JP6656108B2 - Method and apparatus for treating radioactive liquid waste - Google Patents

Method and apparatus for treating radioactive liquid waste Download PDF

Info

Publication number
JP6656108B2
JP6656108B2 JP2016146904A JP2016146904A JP6656108B2 JP 6656108 B2 JP6656108 B2 JP 6656108B2 JP 2016146904 A JP2016146904 A JP 2016146904A JP 2016146904 A JP2016146904 A JP 2016146904A JP 6656108 B2 JP6656108 B2 JP 6656108B2
Authority
JP
Japan
Prior art keywords
adsorbent
waste liquid
radioactive
radioactive waste
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016146904A
Other languages
Japanese (ja)
Other versions
JP2018017565A (en
JP2018017565A5 (en
Inventor
亜由美 渡部
亜由美 渡部
祐子 可児
祐子 可児
浅野 隆
浅野  隆
健司 野下
健司 野下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2016146904A priority Critical patent/JP6656108B2/en
Publication of JP2018017565A publication Critical patent/JP2018017565A/en
Publication of JP2018017565A5 publication Critical patent/JP2018017565A5/ja
Application granted granted Critical
Publication of JP6656108B2 publication Critical patent/JP6656108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は放射性廃液の処理方法及び処理装置に係り、更に詳しくは、放射性物質を含む廃液、地下水、海水、雨水などから放射性物質を除去する放射性廃液の処理方法及び処理装置に関する。   The present invention relates to a method and an apparatus for treating a radioactive waste liquid, and more particularly, to a method and an apparatus for treating a radioactive waste liquid for removing a radioactive substance from a waste liquid containing a radioactive substance, groundwater, seawater, rainwater, and the like.

原子力発電所等において発生する放射性物質を含む廃液の処理方法の一つに、吸着剤として無機固体およびイオン交換樹脂等を使用して、放射性物質を吸着除去する方法がある。この方法で使用される吸着剤は、放射性物質を吸着した後に放射性廃棄物として処理する必要があるので、吸着性能を向上させて処理効率を高めることが求められる。   One of the methods of treating a waste liquid containing a radioactive substance generated in a nuclear power plant or the like is a method of adsorbing and removing a radioactive substance by using an inorganic solid, an ion exchange resin or the like as an adsorbent. Since the adsorbent used in this method needs to be treated as radioactive waste after adsorbing radioactive substances, it is required to improve the adsorption performance and increase the treatment efficiency.

吸着剤の処理効率を高めるために、廃液の液性を規定範囲内に調整する方法がある(例えば、特許文献1参照)。具体的には、セレンを含有する排水からセレンを除去する方法に関し、希土類化合物を含む吸着剤に対して排水をpH1.0以上4.5未満に調整して接触させる。排水のpHを調整することで、排水中から4価及び6価のセレンを効果的に吸着除去できる。   In order to increase the treatment efficiency of the adsorbent, there is a method of adjusting the liquid property of the waste liquid within a specified range (for example, see Patent Document 1). Specifically, the present invention relates to a method for removing selenium from wastewater containing selenium, wherein the wastewater is brought into contact with an adsorbent containing a rare earth compound by adjusting the pH of the wastewater to a value of not less than 1.0 and less than 4.5. By adjusting the pH of the wastewater, tetravalent and hexavalent selenium can be effectively adsorbed and removed from the wastewater.

一方、吸着剤に対して吸着性能の指標である分配係数(Kd)のpH依存性が非特許文献1と非特許文献2と非特許文献3に示されている。
非特許文献1では、吸着剤として種々のゼオライトを用いた場合のCs(セシウム)に対する分配係数(Kd)が公開されており、ゼオライトの種類により好適pHが異なる事が公開されている。また、非特許文献2では、市販の無機吸着剤であるチタン酸塩を母材としたSrトリートのSr(ストロンチウム)に対する分配係数(Kd)が公開されている。Srトリートは塩基性では高いKdを示すが、酸性〜中性領域ではKdが大幅に低下する。さらに、非特許文献3では、無機吸着剤であるアンチモン酸塩、チタンケイ酸塩、SrトリートのSrに対するKdが公開されている。塩基性領域(pH10〜)でアンチモン酸塩はKdが低下傾向にあるのに対し、チタンケイ酸およびSrトリートは中性〜塩基性でKdが大幅に増加することが示されている。
On the other hand, Non-Patent Literature 1, Non-Patent Literature 2, and Non-Patent Literature 3 show the pH dependence of the distribution coefficient (Kd), which is an index of the adsorption performance for an adsorbent.
Non-Patent Document 1 discloses a partition coefficient (Kd) for Cs (cesium) when various zeolites are used as an adsorbent, and discloses that a suitable pH varies depending on the type of zeolite. In addition, Non-Patent Document 2 discloses the distribution coefficient (Kd) of Sr treat using a commercially available inorganic adsorbent, titanate, as a base material with respect to Sr (strontium). The Sr treat shows a high Kd in basicity, but the Kd is significantly reduced in the acidic to neutral range. Furthermore, Non-Patent Document 3 discloses Kd for Sr of antimonate, titanium silicate, and Sr treat, which are inorganic adsorbents. In the basic region (pH 10), antimonate salt has a tendency to decrease Kd, while titanium silicic acid and Sr treat have been shown to have a large increase in Kd from neutral to basic.

特開2013−78711号公報JP 2013-78711 A

三村 均,菅野 卓治:Na型およびH型ゼオライトに対するCs,Sr,Ce,EuおよびTbの分配,東北大学選錬研究所報告 第774号(1978)Hitoshi Mimura, Takuji Sugano: Partition of Cs, Sr, Ce, Eu and Tb on Na-type and H-type zeolites, Report of Tohoku University Institute for Solidification Research No. 774 (1978) Jukka Lehto et al.:Sr Treat-A highly effective ion exchanger for the removal of radioactive strontium from nuclear waste solutions:Radioactive waste management and environmental remediation:p. 245- 248(1997)Jukka Lehto et al .: Sr Treat-A highly effective ion exchanger for the removal of radioactive strontium from nuclear waste solutions: Radioactive waste management and environmental remediation: p. 245-248 (1997) Teresia Moller:Selective crystalline inorganic materials as ion exchangers in the treatment of nuclear waste solutions:Helsinki大学博士論文(2002)Teresia Moller: Selective crystalline inorganic materials as ion exchangers in the treatment of nuclear waste solutions: Doctoral dissertation from Helsinki University (2002)

上述したように、廃液処理に用いられる吸着剤は、廃液のpHの値によってその吸着性能が変化する。吸着性能が低下するpH値の廃液を、その吸着剤で処理する場合には、大量の吸着剤が必要となり、処理後の廃棄物量が増大するという問題がある。   As described above, the adsorption performance of the adsorbent used for waste liquid treatment changes depending on the pH value of the waste liquid. When a waste liquid having a pH value at which the adsorption performance decreases is treated with the adsorbent, a large amount of the adsorbent is required, and there is a problem that the amount of waste after the treatment increases.

廃液の処理効率を保持するために、廃液のpH調整を行う場合には、設備配管の腐食や、共存成分の析出と放射性物質の収着といった新たな課題が生じる。例えば、酸性廃液で高い吸着性能を示す吸着剤を使用して、塩基性の廃液を処理する場合には、この廃液に塩酸等の酸を注入してpHを下げる必要がある。この場合には、耐酸性のタンクや、注入機構の設置が必要となる。また、廃液への酸の注入は、局所的な添加となるので、廃液処理装置内で配管腐食が発生する虞がある。   When the pH of the waste liquid is adjusted to maintain the waste liquid treatment efficiency, new problems such as corrosion of equipment piping, precipitation of coexisting components, and sorption of radioactive substances occur. For example, when a basic waste liquid is treated using an adsorbent exhibiting high adsorption performance with an acidic waste liquid, it is necessary to lower the pH by injecting an acid such as hydrochloric acid into the waste liquid. In this case, it is necessary to provide an acid-resistant tank and an injection mechanism. Further, since the injection of the acid into the waste liquid is a local addition, there is a possibility that corrosion of the piping occurs in the waste liquid treatment apparatus.

一方、塩基性廃液で高い吸着性能を示す吸着剤を使用して、酸性の廃液を処理する場合には、水酸化ナトリウム等の塩基性物質またはその水溶液を廃液に添加する。これに伴い、特に注入場所付近では急激にpHが上昇し、炭酸塩類等の共存物質の析出が起きる。加えて、共存物質の析出に同伴し、放射性物質が収着する虞がある。   On the other hand, when an acidic waste liquid is treated using an adsorbent exhibiting high adsorption performance with a basic waste liquid, a basic substance such as sodium hydroxide or an aqueous solution thereof is added to the waste liquid. Along with this, the pH rises sharply, especially near the injection site, and precipitation of coexisting substances such as carbonates occurs. In addition, the radioactive substance may be sorbed accompanying the precipitation of the coexisting substance.

ところで、イオン交換作用を利用した吸着剤を廃液処理に用いる場合は、イオン交換反応は可逆反応であるため、液性の変化に伴い捕捉したイオンを廃液中に放出することに留意する。例えば、被処理廃液の種類や上段での処理の変化により、流入する廃液のpHが経時的に変化する場合には、吸着した放射性物質の放出を防ぐ手段が必要になり、例えば、廃液のpHを維持する制御が行われる。   By the way, when an adsorbent utilizing an ion exchange action is used for waste liquid treatment, it should be noted that the ion exchange reaction is a reversible reaction, so that the trapped ions are released into the waste liquid with a change in liquid properties. For example, when the pH of the inflowing waste liquid changes over time due to a change in the type of the waste liquid to be treated or the treatment in the upper stage, a means for preventing the release of the adsorbed radioactive substance is required. Is maintained.

本発明は上述した事柄に基づいてなされたものであって、その目的は、放射性廃液のpH調整によらず吸着剤を有効に利用し、配管腐食や共存成分の析出と放射性物質の収着を抑制し、廃液pHが変化した際の放射性物質の放出を防ぐ放射性廃液の処理方法及び処理装置を提供することにある。   The present invention has been made based on the above-mentioned matters, and its purpose is to effectively utilize an adsorbent regardless of pH adjustment of a radioactive waste liquid, to prevent corrosion of piping, precipitation of coexisting components, and sorption of radioactive substances. It is an object of the present invention to provide a method and an apparatus for treating a radioactive waste liquid, which suppresses the release of radioactive substances when the pH of the waste liquid changes.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、放射性物質を含む放射性廃液と、前記放射性物質を吸着する吸着剤であって、高い吸着性能を実現する前記放射性廃液のpHの範囲である好適pH範囲が異なる少なくとも2種類の吸着剤と、前記放射性廃液のpHを測定するpH測定機構とを備えた放射性廃液の処理装置の処理方法において、前記pH測定機構で前記放射性廃液のpHを測定する工程と、測定した前記放射性廃液のpHに応じて、前記吸着剤を少なくとも1種類以上使用して前記放射性廃液を処理する工程とを備え、前記放射性廃液の処理装置は、前記放射性廃液のpHが変化した際に、使用している前記吸着剤を他の吸着剤に変更する吸着剤選定機構を更に備え、変化前の前記放射性廃液のpHにおける前記吸着剤の吸着性能を演算する工程と、変化後の前記放射性廃液のpHにおける前記吸着剤の吸着性能を演算する工程と、変化後の前記放射性廃液のpHにおける前記吸着剤の吸着性能に対する変化前の前記放射性廃液のpHにおける前記吸着剤の吸着性能の比率Rを演算する工程と、前記比率Rと予め定めた規定値とを比較する工程と、前記比率Rが前記規定値を上回る場合に前記吸着剤選定機構により使用している吸着剤を他の吸着剤に変更する工程とを備えたことを特徴とする。 In order to solve the above problem, for example, a configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems, but to give an example, a radioactive waste liquid containing a radioactive substance, and an adsorbent that adsorbs the radioactive substance, and achieves high adsorption performance. The method for treating a radioactive liquid waste, comprising: at least two types of adsorbents having different preferable pH ranges, which are ranges of pH of the radioactive liquid waste, and a pH measuring mechanism for measuring the pH of the radioactive liquid waste, wherein the pH measuring mechanism Measuring the pH of the radioactive waste liquid, and treating the radioactive waste liquid using at least one kind of the adsorbent according to the measured pH of the radioactive waste liquid, and treating the radioactive waste liquid. The apparatus further comprises an adsorbent selection mechanism for changing the used adsorbent to another adsorbent when the pH of the radioactive waste liquid changes, and further comprising the radioactive waste liquid before the change. calculating the adsorption performance of the adsorbent at a pH, calculating the adsorption performance of the adsorbent at a changed pH of the radioactive waste liquid, and adsorbing the adsorbent at a changed pH of the radioactive waste liquid Calculating a ratio R of the adsorption performance of the adsorbent at the pH of the radioactive liquid waste before the change, a step of comparing the ratio R with a predetermined value, and the ratio R exceeds the specified value. Changing the used adsorbent to another adsorbent by the adsorbent selection mechanism in some cases .

本発明によれば、吸着性能が高いpH領域の廃液で吸着剤を利用するので、吸着剤使用量およびpH調整コストの削減が可能になる。また、pH調整に伴う配管腐食や共存成分の析出と放射性物質の収着を抑制し、廃液pHが変化した際の放射性物質の放出を防止できる。   ADVANTAGE OF THE INVENTION According to this invention, since an adsorbent is used with the waste liquid of the pH region with high adsorption performance, the amount of adsorbent used and the pH adjustment cost can be reduced. In addition, it is possible to suppress corrosion of piping, precipitation of coexisting components, and sorption of radioactive substances due to pH adjustment, and release of radioactive substances when the pH of the waste liquid changes.

本発明の放射性廃液の処理方法及び処理装置の第1の実施の形態を構成する放射性廃液処理装置を示す概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram which shows the radioactive waste liquid processing apparatus which comprises 1st Embodiment of the radioactive waste liquid processing method and processing apparatus of this invention. 本発明の放射性廃液の処理方法及び処理装置の第1の実施の形態を構成する吸着剤選定機構の処理内容を示すフローチャート図である。It is a flowchart figure which shows the processing content of the adsorbent selection mechanism which comprises 1st Embodiment of the processing method and processing apparatus of the radioactive waste liquid of this invention. 本発明の放射性廃液の処理方法及び処理装置の第2の実施の形態を構成する吸着剤選定機構の処理内容を示すフローチャート図である。It is a flowchart figure which shows the processing content of the adsorbent selection mechanism which comprises 2nd Embodiment of the processing method and processing apparatus of the radioactive waste liquid of this invention. 本発明の放射性廃液の処理方法及び処理装置の第2の実施の形態における吸着剤の吸着性能のpH依存性を示す特性図である。It is a characteristic view showing pH dependence of adsorption performance of an adsorbent in a radioactive waste liquid treatment method and a treatment device of a second embodiment of the present invention. 本発明の放射性廃液の処理方法及び処理装置の第3の実施の形態を構成する放射性廃液処理装置を示す概念図である。It is a conceptual diagram which shows the radioactive waste liquid processing apparatus which comprises 3rd Embodiment of the radioactive liquid processing method and processing apparatus of this invention. 本発明の放射性廃液の処理方法及び処理装置の第3の実施の形態を構成する吸着剤選定機構の処理内容を示すフローチャート図である。It is a flowchart figure which shows the processing content of the adsorbent selection mechanism which comprises 3rd Embodiment of the processing method and processing apparatus of the radioactive waste liquid of this invention. 本発明の放射性廃液の処理方法及び処理装置の第3の実施の形態における吸着剤の吸着性能のpH依存性を示す特性図である。It is a characteristic view showing pH dependence of adsorption performance of an adsorbent in a 3rd embodiment of a processing method of a radioactive waste liquid, and a processing device of the present invention. 本発明の放射性廃液の処理方法及び処理装置の第4の実施の形態を構成する放射性廃液処理装置を示す概念図である。It is a conceptual diagram which shows the radioactive waste liquid processing apparatus which comprises the 4th Embodiment of the processing method and processing apparatus of the radioactive waste liquid of this invention. 本発明の放射性廃液の処理方法及び処理装置の第4の実施の形態を構成する吸着剤及び廃液供給量選定機構の処理内容を示すフローチャート図である。It is a flowchart figure which shows the processing content of the adsorbent and waste liquid supply amount selection mechanism which comprises the 4th Embodiment of the processing method and processing apparatus of the radioactive waste liquid of this invention. 本発明の放射性廃液の処理方法及び処理装置の第4の実施の形態における吸着剤の吸着性能のpH依存性を示す特性図である。It is a characteristic view showing pH dependence of adsorption performance of an adsorbent in a 4th embodiment of a disposal method of a radioactive waste liquid, and a processing device of the present invention. 本発明の放射性廃液の処理方法及び処理装置の第5の実施の形態を構成する放射性廃液処理装置を示す概念図である。It is a conceptual diagram which shows the radioactive waste liquid processing apparatus which comprises 5th Embodiment of the processing method and processing apparatus of the radioactive waste liquid of this invention. 本発明の放射性廃液の処理方法及び処理装置の第6の実施の形態を構成する放射性廃液処理装置を示す概念図である。It is a conceptual diagram which shows the radioactive waste liquid processing apparatus which comprises 6th Embodiment of the processing method and processing apparatus of the radioactive waste liquid of this invention. 本発明の放射性廃液の処理方法及び処理装置の第6の実施の形態を構成する吸着剤及び廃液供給量選定機構の処理内容を示すフローチャート図である。It is a flowchart figure which shows the processing content of the adsorbent and waste liquid supply amount selection mechanism which comprises 6th Embodiment of the processing method and processing apparatus of the radioactive waste liquid of this invention. 本発明の放射性廃液の処理方法及び処理装置の第7の実施の形態を構成する放射性廃液処理装置を示す概念図である。It is a conceptual diagram which shows the radioactive waste liquid processing apparatus which comprises 7th Embodiment of the radioactive waste liquid processing method and processing apparatus of this invention.

以下、本発明の放射性廃液の処理方法及び処理装置の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the method and apparatus for treating a radioactive liquid waste according to the present invention will be described with reference to the drawings.

図1Aは本発明の放射性廃液の処理方法及び処理装置の第1の実施の形態を構成する放射性廃液処理装置を示す概念図、図1Bは本発明の放射性廃液の処理方法及び処理装置の第1の実施の形態を構成する吸着剤選定機構の処理内容を示すフローチャート図である。   FIG. 1A is a conceptual diagram showing a radioactive waste liquid treatment apparatus constituting a first embodiment of a radioactive waste liquid treatment method and treatment apparatus of the present invention, and FIG. 1B is a radioactive waste liquid treatment method and a first treatment apparatus of the present invention. It is a flowchart figure which shows the processing content of the adsorbent selection mechanism which comprises Embodiment of this invention.

図1Aに示すように、本実施の形態を構成する放射性廃液処理装置は、放射性廃液1を格納する槽10と、放射性廃液1のpHを測定するpH測定機構11と、吸着剤選定機構12と、廃液供給機構13と、吸着剤Aを充填した第1吸着塔14Aと、吸着剤Bを充填した第2吸着塔14Bとを備えている。放射性廃液1の中の目的物質は第1吸着塔14Aまたは第2吸着塔14Bにおいて、吸着剤Aまたは吸着剤Bにより吸着除去される。   As shown in FIG. 1A, a radioactive liquid waste treatment apparatus according to the present embodiment includes a tank 10 for storing a radioactive liquid 1, a pH measuring mechanism 11 for measuring the pH of the radioactive liquid 1, and an adsorbent selecting mechanism 12. , A waste liquid supply mechanism 13, a first adsorption tower 14A filled with an adsorbent A, and a second adsorption tower 14B filled with an adsorbent B. The target substance in the radioactive waste liquid 1 is adsorbed and removed by the adsorbent A or the adsorbent B in the first adsorption tower 14A or the second adsorption tower 14B.

吸着剤選定機構12は、pH測定機構11が測定した放射性廃液1のpHを入力し、予めデータベースとして格納されている吸着剤A,BのpHに対する吸着性能を基に放射性廃液1を供給する吸着塔を選定し、廃液供給機構13へ選定信号を出力する。   The adsorbent selecting mechanism 12 inputs the pH of the radioactive waste liquid 1 measured by the pH measuring mechanism 11, and supplies the radioactive waste liquid 1 based on the adsorption performance for the adsorbents A and B stored in advance as a database. A tower is selected, and a selection signal is output to the waste liquid supply mechanism 13.

廃液供給機構13は、槽10から放射性廃液1を吸い込み、吸着剤選定機構12からの選定信号に従って、第1吸着塔14Aまたは第2吸着塔14Bへ供給するポンプ20と、槽10とポンプ20とを接続する配管と、ポンプ20と第1及び第2吸着塔14A,14Bとを接続する配管とを備えている。   The waste liquid supply mechanism 13 sucks the radioactive waste liquid 1 from the tank 10 and supplies it to the first adsorption tower 14A or the second adsorption tower 14B according to the selection signal from the adsorbent selection mechanism 12, the tank 10 and the pump 20 And a pipe connecting the pump 20 to the first and second adsorption towers 14A and 14B.

次に、廃液処理装置における処理の流れを説明する。
放射性廃液1を格納している槽10において、pH測定機構11により放射性廃液1のpHを測定する。測定したpH値は、吸着剤選定機構12に送られ、吸着剤選定機構12が放射性廃液1を供給する吸着塔を選定する。
Next, the flow of processing in the waste liquid processing apparatus will be described.
In the tank 10 storing the radioactive waste liquid 1, the pH of the radioactive waste liquid 1 is measured by the pH measurement mechanism 11. The measured pH value is sent to the adsorbent selection mechanism 12, and the adsorbent selection mechanism 12 selects an adsorption tower to supply the radioactive waste liquid 1.

吸着剤選定機構12は、廃液処理装置が備えている吸着剤A、BのpHに対する吸着性能をデータベースとして格納している。吸着性能としては、例えば、分配係数Kdや吸着容量Qを指標として用いる。測定した放射性廃液1のpHにおいて、吸着剤選定機構12で、廃液処理装置に備えている吸着剤の内、吸着剤Aの吸着性能が最も高いと判定された場合には廃液供給機構13を介して第1吸着塔14Aに廃液を供給する。一方、吸着剤選定機構12で吸着剤Bが適していると判定された場合には、廃液供給機構13を介して第2吸着塔14Bに廃液を供給する。放射性廃液1は第1吸着塔14Aまたは第2吸着塔14Bに通水された後、処理液2として、排出される。   The adsorbent selection mechanism 12 stores, as a database, the adsorption performance of the adsorbents A and B provided in the waste liquid treatment apparatus with respect to pH. As the adsorption performance, for example, a distribution coefficient Kd or an adsorption capacity Q is used as an index. At the measured pH of the radioactive waste liquid 1, the adsorbent selection mechanism 12 determines that the adsorbent A has the highest adsorption performance among the adsorbents provided in the waste liquid treatment apparatus, and passes through the waste liquid supply mechanism 13. To supply the waste liquid to the first adsorption tower 14A. On the other hand, when the adsorbent selection mechanism 12 determines that the adsorbent B is suitable, the waste liquid is supplied to the second adsorption tower 14B via the waste liquid supply mechanism 13. The radioactive liquid waste 1 is passed through the first adsorption tower 14A or the second adsorption tower 14B, and then discharged as the processing liquid 2.

この時の放射性廃液を供給する吸着塔の選定方法に関し、酸性領域(pH〜6)で高い分配係数を持つ吸着剤を吸着剤A、塩基性領域(pH8〜)で高い分配係数を持つ吸着剤を吸着剤Bとした場合の吸着剤選定機構12の処理内容を図1Bに示す。図1Bにおいて、Kd,A(a)は、吸着剤AのpH=aにおける吸着性能を示す分配係数を示し、Kd,B(a)は、吸着剤BのpH=aにおける吸着性能を示す分配係数を示す。pH測定機構11で測定された放射性廃液1のpHがpH=aの時を例に説明する。   At this time, regarding the method of selecting the adsorption tower that supplies the radioactive waste liquid, the adsorbent having a high partition coefficient in the acidic region (pH to 6) is used as the adsorbent A, and the adsorbent having a high partition coefficient in the basic region (pH 8 to). FIG. 1B shows the processing contents of the adsorbent selection mechanism 12 in the case where is the adsorbent B. In FIG. 1B, Kd, A (a) indicates a distribution coefficient indicating the adsorption performance of the adsorbent A at pH = a, and Kd, B (a) indicates a distribution coefficient indicating the adsorption performance of the adsorbent B at pH = a. Indicates the coefficient. The case where the pH of the radioactive waste liquid 1 measured by the pH measuring mechanism 11 is pH = a will be described as an example.

吸着剤選定機構12は、pH=aにおける吸着剤Aと吸着剤Bの吸着性能を比較し、より高い分配係数を持つ吸着剤を選定する(ステップS11)。具体的には、Kd,A(a)>Kd,B(a)か否かを判断する。pH=aにおける吸着剤Aの吸着性能が吸着剤Bの吸着性能より高い場合にはステップS12へ進み、それ以外の場合はステップS13へ進む。   The adsorbent selecting mechanism 12 compares the adsorption performance of the adsorbent A and the adsorbent B at pH = a, and selects an adsorbent having a higher distribution coefficient (step S11). Specifically, it is determined whether or not Kd, A (a)> Kd, B (a). If the adsorption performance of the adsorbent A at pH = a is higher than the adsorption performance of the adsorbent B, the process proceeds to step S12; otherwise, the process proceeds to step S13.

ステップS11において、吸着剤Aの吸着性能が吸着剤Bの吸着性能より高い場合、吸着剤選定機構12は、吸着剤Aを選択する(ステップS12)。具体的には、吸着剤選定機構12は、吸着剤Aが充填された第1吸着塔14Aを選択し、廃液供給機構13のポンプ20により放射性廃液1を通水する。 In step S11, when the adsorption performance of the adsorbent A is higher than the adsorption performance of the adsorbent B, the adsorbent selection mechanism 12 selects the adsorbent A (step S12). Specifically, the adsorbent selecting mechanism 12 selects the first adsorption tower 14A filled with the adsorbent A, and allows the radioactive waste liquid 1 to flow through the pump 20 of the waste liquid supply mechanism 13.

ステップS11において、吸着剤Aの吸着性能が吸着剤Bの吸着性能より高くない場合、吸着剤選定機構12は、吸着剤Bを選択する(ステップS13)。具体的には、吸着剤選定機構12は、吸着剤Bが充填された第2吸着塔14Bを選択し、廃液供給機構13のポンプ20により放射性廃液1を通水する。   If the adsorption performance of the adsorbent A is not higher than the adsorption performance of the adsorbent B in step S11, the adsorbent selection mechanism 12 selects the adsorbent B (step S13). Specifically, the adsorbent selection mechanism 12 selects the second adsorption tower 14B filled with the adsorbent B, and passes the radioactive waste liquid 1 by the pump 20 of the waste liquid supply mechanism 13.

吸着剤としては、アンチモン酸や結晶性シリコチタネート、チタン酸等の無機イオン交換体、およびゼオライトが挙げられる。Csに対する吸着剤Aとしては、例えば、Na置換天然モルデナイト、Na置換合成モルデナイト、Na置換クリノプチロライト等が挙げられる。Csに対する吸着剤Bとしては、例えば、Na置換Y型ゼオライト、Na置換X型ゼオライト、Na置換A型ゼオライト等が挙げられる。   Examples of the adsorbent include inorganic ion exchangers such as antimonic acid, crystalline silicotitanate, and titanic acid, and zeolites. Examples of the adsorbent A for Cs include Na-substituted natural mordenite, Na-substituted synthetic mordenite, and Na-substituted clinoptilolite. Examples of the adsorbent B for Cs include Na-substituted Y-type zeolite, Na-substituted X-type zeolite, and Na-substituted A-type zeolite.

Srに対する吸着剤Aとして、例えばアンチモン酸塩、クリノプチロライトが挙げられる。Srに対する吸着剤Bとして、例えばチタン酸塩、チタンケイ酸塩が挙げられる。   Examples of the adsorbent A for Sr include antimonates and clinoptilolite. Examples of the adsorbent B for Sr include titanate and titanium silicate.

上述した本発明の放射性廃液の処理方法及び処理装置の第1の実施の形態によれば、吸着性能が高いpH領域の廃液で吸着剤を利用するので、吸着剤使用量およびpH調整コストの削減が可能になる。また、pH調整に伴う配管腐食や共存成分の析出と放射性物質の収着を抑制し、廃液pHが変化した際の放射性物質の放出を防止できる。   According to the above-described first embodiment of the method and apparatus for treating a radioactive liquid waste according to the present invention, since the adsorbent is used in the waste liquid in a pH region having a high adsorption performance, the amount of the adsorbent used and the pH adjustment cost can be reduced. Becomes possible. In addition, it is possible to suppress corrosion of piping, precipitation of coexisting components, and sorption of radioactive substances due to pH adjustment, and release of radioactive substances when the pH of the waste liquid changes.

以下、本発明の放射性廃液の処理方法及び処理装置の第2の実施の形態を図面を用いて説明する。図2Aは本発明の放射性廃液の処理方法及び処理装置の第2の実施の形態を構成する吸着剤選定機構の処理内容を示すフローチャート図、図2Bは本発明の放射性廃液の処理方法及び処理装置の第2の実施の形態における吸着剤の吸着性能のpH依存性を示す特性図である。図2A及び2Bにおいて、図1A及び1Bに示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Hereinafter, a second embodiment of a method and apparatus for treating a radioactive liquid waste according to the present invention will be described with reference to the drawings. FIG. 2A is a flowchart showing the processing contents of an adsorbent selection mechanism constituting a second embodiment of the radioactive waste liquid treatment method and treatment apparatus of the present invention, and FIG. 2B is the radioactive waste liquid treatment method and treatment apparatus of the present invention. It is a characteristic view which shows pH dependence of the adsorption performance of the adsorbent in 2nd Embodiment of FIG. 2A and 2B, the same reference numerals as those shown in FIGS. 1A and 1B denote the same parts, and a detailed description thereof will be omitted.

本発明の放射性廃液の処理方法及び処理装置の第2の実施の形態は、大略第1の実施の形態と同様の機器で構成されるが、吸着剤選定機構12における吸着剤の選定方法が異なる。
本実施の形態においては、放射性廃液1のpHが変化した場合における吸着剤選定機構12の処理を規定した点が第1の実施の形態と異なる。具体的には、放射性廃液1のpHがpH=aからpH=bに変化した場合に、現在処理に供している吸着剤の吸着性能の変化を予想して、吸着剤の吸着性能の変化に伴う目的物質の流出を防ぐ。このため、吸着剤選定機構12は、pH測定機構11が測定した放射性廃液1のpHの履歴を記録する記録部と、後述する変化率Rを演算し、予め定めた規定値と比較する演算部と、演算部で比較した変化率Rと規定値との関係から吸着剤の選択制御を行う制御部とを備えている。
The second embodiment of the method and apparatus for treating a radioactive liquid waste according to the present invention is generally configured with the same equipment as the first embodiment, but differs in the method of selecting an adsorbent in the adsorbent selecting mechanism 12. .
This embodiment is different from the first embodiment in that the processing of the adsorbent selecting mechanism 12 when the pH of the radioactive waste liquid 1 changes is specified. Specifically, when the pH of the radioactive waste liquid 1 changes from pH = a to pH = b, the change in the adsorption performance of the adsorbent currently being processed is predicted, and the change in the adsorption performance of the adsorbent is calculated. Prevent the accompanying outflow of the target substance. Therefore, the adsorbent selection mechanism 12 includes a recording unit that records the history of the pH of the radioactive waste liquid 1 measured by the pH measurement mechanism 11 and a calculation unit that calculates a rate of change R described below and compares the change rate R with a predetermined value. And a control unit that controls the selection of the adsorbent based on the relationship between the change rate R and the specified value compared by the calculation unit.

以下に、吸着剤選定機構12での吸着剤選定方法について、吸着剤Aを使用して処理をしている最中に放射性廃液1のpHがpH=aからpH=bに変化した場合を例として説明する。   The following describes an example of a method of selecting an adsorbent in the adsorbent selection mechanism 12 in the case where the pH of the radioactive waste liquid 1 changes from pH = a to pH = b during the treatment using the adsorbent A. It will be described as.

図2Bに示すように、吸着剤Aの吸着性能(Kd,A)は、pH=aで最大値となり、pH値がaより増大あるいは減少することにより低下する。一方、吸着剤Bの吸着性能(Kd,B)は、pH<bにおいて、吸着剤Aの吸着性能(Kd,A)より低く、pH=bで、吸着剤Aの吸着性能(Kd,A)と等しくなり、pH>bにおいて、吸着剤Aの吸着性能(Kd,A)より高くなる。pH=aにおける吸着剤Aと吸着剤Bの性能を比較すると、吸着剤Aがより高い性能を示すことから、放射性廃液1がpH=aのときは、吸着剤Aを用いた処理を行う。   As shown in FIG. 2B, the adsorption performance (Kd, A) of the adsorbent A reaches its maximum value at pH = a, and decreases as the pH value increases or decreases from a. On the other hand, the adsorption performance (Kd, B) of the adsorbent B is lower than the adsorption performance (Kd, A) of the adsorbent A at pH <b, and the adsorption performance (Kd, A) of the adsorbent A at pH = b. When pH> b, the adsorbent A has higher adsorption performance (Kd, A). Comparing the performance of the adsorbent A and the performance of the adsorbent B at pH = a, since the adsorbent A shows higher performance, when the radioactive waste liquid 1 has pH = a, the treatment using the adsorbent A is performed.

ここで、放射性廃液1のpHがpH=aからpH=bまで変化した場合、吸着剤AのKdは、図2Bに示すようにKd,A(a)からKd,A(b)まで低下する。この時の変化率Rを、以下の式1により定義する。
R=Kd,A(a)/Kd,A(b)・・・・・(1)
Here, when the pH of the radioactive waste liquid 1 changes from pH = a to pH = b, the Kd of the adsorbent A decreases from Kd, A (a) to Kd, A (b) as shown in FIG. 2B. . The rate of change R at this time is defined by the following equation 1.
R = Kd, A (a) / Kd, A (b) (1)

吸着剤選定機構12は、図2Aに示すように以下の処理を行う。
吸着剤選定機構12は、上述した式1の演算を行い、変化率Rが予め定めた規定値Xを上回るか否かを判断する(ステップS21)。具体的には、R=Kd,A(a)/Kd,A(b)>Xか否かを判断する。ここで、規定値Xは吸着剤AのKd,Aが低下して、目的物質が放射性廃液1中に流出しないことを目的に設定される。変化率Rが規定値Xを上回る場合には、ステップS22へ進み、それ以外の場合にはステップS23へ進む。
The adsorbent selection mechanism 12 performs the following processing as shown in FIG. 2A.
The adsorbent selecting mechanism 12 performs the calculation of the above-described equation 1, and determines whether or not the rate of change R exceeds a predetermined value X (step S21). Specifically, it is determined whether or not R = Kd, A (a) / Kd, A (b)> X. Here, the specified value X is set for the purpose of reducing the Kd, A of the adsorbent A and preventing the target substance from flowing out into the radioactive waste liquid 1. If the rate of change R exceeds the specified value X, the process proceeds to step S22; otherwise, the process proceeds to step S23.

ステップS21において、変化率Rが規定値Xを上回る場合、吸着剤選定機構12は、吸着剤Bを選択する(ステップS22)。具体的には、吸着剤選定機構12は、目的物質の放射性廃液1への流出を防ぐため、吸着剤Aから吸着剤Bに切り替える指令信号を廃液供給機構13に出力する。このことにより、吸着剤Bが充填された第2吸着塔14Bが選択され、廃液供給機構13のポンプ20により放射性廃液1が通水される。 If the rate of change R exceeds the specified value X in step S21, the adsorbent selecting mechanism 12 selects the adsorbent B (step S22). Specifically, the adsorbent selection mechanism 12 outputs a command signal for switching from the adsorbent A to the adsorbent B to the waste liquid supply mechanism 13 in order to prevent the target substance from flowing out into the radioactive waste liquid 1. Thereby, the second adsorption tower 14B filled with the adsorbent B is selected, and the radioactive waste liquid 1 is passed by the pump 20 of the waste liquid supply mechanism 13.

ステップS21において、変化率Rが規定値Xを上回らない場合、吸着剤選定機構12は、放射性廃液1のpH=bにおける吸着剤Aの吸着性能(Kd,A(b))と、pH=bにおける吸着剤Bの吸着性能(Kd,B(b))を比較し、より高い分配係数を持つ吸着剤を選定する(ステップS23)。具体的には、Kd,A(b)<Kd,B(b)か否かを判断する。pH=bにおける吸着剤Bの吸着性能が吸着剤Aの吸着性能より高い場合にはステップS22へ進み、それ以外の場合はステップS24へ進む。 If the rate of change R does not exceed the specified value X in step S21, the adsorbent selection mechanism 12 determines the adsorption performance (Kd, A (b)) of the adsorbent A at pH = b of the radioactive waste liquid 1 and the pH = b Then, the adsorption performance (Kd, B (b)) of the adsorbent B is compared, and an adsorbent having a higher distribution coefficient is selected (step S23). Specifically, it is determined whether or not Kd, A (b) <Kd, B (b). If the adsorption performance of the adsorbent B at pH = b is higher than the adsorption performance of the adsorbent A, the process proceeds to step S22; otherwise, the process proceeds to step S24 .

ステップS23において、pH=bにおける吸着剤Bの吸着性能が吸着剤Aの吸着性能より高くない場合には、吸着剤選定機構12は、吸着剤Aを選択する(ステップS24)。具体的には、吸着剤選定機構12は、吸着剤Aの選択指令信号を廃液供給機構13に出力する。このことにより、吸着剤Aが充填された第1吸着塔14Aが選択され、廃液供給機構13のポンプ20により放射性廃液1が通水され、吸着剤の切り替えは生じない。 In step S23, if the adsorption performance of the adsorbent B at pH = b is not higher than the adsorption performance of the adsorbent A, the adsorbent selection mechanism 12 selects the adsorbent A (step S24). Specifically, the adsorbent selection mechanism 12 outputs a selection command signal for the adsorbent A to the waste liquid supply mechanism 13. Thereby, the first adsorption tower 14A filled with the adsorbent A is selected, the radioactive waste liquid 1 is passed by the pump 20 of the waste liquid supply mechanism 13, and the switching of the adsorbent does not occur.

上述した本発明の放射性廃液の処理方法及び処理装置の第2の実施の形態によれば、上述した第1の実施の形態と同様の効果を得ることができる。   According to the above-described second embodiment of the method and apparatus for treating a radioactive waste liquid of the present invention, the same effects as those of the above-described first embodiment can be obtained.

また、上述した本発明の放射性廃液の処理方法及び処理装置の第2の実施の形態によれば、放射性廃液1のpHがpH=aからpH=bに変化した場合に、現在処理に供している吸着剤の吸着性能の変化を予想するので、吸着剤の吸着性能の変化に伴う目的物質の流出を防ぐことができる。   In addition, according to the above-described second embodiment of the method and apparatus for treating a radioactive liquid waste of the present invention, when the pH of the radioactive liquid waste 1 changes from pH = a to pH = b, the radioactive liquid waste is currently subjected to the treatment. Since the change in the adsorption performance of the adsorbent is predicted, the outflow of the target substance due to the change in the adsorption performance of the adsorbent can be prevented.

以下、本発明の放射性廃液の処理方法及び処理装置の第3の実施の形態を図面を用いて説明する。図3Aは本発明の放射性廃液の処理方法及び処理装置の第3の実施の形態を構成する放射性廃液処理装置を示す概念図、図3Bは本発明の放射性廃液の処理方法及び処理装置の第3の実施の形態を構成する吸着剤選定機構の処理内容を示すフローチャート図、図3Cは本発明の放射性廃液の処理方法及び処理装置の第3の実施の形態における吸着剤の吸着性能のpH依存性を示す特性図である。図3A乃至3Cにおいて、図1A乃至2Bに示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Hereinafter, a third embodiment of the method and apparatus for treating a radioactive liquid waste according to the present invention will be described with reference to the drawings. FIG. 3A is a conceptual diagram showing a radioactive waste liquid treatment apparatus and a third embodiment of the radioactive waste liquid treatment apparatus according to the third embodiment of the present invention, and FIG. 3B is a third embodiment of the radioactive waste liquid treatment method and treatment apparatus of the present invention. FIG. 3C is a flowchart showing the processing contents of the adsorbent selecting mechanism constituting the third embodiment, and FIG. 3C is a diagram showing the pH dependence of the adsorption performance of the adsorbent in the third embodiment of the method and apparatus for treating a radioactive liquid waste according to the present invention. FIG. 3A to 3C, the same reference numerals as those shown in FIGS. 1A to 2B denote the same parts, and a detailed description thereof will be omitted.

本発明の放射性廃液の処理方法及び処理装置の第3の実施の形態は、大略第1の実施の形態と同様の機器で構成されるが、吸着剤Aを充填した第1吸着塔14Aと、吸着剤Bを充填した第2吸着塔14Bを直列に配置している点と、吸着剤選定機構12において、第1吸着塔14Aを用いた処理と、第2吸着塔14Bを用いた処理と、第1吸着塔14Aと第2吸着塔14Bを用いた処理のいずれかを選択する点が異なる。   The third embodiment of the method and apparatus for treating a radioactive liquid waste according to the present invention is generally configured with the same equipment as the first embodiment, but includes a first adsorption tower 14A filled with an adsorbent A, The point in which the second adsorption towers 14B filled with the adsorbent B are arranged in series, and the processing using the first adsorption towers 14A and the processing using the second adsorption towers 14B in the adsorbent selection mechanism 12, The difference is that one of the treatments using the first adsorption tower 14A and the second adsorption tower 14B is selected.

図3Aに示すように、本実施の形態を構成する放射性廃液処理装置の廃液供給機構13は、吸着剤選定機構12からの選定信号に従って、槽10から放射性廃液1を吸い込み、第1吸着塔14Aへ供給する第1ポンプ20Aと、槽10から放射性廃液1を吸い込み、第2吸着塔14Bへ供給する第2ポンプ20Bと、第2吸着塔14Bを通水された後の処理液2を吸い込み、第1吸着塔14Aへ供給する移送ポンプ20Tと、槽10と第1及び第2ポンプ20A,20Bとを接続する配管と、第2ポンプ20Bと第2吸着塔14B及び第1ポンプ20Aと第1吸着塔14Aを接続する配管と、移送ポンプ20Tと第2吸着塔14B及び第1吸着塔14Aを接続する配管とを備えている。   As shown in FIG. 3A, the waste liquid supply mechanism 13 of the radioactive waste liquid treatment apparatus constituting the present embodiment sucks the radioactive waste liquid 1 from the tank 10 according to the selection signal from the adsorbent selection mechanism 12, and sends the first adsorption tower 14A A first pump 20A that supplies the radioactive waste liquid 1 from the tank 10, and a second pump 20B that supplies the radioactive waste liquid 1 to the second adsorption tower 14B, and the processing liquid 2 that has been passed through the second adsorption tower 14B. A transfer pump 20T for supplying to the first adsorption tower 14A, a pipe connecting the tank 10 to the first and second pumps 20A and 20B, a second pump 20B, the second adsorption tower 14B, the first pump 20A and the first A pipe connecting the adsorption tower 14A and a pipe connecting the transfer pump 20T, the second adsorption tower 14B, and the first adsorption tower 14A are provided.

図3Aにおいて、一点鎖線で示す配管は、吸着剤選定機構12からの指令により第1吸着塔14Aのみを用いた処理を行う場合を示し、直線で示す配管は、吸着剤選定機構12からの指令により第2吸着塔14Bのみを用いた処理を行う場合を示す、破線で示す配管は、吸着剤選定機構12からの指令により第2吸着塔14Bと第1吸着塔14Aを用いる場合を示している。   In FIG. 3A, a pipe indicated by a dashed line indicates a case where processing using only the first adsorption tower 14 </ b> A is performed according to a command from the adsorbent selection mechanism 12, and a pipe indicated by a straight line indicates a command from the adsorbent selection mechanism 12. The line indicated by a broken line indicates a case where the process using only the second adsorption tower 14B is performed by using the second adsorption tower 14B and the first adsorption tower 14A according to a command from the adsorbent selection mechanism 12. .

本実施の形態においては、吸着剤Aの吸着性能が予め定めた規定値y以上にある放射性廃液1のpHの範囲と、吸着剤Bの吸着性能が予め定めた規定値y以上にある放射性廃液1のpHの範囲とを算出し、重なり合うpHの範囲において、一方の吸着剤を通水した処理液2を他方の吸着剤に通水する処理を行うことを特徴とする。   In the present embodiment, the pH range of the radioactive waste liquid 1 in which the adsorption performance of the adsorbent A is equal to or higher than the predetermined specified value y, and the radioactive waste liquid in which the adsorption performance of the adsorbent B is equal to or higher than the predetermined specified value y A pH range of 1 is calculated, and a process of passing the treatment liquid 2 having passed one adsorbent through the other adsorbent is performed in the overlapping pH range.

本実施の形態における吸着剤選定機構12の吸着剤AとBの選定方法について説明する。図3Cに示すように、吸着剤Aの吸着性能(Kd,A)は、pH=a1で最大値となり、pH値がa1より増大あるいは減少することにより低下し、pH=a2のときに予め設定された規定値yと分配係数Kdが等しくなり、pH>a2で、分配係数Kdは規定値y未満に低下する。一方、吸着剤Bの吸着性能(Kd,B)は、pH=a2で最大値となり、pH値がa2より増大あるいは減少することにより低下し、pH=a1のときに予め設定された規定値yと分配係数Kdが等しくなり、pH<a1で、分配係数Kdは規定値y未満に低下する。ここで、a1<a2である。なお、吸着剤選定機構12には図3Cに示すような吸着剤AとBの吸着性能のpH依存性がデータベースとして保存されていて、これらを用いて吸着剤選定の処理を行う。なお、図3Bにおいては、放射性廃液1のpHをpH=aとして示す。 A method of selecting the adsorbents A and B by the adsorbent selection mechanism 12 according to the present embodiment will be described. As shown in FIG. 3C, the adsorption performance (Kd, A) of the adsorbent A reaches a maximum value at pH = a1, decreases as the pH value increases or decreases from a1, and is preset when pH = a2. The specified value y and the distribution coefficient Kd become equal, and when pH> a2, the distribution coefficient Kd falls below the specified value y. On the other hand, the adsorption performance (Kd, B) of the adsorbent B reaches a maximum value at pH = a2, decreases as the pH value increases or decreases from a2, and a predetermined value y set at pH = a1. And the distribution coefficient Kd become equal, and at pH <a1, the distribution coefficient Kd falls below the specified value y. Here, a1 <a2. The adsorbent selection mechanism 12 stores the pH dependence of the adsorption performance of the adsorbents A and B as a database as shown in FIG. 3C, and performs an adsorbent selection process using these. In FIG. 3B, the pH of the radioactive liquid waste 1 is shown as pH = a.

吸着剤選定機構12は、pH=aにおける吸着剤Aと吸着剤Bの吸着性能が規定値yを超過するか否かを判断する(ステップS31)。例えば、放射性廃液1のpH=aが、a1<a<a2のとき、図3Cより吸着剤Aと吸着剤Bの吸着性能(Kd,A(a)、Kd,B(a))は、いずれも規定値yを超過する。換言すると、Kd,A(a)>y、かつ、Kd,B(a)>yか否かを判断する。pH=aにおける吸着剤Aと吸着剤Bの吸着性能が規定値yを超過する場合には、ステップS32へ進み、それ以外の場合にはステップS33へ進む。   The adsorbent selecting mechanism 12 determines whether or not the adsorption performance of the adsorbent A and the adsorbent B at pH = a exceeds the specified value y (step S31). For example, when the pH = a of the radioactive waste liquid 1 satisfies a1 <a <a2, the adsorption performances (Kd, A (a), Kd, B (a)) of the adsorbent A and the adsorbent B are all shown in FIG. 3C. Also exceeds the specified value y. In other words, it is determined whether or not Kd, A (a)> y and Kd, B (a)> y. When the adsorption performance of the adsorbent A and the adsorbent B at pH = a exceeds the specified value y, the process proceeds to step S32, and otherwise, the process proceeds to step S33.

ステップS31において、吸着剤Aと吸着剤Bの吸着性能(Kd,A(a)、Kd,B(a))がいずれも規定値yを超過する場合、吸着剤選定機構12は、吸着剤AとBを選択する(ステップS32)。具体的には、第1吸着塔14Aと第2吸着塔14Bとを用いる指令信号を廃液供給機構13に出力して、放射性廃液1を第2吸着塔14Bに通水した後、廃液供給機構13の移送ポンプ20Tにより第2吸着塔14Bからの処理液2をさらに第1吸着塔14Aに通水する処理を行う。 In step S31, if the adsorption performances (Kd, A (a), Kd, B (a)) of the adsorbent A and the adsorbent B both exceed the specified value y, the adsorbent selection mechanism 12 sets the adsorbent A And B are selected (step S32). Specifically, a command signal for using the first adsorption tower 14A and the second adsorption tower 14B is output to the waste liquid supply mechanism 13, and the radioactive waste liquid 1 is passed through the second adsorption tower 14B. The treatment pump 2T performs a process of further passing the treatment liquid 2 from the second adsorption tower 14B to the first adsorption tower 14A.

ステップS31において、pH=aにおける吸着剤Aと吸着剤Bの吸着性能が規定値yを超過しない場合、吸着剤選定機構12は、放射性廃液1のpH=aにおける吸着剤Aの吸着性能(Kd,A(a))と、pH=aにおける吸着剤Bの吸着性能(Kd,B(a))を比較し、より高い分配係数を持つ吸着剤を選定する(ステップS33)。具体的には、Kd,A(a)<Kd,B(a)か否かを判断する。pH=aにおける吸着剤Bの吸着性能が吸着剤Aの吸着性能より高い場合にはステップS34へ進み、それ以外の場合はステップS35へ進む。   In step S31, when the adsorption performance of the adsorbent A and the adsorbent B at pH = a does not exceed the specified value y, the adsorbent selection mechanism 12 determines the adsorption performance of the adsorbent A at pH = a of the radioactive waste liquid 1 (Kd , A (a)) and the adsorption performance (Kd, B (a)) of the adsorbent B at pH = a, and select an adsorbent having a higher distribution coefficient (step S33). Specifically, it is determined whether or not Kd, A (a) <Kd, B (a). If the adsorption performance of the adsorbent B at pH = a is higher than the adsorption performance of the adsorbent A, proceed to step S34, otherwise proceed to step S35.

例えば、放射性廃液1のpH=aがa>a2の時、図3Cより吸着剤Bの吸着性能のみが規定値yを超過する。この場合、吸着剤選定機構12は、ステップS34へ移行する。吸着剤選定機構12は、吸着剤Bを選択する(ステップS34)。具体的には、吸着剤選定機構12は、吸着剤Bが充填された第2吸着塔14Bのみを選択し、廃液供給機構13の第2ポンプ20Bにより放射性廃液1を通水する。   For example, when the pH = a of the radioactive waste liquid 1 is a> a2, only the adsorption performance of the adsorbent B exceeds the specified value y from FIG. 3C. In this case, the process proceeds to step S34. The adsorbent selection mechanism 12 selects the adsorbent B (Step S34). Specifically, the adsorbent selection mechanism 12 selects only the second adsorption tower 14B filled with the adsorbent B, and allows the radioactive waste liquid 1 to flow through the second pump 20B of the waste liquid supply mechanism 13.

ステップS33において、pH=aにおける吸着剤Bの吸着性能が吸着剤Aの吸着性能より高くない場合、吸着剤選定機構12は、吸着剤Aを選択する(ステップS35)。例えば、放射性廃液1のpH=aがa<a1のとき、図3Cより吸着剤Aの吸着性能のみが規定値yを超過する。この場合、吸着剤選定機構12は、ステップS35へ移行する。具体的には、吸着剤選定機構12は、吸着剤Aが充填された第1吸着塔14Aのみを選択し、廃液供給機構13の第1ポンプ20Aにより放射性廃液1を通水する。   In step S33, when the adsorption performance of the adsorbent B at pH = a is not higher than the adsorption performance of the adsorbent A, the adsorbent selection mechanism 12 selects the adsorbent A (step S35). For example, when pH = a of the radioactive waste liquid 1 satisfies a <a1, only the adsorption performance of the adsorbent A exceeds the specified value y from FIG. 3C. In this case, the sorbent selecting mechanism 12 proceeds to step S35. Specifically, the adsorbent selection mechanism 12 selects only the first adsorption tower 14A filled with the adsorbent A, and allows the radioactive waste liquid 1 to flow through the first pump 20A of the waste liquid supply mechanism 13.

上述した本発明の放射性廃液の処理方法及び処理装置の第3の実施の形態によれば、上述した第1の実施の形態と同様の効果を得ることができる。   According to the above-described third embodiment of the method and apparatus for treating a radioactive waste liquid of the present invention, the same effects as those of the first embodiment can be obtained.

また、上述した本発明の放射性廃液の処理方法及び処理装置の第3の実施の形態によれば、処理液2に含まれる目的物質の濃度をより低減できる。   Further, according to the above-described third embodiment of the method and apparatus for treating a radioactive waste liquid of the present invention, the concentration of the target substance contained in the treatment liquid 2 can be further reduced.

以下、本発明の放射性廃液の処理方法及び処理装置の第4の実施の形態を図面を用いて説明する。図4Aは本発明の放射性廃液の処理方法及び処理装置の第4の実施の形態を構成する放射性廃液処理装置を示す概念図、図4Bは本発明の放射性廃液の処理方法及び処理装置の第4の実施の形態を構成する吸着剤及び廃液供給量選定機構の処理内容を示すフローチャート図、図4Cは本発明の放射性廃液の処理方法及び処理装置の第4の実施の形態における吸着剤の吸着性能のpH依存性を示す特性図である。図4A乃至4Cにおいて、図1A乃至3Cに示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Hereinafter, a fourth embodiment of the method and apparatus for treating a radioactive waste liquid according to the present invention will be described with reference to the drawings. FIG. 4A is a conceptual diagram showing a radioactive waste liquid treatment apparatus and a fourth embodiment of the radioactive waste liquid treatment apparatus according to the fourth embodiment of the present invention, and FIG. FIG. 4C is a flowchart showing the processing contents of the adsorbent and waste liquid supply amount selection mechanism constituting the embodiment of the present invention. FIG. 4C is the adsorption performance of the adsorbent according to the fourth embodiment of the radioactive liquid processing method and the processing apparatus of the present invention. FIG. 3 is a characteristic diagram showing the pH dependence of the above. 4A to 4C, the same reference numerals as those shown in FIGS. 1A to 3C denote the same parts, and a detailed description thereof will be omitted.

本発明の放射性廃液の処理方法及び処理装置の第4の実施の形態は、大略第1の実施の形態と同様の機器で構成されるが、異なるpHの放射性廃液1A,1Bが充填された第1槽10Aと第2槽10Bを備えた点と、吸着剤及び廃液供給量選定機構12Aからの指令により、放射性廃液1Aと放射性廃液1Bを任意の混合比率で混合する廃液供給機構13Aを備えた点が異なる。   The fourth embodiment of the method and the apparatus for treating a radioactive liquid waste according to the present invention is generally constituted by the same equipment as that of the first embodiment, but is filled with radioactive liquid wastes 1A and 1B having different pHs. A waste liquid supply mechanism 13A for mixing the radioactive waste liquid 1A and the radioactive waste liquid 1B at an arbitrary mixing ratio according to a point provided with the first tank 10A and the second tank 10B and an instruction from the adsorbent and waste liquid supply amount selection mechanism 12A. The points are different.

図4Aに示すように、本実施の形態を構成する放射性廃液処理装置は、放射性廃液1Aを格納する第1槽10Aと、放射性廃液1AのpHを測定するpH測定機構11Aと、放射性廃液1Bを格納する第2槽10Bと、放射性廃液1BのpHを測定するpH測定機構11Bと、吸着剤及び廃液供給量選定機構12Aと、廃液供給機構13Aと、吸着剤Aを充填した第1吸着塔14Aと、吸着剤Bを充填した第2吸着塔14Bとを備えている。   As shown in FIG. 4A, the radioactive liquid waste treatment apparatus according to the present embodiment includes a first tank 10A for storing the radioactive liquid 1A, a pH measuring mechanism 11A for measuring the pH of the radioactive liquid 1A, and a radioactive liquid 1B. The second tank 10B to be stored, the pH measurement mechanism 11B for measuring the pH of the radioactive waste liquid 1B, the adsorbent and waste liquid supply amount selection mechanism 12A, the waste liquid supply mechanism 13A, and the first adsorption tower 14A filled with the adsorbent A And a second adsorption tower 14B filled with the adsorbent B.

吸着剤及び廃液供給量選定機構12Aは、pH測定機構11Aと11Bが測定した放射性廃液1A及び1BのpHを入力し、予めデータベースとして格納されている吸着剤A,BのpHに対する吸着性能を基に、放射性廃液1Aと1Bの混合比率を演算するとともに、これら放射性廃液1A,1Bや混合液を供給する吸着塔を選定し、廃液供給機構13Aへ吸着剤及び廃液供給量の選定信号を出力する。   The adsorbent and waste liquid supply amount selection mechanism 12A inputs the pH of the radioactive waste liquids 1A and 1B measured by the pH measurement mechanisms 11A and 11B, and based on the adsorption performance for the pH of the adsorbents A and B stored in advance as a database. Next, while calculating the mixing ratio of the radioactive waste liquids 1A and 1B, an adsorption tower for supplying the radioactive waste liquids 1A and 1B and the mixed liquid is selected, and a selection signal of the adsorbent and the waste liquid supply amount is output to the waste liquid supply mechanism 13A. .

廃液供給機構13Aは、第1槽10Aから放射性廃液1Aを吸い込み、吸着剤及び廃液供給量選定機構12Aからの吸着剤及び廃液供給量の選定信号に従って、混合比率に応じた供給流量を調整可能な第1ポンプ20A’と、第2槽10Bから放射性廃液1Bを吸い込み、吸着剤及び廃液供給量選定機構12Aからの吸着剤及び廃液供給量の選定信号に従って、混合比率に応じた供給流量を調整可能な第2ポンプ20B’と、第1ポンプ20A’と第2ポンプ20B’の吐出した混合した放射性廃液を第1吸着塔14Aまたは第2吸着塔14Bへ供給するポンプ20と、第1槽10Aと第1ポンプ20A’、及び第2槽10Bと第2ポンプ20B’とを接続する配管と、第1ポンプ20A’と第2ポンプ20B’とポンプ20とを接続する配管と、ポンプ20と第1吸着塔14A及び第2吸着塔14Bとを接続する配管とを備えている。   The waste liquid supply mechanism 13A sucks the radioactive waste liquid 1A from the first tank 10A, and can adjust the supply flow rate according to the mixing ratio in accordance with the adsorbent and waste liquid supply amount selection signal from the adsorbent and waste liquid supply amount selection mechanism 12A. The radioactive waste liquid 1B is sucked from the first pump 20A 'and the second tank 10B, and the supply flow rate according to the mixing ratio can be adjusted according to the adsorbent and waste liquid supply amount selection signal from the adsorbent and waste liquid supply amount selection mechanism 12A. A second pump 20B ', a pump 20 for supplying the mixed radioactive waste liquid discharged from the first pump 20A' and the second pump 20B 'to the first adsorption tower 14A or the second adsorption tower 14B, and a first tank 10A. A pipe connecting the first pump 20A ', the second tank 10B and the second pump 20B', and a pipe connecting the first pump 20A ', the second pump 20B' and the pump 20 are provided. When, and a pipe and which connects the pump 20 and the first adsorption tower 14A and the second adsorption tower 14B.

なお、混合比率に応じた供給流量を調整可能とする構成としては、例えば、2系統からの廃液を受け入れることのできる分岐を持つ管と、混合槽と、インラインミキサー等を備えても良いし、各ポンプの回転数を調整するようにしても良い。   In addition, as a configuration capable of adjusting the supply flow rate according to the mixing ratio, for example, a pipe having a branch capable of receiving waste liquid from two systems, a mixing tank, an in-line mixer, or the like may be provided. The rotation speed of each pump may be adjusted.

本実施の形態においては、第1槽10Aの放射性廃液1AのpHと、第2槽10Bの放射性廃液1BのpHとのいずれにおいても、一方の吸着剤の吸着性能が高い場合に、異なるpHの放射性廃液1A,1Bを混合してpH調整して、一方の吸着剤の吸着性能が高いpH領域で処理を行うことを特徴とする。   In the present embodiment, in both the pH of the radioactive waste liquid 1A of the first tank 10A and the pH of the radioactive waste liquid 1B of the second tank 10B, when the adsorption performance of one of the adsorbents is high, different pHs are set. The pH is adjusted by mixing the radioactive waste liquids 1A and 1B, and the treatment is performed in a pH range where the adsorption performance of one adsorbent is high.

本実施の形態における吸着剤及び廃液供給量選定機構12Aの実施する放射性廃液1A,1Bの混合要否の判断方法について説明する。まず、吸着剤及び廃液供給量選定機構12Aには図4Cに示すような吸着剤AとBの吸着性能のpH依存性がデータベースとして保存されている。本実施の形態においては、第1槽10Aの放射性廃液1AのpHがpH=a3であり、第2槽10Bの放射性廃液1BのpHがpH=b3であり、a3<b3の場合を例に説明する。この場合、pH=a3からpH=b3までの領域において、吸着剤Aの分配係数Kd,Aが吸着剤Bの分配係数Kd,Bよりも高い。 A method of determining the necessity of mixing the radioactive waste liquids 1A and 1B performed by the adsorbent and waste liquid supply amount selection mechanism 12A according to the present embodiment will be described. First, the pH dependence of the adsorption performance of the adsorbents A and B as shown in FIG. 4C is stored as a database in the adsorbent and waste liquid supply amount selection mechanism 12A. In the present embodiment, a description will be given of an example in which the pH of the radioactive waste liquid 1A in the first tank 10A is pH = a3, the pH of the radioactive waste liquid 1B in the second tank 10B is pH = b3, and a3 <b3. I do. In this case, the partition coefficient Kd, A of the adsorbent A is higher than the partition coefficient Kd, B of the adsorbent B in the range from pH = a3 to pH = b3.

図4Bにおいて、吸着剤及び廃液供給量選定機構12Aは、pH=a3、pH=b3いずれにおいても吸着剤Aのほうがより高い吸着性能を示す領域であるか否かを判断する(ステップS41)。具体的には、Kd,A(a3)>Kd,B(a3)、かつ、Kd,A(b3)>Kd,B(b3)か否かを判断する。pH=a3、pH=b3いずれにおいても吸着剤Aのほうがより高い吸着性能を示す領域である場合には、ステップS42へ進み、それ以外の場合にはステップS43へ進む。   In FIG. 4B, the adsorbent and waste liquid supply amount selection mechanism 12A determines whether the adsorbent A is in a region exhibiting higher adsorption performance at both pH = a3 and pH = b3 (step S41). Specifically, it is determined whether or not Kd, A (a3)> Kd, B (a3) and Kd, A (b3)> Kd, B (b3). When the adsorbent A shows the higher adsorption performance in both the pH = a3 and the pH = b3, the process proceeds to step S42, and otherwise, the process proceeds to step S43.

吸着剤及び廃液供給量選定機構12Aは、異なるpHの放射性廃液1Aと1Bを混合することで、pHを調整し、より吸着剤Aの吸着性能が高い領域で処理を行う(ステップS42)。具体的には、第1ポンプ20A’と第2ポンプ20B’の混合比率を調整することで、吸着剤Aの吸着性能が高いpH領域の混合放射性廃液を生成し、この混合放射性廃液をポンプ20により第1吸着塔14Aに供給する。これにより、放射性廃液1Aと放射性廃液1Bを吸着剤の吸着性能がより高いpH領域で処理することができ、吸着剤を有効利用できる。また、本実施の形態においては、放射性廃液1Aと放射性廃液1Bの混合によりpHを調整することから、急激なpHの変化が生じない。このことにより、pH調整に伴う設備の腐食や析出が生じにくい。   The adsorbent and waste liquid supply amount selection mechanism 12A adjusts the pH by mixing the radioactive waste liquids 1A and 1B having different pHs, and performs processing in a region where the adsorption performance of the adsorbent A is higher (step S42). Specifically, by adjusting the mixing ratio of the first pump 20A ′ and the second pump 20B ′, a mixed radioactive waste liquid in a pH range where the adsorption performance of the adsorbent A is high is generated. To supply it to the first adsorption tower 14A. Thereby, the radioactive waste liquid 1A and the radioactive waste liquid 1B can be treated in the pH region where the adsorption performance of the adsorbent is higher, and the adsorbent can be used effectively. Further, in the present embodiment, since the pH is adjusted by mixing the radioactive waste liquid 1A and the radioactive waste liquid 1B, a rapid change in pH does not occur. As a result, corrosion and precipitation of equipment due to pH adjustment are unlikely to occur.

ステップS41において、pH=a3、pH=b3いずれにおいても吸着剤Aのほうがより高い吸着性能を示す領域ではない場合、放射性廃液1Aと放射性廃液1Bとを別個に処理する(ステップS43)。例えば、第2槽10Bの放射性廃液1BのpHがpH=b3’であり、b3<b3’の場合であって、pH=b3’においては、吸着剤Bの分配係数Kd,Bが吸着剤Aの分配係数Kd,Aよりも高い場合、吸着剤及び廃液供給量選定機構12Aは、放射性廃液1Aと放射性廃液1Bの適した吸着剤がそれぞれ異なるので、それぞれ別個に吸着剤を通水する処理を行う。放射性廃液1Aは第1吸着塔14Aへ供給され、放射性廃液1Bは第2吸着塔14Bへ供給され、放射性廃液の混合は行われない。 In step S41, when the adsorbent A is not in a region exhibiting higher adsorption performance at both pH = a3 and pH = b3, the radioactive waste liquid 1A and the radioactive waste liquid 1B are separately processed (step S43). For example, the pH of the radioactive waste liquid 1B in the second tank 10B is pH = b3 ′, and b3 <b3 ′. At pH = b3 ′, the distribution coefficient Kd, B of the adsorbent B is If the distribution coefficient Kd, A is higher than the distribution coefficient Kd, A, the suitable adsorbents for the radioactive waste liquid 1A and the radioactive waste liquid 1B are different from each other. Do. The radioactive waste liquid 1A is supplied to the first adsorption tower 14A, the radioactive waste liquid 1B is supplied to the second adsorption tower 14B, and the mixing of the radioactive waste liquid is not performed.

なお、ステップS41において、第1槽10Aの放射性廃液1AのpHがpH=a3’であり、第2槽10Bの放射性廃液1BのpHがpH=b3’であり、a3’<b3’であって、pH=a3’からpH=b3’までの領域において、吸着剤Bの分配係数Kd,Bが吸着剤Aの分配係数Kd,Aよりも高い場合には、ステップS42へ進み、異なるpHの放射性廃液1Aと1Bを混合することで、pHを調整し、より吸着剤Bの吸着性能が高い領域の混合放射性廃液を生成し、この混合放射性廃液をポンプ20により第2吸着塔14Bに供給して処理を行う。 In step S41, the pH of the radioactive waste liquid 1A in the first tank 10A is pH = a3 ′, the pH of the radioactive waste liquid 1B in the second tank 10B is pH = b3 ′, and a3 ′ <b3 ′. If the distribution coefficient Kd, B of the adsorbent B is higher than the distribution coefficient Kd, A of the adsorbent A in the range from pH = a3 ′ to pH = b3 ′, the process proceeds to step S42, where the radioactivity of different pH By mixing the waste liquids 1A and 1B, the pH is adjusted to generate a mixed radioactive waste liquid in a region where the adsorption performance of the adsorbent B is higher, and this mixed radioactive waste liquid is supplied to the second adsorption tower 14B by the pump 20. Perform processing.

上述した本発明の放射性廃液の処理方法及び処理装置の第4の実施の形態によれば、上述した第1の実施の形態と同様の効果を得ることができる。   According to the above-described fourth embodiment of the method and apparatus for treating a radioactive liquid waste according to the present invention, the same effects as those of the first embodiment can be obtained.

また、上述した本発明の放射性廃液の処理方法及び処理装置の第4の実施の形態によれば、吸着剤Aおよび吸着剤Bがより高い吸着性能をもつpH領域で、放射性廃液を処理することができるので、吸着剤使用量をより低減することができる。   Further, according to the above-described fourth embodiment of the method and apparatus for treating a radioactive liquid waste according to the present invention, the radioactive liquid waste is treated in the pH region where the adsorbent A and the adsorbent B have higher adsorption performance. Therefore, the amount of the adsorbent used can be further reduced.

以下、本発明の放射性廃液の処理方法及び処理装置の第5の実施の形態を図面を用いて説明する。図5は本発明の放射性廃液の処理方法及び処理装置の第5の実施の形態を構成する放射性廃液処理装置を示す概念図である。図5において、図1A乃至4Cに示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Hereinafter, a fifth embodiment of the method and apparatus for treating a radioactive waste liquid according to the present invention will be described with reference to the drawings. FIG. 5 is a conceptual diagram showing a radioactive waste liquid treatment apparatus constituting a fifth embodiment of the radioactive waste liquid treatment method and treatment apparatus of the present invention. 5, the same reference numerals as those shown in FIGS. 1A to 4C denote the same parts, and a detailed description thereof will be omitted.

本発明の放射性廃液の処理方法及び処理装置の第5の実施の形態は、大略第1の実施の形態と同様の機器で構成されるが、第1吸着塔14Aとポンプ20の間に、第1ブースターポンプ20A”と第1pH緩衝塔15Aを配置し、第2吸着塔14Bとポンプ20の間に、第2ブースターポンプ20B”と第2pH緩衝塔15Bを配置し、第1及び第2ブースターポンプを制御するpH緩衝判定機構16を備えた点が異なる。   The fifth embodiment of the radioactive liquid treatment method and the treatment apparatus according to the present invention is generally configured with the same equipment as the first embodiment. The first booster pump 20A "and the first pH buffer tower 15A are arranged, and the second booster pump 20B" and the second pH buffer tower 15B are arranged between the second adsorption tower 14B and the pump 20, and the first and second booster pumps are arranged. In that it has a pH buffer determination mechanism 16 for controlling

第1ブースターポンプ20A”は、第1吸着塔14Aと一の配管で接続され、第1pH緩衝塔15Aと他の配管で接続されている。第1pH緩衝塔15Aを通過した放射性廃液1は、配管を介して第1吸着塔14Aに流入する。同様に、第2ブースターポンプ20B”は、第2吸着塔14Bと一の配管で接続され、第2pH緩衝塔15Bと他の配管で接続されている。第2pH緩衝塔15Bを通過した放射性廃液1は、配管を介して第2吸着塔14Bに流入する。   The first booster pump 20A ″ is connected to the first adsorption tower 14A by one pipe, and is connected to the first pH buffer tower 15A by another pipe. The radioactive waste liquid 1 that has passed through the first pH buffer tower 15A is Similarly, the second booster pump 20B ″ is connected to the second adsorption tower 14B via one pipe, and is connected to the second pH buffer tower 15B via another pipe. . The radioactive waste liquid 1 that has passed through the second pH buffer tower 15B flows into the second adsorption tower 14B via a pipe.

pH緩衝判定機構16は、放射性廃液1の第1及び第2pH緩衝塔15A,Bへの通水の有無を判定するものである。具体的には、放射性廃液1のpHにおいて吸着剤Aと吸着剤Bの吸着性能が予め設定した規定値未満の場合に、放射性廃液1を第1及び第2pH緩衝塔15A,Bへ通水する。このことにより、放射性廃液1のpHは、吸着剤Aあるいは吸着剤Bの吸着性能が規定値を満たす範囲のpHに調整される。   The pH buffer determination mechanism 16 determines whether or not the radioactive waste liquid 1 flows through the first and second pH buffer towers 15A and 15B. Specifically, when the adsorption performance of the adsorbent A and the adsorbent B is lower than a predetermined value at the pH of the radioactive waste liquid 1, the radioactive waste liquid 1 is passed through the first and second pH buffer towers 15A and 15B. . As a result, the pH of the radioactive waste liquid 1 is adjusted to a pH within a range in which the adsorption performance of the adsorbent A or the adsorbent B satisfies the specified value.

第1及び第2pH緩衝塔15A,Bは、急激なpH変化の発生とpH調整に伴う腐食や析出を防ぐ観点から、その内部に緩衝溶液や、固体の酸あるいは塩基を放出する材料(pH緩衝材)を充填して構成され、通水した放射性廃液1のpHを調整するものである。   The first and second pH buffer towers 15A and 15B are provided with a buffer solution or a material that releases a solid acid or base (pH buffer) from the viewpoint of preventing abrupt pH change and corrosion and precipitation accompanying pH adjustment. ) To adjust the pH of the radioactive waste liquid 1 that has passed through.

pH緩衝判定機構16は、放射性廃液1のpHにおいて吸着剤Aと吸着剤Bの吸着性能が規定値以上の場合には、放射性廃液1を第1及び第2pH緩衝塔15A,Bへは通水せず、吸着剤を充填した第1及び第2吸着塔14A,Bに直接通水する。このことにより、pH緩衝材の使用を最小限に抑制できる。   When the adsorption performance of the adsorbent A and the adsorbent B is equal to or higher than the specified value at the pH of the radioactive waste liquid 1, the pH buffer determination mechanism 16 passes the radioactive waste liquid 1 to the first and second pH buffer towers 15A and 15B. Instead, water is directly passed through the first and second adsorption towers 14A and 14B filled with the adsorbent. This can minimize the use of a pH buffer.

上述した本発明の放射性廃液の処理方法及び処理装置の第5の実施の形態によれば、上述した第1の実施の形態と同様の効果を得ることができる。   According to the above-described fifth embodiment of the method and apparatus for treating a radioactive liquid waste according to the present invention, the same effects as those of the first embodiment can be obtained.

また、上述した本発明の放射性廃液の処理方法及び処理装置の第5の実施の形態によれば、吸着剤の吸着性能がより高いpH領域で処理が行え、吸着剤が有効利用できる。   Moreover, according to the above-described fifth embodiment of the method and apparatus for treating a radioactive waste liquid of the present invention, the treatment can be performed in a pH region where the adsorbent has a higher adsorption performance, and the adsorbent can be used effectively.

以下、本発明の放射性廃液の処理方法及び処理装置の第6の実施の形態を図面を用いて説明する。図6Aは本発明の放射性廃液の処理方法及び処理装置の第6の実施の形態を構成する放射性廃液処理装置を示す概念図、図6Bは本発明の放射性廃液の処理方法及び処理装置の第6の実施の形態を構成する吸着剤及び廃液供給量選定機構の処理内容を示すフローチャート図である。図6A及び6Bにおいて、図1A乃至5に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Hereinafter, a sixth embodiment of the method and apparatus for treating a radioactive liquid waste according to the present invention will be described with reference to the drawings. FIG. 6A is a conceptual diagram showing a radioactive waste liquid treatment apparatus and a radioactive waste liquid treatment apparatus according to a sixth embodiment of the present invention, and FIG. 6B is a sixth embodiment of the radioactive waste liquid treatment method and treatment apparatus of the present invention. It is a flowchart figure which shows the content of a process of the adsorbent and waste liquid supply amount selection mechanism which comprises Embodiment of this invention. 6A and 6B, the same reference numerals as those shown in FIGS. 1A to 5 denote the same parts, and a detailed description thereof will be omitted.

本発明の放射性廃液の処理方法及び処理装置の第6の実施の形態は、大略第1の実施の形態と同様の機器で構成されるが、放射性廃液1を格納する槽10に、放射性廃液1の塩分濃度(Salinity concentration)を測定する塩分濃度測定機構17を設けた点と、吸着剤Cを充填した第3吸着塔14Cと吸着剤Dを充填した第4吸着塔14Dと吸着剤Eを充填した第5吸着塔14Eと吸着剤Fを充填した第6吸着塔14Fとを設けた点と、pH測定機構11と塩分濃度測定機構17からの計測値を基に吸着剤選定機構12が放射性廃液1を供給する吸着塔を選定し、廃液供給機構13へ選定信号を出力する点が異なる。   The sixth embodiment of the method and apparatus for treating radioactive liquid waste according to the present invention is generally constituted by the same equipment as that of the first embodiment. A salinity concentration measuring mechanism 17 for measuring the salinity concentration, a third adsorption tower 14C filled with an adsorbent C, a fourth adsorption tower 14D filled with an adsorbent D, and an adsorbent E The adsorbent selection mechanism 12 determines the radioactive waste liquid based on the provision of the fifth adsorption tower 14E and the sixth adsorption tower 14F filled with the adsorbent F, and the measured values from the pH measurement mechanism 11 and the salt concentration measurement mechanism 17. 1 is different in that an adsorption tower for supplying 1 is selected and a selection signal is output to the waste liquid supply mechanism 13.

図6Aに示すように、本実施の形態を構成する放射性廃液処理装置の廃液供給機構13は、吸着剤選定機構12からの選定信号に従って、槽10から放射性廃液1を吸い込み第3吸着塔14Cへ供給する第3ポンプ20Cと、槽10から放射性廃液1を吸い込み第4吸着塔14Dへ供給する第4ポンプ20Dと、槽10から放射性廃液1を吸い込み第5吸着塔14Eへ供給する第5ポンプ20Eと、槽10から放射性廃液1を吸い込み第6吸着塔14Fへ供給する第6ポンプ20Fと、槽10と第3乃至第6ポンプ20C〜Fとを接続する配管と、第3乃至第6ポンプ20C〜Fと第3乃至第6吸着塔14C〜Fとをそれぞれ接続する配管とを備えている。   As shown in FIG. 6A, the waste liquid supply mechanism 13 of the radioactive waste liquid treatment apparatus constituting the present embodiment draws in the radioactive waste liquid 1 from the tank 10 to the third adsorption tower 14C according to the selection signal from the adsorbent selection mechanism 12. A third pump 20C for supplying, a fourth pump 20D for sucking the radioactive waste liquid 1 from the tank 10 and supplying it to the fourth adsorption tower 14D, and a fifth pump 20E for sucking the radioactive waste liquid 1 from the tank 10 and supplying it to the fifth adsorption tower 14E. A sixth pump 20F that sucks in the radioactive waste liquid 1 from the tank 10 and supplies it to the sixth adsorption tower 14F; a pipe connecting the tank 10 to the third to sixth pumps 20C to 20F; To F and third to sixth adsorption towers 14C to 14F, respectively.

塩分濃度測定機構17としては、例えば、イオン電極、電気伝導率計、イオンクロマトグラフィ、誘導結合プラズマ発光分析装置、誘導結合プラズマ質量分析装置、原子吸光光度計が用いられる。塩分濃度測定機構17では、塩分濃度、Na濃度、Cl濃度の他に、例えば、K濃度、Cs濃度、Mg濃度、Ca濃度、Sr濃度、Ba濃度等を取得しても良い。   As the salt concentration measurement mechanism 17, for example, an ion electrode, an electric conductivity meter, ion chromatography, an inductively coupled plasma emission spectrometer, an inductively coupled plasma mass spectrometer, and an atomic absorption spectrophotometer are used. The salt concentration measuring mechanism 17 may acquire, for example, K concentration, Cs concentration, Mg concentration, Ca concentration, Sr concentration, Ba concentration, etc., in addition to the salt concentration, Na concentration, and Cl concentration.

ところで、吸着剤の吸着性能は上述した放射性廃液1のpHの値以外にも、放射性廃液1の塩分濃度によっても変化する。本実施の形態においては、塩分濃度が高い時に適した吸着剤C,Eを充填した第3及び第5吸着塔14C,Eと、塩分濃度が低い時に適した吸着剤D,Fを充填した第4及び第6吸着塔14D,Fと備え、吸着剤C,Dの好適pH範囲を酸性側として、吸着剤E,Fの好適pH範囲を塩基性側としている。このことにより、放射性廃液1のpHおよび塩分濃度において最も高い分配係数を持つ吸着剤を充填した吸着塔を選定し、この選定した吸着塔に放射性廃液1を通水して処理を行うことを特徴とする。   Incidentally, the adsorption performance of the adsorbent varies depending on the salt concentration of the radioactive waste liquid 1 in addition to the pH value of the radioactive waste liquid 1 described above. In the present embodiment, the third and fifth adsorption towers 14C and 14E filled with adsorbents C and E suitable when the salt concentration is high, and the third and fifth adsorption towers D and F filled with adsorbents suitable when the salt concentration is low. With the fourth and sixth adsorption towers 14D and 14F, the preferred pH range of the adsorbents C and D is set to the acidic side, and the preferable pH range of the adsorbents E and F is set to the basic side. Thus, an adsorption tower filled with an adsorbent having the highest partition coefficient at the pH and salt concentration of the radioactive waste liquid 1 is selected, and the radioactive waste liquid 1 is passed through the selected adsorption tower for treatment. And

本実施の形態における吸着剤選定機構12の吸着剤C〜Fの選定方法について説明する。まず、吸着剤選定機構12には吸着剤C,D,E,Fの各pHおよび塩分濃度における目的物質の分配係数がデータベースとして保存されている。本実施の形態においては、槽10の放射性廃液1AのpHがpH=aであり、塩分濃度の値がScである場合を例に説明する。   A method of selecting the adsorbents C to F by the adsorbent selection mechanism 12 in the present embodiment will be described. First, the adsorbent selection mechanism 12 stores a distribution coefficient of the target substance at each pH and salt concentration of the adsorbents C, D, E, and F as a database. In the present embodiment, a case where the pH of the radioactive waste liquid 1A in the tank 10 is pH = a and the value of the salt concentration is Sc will be described as an example.

図6Bにおいて、吸着剤選定機構12は、放射性廃液1の塩分濃度の値Scが予め定めた規定値Zを超過しているか否かを判断する(ステップS61)。具体的には、Sc>Zか否かを判断する。放射性廃液1の塩分濃度の値Scが規定値Zを超過している場合には、ステップS62へ進み、それ以外の場合にはステップS65へ進む。   In FIG. 6B, the adsorbent selection mechanism 12 determines whether or not the salt concentration value Sc of the radioactive waste liquid 1 exceeds a predetermined value Z (step S61). Specifically, it is determined whether Sc> Z. When the value Sc of the salt concentration of the radioactive waste liquid 1 exceeds the specified value Z, the process proceeds to step S62, and otherwise, the process proceeds to step S65.

吸着剤選定機構12は、塩分濃度が高い領域で吸着性能が高い吸着剤C,Eのうち、pH=aにおいてより高い吸着性能を示す吸着剤を選択する(ステップS62)。具体的には、Kd,C(a)<Kd,E(a)か否かを判断する。pH=aにおける吸着剤Eの吸着性能が吸着剤Cの吸着性能より高い場合にはステップS63へ進み、それ以外の場合はステップS64へ進む。   The adsorbent selecting mechanism 12 selects an adsorbent exhibiting higher adsorption performance at pH = a from the adsorbents C and E having high adsorption performance in the region where the salt concentration is high (step S62). Specifically, it is determined whether or not Kd, C (a) <Kd, E (a). If the adsorbing performance of the adsorbent E at pH = a is higher than the adsorbing performance of the adsorbent C, the process proceeds to step S63; otherwise, the process proceeds to step S64.

ステップS62において、吸着剤Eの吸着性能が吸着剤Cの吸着性能より高い場合、吸着剤選定機構12は、吸着剤Eを選択する(ステップS63)。具体的には、吸着剤選定機構12は、吸着剤Eが充填された第5吸着塔14Eを選択し、廃液供給機構13の第5ポンプ20Eにより放射性廃液1を通水する。 If the adsorption performance of the adsorbent E is higher than the adsorption performance of the adsorbent C in step S62, the adsorbent selection mechanism 12 selects the adsorbent E (step S63). Specifically, the adsorbent selection mechanism 12 selects the fifth adsorption tower 14E filled with the adsorbent E, and allows the radioactive waste liquid 1 to flow through the fifth pump 20E of the waste liquid supply mechanism 13.

ステップS62において、吸着剤Eの吸着性能が吸着剤Cの吸着性能より高くない場合、吸着剤選定機構12は、吸着剤Cを選択する(ステップS64)。具体的には、吸着剤選定機構12は、吸着剤Cが充填された第3吸着塔14Cを選択し、廃液供給機構13の第3ポンプ20Cにより放射性廃液1を通水する。   In step S62, when the adsorption performance of the adsorbent E is not higher than the adsorption performance of the adsorbent C, the adsorbent selection mechanism 12 selects the adsorbent C (step S64). Specifically, the adsorbent selection mechanism 12 selects the third adsorption tower 14C filled with the adsorbent C, and allows the radioactive waste liquid 1 to flow through the third pump 20C of the waste liquid supply mechanism 13.

ステップS61において、放射性廃液1の塩分濃度Scが規定値Zを超過していない場合、吸着剤選定機構12は、塩分濃度が低い領域で吸着性能が高い吸着剤D,Fのうち、pH=aにおいてより高い吸着性能を示す吸着剤を選択する(ステップS65)。具体的には、Kd,D(a)<Kd,F(a)か否かを判断する。pH=aにおける吸着剤Fの吸着性能が吸着剤Dの吸着性能より高い場合にはステップS66へ進み、それ以外の場合はステップS67へ進む。   In step S61, when the salt concentration Sc of the radioactive waste liquid 1 does not exceed the specified value Z, the adsorbent selecting mechanism 12 sets the pH = a of the adsorbents D and F having high adsorption performance in a low salt concentration region. In step S65, an adsorbent exhibiting higher adsorption performance is selected (step S65). Specifically, it is determined whether or not Kd, D (a) <Kd, F (a). If the adsorption performance of the adsorbent F at pH = a is higher than the adsorption performance of the adsorbent D, the process proceeds to step S66; otherwise, the process proceeds to step S67.

ステップS65において、吸着剤Fの吸着性能が吸着剤Dの吸着性能より高い場合、吸着剤選定機構12は、吸着剤Fを選択する(ステップS66)。具体的には、吸着剤選定機構12は、吸着剤Fが充填された第6吸着塔14Fを選択し、廃液供給機構13の第6ポンプ20Fにより放射性廃液1を通水する。 If the adsorption performance of the adsorbent F is higher than the adsorption performance of the adsorbent D in step S65, the adsorbent selection mechanism 12 selects the adsorbent F (step S66). Specifically, the adsorbent selection mechanism 12 selects the sixth adsorption tower 14F filled with the adsorbent F, and allows the radioactive waste liquid 1 to flow through the sixth pump 20F of the waste liquid supply mechanism 13.

ステップS65において、吸着剤Fの吸着性能が吸着剤Dの吸着性能より高くない場合、吸着剤選定機構12は、吸着剤Dを選択する(ステップS67)。具体的には、吸着剤選定機構12は、吸着剤Dが充填された第4吸着塔14Dを選択し、廃液供給機構13の第4ポンプ20Dにより放射性廃液1を通水する。   If the adsorption performance of the adsorbent F is not higher than the adsorption performance of the adsorbent D in step S65, the adsorbent selection mechanism 12 selects the adsorbent D (step S67). Specifically, the adsorbent selection mechanism 12 selects the fourth adsorption tower 14D filled with the adsorbent D, and allows the radioactive waste liquid 1 to flow through the fourth pump 20D of the waste liquid supply mechanism 13.

上述した本発明の放射性廃液の処理方法及び処理装置の第6の実施の形態によれば、上述した第1の実施の形態と同様の効果を得ることができる。   According to the above-described sixth embodiment of the method and apparatus for treating a radioactive waste liquid of the present invention, the same effects as those of the first embodiment can be obtained.

また、上述した本発明の放射性廃液の処理方法及び処理装置の第6の実施の形態によれば、吸着剤の吸着性能がより高いpHおよび塩分濃度の領域で処理が行え、吸着剤を有効利用できる。また、共存するCaやNaなどによる吸着部位の占有が低減するので、吸着剤における吸着部位の占有による目的物質の吸着性能の低下を抑制できる。   Further, according to the sixth embodiment of the method and apparatus for treating a radioactive liquid waste of the present invention described above, the treatment can be performed in a region where the adsorption performance of the adsorbent is higher and the pH and salt concentration are higher, and the adsorbent is effectively used. it can. In addition, since the occupation of the adsorption site by coexisting Ca, Na, or the like is reduced, a decrease in the adsorption performance of the target substance due to the occupation of the adsorption site in the adsorbent can be suppressed.

以下、本発明の放射性廃液の処理方法及び処理装置の第7の実施の形態を図面を用いて説明する。図7は本発明の放射性廃液の処理方法及び処理装置の第7の実施の形態を構成する放射性廃液処理装置を示す概念図である。図7において、図1A乃至6Bに示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。   Hereinafter, a seventh embodiment of the method and apparatus for treating a radioactive waste liquid according to the present invention will be described with reference to the drawings. FIG. 7 is a conceptual diagram showing a radioactive waste liquid treatment apparatus constituting a seventh embodiment of the radioactive waste liquid treatment method and treatment apparatus of the present invention. 7, the same reference numerals as those shown in FIGS. 1A to 6B denote the same parts, and a detailed description thereof will be omitted.

本発明の放射性廃液の処理方法及び処理装置の第7の実施の形態は、大略第1乃至第6のいずれかの実施の形態に加えて、処理設備18による処理を併用して行う点が異なる。図7に示すように、本実施の形態を構成する放射性廃液処理装置の槽10の前段に設置する処理設備18A、吸着塔14C、14D、14E、14Fの後段に設置する処理設備18Bのいずれか、あるいはその両方で放射性廃液1または2次処理液2Aを処理する。   The seventh embodiment of the method and apparatus for treating a radioactive liquid waste of the present invention is different from the first to sixth embodiments in that the treatment by the treatment equipment 18 is performed in combination. . As shown in FIG. 7, any one of a processing facility 18A installed before the tank 10 and a processing facility 18B installed after the adsorption towers 14C, 14D, 14E, and 14F of the radioactive liquid waste treatment apparatus constituting the present embodiment. , Or both, to treat the radioactive waste liquid 1 or the secondary treatment liquid 2A.

処理設備18Aまたは18Bとしては、例えば、MF(Microfiltration Membrane)膜、RO(Reverse Osmosis)膜、コロイド除去フィルタによるろ過処理装置、吸着剤を充填した吸着塔、酸の添加装置、攪拌装置、脱気装置を単独あるいは組み合わせたものが用いられる。吸着塔に充填する吸着剤は、例えば、イオン交換樹脂、キレート樹脂、活性炭、ゼオライトなどが使用できる。処理設備18では、放射性廃液および処理液中から、イオンの状態の放射性物質、放射性物質を含む錯体、有機物、炭酸イオン、無機塩類を除去する。   Examples of the processing equipment 18A or 18B include, for example, a MF (Microfiltration Membrane) membrane, an RO (Reverse Osmosis) membrane, a filtration treatment apparatus using a colloid removal filter, an adsorption tower filled with an adsorbent, an acid addition apparatus, a stirring apparatus, and a degassing apparatus. A single device or a combination thereof is used. As the adsorbent to be filled in the adsorption tower, for example, an ion exchange resin, a chelate resin, activated carbon, zeolite and the like can be used. The treatment facility 18 removes radioactive substances in the form of ions, complexes containing radioactive substances, organic substances, carbonate ions, and inorganic salts from the radioactive waste liquid and the processing liquid.

放射性廃液1は処理設備18Aに通水された後、1次処理液3として槽10に移送される。槽10に移送された1次処理液は第1乃至第6のいずれかの実施の形態で処理される。なお、図7では一例として1次処理液3を第6の実施の形態で処理する場合を記載した。吸着塔14C、14D、14E、14Fのいずれかに通水された1次処理液3は、2次処理液2Aとしてポンプ20Gを通り、処理設備18Bに移送される。処理設備18Bでは2次処理液2Aを通水して処理液2Bを得る。   After the radioactive waste liquid 1 is passed through the processing equipment 18A, it is transferred to the tank 10 as the primary processing liquid 3. The primary processing liquid transferred to the tank 10 is processed in any of the first to sixth embodiments. FIG. 7 shows an example in which the primary processing liquid 3 is processed according to the sixth embodiment. The primary processing liquid 3 that has passed through any of the adsorption towers 14C, 14D, 14E, and 14F is transferred to the processing equipment 18B as a secondary processing liquid 2A through a pump 20G. In the treatment equipment 18B, the treatment liquid 2B is obtained by passing water through the secondary treatment liquid 2A.

上述した本発明の放射性廃液の処理方法及び処理装置の第7の実施の形態によれば、上述した第1の実施の形態と同様の効果を得ることができる。   According to the above-described seventh embodiment of the method and apparatus for treating a radioactive liquid waste of the present invention, the same effects as those of the above-described first embodiment can be obtained.

また、上述した本発明の放射性廃液の処理方法及び処理装置の第7の実施の形態によれば、吸着剤の吸着性能がより高い液性で処理が行えるため、吸着剤が有効利用できる。また、吸着剤で除去できない物質や、処理液中に残留している放射性物質の濃度をより低下させることができる。   Moreover, according to the above-described seventh embodiment of the radioactive liquid treatment method and the treatment apparatus of the present invention, the treatment can be performed with a liquid having a higher adsorbent adsorption performance, so that the adsorbent can be used effectively. Further, the concentration of a substance that cannot be removed by the adsorbent or a radioactive substance remaining in the treatment liquid can be further reduced.

なお、本発明は上述した第1乃至第7の実施の形態に限られるものではなく、様々な変形例が含まれる。上記した実施形態は本発明をわかり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加、削除、置換をすることも可能である。   Note that the present invention is not limited to the above-described first to seventh embodiments, and includes various modifications. The above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. For example, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, for a part of the configuration of each embodiment, it is also possible to add, delete, or replace another configuration.

1,1A,1B:放射性廃液、2,2B:処理液、2A:2次処理液、3:1次処理液、10:槽、10A:第1槽、10B:第2槽、11:pH測定機構、12:吸着剤選定機構、12A:吸着剤及び廃液供給量選定機構、13,13A:廃液供給機構、14A:第1吸着塔、14B:第2吸着塔、14C:第3吸着塔、14D:第4吸着塔、14E:第5吸着塔、14F:第6吸着塔、15A:第1pH緩衝塔、15B:第2pH緩衝塔、16:pH緩衝判定機構、17:塩分濃度測定機構、20:ポンプ、20A:第1ポンプ、20B:第2ポンプ、20C:第3ポンプ、20D:第4ポンプ、20E:第5ポンプ、20F:第6ポンプ、20T:移送ポンプ、20A’:混合比率に応じた供給流量を調整可能な第1ポンプ、20B’:混合比率に応じた供給流量を調整可能な第2ポンプ、20A”:第1ブースターポンプ、20B”:第2ブースターポンプ 1, 1A, 1B: radioactive waste liquid, 2 , 2B : processing liquid, 2A: secondary processing liquid, 3: primary processing liquid, 10: tank, 10A: first tank, 10B: second tank, 11: pH measurement Mechanism, 12: adsorbent selection mechanism, 12A: adsorbent and waste liquid supply amount selection mechanism, 13, 13A: waste liquid supply mechanism, 14A: first adsorption tower, 14B: second adsorption tower, 14C: third adsorption tower, 14D : Fourth adsorption tower, 14E: fifth adsorption tower, 14F: sixth adsorption tower, 15A: first pH buffer tower, 15B: second pH buffer tower, 16: pH buffer determination mechanism, 17: salt concentration measurement mechanism, 20: Pump, 20A: first pump, 20B: second pump, 20C: third pump, 20D: fourth pump, 20E: fifth pump, 20F: sixth pump, 20T: transfer pump, 20A ': according to mixing ratio Pump 20B ′ capable of adjusting the supply flow rate : A second pump capable of adjusting the supply flow rate according to the mixing ratio, 20A ″: a first booster pump, 20B ″: a second booster pump

Claims (6)

放射性物質を含む放射性廃液と、前記放射性物質を吸着する吸着剤であって、高い吸着性能を実現する前記放射性廃液のpHの範囲である好適pH範囲が異なる少なくとも2種類の吸着剤と、前記放射性廃液のpHを測定するpH測定機構とを備えた放射性廃液の処理装置の処理方法において、
前記pH測定機構で前記放射性廃液のpHを測定する工程と、
測定した前記放射性廃液のpHに応じて、前記吸着剤を少なくとも1種類以上使用して前記放射性廃液を処理する工程とを備え、
前記放射性廃液の処理装置は、前記放射性廃液のpHが変化した際に、使用している前記吸着剤を他の吸着剤に変更する吸着剤選定機構を更に備え、
変化前の前記放射性廃液のpHにおける前記吸着剤の吸着性能を演算する工程と、
変化後の前記放射性廃液のpHにおける前記吸着剤の吸着性能を演算する工程と、
変化後の前記放射性廃液のpHにおける前記吸着剤の吸着性能に対する変化前の前記放射性廃液のpHにおける前記吸着剤の吸着性能の比率Rを演算する工程と、
前記比率Rと予め定めた規定値とを比較する工程と、
前記比率Rが前記規定値を上回る場合に前記吸着剤選定機構により使用している吸着剤を他の吸着剤に変更する工程とを備えた
ことを特徴とする放射性廃液の処理装置の処理方法。
A radioactive waste liquid containing a radioactive substance, and an adsorbent for adsorbing the radioactive substance, wherein at least two types of adsorbents having different suitable pH ranges, which are pH ranges of the radioactive waste liquid realizing high adsorption performance, In a treatment method of a radioactive waste liquid treatment device having a pH measurement mechanism for measuring the pH of the waste liquid,
Measuring the pH of the radioactive waste liquid with the pH measurement mechanism;
Treating the radioactive waste liquid using at least one kind of the adsorbent according to the measured pH of the radioactive waste liquid ,
The apparatus for treating a radioactive waste liquid further includes an adsorbent selecting mechanism for changing the used adsorbent to another adsorbent when the pH of the radioactive waste liquid changes,
Calculating the adsorption performance of the adsorbent at the pH of the radioactive liquid waste before the change,
Calculating the adsorption performance of the adsorbent at the pH of the radioactive waste liquid after the change,
Calculating the ratio R of the adsorption performance of the adsorbent at the pH of the radioactive waste liquid before the change to the adsorption performance of the adsorbent at the pH of the radioactive waste liquid after the change,
Comparing the ratio R with a predetermined specified value;
Changing the adsorbent used by the adsorbent selecting mechanism to another adsorbent when the ratio R exceeds the specified value . A method for treating an apparatus for treating radioactive waste liquid, the method comprising:
放射性物質を含む放射性廃液と、前記放射性廃液を格納する槽と、前記放射性廃液のpHを測定するpH測定機構と、前記放射性物質を吸着する吸着剤であって、高い吸着性能を実現する前記放射性廃液のpHの範囲である好適pH範囲が異なる少なくとも2種類の吸着剤と、前記吸着剤をそれぞれに充填した少なくとも2個の吸着塔と、前記pH測定機構が測定した前記放射性廃液のpHに対して、高い吸着性能を示す吸着剤を選定する吸着剤選定機構と、
前記吸着剤選定機構が選定した吸着剤が充填された吸着塔に、前記槽に格納された前記放射性廃液を供給する廃液供給機構とを備えた放射性廃液の処理装置において、
前記吸着剤選定機構は、
前記pH測定機構が測定した前記放射性廃液のpHの履歴を記録する記録部と、
前記記録部に記録された前記放射性廃液のpHの履歴から、現在の前記放射性廃液のpHが変化した際に、変化後の前記放射性廃液のpHにおける前記吸着剤の吸着性能に対する変化前の前記放射性廃液のpHにおける前記吸着剤の吸着性能の比率Rと予め定めた規定値とを比較する演算部と、
前記演算部において前記比率Rが前記規定値を上回る場合に使用している吸着剤を他の吸着剤に変更する制御部を備えた
ことを特徴とする放射性廃液の処理装置。
A radioactive waste liquid containing a radioactive substance, a tank for storing the radioactive waste liquid, a pH measurement mechanism for measuring the pH of the radioactive waste liquid, and an adsorbent for adsorbing the radioactive substance, wherein the radioactive substance realizing high adsorption performance At least two kinds of adsorbents having different preferred pH ranges that are the pH range of the waste liquid, at least two adsorption towers each filled with the adsorbent, and the pH of the radioactive waste liquid measured by the pH measurement mechanism. Adsorbent selection mechanism to select an adsorbent that exhibits high adsorption performance,
An adsorption tower filled with an adsorbent selected by the adsorbent selection mechanism, a waste liquid supply mechanism for supplying the radioactive waste liquid stored in the tank, a radioactive waste liquid treatment apparatus,
The adsorbent selection mechanism,
A recording unit that records the history of the pH of the radioactive liquid waste measured by the pH measurement mechanism,
From the history of the pH of the radioactive waste liquid recorded in the recording unit, when the current pH of the radioactive waste liquid changes, the radioactivity before the change in the adsorption performance of the adsorbent at the changed pH of the radioactive waste liquid An arithmetic unit for comparing the ratio R of the adsorption performance of the adsorbent at the pH of the waste liquid with a predetermined value,
Apparatus for treating a radioactive liquid waste, characterized in that a control unit for changing the adsorbent to the ratio R in the arithmetic unit is used when greater than the specified value to other adsorbents.
放射性物質を含む放射性廃液と、前記放射性廃液を格納する槽と、前記放射性廃液のpHを測定するpH測定機構と、前記放射性物質を吸着する吸着剤であって、前記放射性廃液に対して高い吸着性能を実現するpHの範囲である好適pH範囲が異なる2種類の吸着剤と、前記吸着剤をそれぞれに充填した2個の吸着塔と、前記pH測定機構が測定した前記放射性廃液のpHにおける前記2種類の吸着剤の吸着性能が規定値を超過するか否かを判断し前記2種類の吸着剤の少なくとも1つを選定する吸着剤選定機構と、
前記吸着剤選定機構が選定した吸着剤が充填された選定吸着塔に、前記槽に格納された前記放射性廃液を供給する廃液供給機構とを備えた放射性廃液の処理装置において、
記2個の吸着塔直列に設置され
前記2種類の吸着剤の吸着性能がいずれも前記規定値を超過する場合、
前記吸着剤選定機構は前記2種類の吸着剤を選定し、
前記廃液供給機構は、前記槽に格納された前記放射性廃液を、前記吸着剤選定機構が選定した前記2種類の吸着剤がそれぞれに充填された2個の選定吸着塔のうちの一の選定吸着塔に供給し、前記一の選定吸着塔からの処理液を前記2個の選定吸着塔のうちの他の選定吸着塔に供給し、
前記2種類の吸着剤の少なくとも1つの吸着性能が前記規定値を超過しない場合、
前記吸着剤選定機構は、前記2種類の吸着剤のうち前記pH測定機構が測定した前記放射性廃液のpHにおける吸着性能がより高い吸着剤を選定し、
前記廃液供給機構は、前記2個の吸着塔のうちの前記吸着剤選定機構が選定した吸着剤が充填された選定吸着塔に、前記槽に格納された前記放射性廃液を供給
ことを特徴とする放射性廃液の処理装置。
A radioactive waste liquid containing a radioactive substance, a tank for storing the radioactive waste liquid, a pH measuring mechanism for measuring the pH of the radioactive waste liquid, and an adsorbent for adsorbing the radioactive substance, which has high adsorption to the radioactive waste liquid Two types of adsorbents having different preferred pH ranges that are ranges of pH for realizing performance, two adsorption towers each filled with the adsorbent, and the pH of the radioactive waste liquid measured by the pH measurement mechanism An adsorbent selection mechanism for determining whether or not the adsorption performance of the two adsorbents exceeds a specified value and selecting at least one of the two adsorbents;
In a radioactive waste liquid treatment apparatus, the selected adsorption tower filled with the adsorbent selected by the adsorbent selection mechanism includes a waste liquid supply mechanism that supplies the radioactive waste liquid stored in the tank .
Before two of the adsorption tower Symbol is placed in series,
When the adsorption performance of the two adsorbents both exceeds the specified value,
The adsorbent selection mechanism selects the two types of adsorbents,
The waste liquid supply mechanism, the radioactive liquid waste is stored in the tank, the one selected adsorption of one of the two selected adsorption tower in which the adsorbent selected mechanism is selected two adsorbent is filled in each It was fed to the column, supplying a process liquid from the one selected adsorption column to another selection adsorption tower of the previous SL two selected adsorption tower,
When at least one adsorption performance of the two types of adsorbent does not exceed the specified value,
The adsorbent selection mechanism selects an adsorbent having a higher adsorption performance at the pH of the radioactive waste liquid measured by the pH measurement mechanism among the two types of adsorbents,
The waste liquid supply mechanism, the two pieces of the adsorbent adsorbent selected mechanism is selected is filled a selected adsorption tower of the adsorption towers, supply the radioactive waste liquid stored in the tank
An apparatus for treating a radioactive liquid waste.
放射性物質を含む放射性廃液と、前記放射性廃液を格納する槽と、前記放射性廃液のpHを測定するpH測定機構と、前記放射性物質を吸着する吸着剤であって、高い吸着性能を実現する前記放射性廃液のpHの範囲である好適pH範囲が異なる少なくとも2種類の吸着剤と、前記吸着剤をそれぞれに充填した少なくとも2個の吸着塔と、前記pH測定機構が測定した前記放射性廃液のpHに対して、高い吸着性能を示す吸着剤を選定する吸着剤選定機構と、
前記吸着剤選定機構が選定した吸着剤が充填された選定吸着塔に、前記槽に格納された前記放射性廃液を供給する廃液供給機構とを備えた放射性廃液の処理装置において、
前記放射性廃液は、少なくとも2種類以上の異なるpHの放射性廃液により構成され、
前記槽は、前記少なくとも2種類以上の異なるpHの放射性廃液が格納された少なくとも2個の槽を備え
前記廃液供給機構は、前記少なくとも2個の槽に格納された前記放射性廃液を任意の比率で混合し、混合した放射性廃液を前記選定吸着塔に供給す
ことを特徴とする放射性廃液の処理装置。
A radioactive waste liquid containing a radioactive substance, a tank for storing the radioactive waste liquid, a pH measurement mechanism for measuring the pH of the radioactive waste liquid, and an adsorbent for adsorbing the radioactive substance, wherein the radioactive substance realizing high adsorption performance At least two kinds of adsorbents having different preferred pH ranges that are the pH range of the waste liquid, at least two adsorption towers each filled with the adsorbent, and the pH of the radioactive waste liquid measured by the pH measurement mechanism. Adsorbent selection mechanism to select an adsorbent that exhibits high adsorption performance,
In a radioactive waste liquid treatment apparatus, the selected adsorption tower filled with the adsorbent selected by the adsorbent selection mechanism includes a waste liquid supply mechanism that supplies the radioactive waste liquid stored in the tank .
The radioactive waste liquid is composed of at least two or more different types of radioactive waste liquid,
The tank is provided with at least two tanks radioactive liquid waste has been stored for at least two or more different pH,
The waste liquid supply mechanism, the mixing the radioactive liquid waste stored in at least two tanks in any ratio, you supplying a mixed radioactive liquid waste in the selected adsorption tower
An apparatus for treating a radioactive liquid waste.
放射性物質を含む放射性廃液と、前記放射性廃液を格納する槽と、前記放射性廃液のpHを測定するpH測定機構と、前記放射性物質を吸着する吸着剤であって、高い吸着性能を実現する前記放射性廃液のpHの範囲である好適pH範囲が異なる少なくとも2種類の吸着剤と、前記吸着剤をそれぞれに充填した少なくとも2個の吸着塔と、前記pH測定機構が測定した前記放射性廃液のpHに対して、高い吸着性能を示す吸着剤を選定する吸着剤選定機構と、
前記吸着剤選定機構が選定した吸着剤が充填された吸着塔に、前記槽に格納された前記放射性廃液を供給する廃液供給機構とを備えた放射性廃液の処理装置において、
前記槽に格納された前記放射性廃液の塩分濃度を測定する塩分濃度測定機構を更に備え、
前記吸着剤選定機構は、前記pH測定機構が測定した前記放射性廃液のpHと、前記塩分濃度測定機構が測定した前記放射性廃液の塩分濃度に応じて高い吸着性能を示す吸着剤を選定する
ことを特徴とする放射性廃液の処理装置。
A radioactive waste liquid containing a radioactive substance, a tank for storing the radioactive waste liquid, a pH measurement mechanism for measuring the pH of the radioactive waste liquid, and an adsorbent for adsorbing the radioactive substance, wherein the radioactive substance realizing high adsorption performance At least two kinds of adsorbents having different preferred pH ranges that are the pH range of the waste liquid, at least two adsorption towers each filled with the adsorbent, and the pH of the radioactive waste liquid measured by the pH measurement mechanism. Adsorbent selection mechanism to select an adsorbent that exhibits high adsorption performance,
An adsorption tower filled with an adsorbent selected by the adsorbent selection mechanism, a waste liquid supply mechanism for supplying the radioactive waste liquid stored in the tank, a radioactive waste liquid treatment apparatus,
The apparatus further includes a salt concentration measuring mechanism for measuring a salt concentration of the radioactive waste liquid stored in the tank,
The adsorbent selection mechanism selects an adsorbent exhibiting high adsorption performance according to the pH of the radioactive waste liquid measured by the pH measurement mechanism and the salt concentration of the radioactive waste liquid measured by the salt concentration measurement mechanism. Characteristic radioactive waste liquid treatment equipment.
請求項2から5のいずれか1項に記載の放射性廃液の処理装置において、
前記槽の前段、前記吸着塔の後段の少なくとも1箇所に、ろ過処理装置、吸着剤を充填した吸着塔、酸の添加装置、攪拌装置、脱気装置のなかから少なくとも1種類の処理装置を備える
ことを特徴とする放射性廃液の処理装置。
An apparatus for treating a radioactive liquid waste according to any one of claims 2 to 5 ,
At least one of a filtration device, an adsorption column filled with an adsorbent, an acid addition device, a stirring device, and a deaeration device is provided at least at one location before the tank and after the adsorption tower. An apparatus for treating a radioactive liquid waste.
JP2016146904A 2016-07-27 2016-07-27 Method and apparatus for treating radioactive liquid waste Active JP6656108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016146904A JP6656108B2 (en) 2016-07-27 2016-07-27 Method and apparatus for treating radioactive liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146904A JP6656108B2 (en) 2016-07-27 2016-07-27 Method and apparatus for treating radioactive liquid waste

Publications (3)

Publication Number Publication Date
JP2018017565A JP2018017565A (en) 2018-02-01
JP2018017565A5 JP2018017565A5 (en) 2019-03-07
JP6656108B2 true JP6656108B2 (en) 2020-03-04

Family

ID=61076159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146904A Active JP6656108B2 (en) 2016-07-27 2016-07-27 Method and apparatus for treating radioactive liquid waste

Country Status (1)

Country Link
JP (1) JP6656108B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7068127B2 (en) * 2018-10-02 2022-05-16 株式会社東芝 Waste liquid treatment method and waste liquid treatment device
KR102624080B1 (en) * 2023-07-28 2024-01-12 한국건설기술연구원 Mobile radioactive contaminated water treatment system for simultaneous removal of high-concentration multi-nuclide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132199A (en) * 1986-11-21 1988-06-04 株式会社日立製作所 Method of processing waste liquor containing fission product
JP5880851B2 (en) * 2012-06-15 2016-03-09 株式会社神戸製鋼所 Radionuclide decontamination system and radionuclide decontamination method
JP6080534B2 (en) * 2012-09-19 2017-02-15 日立造船株式会社 Method of removing radioactive cesium from wastewater and storing it stably
JP2014163843A (en) * 2013-02-26 2014-09-08 Toshiba Corp Cleaning acid recycling method and recycling facility
GB2533497B (en) * 2013-08-23 2017-12-20 Hitachi Ge Nuclear Energy Ltd Method of treating radioactive liquid waste and radioactive liquid waste treatment apparatus
JP2015125072A (en) * 2013-12-26 2015-07-06 三菱重工業株式会社 Wastewater treatment device and wastewater treatment method

Also Published As

Publication number Publication date
JP2018017565A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
US9799418B2 (en) Method of treating radioactive liquid waste and radioactive liquid waste treatment apparatus
BRPI0610715A2 (en) water treatment method and system and environment regeneration method in water treatment system with electrodeionization device
CN101218012A (en) Regenareation of adsorption media within an electrodeionization device
JP5880851B2 (en) Radionuclide decontamination system and radionuclide decontamination method
JP6656108B2 (en) Method and apparatus for treating radioactive liquid waste
JP6046582B2 (en) Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
Hansen et al. Use of iron oxide-coated sand to remove strontium from simulated Hanford tank wastes
KR101551233B1 (en) Treatment method for radioactive wastewater generated in severe accident in nuclear power plant
WO2016178218A1 (en) Nitrate removal by ion exchange and bioregeneration
JP2016223905A (en) Radioactive liquid effluent processor and processing method thereof
JP6125960B2 (en) Method for treating radioactive liquid waste and apparatus for treating radioactive liquid waste
JP2019070581A (en) Contamination water processing method, contamination water processing system and sodium compound addition device used therefor
JP6651382B2 (en) Wastewater treatment method and wastewater treatment device
RU2442756C1 (en) Way to get desalted water and highly pure water for nuclear power plants in research centres
JP6688157B2 (en) Apparatus and method for treating radioactive waste liquid
JP6879791B2 (en) Radioactive contaminated water treatment equipment, radioactive contaminated water treatment system
JP7311322B2 (en) water purifier
JP7128139B2 (en) Radioactive waste liquid treatment method and radioactive waste liquid treatment system
KR102624080B1 (en) Mobile radioactive contaminated water treatment system for simultaneous removal of high-concentration multi-nuclide
JP2022164323A (en) Radioactive waste liquid treatment method
JP7068127B2 (en) Waste liquid treatment method and waste liquid treatment device
Figueiredo Microporous materials for Cs+ sensing and selective removal from aqueous solutions
JP6783192B2 (en) How to operate the boron recycling system and the boron recycling system
JP2020003248A (en) Radioactive waste liquid processor and method for processing radioactive waste liquid
JP2023017379A (en) Radioactive waste liquid treatment system, and method of radioactive waste liquid treatment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6656108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150