JP6656074B2 - Method for producing conjugated diene compound by dehydration of allylic unsaturated alcohol - Google Patents

Method for producing conjugated diene compound by dehydration of allylic unsaturated alcohol Download PDF

Info

Publication number
JP6656074B2
JP6656074B2 JP2016088589A JP2016088589A JP6656074B2 JP 6656074 B2 JP6656074 B2 JP 6656074B2 JP 2016088589 A JP2016088589 A JP 2016088589A JP 2016088589 A JP2016088589 A JP 2016088589A JP 6656074 B2 JP6656074 B2 JP 6656074B2
Authority
JP
Japan
Prior art keywords
catalyst
aluminum
conjugated diene
diene compound
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016088589A
Other languages
Japanese (ja)
Other versions
JP2017197458A (en
Inventor
慎也 林
慎也 林
季弘 木村
季弘 木村
真幸 吉村
真幸 吉村
吉邦 奥村
吉邦 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016088589A priority Critical patent/JP6656074B2/en
Publication of JP2017197458A publication Critical patent/JP2017197458A/en
Application granted granted Critical
Publication of JP6656074B2 publication Critical patent/JP6656074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はアリル型不飽和アルコールを脱水し、効率的に共役ジエン化合物を製造することのできる触媒を用いた共役ジエン化合物の製造方法に関する。   The present invention relates to a method for producing a conjugated diene compound using a catalyst capable of efficiently producing a conjugated diene compound by dehydrating allylic unsaturated alcohol.

1,3−ブタジエン、イソプレン等の共役ジエンモノマーは、合成ゴム、プラスチックなどの樹脂原料としての工業的価値が高く、その効率的な製造法が求められている。   Conjugated diene monomers such as 1,3-butadiene and isoprene have high industrial value as resin raw materials such as synthetic rubbers and plastics, and an efficient production method is required.

従来、ジエンモノマーはナフサの熱分解炉(クラッカー)の熱分解物を蒸留分離し、その一留分として得られている。しかしながら、この留分精製による方法では、ジエンモノマーを選択的に得たい場合であっても他のモノマー留分(エチレン、プロピレンなど)を含めた採算性を考慮せねばならず、工業的な製造の自由度が低かった。   Conventionally, a diene monomer is obtained by distilling and separating a pyrolysis product of a naphtha pyrolysis furnace (cracker) and obtaining a fraction thereof. However, in this method using fraction purification, even when it is desired to selectively obtain diene monomers, profitability including other monomer fractions (ethylene, propylene, etc.) must be taken into consideration, and industrial production must be considered. Had a low degree of freedom.

そこで、入手の容易なエチレン等の低分子量の化合物を原料としたジエンモノマーの製造方法が検討されている。例えば低級オレフィンの二量化を行った後にMo−Bi−X系触媒の存在下で酸化脱水素処理を行うことによる製造法が特許文献1及び特許文献2に開示されている。しかしこの方法では、酸素を用いることによる爆発の危険性があるほか、未反応ブテンの分離等を行うなど付帯設備が必要となり、設備全体が大型化するという問題がある。特にブテンの副生量が多い場合、1,3−ブタジエン中からブテンを除去する工程が必要となるが、ブテンは蒸留操作では除去することが困難であるため、溶媒抽出法等の多大なコスト又は設備投資が必要な精製操作が必要となる。   Therefore, a method for producing a diene monomer using a readily available low molecular weight compound such as ethylene as a raw material has been studied. For example, Patent Documents 1 and 2 disclose a production method in which dimerization of a lower olefin is performed and then oxidative dehydrogenation treatment is performed in the presence of a Mo-Bi-X-based catalyst. However, in this method, there is a danger of explosion due to the use of oxygen, and additional facilities such as separation of unreacted butene are required, resulting in a problem that the entire facility becomes large. In particular, when the amount of by-produced butene is large, a step of removing butene from 1,3-butadiene is required. However, since butene is difficult to remove by a distillation operation, enormous cost such as a solvent extraction method is required. Alternatively, a refining operation requiring capital investment is required.

別の方法として、不飽和アルコールの脱水反応による製造法があげられる。このような不飽和アルコールは、例えば特許文献3及び特許文献4に示すようなジオールの1分子脱水反応により得ることができる。しかし、ジエン生成物である1,3−ブタジエンの選択率が不十分であり、特にブテンの副生成量が多く、ブテンの分離のためには上述のような設備上の問題点を有している。   As another method, there is a production method by a dehydration reaction of an unsaturated alcohol. Such an unsaturated alcohol can be obtained, for example, by a one-molecule dehydration reaction of a diol as shown in Patent Documents 3 and 4. However, the selectivity of 1,3-butadiene, which is a diene product, is insufficient. In particular, the amount of by-products of butene is large, and the separation of butene has the above-mentioned equipment problems. I have.

別の方法として、特許文献5に記載されるようなアリル型不飽和アルコールの脱水反応による製造法があげられる。特許文献5では特定のケイバン比のシリカアルミナ触媒を用いてα,β−脂肪族不飽和アルコールを脱水して、共役ジエンを生成させている。実施例ではクロチアルコールの脱水反応により1,3−ブタジエンを製造しているが、その選択率は94〜96%にとどまっている。副生物のブテンについての記述はないほか、複数種のα,β−不飽和アルコールを同時に脱水して共役ジエン化合物を得る可能性の記載もない。また、明細書中でブレンステッド酸点とルイス酸点の比率や弱酸と強酸の比率についても記述があるが、酸量及び酸量をアルミニウム量で割った値であるアルミニウム分散度についての記載はない。   As another method, there is a production method by a dehydration reaction of an allyl-type unsaturated alcohol as described in Patent Document 5. In Patent Document 5, α, β-aliphatic unsaturated alcohol is dehydrated using a silica-alumina catalyst having a specific Caban ratio to produce a conjugated diene. In the examples, 1,3-butadiene is produced by the dehydration reaction of cloth alcohol, but the selectivity is only 94 to 96%. There is no description about butene as a by-product, nor is there any description about the possibility of obtaining a conjugated diene compound by simultaneously dehydrating a plurality of types of α, β-unsaturated alcohols. The specification also describes the ratio of Bronsted acid points and Lewis acid points and the ratio of weak acid to strong acid, but the description of the acid amount and the aluminum dispersity, which is the value obtained by dividing the acid amount by the aluminum amount, is not given. Absent.

本反応の原料であるアリル型不飽和アルコール及び生成物である共役ジエンモノマーは重合性化合物である。また、副生物であるブテン等も重合性を示すほか、クロトンアルデヒドやメチルビニルケトンに代表される脱水素副生物は特に高い重合性を有する。そのため、本脱水反応は本質的にコークの生成が起こりやすい反応であり、触媒にコークが付着することが触媒失活の主要因となる。多量のコークの付着に起因して触媒寿命(連続使用時間)が短いこと、及び共役ジエンモノマーの消費による選択率低下が起こることが本脱水反応の大きな問題点として挙げられる。   The allyl-type unsaturated alcohol which is a raw material of this reaction and the conjugated diene monomer which is a product are polymerizable compounds. In addition, by-products such as butene also show polymerizability, and dehydrogenation by-products represented by crotonaldehyde and methyl vinyl ketone have particularly high polymerizability. Therefore, the present dehydration reaction is essentially a reaction in which coke is easily generated, and adhesion of coke to the catalyst is a main factor of catalyst deactivation. The major problems of the present dehydration reaction are that the catalyst life (continuous use time) is short due to the adhesion of a large amount of coke, and the selectivity decreases due to consumption of the conjugated diene monomer.

このようなコークの付着により失活した触媒は、例えば空気を含むガスの流通下に触媒を高温で処理するなど、適切な再生処理を行うことにより、その性能を回復させることができるが、その為には余分な設備、工程、費用などが必要となる。したがって、共役ジエン選択率が高く、ブテンなどの副生物が少なく、触媒寿命の長い触媒が強く望まれている。   The performance of the catalyst deactivated due to the adhesion of coke can be restored by performing an appropriate regeneration treatment such as, for example, treating the catalyst at a high temperature under a flow of a gas containing air. For this purpose, extra equipment, processes and costs are required. Therefore, a catalyst having a high conjugated diene selectivity, a small amount of by-products such as butene, and a long catalyst life is strongly desired.

特開2010−120933号公報JP 2010-120933 A 特開2011−006395号公報JP 2011-006395 A 特開2004−306011号公報JP 2004-306011 A 特開2005−238095号公報JP 2005-238095 A 特開2015−182032号公報JP 2015-182032 A

本発明の課題は、選択率が高く、触媒寿命の長い、アリル型不飽和アルコール原料から対応する共役ジエン化合物を効率よく製造する方法を提供することである。   An object of the present invention is to provide a method for efficiently producing a corresponding conjugated diene compound from an allylic unsaturated alcohol raw material having a high selectivity and a long catalyst life.

本発明者らはさらなる鋭意検討を行った結果、アリル型不飽和アルコールに対し、アルミニウムの酸化物及びケイ素の酸化物を含み、NH−TPD法により測定された酸量(mol/g)をアルミニウム含有量(mol/g)で割った値で定義されるアルミニウム分散度が特定の範囲内にある脱水触媒を作用させることにより、効率的に対応する共役ジエン化合物を製造できることを見いだし、本発明を完成させるに至った。 As a result of further intensive studies, the present inventors have found that the amount of acid (mol / g) containing an aluminum oxide and a silicon oxide and measured by the NH 3 -TPD method with respect to the allylic unsaturated alcohol is The present invention has been found to be able to efficiently produce a corresponding conjugated diene compound by causing a dehydration catalyst having an aluminum dispersion degree defined by a value divided by an aluminum content (mol / g) within a specific range, to act. Was completed.

すなわち本発明は以下の項目[1]〜[7]に関する。
[1]
脱水触媒の存在下、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造する方法であって、前記脱水触媒がケイ素の酸化物とアルミニウムの酸化物とが原子レベル又は微粒子レベルで混ざり合った複合型触媒であり、NH−TPD法により測定された酸量(mol/g)をアルミニウムの含有量(mol/g)で割った値で定義されるアルミニウム分散度が0.10〜0.30であることを特徴とする共役ジエン化合物の製造方法。

Figure 0006656074
(式中、R〜Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)
Figure 0006656074
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 0006656074
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 0006656074
[2]
脱水触媒の存在下、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造する方法であって、前記脱水触媒が二酸化ケイ素担体上にアルミニウムの酸化物が担持された担持型触媒であり、NH−TPD法により測定された酸量(mol/g)をアルミニウムの含有量(mol/g)で割った値で定義されるアルミニウム分散度が0.20〜0.45であることを特徴とする共役ジエン化合物の製造方法。
Figure 0006656074
(式中、R〜Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)
Figure 0006656074
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 0006656074
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 0006656074
[3]
前記脱水触媒のアルミニウムとケイ素の原子比(Al/Si)が0.03〜0.13である[1]に記載の共役ジエン化合物の製造方法。
[4]
前記脱水触媒のアルミニウムとケイ素の原子比(Al/Si)が0.005〜0.025である[2]に記載の共役ジエン化合物の製造方法。
[5]
前記脱水触媒がシリカアルミナである[1]又は[3]のいずれかに記載の共役ジエン化合物の製造方法。
[6]
前記脱水触媒の窒素ガス吸着法により測定された平均細孔径が6.0〜70.0nmである[1]〜[5]のいずれかに記載の共役ジエン化合物の製造方法。
[7]
一般式(1)及び一般式(2)のR〜Rがすべて水素原子である[1]〜[6]のいずれかに記載の共役ジエン化合物の製造方法。 That is, the present invention relates to the following items [1] to [7].
[1]
A method for producing a conjugated diene compound represented by the general formula (3) by a dehydration reaction using at least one of the allyl-type unsaturated alcohols represented by the general formula (1) or (2) in the presence of a dehydration catalyst Wherein the dehydration catalyst is a composite catalyst in which a silicon oxide and an aluminum oxide are mixed at an atomic level or a fine particle level, and an acid amount (mol / g) measured by an NH 3 -TPD method. A conjugated diene compound having a polydispersity of 0.10 to 0.30, defined as a value obtained by dividing by a content (mol / g) of aluminum.
Figure 0006656074
(In the formula, R 1 to R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
Figure 0006656074
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 0006656074
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 0006656074
[2]
A method for producing a conjugated diene compound represented by the general formula (3) by a dehydration reaction using at least one of the allyl-type unsaturated alcohols represented by the general formula (1) or (2) in the presence of a dehydration catalyst Wherein the dehydration catalyst is a supported catalyst in which an oxide of aluminum is supported on a silicon dioxide support, and the amount of acid (mol / g) measured by the NH 3 -TPD method is changed to the content of aluminum (mol). / G), wherein the aluminum dispersity defined by the value divided by (g) is from 0.20 to 0.45.
Figure 0006656074
(In the formula, R 1 to R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
Figure 0006656074
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 0006656074
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 0006656074
[3]
The method for producing a conjugated diene compound according to [1], wherein the dehydration catalyst has an atomic ratio of aluminum to silicon (Al / Si) of 0.03 to 0.13.
[4]
The method for producing a conjugated diene compound according to [2], wherein the dehydration catalyst has an atomic ratio of aluminum to silicon (Al / Si) of 0.005 to 0.025.
[5]
The method for producing a conjugated diene compound according to any one of [1] and [3], wherein the dehydration catalyst is silica alumina.
[6]
The method for producing a conjugated diene compound according to any one of [1] to [5], wherein the average pore diameter of the dehydration catalyst measured by a nitrogen gas adsorption method is 6.0 to 70.0 nm.
[7]
The method for producing a conjugated diene compound according to any one of [1] to [6], wherein R 1 to R 6 in the general formulas (1) and (2) are all hydrogen atoms.

本発明の触媒を用いると、アリル型不飽和アルコールの脱水による共役ジエンの製造をより高い選択率かつより長い触媒寿命で行うことができ、副生物の生成量をより減らすことができる。よって、一般的な蒸留操作のみで工業的に価値のある共役ジエンを得ることができ、溶媒抽出法等の多大なコストや設備投資が必要な精製操作を経る必要がない。また、触媒再生頻度を抑えることで再生操作にかかる設備、工程、及び費用を大きく抑えることができる。   When the catalyst of the present invention is used, the production of a conjugated diene by dehydration of an allylic unsaturated alcohol can be performed with higher selectivity and longer catalyst life, and the amount of by-products can be further reduced. Therefore, an industrially valuable conjugated diene can be obtained only by a general distillation operation, and there is no need to perform a purification operation requiring a large cost and equipment investment such as a solvent extraction method. In addition, by reducing the catalyst regeneration frequency, equipment, steps, and costs involved in the regeneration operation can be greatly reduced.

反応実施例1〜10及び反応比較例1〜3におけるアルミニウム分散度と触媒寿命の関係を示すグラフである。It is a graph which shows the relationship between the dispersion degree of aluminum and the catalyst life in Reaction Examples 1-10 and Comparative Examples 1-3. 反応実施例1〜10及び反応比較例1〜3におけるアルミニウム分散度と生成物である1,3−ブタジエンの選択率の関係を示すグラフである。4 is a graph showing the relationship between the degree of aluminum dispersion and the selectivity of 1,3-butadiene as a product in Reaction Examples 1 to 10 and Reaction Comparative Examples 1 to 3.

本発明では、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造するにあたり、アルミニウムの酸化物及びケイ素の酸化物を含み、下記数式であらわされるアルミニウム分散度が特定の範囲内にある脱水触媒を使用する。本明細書において、「アルミニウムの酸化物及びケイ素の酸化物を含む触媒」は、後述する担持型(本明細書において「表面型」ともいう。)触媒と複合型(本明細書において「バルク型」ともいう。)触媒の両方を包含する。

Figure 0006656074
(式中、R〜Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)
Figure 0006656074
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 0006656074
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 0006656074
In the present invention, at least one of the allyl-type unsaturated alcohols represented by the general formula (1) or (2) is used as a raw material, and when a conjugated diene compound represented by the general formula (3) is produced by a dehydration reaction, aluminum is used. And a dehydration catalyst having an aluminum dispersity represented by the following formula within a specific range. In the present specification, “a catalyst containing an oxide of aluminum and an oxide of silicon” refers to a supported catalyst (also referred to as a “surface type” in the present specification) described later and a composite type (in the present specification, “bulk type”). ). Both catalysts are included.
Figure 0006656074
(In the formula, R 1 to R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
Figure 0006656074
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 0006656074
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 0006656074

一般式(1)、(2)及び(3)においてR〜Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。炭素数1〜5のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、ペンチル基などが挙げられる。炭素数6〜12のアリール基としてはフェニル基、トリル基、ナフチル基などが挙げられる。R〜Rはそれぞれ独立に、水素原子、又は炭素数1〜5のアルキル基であることが好ましく、得られる共役ジエン化合物の有用性から水素原子であることがより好ましい。R〜Rは互いに同じであっても、異なっていてもよいが、すべて水素原子であることが最も好ましい。このとき、一般式(1)の化合物は2−ブテン−1−オール(クロチルアルコール)、一般式(2)の化合物は3−ブテン−2−オールとなり、生成物である一般式(3)の化合物は1,3−ブタジエンとなる。 In the general formulas (1), (2) and (3), R 1 to R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a pentyl group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a tolyl group, and a naphthyl group. Each of R 1 to R 6 is preferably independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and more preferably a hydrogen atom from the viewpoint of the usefulness of the obtained conjugated diene compound. R 1 to R 6 may be the same or different, but most preferably all are hydrogen atoms. At this time, the compound of the general formula (1) is 2-buten-1-ol (crotyl alcohol), and the compound of the general formula (2) is 3-buten-2-ol, which is a product of the general formula (3) Is 1,3-butadiene.

本脱水反応では、一般式(1)で示されるアリル型不飽和アルコール及び一般式(2)で示されるアリル型不飽和アルコールの両方を原料とし、同時に脱水反応に供することが有利である。これにより、例えばジオールの一分子脱水反応によって得ることができる、一般式(1)で示されるアリル型不飽和アルコール及び一般式(2)で示されるアリル型不飽和アルコールの両方を含有する生成物を、これらのアリル型不飽和アルコールを互いに分離することなく脱水反応に使用することができる。脱水反応の前に上記生成物に対して必要に応じて他の成分の分離及び精製を行ってもよい。   In the present dehydration reaction, it is advantageous to use both the allylic unsaturated alcohol represented by the general formula (1) and the allylic unsaturated alcohol represented by the general formula (2) as raw materials, and simultaneously provide the dehydration reaction. Thereby, for example, a product containing both the allylic unsaturated alcohol represented by the general formula (1) and the allylic unsaturated alcohol represented by the general formula (2), which can be obtained by a monomolecular dehydration reaction of a diol Can be used in the dehydration reaction without separating these allylic unsaturated alcohols from each other. Before the dehydration reaction, the above product may be separated and purified from other components as necessary.

本脱水反応においては、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコール以外の不飽和アルコールが併存していてもよい。   In the present dehydration reaction, an unsaturated alcohol other than the allylic unsaturated alcohol represented by the general formula (1) or (2) may coexist.

本発明の脱水触媒は、アルミニウムの酸化物及びケイ素の酸化物を含み、NH−TPD(Temperature−Programmed Desorption)法により測定された酸量(mol/g)をアルミニウム含有量(mol/g)で割った値で定義されるアルミニウム分散度が、下記特定の範囲内にある触媒である。
(1)前記脱水触媒がケイ素の酸化物とアルミニウムの酸化物とが原子レベル又は微粒子レベルで混ざり合った複合型触媒である場合:
アルミニウム分散度 0.10〜0.30
(2)前記脱水触媒が二酸化ケイ素担体上にアルミニウムの酸化物が担持された担持型触媒である場合:
アルミニウム分散度 0.20〜0.45
The dehydration catalyst of the present invention contains an aluminum oxide and a silicon oxide, and converts the acid amount (mol / g) measured by the NH 3 -TPD (Temperature-Programmed Desorption) method to the aluminum content (mol / g). Is a catalyst having an aluminum dispersity defined by a value divided by the following specific range.
(1) When the dehydration catalyst is a composite catalyst in which an oxide of silicon and an oxide of aluminum are mixed at an atomic level or a fine particle level:
Aluminum dispersity 0.10-0.30
(2) When the dehydration catalyst is a supported catalyst in which an oxide of aluminum is supported on a silicon dioxide carrier:
Aluminum dispersity 0.20 to 0.45

脱水触媒のNH−TPD法による酸量(mol/g)は、自動昇温脱離装置を用いて以下の手順で決定することができる。粉砕した触媒100mgに対してHeガスを50sccmで流通させながら、400℃で2時間前処理を行う。100℃まで冷却したら、NHを100Torrの定圧で吸着させる。続いて、50sccmのHeガス流通下、100℃、160Torrの減圧条件で50分間処理を行う。その後、160〜200Torrの間の減圧条件で、700℃まで10℃/分の速度で昇温し、700℃で50分間保持する。分析終了後、0.193体積%のNHガス(Heバランス)と0.97体積%のNHガス(Heバランス)を用いて検量線を作成する。各温度で脱離するNHと水の合計量と検量線作成時のNHの量を質量分析計(Mass=16)で測定し、脱離するNHと水の合計量を算出する。続いて、100℃、100TorrでのNH定圧吸着を行わない他は同一の条件でブランク測定を行い、触媒から脱離する水由来の測定値を算出する。本測定の測定値からブランク測定の測定値を減算し、脱離NH量とする。脱離NH量(mol数)が触媒の酸点のmol数と等しいとして、触媒1g当たりの酸量(mol/g)を計算することができる。 The acid amount (mol / g) of the dehydration catalyst according to the NH 3 -TPD method can be determined by the following procedure using an automatic thermal desorption apparatus. Pretreatment is performed at 400 ° C. for 2 hours while flowing He gas at 50 sccm to 100 mg of the crushed catalyst. After cooling to 100 ° C., NH 3 is adsorbed at a constant pressure of 100 Torr. Subsequently, a treatment is performed for 50 minutes at 100 ° C. under a reduced pressure of 160 Torr under a flow of He gas of 50 sccm. Thereafter, the temperature is raised to 700 ° C. at a rate of 10 ° C./min under a reduced pressure condition of 160 to 200 Torr, and the temperature is maintained at 700 ° C. for 50 minutes. After completion of the analysis, a calibration curve is prepared using 0.193% by volume of NH 3 gas (He balance) and 0.97% by volume of NH 3 gas (He balance). The total amount of NH 3 and water desorbed at each temperature and the amount of NH 3 at the time of preparing the calibration curve are measured with a mass spectrometer (Mass = 16), and the total amount of desorbed NH 3 and water is calculated. Subsequently, a blank measurement is performed under the same conditions except that adsorption of NH 3 at 100 ° C. and 100 Torr is not performed, and a measurement value derived from water desorbed from the catalyst is calculated. The measured value of the blank measurement is subtracted from the measured value of the main measurement to obtain the amount of desorbed NH 3 . The amount of acid (mol / g) per gram of the catalyst can be calculated assuming that the amount (mol number) of desorbed NH 3 is equal to the number of mols of the acid point of the catalyst.

脱水触媒のアルミニウム含有量(mol/g)は、複合型触媒に関しては走査型蛍光X線分析装置を用いたXRF分析により、担持型触媒に関してはICP−MSにより、それぞれ決定することができる。測定方法の詳細は実施例の項に記載する。   The aluminum content (mol / g) of the dehydration catalyst can be determined by XRF analysis using a scanning X-ray fluorescence analyzer for the composite catalyst and by ICP-MS for the supported catalyst. Details of the measurement method will be described in the section of Examples.

アルミニウムの酸化物及びケイ素の酸化物を含む触媒は、調製法により一般に複合型(バルク型)触媒と担持型(表面型)触媒の2種類に分類することができる。触媒の調製方法としては種々の方法を用いることが可能であり、例えば含浸法、イオン交換法、CVD法、混練法、共沈法、ゾルゲル法等があげられる。   Catalysts containing an aluminum oxide and a silicon oxide can be generally classified into two types, a composite type (bulk type) catalyst and a supported type (surface type) catalyst, depending on the preparation method. Various methods can be used for preparing the catalyst, and examples thereof include an impregnation method, an ion exchange method, a CVD method, a kneading method, a coprecipitation method, and a sol-gel method.

複合型(バルク型)触媒は、二酸化ケイ素前駆体及び二酸化ケイ素から選ばれる第1触媒原料と、アルミニウム酸化物前駆体及びアルミニウム酸化物から選ばれる第2触媒原料との組み合わせを用いて、混練法、共沈法、ゾルゲル法などによって調製される。複合型(バルク型)触媒は、各成分が原子レベルで結合した複合酸化物であり、表面だけでなく固体内部にもアルミニウム原子が多く存在している。ゾルゲル法としては、ケイ素アルコキシド及びアルミニウムアルコキシドのアルコール溶液に、水を添加してゲルを調製した後、乾燥及び焼成する方法が挙げられる。この際、触媒として酸又は塩基を加えてもよいし、無触媒で触媒調製を行ってもよい。複合酸化物の例としてはシリカアルミナ等が挙げられる。   A composite (bulk) catalyst is prepared by a kneading method using a combination of a first catalyst material selected from a silicon dioxide precursor and silicon dioxide and a second catalyst material selected from an aluminum oxide precursor and aluminum oxide. It is prepared by a coprecipitation method, a sol-gel method, or the like. A composite (bulk) catalyst is a composite oxide in which each component is bonded at the atomic level, and many aluminum atoms exist not only on the surface but also inside the solid. The sol-gel method includes a method in which water is added to an alcohol solution of silicon alkoxide and aluminum alkoxide to prepare a gel, followed by drying and baking. At this time, an acid or a base may be added as a catalyst, or the catalyst may be prepared without a catalyst. Examples of the composite oxide include silica alumina.

担持型(表面型)触媒は、二酸化ケイ素(SiO)担体に含浸法、イオン交換法、CVD法などによってアルミニウム酸化物前駆体を付着又は堆積させて調製される触媒であり、二酸化ケイ素(SiO)担体上にアルミニウム酸化物が担持されている。この型の場合、焼結時に一部のアルミニウム酸化物と二酸化ケイ素は混じり合い複合酸化物を形成することがあるが、アルミニウム原子の多くが触媒表面に存在している。二酸化ケイ素(SiO)は市販の物をそのまま、あるいは粉砕処理、強熱処理、酸処理等の前処理を行ってから使用することができる。含浸法としては、アルミニウムの硝酸塩水溶液又はアルミニウムアルコキシドのアルコール溶液を二酸化ケイ素担体に加えた後、乾燥及び焼成する方法が挙げられる。加える溶液の量は二酸化ケイ素担体の細孔容積相当でもよいし、細孔容積以上の量を加えて溶液を濃縮し得られた含浸担体を濾別してもよい。アルミニウムの硝酸塩水溶液に二酸化ケイ素担体を加えた後、pHを調整するなどしてアルミニウムを水酸化物にして沈降させ担体上に担持させる等の方法をとることもできる。 The supported (surface) catalyst is a catalyst prepared by adhering or depositing an aluminum oxide precursor on a silicon dioxide (SiO 2 ) support by an impregnation method, an ion exchange method, a CVD method, or the like, and includes a silicon dioxide (SiO 2 ) catalyst. 2 ) Aluminum oxide is supported on the carrier. In the case of this type, some aluminum oxide and silicon dioxide may mix with each other to form a composite oxide during sintering, but most of the aluminum atoms are present on the catalyst surface. Silicon dioxide (SiO 2 ) can be used as it is, or after subjecting to pretreatment such as pulverization, strong heat treatment, and acid treatment. Examples of the impregnation method include a method of adding an aqueous solution of aluminum nitrate or an alcohol solution of aluminum alkoxide to a silicon dioxide carrier, followed by drying and firing. The amount of the solution to be added may be equivalent to the pore volume of the silicon dioxide carrier, or the amount of the pore volume or more may be added, the solution may be concentrated, and the resulting impregnated carrier may be filtered off. After adding a silicon dioxide carrier to an aqueous solution of aluminum nitrate, a method of adjusting the pH or the like to convert aluminum into a hydroxide, sedimenting the hydroxide, and supporting the hydroxide on the carrier may be employed.

本発明の触媒には、アルミニウムとは異なる金属酸化物又は金属が含まれていてもよい。そのような金属酸化物又は金属の例としては、酸化マグネシウム、酸化ランタン、酸化モリブデンなどがあげられる。   The catalyst of the present invention may contain a metal oxide or metal different from aluminum. Examples of such metal oxides or metals include magnesium oxide, lanthanum oxide, molybdenum oxide, and the like.

本発明の触媒のアルミニウム分散度は複合型(バルク型)触媒においては、0.10〜0.30、好ましくは、0.10〜0.15である。担持型(表面型)触媒においては0.20〜0.45、好ましくは0.30〜0.40である。   The aluminum dispersity of the catalyst of the present invention is 0.10 to 0.30, preferably 0.10 to 0.15 in the case of the composite (bulk) catalyst. In the case of a supported (surface) catalyst, it is 0.20 to 0.45, preferably 0.30 to 0.40.

本発明の反応では、コーキングにより触媒の反応点である酸点が覆われ、失活が進行する。そのため酸量が多いと、コーキングにより酸点がある程度減少しても原料の転化率が維持される。すなわち、触媒寿命が長くなる。一般にアルミニウム含有量がシリカ含有量より少ない場合は、アルミニウム含有量を増やすと酸量は増える。しかし、単にアルミニウム含有量を増やすとアルミナクラスターがより多く生成してしまう。アルミナ触媒は、本反応の発明においては脱水素副反応又はコーキングを起こしやすく、選択率も触媒寿命も短い。反応成績低下の原因となるアルミナクラスターを減らすためには、シリカとアルミナの混合具合が良いこと、つまりアルミニウムの分散性が高いことが好ましい。すなわち、アルミニウム分散度が高い触媒は、反応点である酸点を増やしつつも、アルミナクラスターに代表される好ましくない反応点が少ない触媒であることを意味し、選択率が高く、触媒寿命が長い。一方で、反応点である酸点が多すぎると、反応点の密度が高く、活性化された基質又は生成物が互いに近傍に位置しやすいために反応生成物などの重合反応が進行しやすく、コーキングが生じてしまう。よって、アルミニウム分散度の高すぎる触媒は、反応の選択率又は触媒寿命が低下してしまう。また、複合型触媒と担持型触媒では反応点となる表面に存在するアルミニウムの比率が異なるため、最適なアルミニウム分散度の範囲が異なる。   In the reaction of the present invention, coking covers the acid sites, which are the reaction sites of the catalyst, and deactivation proceeds. Therefore, when the amount of acid is large, the conversion rate of the raw material is maintained even if the acid point is reduced to some extent by coking. That is, the catalyst life is prolonged. Generally, when the aluminum content is lower than the silica content, increasing the aluminum content increases the acid content. However, simply increasing the aluminum content produces more alumina clusters. The alumina catalyst is liable to cause a dehydrogenation side reaction or coking in the present invention, and has a short selectivity and a short catalyst life. In order to reduce the amount of alumina clusters that cause a reduction in the reaction results, it is preferable that silica and alumina are mixed well, that is, aluminum has high dispersibility. That is, a catalyst having a high degree of aluminum dispersibility means that the catalyst has a small number of undesired reaction points typified by alumina clusters while increasing the number of acid points as reaction points, and has a high selectivity and a long catalyst life. . On the other hand, if there are too many acid sites that are reaction points, the density of the reaction points is high, and the activated substrate or product is likely to be located close to each other, so that the polymerization reaction such as the reaction product easily proceeds, Caulking occurs. Therefore, a catalyst having too high a degree of aluminum dispersion lowers the selectivity of the reaction or the catalyst life. In addition, the ratio of aluminum present on the surface serving as a reaction point differs between the composite catalyst and the supported catalyst, so that the optimum range of the aluminum dispersity differs.

本発明の脱水触媒のアルミニウムとケイ素の原子比(Al/Si)は0.001〜0.13であることが好ましい。複合型の脱水触媒では0.03〜0.13であることがより好ましく、0.08〜0.12が最も好ましい。担持型の脱水触媒では0.005〜0.025であることがより好ましく、0.006〜0.012が最も好ましい。原子比がこの範囲内であると、副生物の低減又はコーキングの抑制の面で好ましく、また、細孔構造及び成形性を含めた触媒調製の自由度を高くできる。複合型触媒の原子比(Al/Si)は、リガク製の走査型蛍光X線分析装置ZSX PrimusIIを用いて、XRF分析にて決定される。担持型(表面型)触媒の原子比(Al/Si)は仕込み比から計算することもできるが、ICP−MSによりアルミニウム量を求め、触媒の乾燥質量からアルミニウム酸化物の質量を差し引いた質量を二酸化ケイ素の質量とし、Al/Siが計算される。測定方法の詳細は実施例の項に記載する。   The aluminum to silicon atomic ratio (Al / Si) of the dehydration catalyst of the present invention is preferably 0.001 to 0.13. In the case of the composite type dehydration catalyst, it is more preferably from 0.03 to 0.13, and most preferably from 0.08 to 0.12. For the supported dehydration catalyst, the value is more preferably 0.005 to 0.025, and most preferably 0.006 to 0.012. When the atomic ratio is within this range, it is preferable in terms of reduction of by-products or suppression of coking, and the degree of freedom in catalyst preparation including the pore structure and moldability can be increased. The atomic ratio (Al / Si) of the composite catalyst is determined by XRF analysis using a scanning fluorescent X-ray analyzer ZSX PrimusII manufactured by Rigaku. The atomic ratio (Al / Si) of the supported (surface) catalyst can also be calculated from the charge ratio, but the amount of aluminum is determined by ICP-MS, and the mass obtained by subtracting the mass of the aluminum oxide from the dry mass of the catalyst is obtained. Al / Si is calculated as the mass of silicon dioxide. Details of the measurement method will be described in the section of Examples.

本発明の触媒は、窒素ガス吸着法により測定された平均細孔径が6.0〜70.0nmであるメソ孔を有することが好ましい。平均細孔径はより好ましくは9.0〜55.0nm、特に好ましくは12.0〜40.0nmである。測定方法の詳細は実施例の項に記載する。平均細孔径が6.0nm以上であると、コーキングの進行が遅く、触媒寿命が長くなる。また、副反応が少ないため共役ジエン化合物の選択率も向上する。平均細孔径が70.0nm以下である触媒は表面積及び反応点の数が適切であり、生産性(STY)の低下が小さい。   The catalyst of the present invention preferably has mesopores having an average pore diameter of 6.0 to 70.0 nm as measured by a nitrogen gas adsorption method. The average pore diameter is more preferably from 9.0 to 55.0 nm, particularly preferably from 12.0 to 40.0 nm. Details of the measurement method will be described in the section of Examples. When the average pore diameter is 6.0 nm or more, the progress of coking is slow, and the catalyst life is prolonged. In addition, the selectivity of the conjugated diene compound is improved due to less side reactions. The catalyst having an average pore diameter of 70.0 nm or less has an appropriate surface area and the number of reaction points, and the decrease in productivity (STY) is small.

触媒成形体は、成形体に触媒成分を担持して得ることもできるし、粉末触媒を種々の方法で成形して得ることもできる。成形方法に特に制限はなく、例えば打錠成形、押出成形、転動造粒等から選択される。   The catalyst molded body can be obtained by supporting a catalyst component on the molded body, or can be obtained by molding a powder catalyst by various methods. The molding method is not particularly limited, and is selected from, for example, tablet molding, extrusion molding, tumbling granulation, and the like.

触媒成形体の粒径及び形状は、反応方式、反応器の形状などに応じて適宜選択できる。   The particle size and shape of the molded catalyst can be appropriately selected according to the reaction method, the shape of the reactor, and the like.

触媒の成形に用いるバインダー、滑剤等の添加剤は、特に制限されない。なお、これらの添加剤の添加による平均細孔径への影響は本発明において考慮しない。すなわち、バインダー、滑剤等の添加剤を加えて調製した触媒について測定して得られた平均細孔径が、バインダー、滑剤等の添加剤を添加せずに類似の方法で調製した触媒について測定して得られた平均細孔径と異なる場合、後者を本発明における平均細孔径とみなす。   Additives such as a binder and a lubricant used for forming the catalyst are not particularly limited. The effect of the addition of these additives on the average pore diameter is not considered in the present invention. That is, the average pore diameter obtained by measuring a catalyst prepared by adding an additive such as a binder or a lubricant is measured on a catalyst prepared by a similar method without adding an additive such as a binder or a lubricant. If the average pore diameter is different from the obtained average pore diameter, the latter is regarded as the average pore diameter in the present invention.

本発明の脱水反応で使用する反応装置として連続式の気相流通反応装置が好適である。触媒は固定床又は流動床のいずれの方式でもよく、特にメンテナンスの面などから固定床が望ましい。   As a reactor used in the dehydration reaction of the present invention, a continuous gas-phase flow reactor is suitable. The catalyst may be either a fixed bed or a fluidized bed, and a fixed bed is particularly desirable from the viewpoint of maintenance.

反応装置の一例として、上部に反応原料であるアリル型不飽和アルコールの気化器を備えた直管型反応器が挙げられる。反応器に触媒を充填し、原料を気化器で蒸発させて生じた原料ストリームを反応器に導入する。反応器下部の熱交換器で反応生成物を冷却して水等を分離し、生成物を回収する。気化した原料のアリル型不飽和アルコールを窒素ガス、水蒸気などの不活性ガスで希釈して反応に供してもよい。   As an example of the reaction apparatus, there is a straight-tube reactor provided with a vaporizer for an allyl-type unsaturated alcohol as a reaction raw material on an upper portion thereof. A reactor is charged with a catalyst, and a raw material stream obtained by evaporating the raw material in a vaporizer is introduced into the reactor. The reaction product is cooled in a heat exchanger at the bottom of the reactor to separate water and the like, and the product is recovered. The vaporized raw material allyl-type unsaturated alcohol may be diluted with an inert gas such as nitrogen gas or water vapor for the reaction.

反応温度は200〜450℃の範囲であることが適しており、250〜350℃であることがより好ましい。200℃以上であると反応が速やかに進む。また、450℃以下とすると副反応による選択率低下の影響が小さくなる。反応圧力は加圧、常圧、又は減圧のいずれでもよい。   The reaction temperature is suitably in the range of 200 to 450 ° C, more preferably 250 to 350 ° C. When the temperature is 200 ° C. or higher, the reaction proceeds promptly. When the temperature is 450 ° C. or lower, the influence of a decrease in selectivity due to a side reaction is reduced. The reaction pressure may be any of pressurized, normal or reduced pressure.

触媒充填容積あたりの不飽和アルコールの導入量は0.05〜20kg/(h・L−cat)の範囲とすることができ、好ましくは0.1〜10kg/(h・L−cat)であり、最も好ましくは0.2〜5kg/(h・L−cat)である。導入量が少ない場合は十分な生産量を得ることができないことがある。多い場合には未反応の原料が増加し、分離及び精製に余分な労力が必要となる。   The amount of unsaturated alcohol introduced per catalyst filling volume can be in the range of 0.05 to 20 kg / (h · L-cat), preferably 0.1 to 10 kg / (h · L-cat). , Most preferably 0.2 to 5 kg / (h · L-cat). When the introduction amount is small, a sufficient production amount may not be obtained. When the amount is large, unreacted raw materials increase, and extra labor is required for separation and purification.

アリル型不飽和アルコールを含む原料ストリームの触媒充填容積に対する空間速度[SV]は100〜40000[/h]の範囲とすることができ、特に400〜10000[/h]であることが好適である。空間速度が低すぎる場合は接触時間の増加により、不飽和アルコール原料及び生成したジエン化合物から副生成物が生じる可能性がある。空間速度が高すぎる場合には転化率が低下し、収率が低下することがある。触媒の空時収率STYは、反応圧力を上げる、原料ガス中の不飽和アルコール濃度を高める、SVを上げることにより大きくすることができる。   The space velocity [SV] with respect to the catalyst loading volume of the raw material stream containing the allylic unsaturated alcohol can be in the range of 100 to 40000 [/ h], and particularly preferably 400 to 10000 [/ h]. . If the space velocity is too low, by-products may be generated from the unsaturated alcohol raw material and the produced diene compound due to an increase in the contact time. If the space velocity is too high, the conversion may decrease and the yield may decrease. The space-time yield STY of the catalyst can be increased by increasing the reaction pressure, increasing the unsaturated alcohol concentration in the raw material gas, and increasing the SV.

得られた共役ジエン化合物に対し、さらに蒸留等による精製操作を行うことで、純度を高めたジエン化合物を入手することができる。   By subjecting the obtained conjugated diene compound to a purification operation by distillation or the like, a diene compound having an increased purity can be obtained.

上記に述べた方法は、本発明の実施形態の一つであり、実施に当たってはその神髄に照らして、別の実施形態をとることもできるが、それらは全て本発明の範疇に含まれる。   The above-described method is one of the embodiments of the present invention, and other embodiments can be embodied in light of the spirit thereof, but all of them are included in the scope of the present invention.

以下、実施例により本発明の効果を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the effects of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

[測定方法]
酸量はNH−TPD法により測定する。具体的には、日本ベル株式会社製自動昇温脱離装置TPD−1−ATを用いて以下の手順で測定する。乳鉢で粉砕した触媒100mgを測定用セルに充填する。Heガスを50sccmで流通させながら、400℃で2時間触媒の前処理を行う。100℃まで冷却したら、NHを100Torrの定圧で吸着させる。続いて、50sccmのHeガス流通下、100℃、160Torrの減圧条件で50分間処理を行う。その後、160〜200Torrの間の減圧条件で、700℃まで10℃/分の速度で昇温し、700℃で50分間保持する。分析終了後、0.193体積%のNHガス(Heバランス)と0.97体積%のNHガス(Heバランス)を用いて検量線を作成する。各温度で脱離するNHと水の合計量と検量線作成時のNHの量を質量分析計(Mass=16)で測定し、脱離するNHと水の合計量を算出する。続いて、100℃、100TorrでのNH定圧吸着を行わない他は同一の条件でブランク測定を行い、触媒から脱離する水由来の測定値を算出する。本測定の測定値からブランク測定の測定値を減算し、脱離NH量とする。脱離NH量(mol数)が触媒の酸点のmol数と等しいとして、触媒1g当たりの酸量(mol/g)を計算する。
[Measuring method]
Acid amount is measured by NH 3 -TPD method. Specifically, it is measured by the following procedure using an automatic thermal desorption apparatus TPD-1-AT manufactured by Japan Bell Co., Ltd. A measurement cell is filled with 100 mg of the catalyst crushed in a mortar. The pretreatment of the catalyst is performed at 400 ° C. for 2 hours while flowing He gas at 50 sccm. After cooling to 100 ° C., NH 3 is adsorbed at a constant pressure of 100 Torr. Subsequently, a treatment is performed for 50 minutes at 100 ° C. under a reduced pressure of 160 Torr under a flow of He gas of 50 sccm. Thereafter, the temperature is raised to 700 ° C. at a rate of 10 ° C./min under a reduced pressure condition of 160 to 200 Torr, and the temperature is maintained at 700 ° C. for 50 minutes. After completion of the analysis, a calibration curve is prepared using 0.193% by volume of NH 3 gas (He balance) and 0.97% by volume of NH 3 gas (He balance). The total amount of NH 3 and water desorbed at each temperature and the amount of NH 3 at the time of preparing the calibration curve are measured with a mass spectrometer (Mass = 16), and the total amount of desorbed NH 3 and water is calculated. Subsequently, a blank measurement is performed under the same conditions except that adsorption of NH 3 at 100 ° C. and 100 Torr is not performed, and a measurement value derived from water desorbed from the catalyst is calculated. The measured value of the blank measurement is subtracted from the measured value of the main measurement to obtain the amount of desorbed NH 3 . The amount of acid (mol / g) per 1 g of the catalyst is calculated assuming that the amount (mol number) of the eliminated NH 3 is equal to the number of mols of the acid point of the catalyst.

複合型触媒のアルミニウム酸化物量とケイ素酸化物量は、リガク製の走査型蛍光X線分析装置ZSX PrimusIIを用いて、XRF分析にて行う。乳鉢で粉砕した触媒粉を、外径18mm、内径13mm、高さ5mmのポリ塩化ビニル製のセルにつめて35kNで15秒間加圧して、測定試料を調製する。標準試料を外標準としてEZスキャンモードにて分析する。アルミニウム酸化物量とケイ素酸化物量の測定値から、Al/Si比及びアルミニウム含有量を求める。アルミニウム含有量は触媒1gあたりのアルミニウム元素のmol数とする。   The amount of the aluminum oxide and the amount of the silicon oxide of the composite catalyst are determined by XRF analysis using a scanning fluorescent X-ray analyzer ZSX PrimusII manufactured by Rigaku. The catalyst powder pulverized in a mortar is packed in a polyvinyl chloride cell having an outer diameter of 18 mm, an inner diameter of 13 mm, and a height of 5 mm, and pressurized at 35 kN for 15 seconds to prepare a measurement sample. A standard sample is analyzed in an EZ scan mode as an external standard. From the measured values of the amount of aluminum oxide and the amount of silicon oxide, the Al / Si ratio and the aluminum content are determined. The aluminum content is defined as the number of moles of aluminum element per 1 g of the catalyst.

担持型触媒のアルミニウム含有量はICP−MSにより求め、乾燥減量を考慮したうえで算出することができる。具体的には、以下の手順で求める。乳鉢で粉砕した試料にフッ酸2mL及び純水10mLを添加し試料を溶解させる。その後50mLに定容してICP発光分析によりアルミニウム元素を定量する。TG−DTAを用いて、乳鉢で粉砕した試料を窒素ガス気流下300℃で1時間処理し、その質量変化から乾燥質量を算出する。乾燥触媒1g中のアルミニウム元素のmol数をアルミニウム含有量とする。乾燥質量からアルミニウムの酸化物の質量を差し引いた質量を二酸化ケイ素の質量とし、Al/Si比を計算する。簡便のため、仕込み比から算出することも可能であり、本実施例ではこの簡便法によった。   The aluminum content of the supported catalyst can be determined by ICP-MS, and can be calculated in consideration of the loss on drying. Specifically, it is determined by the following procedure. 2 mL of hydrofluoric acid and 10 mL of pure water are added to the sample ground in a mortar to dissolve the sample. Thereafter, the volume is adjusted to 50 mL, and the aluminum element is quantified by ICP emission analysis. Using TG-DTA, a sample crushed in a mortar is treated at 300 ° C. for 1 hour in a nitrogen gas stream, and a dry mass is calculated from a change in the mass. The mole number of the aluminum element in 1 g of the dried catalyst is defined as the aluminum content. The mass obtained by subtracting the mass of the aluminum oxide from the dry mass is defined as the mass of silicon dioxide, and the Al / Si ratio is calculated. For the sake of simplicity, it is also possible to calculate from the charging ratio, and in this example, this simple method was used.

アルミニウム分散度は、下記数式より算出する。アルミニウム分散度は触媒に含有されるアルミニウム原子のうち酸として寄与しているものの比率を表す値である。

Figure 0006656074
The aluminum dispersity is calculated from the following equation. The aluminum dispersity is a value representing the ratio of aluminum atoms contained in the catalyst that contribute as an acid.
Figure 0006656074

触媒成形体の窒素ガス吸着法による平均細孔径とBET比表面積は、以下のように測定する。150℃、40mTorrで3時間前処理したサンプルについて、Micromeritics社製の自動比表面積/細孔分布測定装置(TristarII 3020)を用い、液体窒素温度で、相対圧(P/P、P:飽和蒸気圧)が0.14〜0.992の範囲で窒素脱着等温線を測定する。窒素ガスを吸着質として用い、吸着質断面積は0.162nmとして計算する。BET多点法を用いてBET比表面積を算出する。平均細孔径及び細孔容積はBJH法を用い、吸着膜の厚みをHarkins−Juraの式でt=[13.99/0.034―log(P/P)]^0.5として算出する。 The average pore diameter and the BET specific surface area of the molded catalyst by a nitrogen gas adsorption method are measured as follows. For samples pretreated at 150 ° C. and 40 mTorr for 3 hours, relative pressures (P / P 0 , P 0 : saturation) were measured at a liquid nitrogen temperature using an automatic specific surface area / pore distribution measuring device (Tristar II 3020) manufactured by Micromeritics. The vapor desorption isotherm is measured in the range of 0.14 to 0.992. Using nitrogen gas as the adsorbate, the cross-sectional area of the adsorbate is calculated as 0.162 nm 2 . The BET specific surface area is calculated using the BET multipoint method. The average pore diameter and pore volume are calculated using the BJH method, and the thickness of the adsorption film is calculated by Harkins-Jura equation as t = [13.99 / 0.034-log (P / P 0 )] ^ 0.5. .

触媒成形体の嵩密度は以下のように決定する。10mLメスシリンダーに約5mLの触媒を測りとる。その際、数回タッピングを行い、触媒をならし、その体積と重量を測定する。測定重量を測定体積で除算し、嵩密度を計算する。   The bulk density of the molded catalyst is determined as follows. Measure about 5 mL of catalyst in a 10 mL graduated cylinder. At that time, tapping is performed several times to level the catalyst, and its volume and weight are measured. The measured weight is divided by the measured volume to calculate the bulk density.

[反応装置]
以下の実施例及び比較例の脱水反応には、固定床の常圧気相流通反応装置を使用した。反応管(ステンレス製)は内径13mm、全長300mmで、上部に原料を蒸発させるための気化器、及び希釈剤(窒素ガス)の導入口が接続され、下部には冷却器、及び気液分離器が設置されている。反応によって生じたガス及び液はそれぞれ別々に回収し、ガスクロマトグラフィー装置にて測定し、検量線補正後、目的物の収量及び原料残量を求め、これらより転化率及び選択率を求めた。
[Reactor]
For the dehydration reactions of the following Examples and Comparative Examples, a fixed-bed atmospheric pressure gas-phase flow reactor was used. The reaction tube (made of stainless steel) has an inner diameter of 13 mm and a total length of 300 mm. An evaporator for evaporating the raw material and an inlet for diluent (nitrogen gas) are connected to the upper part, and a cooler and a gas-liquid separator are provided at the lower part. Is installed. The gas and liquid produced by the reaction were separately collected and measured by a gas chromatography apparatus, and after correcting the calibration curve, the yield of the target product and the remaining amount of the raw materials were obtained, and the conversion and selectivity were obtained therefrom.

脱水反応における、転化率及び選択率の計算には以下の式を用いた。選択率は、転化率が98.5%を下回るまでの結果から計算した。

Figure 0006656074
Figure 0006656074
The following formulas were used to calculate the conversion and selectivity in the dehydration reaction. The selectivity was calculated from the results until the conversion was below 98.5%.
Figure 0006656074
Figure 0006656074

代表的な副生成物であるブテンの選択率計算には、以下の式を用いた。選択率は、転化率が98.5%を下回るまでの結果から計算した。

Figure 0006656074
The following formula was used to calculate the selectivity of butene, a typical by-product. The selectivity was calculated from the results until the conversion was below 98.5%.
Figure 0006656074

[触媒調製]
以下、脱水触媒の調製に関する実施例及び比較例を示す。
[Catalyst preparation]
Hereinafter, Examples and Comparative Examples relating to the preparation of the dehydration catalyst will be described.

(実施例1:複合型触媒Aの調製)
500mLの3口フラスコに、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼、滴下ロート、及びジムロート冷却管を装着した。このフラスコに、窒素ガス雰囲気中で、テトラエチルオルトシリケート(シグマアルドリッチ社製、>99%)60.0g、アルミニウムイソプロポキシド(東京化成工業株式会社製)2.9g、超脱水イソプロパノール(和光純薬工業株式会社製)173gを加え、液温が79〜80℃になるように油浴中、250rpmで撹拌した。滴下ロートにイソプロパノール(特級、和光純薬工業株式会社製)9gと蒸留水(和光純薬工業株式会社製)10.9gの混合溶液を入れ、上記フラスコに30分間かけて滴下した。滴下終了後も撹拌を続け、合計9時間、79〜80℃で反応させた。得られた白色粉末を濾過後、イソプロパノールで洗浄した。70℃のオーブンで12時間乾燥したのち、マッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を、ポリ塩化ビニル製のセル(30mmφ)に入れ、80MPaの圧力で1分間プレスした。得られたディスク状のセル(厚さ5mm)を破砕し、1.4〜2.8mmのふるい間に残るものを回収した。得られた成形体を、同じマッフル炉で500℃、2時間焼成し、複合型触媒Aを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.09(mol/mol)であった。
(Example 1: Preparation of composite catalyst A)
A 500 mL three-necked flask was equipped with a Teflon (registered trademark) meniscus stirring blade, a dropping funnel, and a Dimroth condenser tube connected to a mechanical stirrer. In a nitrogen gas atmosphere, 60.0 g of tetraethylorthosilicate (manufactured by Sigma-Aldrich Co., Ltd.,> 99%), 2.9 g of aluminum isopropoxide (manufactured by Tokyo Chemical Industry Co., Ltd.), and ultra-dehydrated isopropanol (Wako Pure Chemical Industries) 173 g (manufactured by Kogyo Co., Ltd.) was added, and the mixture was stirred at 250 rpm in an oil bath so that the liquid temperature was 79 to 80 ° C. A mixed solution of 9 g of isopropanol (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 10.9 g of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) was placed in the dropping funnel, and added dropwise to the flask over 30 minutes. Stirring was continued after completion of the dropwise addition, and the reaction was carried out at 79 to 80 ° C. for a total of 9 hours. The obtained white powder was filtered and washed with isopropanol. After drying in an oven at 70 ° C. for 12 hours, it was baked at 500 ° C. for 5 hours in a muffle furnace (KM-280 manufactured by ADVANTEC). The obtained powder was placed in a polyvinyl chloride cell (30 mmφ) and pressed at a pressure of 80 MPa for 1 minute. The obtained disk-shaped cells (thickness: 5 mm) were crushed, and those remaining between the sieves of 1.4 to 2.8 mm were collected. The obtained molded body was fired at 500 ° C. for 2 hours in the same muffle furnace to obtain a composite catalyst A. The atomic ratio of Al to Si (Al / Si) measured by XRF analysis was 0.09 (mol / mol).

(実施例2:複合型触媒Bの調製)
1Lの3口フラスコに、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼、滴下ロート、及びジムロート冷却管を装着した。このフラスコに、窒素ガス雰囲気中で、テトラエチルオルトシリケート(シグマアルドリッチ社製、>99%)120.0g、アルミニウムイソプロポキシド(東京化成工業株式会社製)5.9g、超脱水イソプロパノール(和光純薬工業株式会社製)320gを加え、液温が69〜70℃になるように油浴中、250rpmで撹拌した。滴下ロートにイソプロパノール(特級、和光純薬工業株式会社製)44gと蒸留水(和光純薬工業株式会社製)21.8gの混合溶液を入れ、上記フラスコに30分間かけて滴下した。滴下終了後も撹拌を続け、合計24時間、69〜70℃で反応させた。得られた白色粉末を濾過後、イソプロパノールで洗浄した。70℃のオーブンで12時間乾燥したのち、マッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Bを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.10(mol/mol)であった。
(Example 2: Preparation of composite catalyst B)
A 1 L three-necked flask was equipped with a Teflon (registered trademark) meniscus stirring blade, a dropping funnel, and a Dimroth condenser tube connected to a mechanical stirrer. In a nitrogen gas atmosphere, 120.0 g of tetraethyl orthosilicate (manufactured by Sigma-Aldrich Co., Ltd.,> 99%), 5.9 g of aluminum isopropoxide (manufactured by Tokyo Chemical Industry Co., Ltd.), and ultra-dehydrated isopropanol (Wako Pure Chemical Industries, Ltd.) (Industry Co., Ltd.) (320 g) was added, and the mixture was stirred at 250 rpm in an oil bath so that the liquid temperature was 69 to 70 ° C. A mixed solution of 44 g of isopropanol (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 21.8 g of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) was placed in the dropping funnel, and dropped into the flask over 30 minutes. Stirring was continued after the completion of the dropwise addition, and the reaction was performed at 69 to 70 ° C. for a total of 24 hours. The obtained white powder was filtered and washed with isopropanol. After drying in an oven at 70 ° C. for 12 hours, it was baked at 500 ° C. for 5 hours in a muffle furnace (KM-280 manufactured by ADVANTEC). The obtained powder was molded and fired in the same manner as in Example 1 to obtain a composite catalyst B. The atomic ratio of Al and Si (Al / Si) measured by XRF analysis was 0.10 (mol / mol).

(比較例1:複合型触媒Cの調製)
500mLの3口フラスコに、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼、滴下ロート、及びジムロート冷却管を装着した。このフラスコに、窒素ガス雰囲気中で、テトラエチルオルトシリケート(シグマアルドリッチ社製、>99%)90.0g、アルミニウムイソプロポキシド(東京化成工業株式会社製)4.4g、超脱水イソプロパノール(和光純薬工業株式会社製)260gを加え、液温が71〜72℃になるように油浴中、100rpmで撹拌した。滴下ロートにイソプロパノール(特級、和光純薬工業株式会社製)13gと蒸留水(和光純薬工業株式会社製)16.3gの混合溶液を入れ、上記フラスコに30分間かけて滴下した。滴下終了後も撹拌を続け、合計24時間、71〜72℃で反応させた。得られた白色粉末を濾過後、イソプロパノールで洗浄した。70℃のオーブンで12時間乾燥したのち、マッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Cを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.10(mol/mol)であった。
(Comparative Example 1: Preparation of composite catalyst C)
A 500 mL three-necked flask was equipped with a Teflon (registered trademark) meniscus stirring blade, a dropping funnel, and a Dimroth condenser tube connected to a mechanical stirrer. In a nitrogen gas atmosphere, 90.0 g of tetraethyl orthosilicate (manufactured by Sigma-Aldrich Co., Ltd.,> 99%), 4.4 g of aluminum isopropoxide (manufactured by Tokyo Chemical Industry Co., Ltd.), and ultra-dehydrated isopropanol (Wako Pure Chemical Industries, Ltd.) were placed in this flask. (Manufactured by Kogyo Co., Ltd.) (260 g) was added, and the mixture was stirred at 100 rpm in an oil bath so that the liquid temperature was 71 to 72 ° C. A mixed solution of 13 g of isopropanol (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 16.3 g of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the dropping funnel, and the mixture was dropped into the flask over 30 minutes. Stirring was continued after the completion of the dropwise addition, and the reaction was carried out at 71 to 72 ° C. for a total of 24 hours. The obtained white powder was filtered and washed with isopropanol. After drying in an oven at 70 ° C. for 12 hours, it was baked at 500 ° C. for 5 hours in a muffle furnace (KM-280 manufactured by ADVANTEC). The obtained powder was molded and fired in the same manner as in Example 1 to obtain a composite catalyst C. The atomic ratio of Al and Si (Al / Si) measured by XRF analysis was 0.10 (mol / mol).

(実施例3:複合型触媒Dの調製)
500mLの3口フラスコに、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼、滴下ロート、及びジムロート冷却管を装着した。このフラスコに、窒素ガス雰囲気中で、アセチルアセトン(特級、和光純薬工業株式会社製)2.2gと超脱水イソプロパノール(和光純薬工業株式会社製)100gを入れたのち、アルミニウムイソプロポキシド(東京化成工業株式会社製)4.4g、テトラエチルオルトシリケート(シグマアルドリッチ社製、>99%)60.0g、超脱水イソプロパノール(和光純薬工業株式会社製)60gの順に加え、液温が69〜70℃になるように油浴中、250rpmで撹拌した。滴下ロートに25質量%のアンモニア水2.0gと蒸留水(和光純薬工業株式会社製)23.2gの混合溶液を入れ、上記フラスコに30分間かけて滴下した。滴下終了後も撹拌を続け、合計24時間、69〜70℃で反応させた。得られたゲルを70℃のオーブンで12時間乾燥したのち、1Mアンモニア水で10質量%のスラリーとして50℃で24時間熟成させた。得られた白色粉末を濾過及び水洗後、70℃のオーブンで12時間乾燥し、次いでマッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Dを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.08(mol/mol)であった。
(Example 3: Preparation of composite catalyst D)
A 500 mL three-necked flask was equipped with a Teflon (registered trademark) meniscus stirring blade, a dropping funnel, and a Dimroth condenser tube connected to a mechanical stirrer. In a nitrogen gas atmosphere, 2.2 g of acetylacetone (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 100 g of ultra-dehydrated isopropanol (manufactured by Wako Pure Chemical Industries, Ltd.) were put into this flask, and then aluminum isopropoxide (Tokyo, Japan) 4.4 g of tetraethyl orthosilicate (manufactured by Sigma-Aldrich Co., Ltd.,> 99%) and 60 g of ultra-dehydrated isopropanol (manufactured by Wako Pure Chemical Industries, Ltd.) were added in this order, and the liquid temperature was 69 to 70. The mixture was stirred at 250 rpm in an oil bath to reach a temperature of 250 ° C. A mixed solution of 2.0 g of 25% by mass ammonia water and 23.2 g of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) was placed in the dropping funnel, and dropped into the flask over 30 minutes. Stirring was continued after the completion of the dropwise addition, and the reaction was carried out at 69 to 70 ° C. for a total of 24 hours. The obtained gel was dried in an oven at 70 ° C. for 12 hours, and then aged as a 10% by mass slurry with 1M aqueous ammonia at 50 ° C. for 24 hours. The obtained white powder was filtered and washed with water, dried in an oven at 70 ° C for 12 hours, and then fired in a muffle furnace (KM-280 manufactured by ADVANTEC) at 500 ° C for 5 hours. The obtained powder was molded and fired in the same manner as in Example 1 to obtain a composite catalyst D. The atomic ratio of Al and Si (Al / Si) measured by XRF analysis was 0.08 (mol / mol).

(実施例4:複合型触媒Eの調製)
500mLナスフラスコに硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)16.2g、エタノール(特級、和光純薬工業株式会社製)34mL、蒸留水(和光純薬工業株式会社製)66mLを加え、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼で撹拌した。テトラエチルオルトシリケート(シグマアルドリッチ社製、>99%)91.0g、エタノール100mLの混合溶液を上記フラスコに加え入れた。室温で3時間撹拌を継続した後、25%アンモニア水91.0gを投入した。内容物をナスフラスコに移し、ロータリーエバポレーターを用いて60℃の湯浴中で4時間かけて溶媒を留去し、粉末を得た。得られた粉末は120℃のオーブンで12時間乾燥し、次いでマッフル炉(ADVANTEC製KM−280)で500℃、4時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Eを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.11(mol/mol)であった。
(Example 4: Preparation of composite catalyst E)
16.2 g of aluminum nitrate nonahydrate (Wako Pure Chemical Industries, Ltd., special grade), 34 mL of ethanol (special grade, Wako Pure Chemical Industries, Ltd.), distilled water (Wako Pure Chemical Industries, Ltd.) in a 500 mL eggplant flask ) Was added and stirred with a Teflon (registered trademark) meniscus stirring blade connected to a mechanical stirrer. A mixed solution of 91.0 g of tetraethylorthosilicate (manufactured by Sigma-Aldrich,> 99%) and 100 mL of ethanol was added to the flask. After stirring at room temperature for 3 hours, 91.0 g of 25% aqueous ammonia was added. The contents were transferred to an eggplant-shaped flask, and the solvent was distilled off in a hot water bath at 60 ° C. for 4 hours using a rotary evaporator to obtain a powder. The obtained powder was dried in an oven at 120 ° C for 12 hours, and then fired in a muffle furnace (KM-280 manufactured by ADVANTEC) at 500 ° C for 4 hours. The obtained powder was molded and fired in the same manner as in Example 1 to obtain a composite catalyst E. The atomic ratio of Al to Si (Al / Si) measured by XRF analysis was 0.11 (mol / mol).

(実施例5:複合型触媒Fの調製)
硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)20.3gと硝酸(和光純薬工業株式会社製、特級、60%)51.3gと酢酸(和光純薬工業株式会社製、特級)3.3gとポリビニルアルコール(和光純薬工業株式会社製、完全鹸化型、平均重合度400〜600)16.0gと蒸留水(和光純薬工業株式会社製)326mLの混合液をメカニカルスターラーに接続したテフロン(登録商標)製撹拌翼で撹拌した。ケイ酸ナトリウム溶液(和光純薬工業株式会社製、濃度55質量%、SiO/NaO=2.2)93.1gと蒸留水(和光純薬工業株式会社製)334mLの混合溶液を、上記硝酸アルミニウム水溶液に滴下した。30分間熟成したのち、アンモニア水溶液でpHを8にして沈殿を析出させ、さらに3時間撹拌を継続した。析出物に対し、ろ過、水洗浄、1%酢酸アンモニウム(和光純薬工業株式会社製)水溶液洗浄、水洗浄の順に処置を行った後、得られた析出物を50℃に加温したpH9のアンモニア水溶液中で48時間熟成させた。イオン交換水で2回洗浄後、70℃で12時間乾燥したのち、マッフル炉(ADVANTEC製KM−280)で500℃、2時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Fを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.11(mol/mol)であった。
(Example 5: Preparation of composite catalyst F)
Aluminum nitrate 9-hydrate (Wako Pure Chemical Industries, Ltd., special grade) 20.3 g, nitric acid (Wako Pure Chemical Industries, Ltd., special grade, 60%) 51.3 g and acetic acid (Wako Pure Chemical Industries, Ltd.) A mechanical mixture of 3.3 g of polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd., complete saponification type, average polymerization degree: 400 to 600) and 326 mL of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) The mixture was stirred with a Teflon (registered trademark) stirring blade connected to a stirrer. A mixed solution of 93.1 g of sodium silicate solution (manufactured by Wako Pure Chemical Industries, Ltd., concentration 55% by mass, SiO 2 / Na 2 O = 2.2) and 334 mL of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) The solution was dropped into the above aluminum nitrate aqueous solution. After aging for 30 minutes, the pH was adjusted to 8 with an aqueous ammonia solution to precipitate a precipitate, and stirring was further continued for 3 hours. The precipitate was treated in the order of filtration, washing with water, washing with an aqueous solution of 1% ammonium acetate (manufactured by Wako Pure Chemical Industries, Ltd.) and washing with water, and the resulting precipitate was heated to 50 ° C. and adjusted to pH 9 Aged in aqueous ammonia for 48 hours. After washing twice with ion-exchanged water and drying at 70 ° C. for 12 hours, it was baked in a muffle furnace (KM-280 manufactured by ADVANTEC) at 500 ° C. for 2 hours. The obtained powder was molded and fired in the same manner as in Example 1 to obtain a composite catalyst F. The atomic ratio of Al to Si (Al / Si) measured by XRF analysis was 0.11 (mol / mol).

(比較例2:複合型触媒Gの調製)
Pluronic123(シグマアルドリッチ社製)8.0gを蒸留水(和光純薬工業株式会社製)72gに溶解させた。この溶液にコロイダルシリカ(スノーテックス(登録商標)O、シリカ20.4質量%、日産化学工業化学株式会社)47.4g、ムライトゾル(AS−L10、固形分10質量%、多木化学製)11.8g、蒸留水(和光純薬工業株式会社製)49.3gを加えた。得られた白濁液を磁製皿に薄く広げて130℃のオーブンで乾燥させ、さらにマッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Gを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.15(mol/mol)であった。
(Comparative Example 2: Preparation of composite catalyst G)
8.0 g of Pluronic 123 (manufactured by Sigma-Aldrich) was dissolved in 72 g of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.). 47.4 g of colloidal silica (Snowtex (registered trademark) O, silica 20.4% by mass, Nissan Chemical Industry Chemical Co., Ltd.) and mullite sol (AS-L10, solid content 10% by mass, Taki Chemical) 11 .8 g and 49.3 g of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.). The obtained cloudy liquid was spread thinly on a porcelain dish, dried in an oven at 130 ° C., and baked in a muffle furnace (KM-280 manufactured by ADVANTEC) at 500 ° C. for 5 hours. The obtained powder was molded and fired in the same manner as in Example 1 to obtain a composite catalyst G. The atomic ratio of Al and Si (Al / Si) measured by XRF analysis was 0.15 (mol / mol).

(実施例6:担持型触媒Aの調製)
1Lビーカーに硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)0.88gとイオン交換水300gを入れ、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼で撹拌して硝酸アルミニウムを溶解させた。このビーカーにシリカ粉であるキャリアクト(登録商標)G−10(粒径5μm、富士シリシア化学株式会社)13.2gを加え、20分間撹拌を継続した。この時点でのスラリー液のpHは約3であった。続いて1Mアンモニア水28gを30分かけて滴下した。この時点でのスラリー液のpHは約9であった。さらに24時間室温で撹拌を継続したのち、ろ過及び水洗を3回繰り返した。最後にろ過した粉末を80℃のオーブン中で12時間風乾した。得られた粉末を、ポリ塩化ビニル製のセル(30mmφ)に入れ、80MPaの圧力で1分間プレスした。得られたディスク状のセル(厚さ5mm)を破砕し、1.4〜2.8mmのふるい間に残るものを回収し、その後、マッフル炉(ADVANTEC製KM−280)で600℃、5時間焼成し、担持型触媒Aを得た。
(Example 6: Preparation of supported catalyst A)
0.88 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade) and 300 g of ion-exchanged water are placed in a 1 L beaker, and stirred with a Teflon (registered trademark) meniscus stirring blade connected to a mechanical stirrer. The aluminum nitrate was dissolved. 13.2 g of Carract® G-10 (particle size: 5 μm, Fuji Silysia Chemical Ltd.) as silica powder was added to the beaker, and stirring was continued for 20 minutes. The pH of the slurry at this point was about 3. Subsequently, 28 g of 1M ammonia water was added dropwise over 30 minutes. At this point, the pH of the slurry was about 9. After further stirring at room temperature for 24 hours, filtration and washing with water were repeated three times. Finally, the filtered powder was air dried in an oven at 80 ° C. for 12 hours. The obtained powder was placed in a polyvinyl chloride cell (30 mmφ) and pressed at a pressure of 80 MPa for 1 minute. The obtained disk-shaped cell (thickness: 5 mm) was crushed, and the material remaining between the sieves having a size of 1.4 to 2.8 mm was collected. Thereafter, the mixture was heated at 600 ° C. for 5 hours in a muffle furnace (KM-280 manufactured by ADVANTEC). It was calcined to obtain a supported catalyst A.

(実施例7:担持型触媒Bの調製)
硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)を0.59g使用したほかは、実施例6と同様にして担持型触媒Bを調製した。
(Example 7: Preparation of supported catalyst B)
A supported catalyst B was prepared in the same manner as in Example 6, except that 0.59 g of aluminum nitrate nonahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was used.

(実施例8:担持型触媒Cの調製)
硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)を1.76g使用したほかは、実施例6と同様にして担持型触媒Cを調製した。
(Example 8: Preparation of supported catalyst C)
A supported catalyst C was prepared in the same manner as in Example 6, except that 1.76 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade) was used.

(実施例9:担持型触媒Dの調製)
300mLナスフラスコに硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)0.54gとイオン交換水180gを入れ、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼で撹拌して硝酸アルミニウムを溶解させた。このフラスコにシリカ粉であるキャリアクト(登録商標)G−10(粒径5μm、富士シリシア化学株式会社)8.2gと尿素4.7gを加えた。このスラリー液を80℃に加温し、6時間撹拌を継続した。この時点でのスラリー液のpHは約8であった。さらに18時間室温で撹拌を継続したのち、ろ過・水洗を3回繰り返した。最後にろ過した粉末を80℃のオーブン中で12時間風乾を行った。得られた粉末を実施例6と同様に成形及び焼成して担持型触媒Dを得た。
(Example 9: Preparation of supported catalyst D)
0.54 g of aluminum nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade) and 180 g of ion-exchanged water are placed in a 300 mL eggplant flask, and stirred with a Teflon (registered trademark) meniscus stirring blade connected to a mechanical stirrer. To dissolve the aluminum nitrate. To this flask were added 8.2 g of Carract (registered trademark) G-10 (particle size: 5 μm, Fuji Silysia Chemical Ltd.) and 4.7 g of urea, which were silica powders. This slurry liquid was heated to 80 ° C., and stirring was continued for 6 hours. The pH of the slurry at this point was about 8. After continuing stirring at room temperature for further 18 hours, filtration and washing with water were repeated three times. Finally, the filtered powder was air-dried in an oven at 80 ° C. for 12 hours. The obtained powder was molded and calcined in the same manner as in Example 6 to obtain a supported catalyst D.

(実施例10:担持型触媒Eの調製)
300mLナスフラスコに15%塩酸(和光純薬工業株式会社製、特級)100gとシリカ粉であるキャリアクト(登録商標)G−10(粒径5μm、富士シリシア化学株式会社)15gを入れ、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼で撹拌した。このスラリー液を70℃に加温して6時間撹拌を継続したのち、ろ過及び水洗をろ液が中性になるまで繰り返した。最後にろ過した粉末を80℃のオーブン中で12時間風乾を行った。得られたシリカ粉末を担体に用いて、実施例6と同様にして担持型触媒Eを得た。
(Example 10: Preparation of supported catalyst E)
100 g of 15% hydrochloric acid (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 15 g of Carract (registered trademark) G-10 (particle size: 5 μm, Fuji Silysia Chemical Ltd.), which is a silica powder, are placed in a 300 mL eggplant flask, and a mechanical stirrer is placed. Was stirred with a Teflon (registered trademark) meniscus stirring blade. After heating this slurry liquid at 70 ° C. and continuing stirring for 6 hours, filtration and washing with water were repeated until the filtrate became neutral. Finally, the filtered powder was air-dried in an oven at 80 ° C. for 12 hours. Using the obtained silica powder as a carrier, a supported catalyst E was obtained in the same manner as in Example 6.

(比較例3:担持型触媒Fの調製)
シリカ粉であるキャリアクト(登録商標)G−10(粒径5μm、富士シリシア化学株式会社)20gに対し、硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)1.34gを含む水溶液を含浸担持させ、エバポレーターで大部分の水を除いたのちに80℃のオーブン中で12時間風乾を行った。得られた粉末を実施例6と同様に成形及び焼成して担持型触媒Fを得た。
(Comparative Example 3: Preparation of supported catalyst F)
1.34 g of aluminum nitrate nonahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) is added to 20 g of Silica Powder Carrierct (registered trademark) G-10 (particle size: 5 μm, Fuji Silysia Chemical Ltd.). The resulting aqueous solution was impregnated and supported, and after removing most of the water with an evaporator, air drying was performed in an oven at 80 ° C. for 12 hours. The obtained powder was molded and calcined in the same manner as in Example 6 to obtain a supported catalyst F.

[脱水反応]
以下、反応実施例を示す。触媒寿命は、原料のアリル型不飽和アルコール(式(1)及び式(2)の合計)の転化率と反応時間とのグラフから、転化率が約100%から低下して、98.5%となるまでの時間を読み取り、その値とした。平均コーク付着速度は、反応後に抜き出した触媒を用いて以下のように算出する。TG−DTAを用いて、反応後の抜出触媒の室温から650℃の区間の質量減少を、乾燥空気流通下、10℃/分の速度で昇温しながら測定する。室温から300℃までの質量減少をx%、300℃から650℃までの質量減少をy%とした場合に、下式に当てはめて平均コーク付着速度を算出する。

Figure 0006656074
[Dehydration reaction]
Hereinafter, reaction examples are shown. From the graph of the conversion rate of the allyl-type unsaturated alcohol (the sum of the formulas (1) and (2)) and the reaction time, the catalyst life was 98.5% as the conversion rate decreased from about 100%. The time up to was read and taken as that value. The average coke deposition rate is calculated as follows using the catalyst extracted after the reaction. Using TG-DTA, the mass loss of the extracted catalyst after the reaction in the section from room temperature to 650 ° C. is measured while flowing the dry air at a rate of 10 ° C./min. When the weight loss from room temperature to 300 ° C. is x% and the weight loss from 300 ° C. to 650 ° C. is y%, the average coke deposition rate is calculated by applying the following equation.
Figure 0006656074

(反応実施例1)
複合型触媒Aに対して3−ブテン−2−オール/2−ブテン−1−オール混合溶液を基質とし、窒素ガス及び水蒸気を希釈剤として反応を行った。触媒は5mL使用した。基質の3−ブテン−2−オール及び2−ブテン−1−オールのモル比率は6:4であり、合計導入量は触媒1mLあたり毎時1.35gであった。水蒸気の導入量は触媒1mLあたり毎時0.84L、窒素ガス導入量は触媒1mLあたり毎時0.42Lで反応温度は300℃に設定した(SV=1680[/h])。結果を表1に示す。
(Reaction Example 1)
The reaction was performed on the composite catalyst A using a 3-buten-2-ol / 2-buten-1-ol mixed solution as a substrate and nitrogen gas and water vapor as diluents. 5 mL of the catalyst was used. The molar ratio of 3-buten-2-ol and 2-buten-1-ol of the substrate was 6: 4, and the total amount introduced was 1.35 g / mL of catalyst per hour. The amount of introduced steam was 0.84 L / h per 1 mL of the catalyst, the amount of introduced nitrogen gas was 0.42 L / h per 1 mL of the catalyst, and the reaction temperature was set at 300 ° C. (SV = 1680 [/ h]). Table 1 shows the results.

(反応実施例2〜10、反応比較例1〜3)
表1又は表2に示す触媒を使用し、反応実施例1と同様にして脱水反応を行った。結果を表1又は表2に示す。
(Reaction Examples 2 to 10, Reaction Comparative Examples 1 to 3)
A dehydration reaction was performed in the same manner as in Reaction Example 1 using the catalysts shown in Table 1 or Table 2. The results are shown in Table 1 or Table 2.

反応実施例1〜10と反応比較例1〜3のアルミニウム分散度に対する触媒寿命を図1に、1,3−ブタジエンの選択率を図2に示す。これらの図から理解できるように、複合型触媒ではアルミニウム分散度が0.10〜0.30の触媒、担持型触媒ではアルミニウム分散度が0.20〜0.45の触媒を用いると、非常に高選択的かつ長寿命で1,3−ブタジエンを得ることができる。

Figure 0006656074
Figure 0006656074
FIG. 1 shows the catalyst life with respect to the degree of aluminum dispersion in Reaction Examples 1 to 10 and Reaction Comparative Examples 1 to 3, and FIG. 2 shows the selectivity of 1,3-butadiene. As can be understood from these figures, when a catalyst having an aluminum dispersity of 0.10 to 0.30 is used for the composite catalyst, and a catalyst having an aluminum dispersity of 0.20 to 0.45 is used for the supported catalyst, it becomes very difficult. 1,3-Butadiene can be obtained with high selectivity and long life.
Figure 0006656074
Figure 0006656074

Claims (7)

脱水触媒の存在下、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造する方法であって、前記脱水触媒がケイ素の酸化物とアルミニウムの酸化物とが原子レベル又は微粒子レベルで混ざり合った複合型触媒であり、NH−TPD法により測定された酸量(mol/g)をアルミニウムの含有量(mol/g)で割った値で定義されるアルミニウム分散度が0.10〜0.30であることを特徴とする共役ジエン化合物の製造方法。
Figure 0006656074
(式中、R〜Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)
Figure 0006656074
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 0006656074
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 0006656074
A method for producing a conjugated diene compound represented by the general formula (3) by a dehydration reaction using at least one of the allyl-type unsaturated alcohols represented by the general formula (1) or (2) in the presence of a dehydration catalyst Wherein the dehydration catalyst is a composite catalyst in which a silicon oxide and an aluminum oxide are mixed at an atomic level or a fine particle level, and an acid amount (mol / g) measured by an NH 3 -TPD method. A conjugated diene compound having a polydispersity of 0.10 to 0.30, defined as a value obtained by dividing by a content (mol / g) of aluminum.
Figure 0006656074
(In the formula, R 1 to R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
Figure 0006656074
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 0006656074
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 0006656074
脱水触媒の存在下、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造する方法であって、前記脱水触媒が二酸化ケイ素担体上にアルミニウムの酸化物が担持された担持型触媒であり、NH−TPD法により測定された酸量(mol/g)をアルミニウムの含有量(mol/g)で割った値で定義されるアルミニウム分散度が0.20〜0.45であることを特徴とする共役ジエン化合物の製造方法。
Figure 0006656074
(式中、R〜Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)
Figure 0006656074
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 0006656074
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 0006656074
A method for producing a conjugated diene compound represented by the general formula (3) by a dehydration reaction using at least one of the allyl-type unsaturated alcohols represented by the general formula (1) or (2) in the presence of a dehydration catalyst Wherein the dehydration catalyst is a supported catalyst in which an oxide of aluminum is supported on a silicon dioxide support, and the amount of acid (mol / g) measured by the NH 3 -TPD method is changed to the content of aluminum (mol). / G), wherein the aluminum dispersity defined by the value divided by (g) is from 0.20 to 0.45.
Figure 0006656074
(In the formula, R 1 to R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
Figure 0006656074
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 0006656074
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 0006656074
前記脱水触媒のアルミニウムとケイ素の原子比(Al/Si)が0.03〜0.13である請求項1に記載の共役ジエン化合物の製造方法。   The method for producing a conjugated diene compound according to claim 1, wherein the dehydration catalyst has an atomic ratio of aluminum to silicon (Al / Si) of 0.03 to 0.13. 前記脱水触媒のアルミニウムとケイ素の原子比(Al/Si)が0.005〜0.025である請求項2に記載の共役ジエン化合物の製造方法。   The method for producing a conjugated diene compound according to claim 2, wherein the dehydration catalyst has an atomic ratio of aluminum to silicon (Al / Si) of 0.005 to 0.025. 前記脱水触媒がシリカアルミナである請求項1又は3に記載の共役ジエン化合物の製造方法。   4. The method for producing a conjugated diene compound according to claim 1, wherein the dehydration catalyst is silica alumina. 前記脱水触媒の窒素ガス吸着法により測定された平均細孔径が6.0〜70.0nmである請求項1〜5のいずれか一項に記載の共役ジエン化合物の製造方法。   The method for producing a conjugated diene compound according to any one of claims 1 to 5, wherein an average pore diameter of the dehydration catalyst measured by a nitrogen gas adsorption method is 6.0 to 70.0 nm. 一般式(1)及び一般式(2)のR〜Rがすべて水素原子である請求項1〜6のいずれか一項に記載の共役ジエン化合物の製造方法。 The method for producing a conjugated diene compound according to any one of claims 1 to 6, wherein R 1 to R 6 in the general formulas (1) and (2) are all hydrogen atoms.
JP2016088589A 2016-04-26 2016-04-26 Method for producing conjugated diene compound by dehydration of allylic unsaturated alcohol Active JP6656074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088589A JP6656074B2 (en) 2016-04-26 2016-04-26 Method for producing conjugated diene compound by dehydration of allylic unsaturated alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088589A JP6656074B2 (en) 2016-04-26 2016-04-26 Method for producing conjugated diene compound by dehydration of allylic unsaturated alcohol

Publications (2)

Publication Number Publication Date
JP2017197458A JP2017197458A (en) 2017-11-02
JP6656074B2 true JP6656074B2 (en) 2020-03-04

Family

ID=60237376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088589A Active JP6656074B2 (en) 2016-04-26 2016-04-26 Method for producing conjugated diene compound by dehydration of allylic unsaturated alcohol

Country Status (1)

Country Link
JP (1) JP6656074B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021007314T5 (en) * 2021-03-19 2024-01-04 Jgc Catalysts And Chemicals Ltd. Silica-alumina powder, process for producing silica-alumina powder, catalyst for fluid catalytic cracking and process for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048336A (en) * 2013-09-03 2015-03-16 東レ株式会社 Method for producing butadiene and/or 3-butene-2-ol
JP6175319B2 (en) * 2013-09-10 2017-08-02 東レ株式会社 Process for producing 1,3-butadiene and / or 3-buten-2-ol
WO2015146789A1 (en) * 2014-03-25 2015-10-01 Jx日鉱日石エネルギー株式会社 Dehydration catalyst and method for producing conjugated diene
BR112016026512A2 (en) * 2014-05-16 2017-08-15 Versalis Spa PROCESS FOR THE PRODUCTION OF ALKENOLS AND THEIR USE FOR THE PRODUCTION OF 1,3-BUTADIENE

Also Published As

Publication number Publication date
JP2017197458A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP5385972B2 (en) Olefin production method
JP7305558B2 (en) Catalyst, method for producing the same, and method for producing a diene compound using the catalyst
JP6803729B2 (en) Manufacturing method of p-xylene
Yang et al. Cu/ZnO x@ UiO-66 synthesized from a double solvent method as an efficient catalyst for CO 2 hydrogenation to methanol
US20220161235A1 (en) Catalyst, and method for producing 1,3-butadiene using same
JP7174947B2 (en) Solid catalyst and method for producing butadiene
JP6812620B2 (en) Catalytic system for oxidative dehydrogenation reaction, reactor for butadiene production including it, and method for producing 1,3-butadiene
JP6678429B2 (en) Method for producing conjugated diene compound and catalyst for dehydrating allylic unsaturated alcohol
JP6656074B2 (en) Method for producing conjugated diene compound by dehydration of allylic unsaturated alcohol
Saito et al. Supported Ga-oxide catalyst for dehydrogenation of ethane
JP5877853B2 (en) Mixed oxide composition and method for producing isoolefin
JP6684641B2 (en) Method for producing conjugated diene compound and dehydration catalyst for allylic unsaturated alcohol
Zhang et al. Ti-SBA-15 supported Cu–MgO catalyst for synthesis of isobutyraldehyde from methanol and ethanol
JP7197507B2 (en) Catalyst, method for producing the same, and method for producing a diene compound using the catalyst
JP6869020B2 (en) Method for producing conjugated diene compound
JP2017186272A (en) Manufacturing method of diene compound
WO2022196717A1 (en) Catalyst, methhod for producing catalyst, method for producing diene compound, method for producing polymer, method for producing polymer molded article, method for measuring catalyst performance, and method for prolonging service life
WO2020262486A1 (en) Catalyst and method for producing diene compound
EP3315194B1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst
JP6462498B2 (en) Process for producing unsaturated alcohol and catalyst
WO2022230791A1 (en) Method for producing propylene
WO2024028336A1 (en) Catalyst for the production of 1,3-butadiene giving a high yield based on a support comprising aluminium and sodium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6656074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350