排気タービン24への排気流を調整可能なウェストゲートバルブ26が設けられている。ウェストゲートバルブ26は、排気タービン24への排気流を調整することによって、過給器9の過給によって得られる吸気の圧力である過給圧を制御することができる。ウェストゲートバルブ26は、例えば電磁バルブなどによって構成され、ECU3によって開閉制御される。なお、過給圧の制御は、過給圧を変更可能な可変ノズルターボを用いて行なってもよい。
ECU3は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、フラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。
このコンピュータユニットのROMには、各種制御定数や各種マップ等とともに、当該コンピュータユニットをECU3として機能させるためのプログラムが記憶されている。すなわち、CPUがROMに記憶されたプログラムを実行することにより、当該コンピュータユニットは、ECU3として機能する。
ECU3の入力ポートには、上述した、吸気圧センサ15、スロットル開度センサ41、過給圧センサ42、吸気温センサ43に加え、エアフロメータ44、クランク角度センサ45、排気圧センサ46、排気温センサ47、アクセル開度センサ48、大気圧センサ49等の各種センサ類が接続されている。
エアフロメータ44は、吸入空気量を検出する。クランク角度センサ45は、エンジン2の回転に伴い所定クランク角度毎に矩形状のクランク角信号を出力する。ECU3は、このクランク角信号に基づいてエンジン2の機関回転数であるエンジン回転数を算出する。
排気圧センサ46は、排気の圧力を検出する。排気温センサ47は、排気の温度を検出する。アクセル開度センサ48は、運転者による図示しないアクセルペダルの踏み込み量をアクセル開度として検出する。大気圧センサ49は、大気圧を検出する。
一方、ECU3の出力ポートには、上述のインジェクタ10と、スロットルバルブ19と、ウェストゲートバルブ26と、点火プラグ50とを含む各種制御対象類が接続されている。
ECU3は、エンジン2の運転状態に応じてSI燃焼とHCCI燃焼とを切り替えるようになっている。具体的には、ECU3は、エンジン回転数及びエンジン要求トルクをパラメータとする燃焼領域マップを参照することにより、エンジン2の運転領域がSI燃焼領域およびHCCI燃焼領域のいずれにあるかを判断し、この判断に基づきSI燃焼を行なうかHCCI燃焼を行なうかを選択するようになっている。
ECU3は、アクセル開度センサ48から入力されたアクセル開度やクランク角度センサ45から入力されるクランク各信号から算出したエンジン回転数などに基づきドライバーの要求トルクを算出するようになっている。
ECU3は、HCCI燃焼を行なうHCCIモードでも、SI燃焼を行なうエンジンと同様に、ドライバー要求トルクなどから算出した目標トルクに基づいてエンジン2を制御する。
一般的なSI燃焼のエンジンでは、図2に示すように、運転者や変速機、横滑り防止装置等からの要求トルクから、目標SLOWトルクと目標FASTトルクを算出している。
目標SLOWトルクに応じて、スロットルバルブ19等の応答性の遅い空気量制御デバイスが制御され、燃焼室7に実際に入る空気量に応じて理論空燃比付近になるように噴射する燃料量が制御される。
また、目標FASTトルクを実現するように、応答性の早い点火時期や燃料カットが制御される。
通常は、目標SLOWトルクと目標FASTトルクは同値であり、トルク変化が少ない場合は、燃焼効率が最大となる値に点火時期が制御されるが、トルクの増加速度は実空気量の応答性に依存するため、急激に増加させることはできない。
一方、補機の負荷が増加したときや変速ショックの抑制時、横滑り防止装置作動時等のトルクを高応答で増加制御させる必要がある場合は、事前に目標SLOWトルクを目標FASTトルクに比べて高くすることで点火時期を遅角させておき、トルク増加が必要なときに点火時期を進角させることが行なわれている。
HCCI燃焼においては、トルク変動や騒音、排ガス値を満足した状態で運転するためには、主に圧縮端温度とG/Fを燃料噴射量とエンジン回転数などに応じて常に最適な値に制御する必要がある。
また、G/Fは、燃料噴射量とエンジン回転数などに応じて運転可能な幅を持つため、燃料噴射量が比較的多い(トルクが大きい)条件では、過給が必要となる。そして、過給条件においては、一般的に熱効率が最も高くなるのは、運転可能な範囲内でG/Fが最小となる状態である。これは、過給圧が最も低くなり、過給の仕事量が最小となることが主要因である。
また、IVC(Intake Valve Closing timing:吸気バルブ閉じ時期)は、最も充填効率が大きくなる下死点付近とすることで、同様に過給の仕事量が最小となる。なお、非過給条件では、G/Fを小さくする(ガス量を減らす)ために、スロットルバルブ19を絞ると、絞り損失が増加する。あるいは、G/Fを小さくするために吸気バルブ11の早閉じや遅閉じを行なうと圧縮端温度が低下し、それを補うための残留ガス量増加は比熱比の低下やNVO中の熱損失の増加をもたらし、いずれにしても熱効率が低下する。このため、G/Fは運転可能な範囲で成り行きとする。
また、上記の理由により、IVCを最も実圧縮比が取れる下死点付近とし、残留ガス量を運転可能な圧縮端温度を実現できる最低限の量とする条件で、熱効率が最大となる。
上記のことを鑑み、本実施形態では、HCCI燃焼において、圧縮端温度とG/Fが運転可能な範囲に常に制御され、かつ、可能な限り高い頻度で熱効率の高い条件で運転し、かつ、要求トルクの急変に追従できるような制御を行なう。
ECU3は、図2に示すように、目標トルク算出部101として、ドライバー要求トルク、変速機、横滑り防止装置等のSLOW要求トルク及びFAST要求トルク、変速機、横滑り防止装置等の状態に基づいて、目標SLOWトルクと、目標FASTトルクとを算出する。
図3は、過給器9を制御するブロックの構成図である。ECU3は、図3に示すように、目標燃料量算出部102として、目標SLOWトルクとエンジン回転数とから目標SLOW燃料量を算出する。
ECU3は、例えば、目標SLOWトルクとエンジン回転数とから目標SLOW燃料量が決まるマップにより目標SLOW燃料量を算出する。このマップは、実験等により求められ、ECU3のROMに記憶されている。
目標SLOWトルクは、上述の目標トルク算出部101により算出される。エンジン回転数は、クランク角度センサ45の出力するクランク角信号から算出される。
ECU3は、図3に示すように、目標G/F算出部103として、目標SLOW燃料量とエンジン回転数とから目標G/F値を算出する。
ECU3は、例えば、目標SLOW燃料量とエンジン回転数とから熱効率が最大となるG/F値が決まるマップにより目標G/F値を算出する。このマップは、実験等により求められ、ECU3のROMに記憶されている。
目標SLOW燃料量は、上述の目標燃料量算出部102により算出される。エンジン回転数は、クランク角度センサ45の出力するクランク角信号から算出される。
熱効率が最大となるG/F値は、一般的に、過給域においては、運転可能なG/F値の範囲で最小の値となる。なお、通常の大気圧下において過給が不要な領域においても、大気圧が低下すると過給が必要となるため、考え得る最低大気圧での過給域をカバーする最小燃料値までG/Fマップを設定する。
ECU3は、図3に示すように、目標過給圧算出部104として、目標混合気質量と圧縮前目標温度、IVC(吸気バルブ閉じ時期)、大気圧等から目標過給圧を算出する。
ECU3は、例えば、一般にG/Fの値のG(筒内ガス量)には燃料分が含まれていないため、目標G/F値に1を加算したものを目標SLOW燃料量に乗算したものを目標混合気質量とする。
ECU3は、例えば、目標混合気質量と圧縮前目標温度、IVC、大気圧から目標過給圧が決まるマップにより目標過給圧を算出する。なお、この目標過給圧は、大気圧を下限とする。このマップは、実験等により求められ、ECU3のROMに記憶されている。なお、マップで求められた値に、補正係数などにより補正を行なうようにしてもよい。
圧縮前目標温度は、後述する圧縮前目標温度算出部112により算出される。IVCは、直前の値が使用される。大気圧は、大気圧センサ49により検出される。なお、IVCは、上述の通り、充填効率が最大となる下死点付近の値を制御目標とする。
ECU3は、図3に示すように、過給器制御部105として、求められた目標過給圧になるように、ウェストゲートバルブ26を制御する。
図4は、燃料噴射量を制御するブロックの構成図である。ECU3は、図4に示すように、目標燃料量算出部106として、目標FASTトルクとエンジン回転数とから目標燃料量を算出する。
ECU3は、例えば、目標FASTトルクとエンジン回転数とから目標燃料量が決まるマップにより目標燃料量を算出する。このマップは、実験等により求められ、ECU3のROMに記憶されている。
目標FASTトルクは、上述の目標トルク算出部101により算出される。エンジン回転数は、クランク角度センサ45の出力するクランク角信号から算出される。
ECU3は、図4に示すように、混合気質量算出部107として、実吸気圧と圧縮前目標温度、IVC(吸気バルブ閉じ時期)等から混合気質量を算出する。
ECU3は、例えば、実吸気圧と圧縮前目標温度、IVCから混合気質量が決まるマップにより混合気質量を算出する。このマップは、実験等により求められ、ECU3のROMに記憶されている。
実吸気圧は、吸気圧センサ15により検出される。圧縮前目標温度は、後述する圧縮前目標温度算出部112により算出される。IVCは、直前の値が使用される。なお、IVCは、上述の通り、充填効率が最大となる下死点付近の値を制御目標とする。
ECU3は、図4に示すように、G/F下限算出部108として、混合気質量とエンジン回転数とからG/F下限値を算出する。
ECU3は、例えば、混合気質量とエンジン回転数とからG/F下限値が決まるマップによりG/F下限値を算出する。このマップは、実験等により求められ、ECU3のROMに記憶されている。
混合気質量は、上述の混合気質量算出部107により算出される。エンジン回転数は、クランク角度センサ45の出力するクランク角信号から算出される。
ECU3は、上述の混合気質量算出部107が算出した混合気質量を、G/F下限値に1を加算したもので除算して燃料量の上限値を算出する。
ECU3は、図4に示すように、G/F上限算出部109として、混合気質量とエンジン回転数とからG/F上限値を算出する。
ECU3は、例えば、混合気質量とエンジン回転数とからG/F上限値が決まるマップによりG/F上限値を算出する。このマップは、実験等により求められ、ECU3のROMに記憶されている。
混合気質量は、上述の混合気質量算出部107により算出される。エンジン回転数は、クランク角度センサ45の出力するクランク角信号から算出される。
ECU3は、上述の混合気質量算出部107が算出した混合気質量を、G/F上限値に1を加算したもので除算して燃料量の下限値を算出する。
ECU3は、図4に示すように、燃料噴射制御部110として、目標燃料量が燃料量上限値よりも多い場合は最終燃料量を燃料量上限値とし、目標燃料量が燃料量下限値よりも少ない場合は最終燃料量を燃料量下限値としてガードをかけ、最終燃料量を算出する。そして、ECU3は、燃料噴射制御部110として、最終燃料量を噴射するようにインジェクタ10を制御する。
図4に示す燃料噴射量の制御は、SI燃焼における点火時期制御に相当する。ここで、上述の目標G/F算出部103においてG/F値を運転可能な範囲の最小値に設定すると、SI燃焼と同様、目標SLOWトルクを超えるFASTトルクは実現できない。このため、トルクの応答性が遅くなる。
そこで、トルクを高応答で増加制御させる必要がある場合は、SI燃焼と同様に、事前に目標SLOWトルクを目標FASTトルクに比べて高く(増加後の目標トルク程度)する。
このようにすることで、目標SLOWトルクに対応して過給圧を高くすることによりG/Fを大きくして、目標FASTトルクに対応して燃料噴射量を少なくしておき、トルク増加が必要なときに燃料噴射量を増加させることでトルクを高応答で増加させることができる。
なお、G/F下限算出部108で算出するG/F下限値は、過給条件においては目標G/F算出部103で算出する目標G/F値と同値となる。また、非過給条件においては、スロットルバルブ19を絞る等により混合気質量を減らして計測した値を採用することで、SI燃焼との切り替え途中にもこの制御を適用することができる。
図5は、吸気バルブ11及び排気バルブ21を制御するブロックの構成図である。ECU3は、図5に示すように、圧縮端目標温度算出部111として、目標燃料量とエンジン回転数とから圧縮端目標温度を算出する。
ECU3は、例えば、目標燃料量とエンジン回転数とから圧縮端目標温度が決まるマップにより圧縮端目標温度を算出する。このマップは、実験等により求められ、ECU3のROMに記憶されている。
目標燃料量は、上述の目標燃料量算出部106により算出される。エンジン回転数は、クランク角度センサ45の出力するクランク角信号から算出される。
ECU3は、図5に示すように、圧縮前目標温度算出部112として、圧縮端目標温度とIVC(吸気バルブ閉じ時期)、燃焼室壁面温度等から圧縮前目標温度を算出する。
ECU3は、例えば、エンジン2の実圧縮比によるポリトロープ変化を仮定して圧縮前目標温度を算出する。なお、燃料カットが長時間継続した後等の混合気から燃焼室壁面への放熱が大きい場合には燃焼室壁面温度による補正を行なうとよい。
圧縮端目標温度は、上述の圧縮端目標温度算出部111により算出される。IVCは、直前の値が使用される。なお、IVCは、上述の通り、充填効率が最大となる下死点付近の値を制御目標とする。
燃焼室壁面温度は、実測が困難であるため、吸入ガス温度や排気行程ガス温度等を用いたモデルにより算出する。吸入ガス温度は、吸気温センサ43により検出される。
排気行程ガス温度も実測が困難であるため、燃料量やG/F等を用いたモデルにより算出する。
ECU3は、図5に示すように、残留ガス目標質量算出部113として、圧縮前目標温度と混合気質量、吸入ガス温度、排気行程ガス温度、燃焼室壁面温度から残留ガス目標質量を算出する。
ECU3は、例えば、吸入ガスを圧縮前目標温度まで加熱する熱量と残留ガスが圧縮前目標温度まで冷却される熱量が同じとして残留ガス目標質量を算出する。
圧縮前目標温度は、上述の圧縮前目標温度算出部112により算出される。混合気質量は、上述の混合気質量算出部107により算出される。吸入ガス温度は、吸気温センサ43により検出される。排気行程ガス温度及び燃焼室壁面温度は、上述した方法で算出される。
なお、NVO中等に圧縮された残留ガスから燃焼室壁面に熱が逃げることや、吸気圧力と排気圧力との差等により、IVO時の残留ガスの温度と排気行程ガスの温度は異なるが、算出の単純化のため同一として残留ガス質量を算出し、燃焼室壁面温度や吸気圧力と排気圧力との差による補正を行なってもよい。
ECU3は、図5に示すように、排気バルブ制御部114として、残留ガス目標質量と排気圧力、排気行程ガス温度等に基づいて排気バルブ21を制御する。
ECU3は、例えば、EVC(排気バルブ閉じ時期)を変化させることで、残留ガス質量が残留ガス目標質量になるように制御する。
ECU3は、例えば、バルブタイミングや排気圧力、排気行程ガス温度から残留ガス質量が決まるマップによりEVCを算出し、排気バルブ21を制御する。このマップは、実験等により求められ、ECU3のROMに記憶されている。
排気圧力は、排気圧センサ46により検出される。排気行程ガス温度は、上述した方法で算出される。
ECU3は、図5に示すように、吸気バルブ制御部115として、EVC(排気バルブ閉じ時期)と吸気圧力、排気圧力、排気行程ガス温度等に基づいて吸気バルブ11を制御する。
ECU3は、例えば、NVO(負のバルブオーバーラップ)期間中の残留ガスの圧力が吸気圧力と同等となるように、IVO(Intake Valve Opening timing:吸気バルブ開き時期)を制御する。
ECU3は、例えば、EVCでの排気圧力と燃焼室容積からNVO中の圧縮及び膨張のポリトロープ変化を仮定し、燃焼室圧力が吸気圧力に等しくなるIVOを算出する。
吸気圧力は、吸気圧センサ15により検出される。排気圧力は、排気圧センサ46により検出される。排気行程ガス温度は、上述した方法で算出される。
このようにすることで、残留ガスの吸気ポート51への逆流や、吸気の流入に伴うポンピング損失を最小限にすることができるとともに、吸気騒音を低減させることができる。
このように、上述の実施形態では、目標SLOWトルクになるような目標混合気質量を算出し、目標混合気質量になるように過給圧を制御するとともに、目標FASTトルクになるように燃料量を算出し、燃料噴射量を制御するECU3を備える。
これにより、トルクを高応答で増加制御させる必要がある場合は、目標FASTトルクに比べ目標SLOWトルクを高く設定することで、要求トルクの急変に実トルクを追従させることができ、安定した燃焼を確保することができる。
また、ECU3は、実吸気圧から算出した混合気質量に基づいてG/Fの上限値及び下限値を算出し、このG/Fの上限値及び下限値から燃料量の上限値及び下限値を算出して燃料噴射量に制限をかける。
これにより、トルク変化時や燃料カットからの復帰後等の様々な条件で失火やトルク変動の発生を抑制し、騒音やNOx排出量の増加を抑えることができる。
また、ECU3は、目標FASTトルクに基づいて算出した目標燃料量に基づいて圧縮端目標温度を算出し、この圧縮端目標温度になるように残留ガス目標質量を算出し、この残留ガス目標質量になるようにEVCやIVOを制御する。
これにより、トルク変化時や燃料カットからの復帰後等の様々な条件で失火やトルク変動の発生を抑制し、騒音やNOx排出量の増加を抑えることができる。
本発明の実施形態を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正及び等価物が次の請求項に含まれることが意図されている。
1 車両
2 エンジン(内燃機関)
3 ECU(制御部)
9 過給器
10 インジェクタ
11 吸気バルブ
12 吸気側可変動弁機構
15 吸気圧センサ
17 コンプレッサ
21 排気バルブ
22 排気側可変動弁機構
24 排気タービン
25 バイパス通路
26 ウェストゲートバルブ
41 スロットル開度センサ
42 過給圧センサ
43 吸気温センサ
45 クランク角度センサ
46 排気圧センサ
47 排気温センサ
48 アクセル開度センサ
49 大気圧センサ
101 目標トルク算出部
102 目標燃料量算出部
103 目標G/F算出部
104 目標過給圧算出部
105 過給器制御部
106 目標燃料量算出部
107 混合気質量算出部
108 G/F下限算出部
109 G/F上限算出部
110 燃料噴射制御部
111 圧縮端目標温度算出部
112 圧縮前目標温度算出部
113 残留ガス目標質量算出部
114 排気バルブ制御部
115 吸気バルブ制御部

Claims (3)

  1. 予混合圧縮自着火燃焼を行なう内燃機関の制御装置であって、
    ドライバーの要求トルクを満たすように、応答性の遅いデバイスを制御するための第1の目標トルクと、応答性の早いデバイスを制御するための第2の目標トルクとを算出し、前記第1の目標トルクとなるように混合気質量を制御し、前記第2の目標トルクとなるように燃料噴射量を制御し、予混合圧縮自着火燃焼時において前記内燃機関のトルクを高応答で増加制御させる必要がある場合は、前記第2の目標トルクに比べ前記第1の目標トルクを高く設定し、前記内燃機関のトルクの増加に伴って燃料噴射量を増加させる制御部を備える内燃機関の制御装置。
  2. 前記制御部は、現在の吸気圧から算出した混合気質量に基づいて前記燃料噴射量に制限をかける請求項1に記載の内燃機関の制御装置。
  3. 前記制御部は、前記第2の目標トルクに基づいて残留ガス目標質量を算出し、この残留ガス目標質量となるように吸気バルブと排気バルブの少なくとも一方の開閉時期を調整する請求項1または2に記載の内燃機関の制御装置。
JP2016088221A 2016-04-26 2016-04-26 内燃機関の制御装置 Active JP6658266B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088221A JP6658266B2 (ja) 2016-04-26 2016-04-26 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088221A JP6658266B2 (ja) 2016-04-26 2016-04-26 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2017198118A JP2017198118A (ja) 2017-11-02
JP6658266B2 true JP6658266B2 (ja) 2020-03-04

Family

ID=60239071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088221A Active JP6658266B2 (ja) 2016-04-26 2016-04-26 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP6658266B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233489B (zh) * 2021-12-22 2024-03-19 潍柴动力股份有限公司 一种增压废气旁通阀的驱动占空比确定方法及相关设备

Also Published As

Publication number Publication date
JP2017198118A (ja) 2017-11-02

Similar Documents

Publication Publication Date Title
US7628013B2 (en) Control device of charge compression ignition-type internal combustion engine
EP2016271B1 (en) Control system for operating an internal combustion engine
JP4672220B2 (ja) 圧縮着火式エンジンの燃焼制御装置
US9217378B2 (en) Controller for internal combustion engine
US8662042B2 (en) Controller for internal-combustion engine
US10697378B2 (en) Control system of miller cycle engine and method of controlling miller cycle engine
US8868319B2 (en) System and method for controlling intake valve timing in homogeneous charge compression ignition engines
CN110462204B (zh) 内燃机的控制装置
JP6358007B2 (ja) 内燃機関の制御装置
US11236684B1 (en) Two-stroke engine with supercharger
JP6848412B2 (ja) 内燃機関の制御装置
JP6658266B2 (ja) 内燃機関の制御装置
JP2004060551A (ja) 内燃機関の制御装置
JP6862870B2 (ja) 内燃機関の制御装置
JP6844237B2 (ja) 内燃機関の制御装置
JP2008051017A (ja) 予混合圧縮自着火内燃機関
JP6870350B2 (ja) 内燃機関の制御装置
JP5925099B2 (ja) 内燃機関の制御装置
CN110259589B (zh) 内燃机的控制装置
CN110730861B (zh) 内燃机的控制方法及控制装置
US11225919B2 (en) Supercharging pressure setting apparatus
JP5067205B2 (ja) 内燃機関の制御装置
JP5888604B2 (ja) 内燃機関の制御装置
JP5413232B2 (ja) 内燃機関の制御装置
JP2015124767A (ja) 内燃機関の燃焼状態制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6658266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151