JP6651128B2 - Lead-acid battery for idling stop vehicle and idling stop vehicle - Google Patents

Lead-acid battery for idling stop vehicle and idling stop vehicle Download PDF

Info

Publication number
JP6651128B2
JP6651128B2 JP2015192805A JP2015192805A JP6651128B2 JP 6651128 B2 JP6651128 B2 JP 6651128B2 JP 2015192805 A JP2015192805 A JP 2015192805A JP 2015192805 A JP2015192805 A JP 2015192805A JP 6651128 B2 JP6651128 B2 JP 6651128B2
Authority
JP
Japan
Prior art keywords
electrode plate
current collectors
positive electrode
negative electrode
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015192805A
Other languages
Japanese (ja)
Other versions
JP2017069022A (en
Inventor
賢治 山内
賢治 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2015192805A priority Critical patent/JP6651128B2/en
Publication of JP2017069022A publication Critical patent/JP2017069022A/en
Application granted granted Critical
Publication of JP6651128B2 publication Critical patent/JP6651128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)

Description

この発明は鉛蓄電池に関する。   The present invention relates to a lead storage battery.

鉛蓄電池を、不完全な充電状態(PSOC(Partial state of charge)で使用する用途が多くなっている。
例えば、アイドリングストップ(IS)車では、停車の都度エンジンを停止させることにより燃料消費量を小さくし、発進時に鉛蓄電池からの電力でエンジンを起動している。このため鉛蓄電池は、充電不足の状態で使用される。IS用途に限らず、エネルギー効率を向上させるために、鉛蓄電池への充電を避け、しかも鉛蓄電池から取り出す電力が増加しているので、鉛蓄電池は充電不足な状態に置かれることが多い。
The use of lead-acid batteries in an incomplete charge state (PSOC (Partial state of charge)) is increasing.
For example, in an idling stop (IS) vehicle, the fuel consumption is reduced by stopping the engine each time the vehicle is stopped, and the engine is started with electric power from a lead storage battery at the time of starting. Therefore, the lead storage battery is used in a state of insufficient charge. Not only in IS applications, but in order to improve energy efficiency, charging the lead storage battery is avoided, and the power taken out of the lead storage battery is increasing, so that the lead storage battery is often placed in a state of insufficient charge.

鉛蓄電池では、放電時に、両極板で硫酸が消費され、正極では水が生成し、充電時に、両極板から硫酸が放出され、下部に高比重の硫酸が蓄積する成層化現象が生じる。充電量が充分(過充電)な場合、充電末期に極板から発生するガスにより電解液が撹拌され、濃度差は解消する。
しかし、PSOCで使用される鉛蓄電池では、過充電量が少ないため、上下の濃度差が解消し難く電解液が成層化しやすい。電解液が成層化すると、充放電反応が不均一化する結果、サルフェーション(硫酸鉛の蓄積)が進行し、正極の軟化や寿命性能の低下が起こる。
In a lead-acid battery, sulfuric acid is consumed in the bipolar plates during discharging, water is generated in the positive electrode, and sulfuric acid is released from the bipolar plates during charging, causing a stratification phenomenon in which sulfuric acid having a high specific gravity accumulates in the lower part. If the charge amount is sufficient (overcharge), the electrolyte solution is agitated by the gas generated from the electrode plate at the end of charging, and the concentration difference is eliminated.
However, in the lead storage battery used in the PSOC, since the overcharge amount is small, the difference between the upper and lower concentrations is hard to be eliminated, and the electrolyte is easily stratified. When the electrolyte is stratified, the charge / discharge reaction becomes non-uniform, and as a result, sulfation (accumulation of lead sulfate) progresses, and the softening of the positive electrode and a reduction in life performance occur.

特許文献1には、「格子体に活物質を充填した正極板と負極板とをセパレータを介して積層した自動車用鉛蓄電池において、前記極板は、集電タブ近傍の上部の活物質厚みを薄く、集電タブから離れた下部の活物質厚みを厚くして、電池の上下方向の極板厚みを変化させている自動車用鉛蓄電池。」(請求項1)の発明が記載されている。   Patent Literature 1 states, "In a lead-acid battery for automobiles in which a positive electrode plate and a negative electrode plate each of which is filled with an active material in a grid body are stacked with a separator interposed therebetween, the electrode plate has a thickness of an active material in the upper portion near a current collection tab. The lead-acid battery for automobiles, which is thin and has a thicker active material at a lower portion away from the current collecting tab to change the thickness of the electrode plate in the vertical direction of the battery. "

特許文献2には、「陽極板上部と対応する部分に、ガラスマットを具備する隔離板を用いることを特徴とする鉛蓄電池。」(特許請求の範囲(1))の発明が記載されている。   Patent Literature 2 describes the invention of "a lead storage battery characterized in that a separator provided with a glass mat is used in a portion corresponding to the upper part of the anode plate." (Claim (1)). .

特許文献3には、「(1)積層方向の厚さを上部より下部を小とした極板群を用いた蓄電池。(2)隔離板を極板の下端部で圧接保持した実用新案登録請求の範囲第1項記載の蓄電池。」(実用新案登録請求の範囲)の発明が記載されている。   Patent Literature 3 discloses “(1) a storage battery using an electrode group in which the thickness in the stacking direction is smaller than the upper part in the lower part. (2) A utility model registration request in which the separator is pressed and held at the lower end of the electrode plate. The invention according to claim 1 (claims for utility model registration).

特開2003−187790号公報JP 2003-187790 A 特開平4−95342号公報JP-A-4-95342 実開昭59−121165号全文明細書Full-text specification of Japanese Utility Model Application Laid-Open No. 59-112165

PSOC用途の鉛蓄電池では、極板が厚く極板枚数が多い傾向がある。極板が厚く極板枚数が多い極板群に対して、ストラップの大きさを従来どおりとすると、極板群の上部が絞られる。その結果、極板群における隣り合う集電体間の間隔が、下部よりも上部で狭くなりやすい。本発明者は、このような蓄電池において浸透短絡が発生しやすいことを見出した。また、本発明者は、このような蓄電池において寿命性能が低下することも見出した。   In lead storage batteries for use in PSOC, there is a tendency that the electrodes are thick and the number of electrodes is large. If the size of the strap is the same as that of the conventional electrode group having a large number of electrode plates and a large number of electrode plates, the upper part of the electrode group is narrowed. As a result, the interval between the current collectors adjacent to each other in the electrode group tends to be narrower in the upper part than in the lower part. The inventor has found that in such a storage battery, a penetration short circuit easily occurs. The inventor has also found that the life performance of such a storage battery is reduced.

特許文献1に記載された発明は、活物質の厚みを上下方向で変化させることにより、上下部での充放電反応の不均一を解消し、サルフェーションや成層化を抑止するものである。しかし、極板群における隣り合う集電体間の間隔が、下部よりも上部で狭い場合に浸透短絡が発生しやすいという課題は認識されていない。   The invention described in Patent Literature 1 eliminates nonuniform charge / discharge reactions in the upper and lower portions by changing the thickness of the active material in the vertical direction, and suppresses sulfation and stratification. However, the problem that the penetration short circuit easily occurs when the interval between the adjacent current collectors in the electrode plate group is narrower in the upper part than in the lower part is not recognized.

特許文献2に記載された発明は、隔離板が陽極板上部と対応する部分にガラスマットを具備することにより、陽極板と隔離板のベース部が直接接触することを防止するものであるが、集電体間の上部と下部の間隔の大小及び浸透短絡について着目したものでない。   The invention described in Patent Document 2 is to prevent the anode plate and the base portion of the separator from directly contacting each other by providing the separator with a glass mat at a portion corresponding to the upper portion of the anode plate. It does not focus on the size of the gap between the upper and lower portions between the current collectors and on the penetration short circuit.

特許文献3に記載された発明は、PSOCで使用される電池を想定したものでなく、耐浸透短絡性能との関連を示唆するものでない。   The invention described in Patent Document 3 does not assume a battery used in the PSOC, and does not suggest a relationship with the permeation short-circuit resistance.

この発明の目的は、耐浸透短絡性能の向上した鉛蓄電池を提供することにある。 An object of the present invention is to provide a lead-acid battery having improved short-circuit resistance.

本発明者は、鉛蓄電池の隣り合う集電体間の間隔を、下部よりも上部で広くすることにより耐浸透短絡性能を向上できることを見出した。即ち、本発明は、前記の課題を解決するために、以下の手段を有する。
本第一発明は、正極電極材料を保持する正極集電体を備える正極板と、負極電極材料を保持する負極集電体を備える負極板とを、セパレータを介して積層した極板群と、電解液と、前記極板群を収納するセル室を有する電槽を備えた鉛蓄電池であって、前記極板群における隣り合う集電体間の間隔が、下部よりも上部で広いことを特徴とする。
The present inventor has found that by making the interval between the current collectors adjacent to each other in the lead storage battery wider at the upper portion than at the lower portion, the permeation short-circuit resistance can be improved. That is, the present invention has the following means in order to solve the above-mentioned problems.
The first invention, a positive electrode plate provided with a positive electrode current collector holding a positive electrode material, and a negative electrode plate provided with a negative electrode current collector holding a negative electrode material, an electrode plate group laminated via a separator, An electrolyte, and a lead storage battery including a battery case having a cell chamber for accommodating the electrode group, wherein an interval between adjacent current collectors in the electrode group is wider at an upper portion than at a lower portion. And

本第二発明は、前記第一発明において、前記極板群における隣り合う集電体間の間隔が、下部よりも上部で0.2mm以上広いことを特徴とする。   The second invention is characterized in that in the first invention, an interval between adjacent current collectors in the electrode plate group is wider by 0.2 mm or more at an upper portion than at a lower portion.

本第三発明は、前記第一発明において、前記極板群における隣り合う集電体間の間隔が、下部よりも上部で0.2mm以上1.0mm以下広いことを特徴とする。   The third invention is characterized in that, in the first invention, an interval between adjacent current collectors in the electrode plate group is wider by 0.2 mm or more and 1.0 mm or less in an upper part than in a lower part.

本第四発明は、前記第一乃至第三発明において、前記セル室が前記極板群の両端の極板に対向する内壁にリブを有し、前記リブの突出方向への高さが、前記リブの上部よりも下部で高いことを特徴とする。本第四発明によれば耐浸透短絡性能を一層向上させることができる。   In the fourth invention, in the first to third inventions, the cell chamber has a rib on an inner wall opposed to the electrode plates at both ends of the electrode plate group, and the height of the rib in a projecting direction is It is characterized by being higher at the lower part than at the upper part of the rib. According to the fourth aspect of the present invention, it is possible to further improve the permeation short-circuit resistance.

本第五発明は、前記第四発明において、前記セル室内の正極板及び前記負極板の間隔の個数がNであり、前記リブの突出方向への高さが、前記リブの上部よりも下部で0.2Nmm以上高いことを特徴とする。   In the fifth invention, in the fourth invention, the number of intervals between the positive electrode plate and the negative electrode plate in the cell chamber is N, and the height of the rib in the projecting direction is lower than the upper part of the rib. It is characterized by being higher than 0.2 Nmm.

本第六発明は、前記第一乃至第五発明のいずれかにおいて、前記正極板と前記セパレータの間、又は前記負極板と前記セパレータの間の少なくとも一方の上部又は下部に、間隔保持体を有することを特徴とする。   The sixth invention according to any one of the first to fifth inventions, further comprises a spacing member between the positive electrode plate and the separator, or at least one of upper and lower portions between the negative electrode plate and the separator. It is characterized by the following.

本第一発明によれば耐浸透短絡性能を向上させることができる。
本第二発明によれば耐浸透短絡性能を一層向上させることができる。
本第三乃至第五発明によれば耐浸透短絡性能を一層向上させることができ、またPSOC寿命性能を向上させることもできる。
本第六発明によれば耐浸透短絡性能を一層向上させることができる。
According to the first aspect of the present invention, it is possible to improve permeation short-circuit resistance.
According to the second invention, the permeation short-circuit resistance can be further improved.
According to the third to fifth aspects of the present invention, the permeation short circuit resistance can be further improved, and the PSOC life performance can also be improved.
According to the sixth aspect of the invention, the short circuit resistance to permeation short circuit can be further improved.

隣り合う集電体間の間隔(集電体間距離)の説明図Explanatory drawing of the distance between adjacent collectors (distance between collectors) エキスパンドタイプの集電体の説明図Explanatory drawing of expandable current collector 鋳造タイプの集電体の説明図Illustration of casting type current collector PSOC寿命試験におけるサイクルパターンの説明図Explanatory drawing of the cycle pattern in the PSOC life test 集電体間距離の上下部の差と、PSOC寿命及び浸透短絡発生率との関係を示すグラフ4 is a graph showing the relationship between the difference between the upper and lower distances between the current collectors, the PSOC life, and the penetration short circuit occurrence rate. セル室の内壁にリブを有する電槽の斜視図A perspective view of a battery case having a rib on an inner wall of a cell chamber.

本発明は、正極電極材料を保持する正極集電体を備える正極板と、負極電極材料を保持する負極集電体を備える負極板とを、セパレータを介して積層した極板群と、電解液と、前記極板群を収納した電槽を備えた鉛蓄電池であって、前記極板群における隣り合う集電体間の間隔が下部より上部で広いことを特徴とする。   The present invention provides a positive electrode plate provided with a positive electrode current collector holding a positive electrode material, a negative electrode plate provided with a negative electrode current collector holding a negative electrode material, an electrode plate group laminated via a separator, and an electrolytic solution. And a lead storage battery provided with a battery case in which the electrode group is housed, wherein the distance between adjacent current collectors in the electrode group is wider at the upper part than at the lower part.

以下に、本発明の実施形態を示す。本発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施形態を適宜に変更できる。
なお、以下、負極電極材料を負極活物質と呼び、正極電極材料を正極活物質と呼ぶ。また負極板は、負極集電体(負極格子)と負極活物質(負極電極材料)とから成り、正極板は、正極集電体(正極格子)と正極活物質(正極電極材料)とから成り、集電体以外の固形成分は活物質(電極材料)に属するものとする。
また、隣り合う集電体の間隔は、図1に示すように正極集電体の厚さ方向の中心面と負極集電体の厚さ方向の中心面との間の距離であり、以下「集電体間距離」ということがある。正極集電体又は負極集電体に凹凸があるなどの理由で正負極板の集電体間距離が場所により異なる場合には集電体間距離が最短になる場所で集電体間距離を測定する。正負極板の上部の集電体間距離とは、正極集電体及び負極集電体それぞれの耳部を除いた、集電体の上端における集電体間距離である。鉛蓄電池が複数の正極板及び負極板を有する場合には全ての正負極板について上部の集電体間の間隔を測定し、その相加平均を集電体間距離とする。正負極板の下部の集電体間距離とは、正極集電体及び負極集電体それぞれの足部を除いた下端における集電体間距離である。鉛蓄電池が複数の正極板及び負極板を有する場合には、全ての正負極板について下部の集電体間の間隔を測定し、その相加平均を集電体間距離とする。なお、集電体間距離は、極板群が電槽に収容され、かつ、化成された後であり、かつ、満充電の状態において測定した値とする。
Hereinafter, embodiments of the present invention will be described. In practicing the present invention, the embodiments can be appropriately modified in accordance with the common knowledge of those skilled in the art and the disclosure of the prior art.
Hereinafter, the negative electrode material is referred to as a negative electrode active material, and the positive electrode material is referred to as a positive electrode active material. The negative electrode plate includes a negative electrode current collector (negative electrode grid) and a negative electrode active material (negative electrode material), and the positive electrode plate includes a positive electrode current collector (positive electrode grid) and a positive electrode active material (positive electrode material). The solid components other than the current collector belong to the active material (electrode material).
The interval between adjacent current collectors is the distance between the center plane in the thickness direction of the positive electrode current collector and the center plane in the thickness direction of the negative electrode current collector, as shown in FIG. It may be referred to as "distance between current collectors". If the distance between the current collectors of the positive and negative electrodes differs depending on the location because the positive electrode current collector or the negative electrode current collector has irregularities, etc., the distance between the current collectors should be set at the location where the current collector distance becomes the shortest. Measure. The distance between the current collectors on the upper part of the positive and negative electrode plates is the distance between the current collectors at the upper end of the current collector excluding the ears of the positive electrode current collector and the negative electrode current collector. When the lead storage battery has a plurality of positive and negative plates, the intervals between the upper current collectors of all the positive and negative plates are measured, and the arithmetic mean thereof is defined as the distance between the current collectors. The distance between the current collectors at the lower part of the positive and negative electrode plates is the distance between the current collectors at the lower end of each of the positive electrode current collector and the negative electrode current collector excluding the feet. When the lead storage battery has a plurality of positive and negative electrode plates, the intervals between the lower current collectors of all the positive and negative electrode plates are measured, and the arithmetic mean thereof is defined as the distance between the current collectors. Note that the distance between the current collectors is a value measured after the electrode group is housed in the battery case and formed, and in a fully charged state.

本発明に係る鉛蓄電池は、例えば、鉛を活物質とする負極板と、二酸化鉛を活物質とする正極板と、これら極板の間に介在する多孔性のセパレータとからなる極板群を備えたものであり、当該極板群が電槽内に収納され、希硫酸を主成分とする流動可能な電解液に浸漬されてなるものである。   The lead storage battery according to the present invention includes, for example, an electrode plate group including a negative electrode plate using lead as an active material, a positive electrode plate using lead dioxide as an active material, and a porous separator interposed between these electrode plates. The electrode plate group is housed in a battery case, and is immersed in a flowable electrolytic solution containing dilute sulfuric acid as a main component.

前記負極板及び正極板は、Pb−Sb系合金やPb−Ca系合金、Pb−Ca−Sn系合金等からなる集電体にペースト状の活物質を充填して形成されたものである。これらの各構成部材は、目的・用途に応じて適宜公知のものから選択して用いることができる。正極板及び負極板はそれらの全体において厚みが均一であることが好ましい。全体において厚みが均一な正極板及び負極板は製造が容易なためである。正極板の厚さは1.4mm以上1.8mm以下が好ましく、負極板の厚さは1.1mm以上1.5mm以下が好ましい。   The negative electrode plate and the positive electrode plate are formed by filling a paste-like active material into a current collector made of a Pb-Sb-based alloy, a Pb-Ca-based alloy, a Pb-Ca-Sn-based alloy, or the like. These constituent members can be appropriately selected from known ones according to the purpose and application. It is preferable that the positive electrode plate and the negative electrode plate have a uniform thickness in their entirety. This is because a positive electrode plate and a negative electrode plate having a uniform thickness as a whole can be easily manufactured. The thickness of the positive electrode plate is preferably 1.4 mm or more and 1.8 mm or less, and the thickness of the negative electrode plate is preferably 1.1 mm or more and 1.5 mm or less.

前記集電体は、図2に示すエキスパンドタイプの場合、活物質が充填される格子部3、格子部3の縁に連設された上部枠骨部2、下部枠骨部4、及び上部枠骨部2から突出する耳1を備える。図3に示す鋳造タイプである場合、さらに横枠骨部5と下部枠骨部から突出する足6を備える。   In the case of the expandable type shown in FIG. 2, the current collector is a grid portion 3 filled with an active material, an upper frame portion 2, a lower frame portion 4, and an upper frame connected to the edge of the grid portion 3. An ear 1 protruding from a bone 2 is provided. In the case of the casting type shown in FIG. 3, a horizontal frame 5 and a foot 6 protruding from the lower frame are further provided.

セパレータは、液式鉛蓄電池のセパレータとして一般的に用いられているものを用いることができる。たとえば、微細孔を有するポリオレフィンを主成分とするシート、樹脂やガラスの繊維を主成分とするマットを用いることができる。とくに、取扱い性やコストの面で、微細孔を有するポリエチレンを主成分とするシートを用いることが好ましい。セパレータは平板状であってもよいが、活物質の脱落を防止するためには、正極板、負極板のいずれかを収納する袋状であることが好ましい。正極板は腐食伸びが大きいから、負極板を収納する袋状であることがより好ましい。   As the separator, a separator generally used as a separator for a liquid lead storage battery can be used. For example, a sheet mainly composed of polyolefin having micropores and a mat mainly composed of resin or glass fibers can be used. In particular, it is preferable to use a sheet containing polyethylene having micropores as a main component in terms of handleability and cost. The separator may be in the form of a flat plate. However, in order to prevent the active material from falling off, it is preferable that the separator be in the form of a bag in which either the positive electrode plate or the negative electrode plate is stored. Since the positive electrode plate has a large corrosion elongation, it is more preferable that the positive electrode plate has a bag shape for accommodating the negative electrode plate.

前記の未化成の正極板と前記の未化成の負極板とを前記のセパレータを介して積層し、隣り合う集電体間の間隔が、極板下部よりも上部で広くなるように、正極板の格子タブ及び負極板の格子タブ(接続部、耳)の間にスペーサを挿入し、同極性の極板同士をストラップで連結させて極板群とする。隣り合う集電体間の間隔は、下部よりも上部で0.2mm以上広いことが好ましく、0.2mm以上1.0mm以下広いことがより好ましく、0.2mm以上0.8mm以下広いことがさらに好ましく、0.4mm以上0.6mm以下広いことが特に好ましい。   The positive electrode plate is formed by laminating the unformed positive electrode plate and the unformed negative electrode plate with the separator interposed therebetween, so that an interval between adjacent current collectors is wider at an upper portion than at a lower portion of the electrode plate. A spacer is inserted between the lattice tabs (connecting portions and ears) of the negative electrode plate and the negative electrode plate, and the electrode plates having the same polarity are connected to each other with a strap to form an electrode plate group. The distance between adjacent current collectors is preferably 0.2 mm or more wider than the lower part, more preferably 0.2 mm or more and 1.0 mm or less, more preferably 0.2 mm or more and 0.8 mm or less. It is particularly preferable that the width is 0.4 mm or more and 0.6 mm or less.

スペーサを取り除いた後の極板群は、電槽のセル室内に収納される。電槽は、例えばポリプロピレン等の合成樹脂製である。前記電槽内に希硫酸を加え、電槽化成を施した後、希硫酸を一度抜き、比重を調整した硫酸を加えて液式鉛蓄電池を作製する。   The electrode group after removing the spacer is housed in the cell chamber of the battery case. The battery case is made of, for example, a synthetic resin such as polypropylene. After adding dilute sulfuric acid into the battery case and subjecting the battery case to chemical formation, the diluted sulfuric acid is once removed, and sulfuric acid whose specific gravity is adjusted is added to produce a liquid lead storage battery.

この鉛蓄電池において、前記のセル室は、極板群の両端の極板が対向する側の内壁に線状の凸部からなるリブを有し、前記リブの突出方向への高さが、前記リブの上部よりも下部で高いことが好ましい。これにより、耐浸透短絡性能を向上させることができる。これは、充放電反応を繰り返して極板が膨れても、前記リブにより集電体間距離の上下差を維持することができるためと推察される。なお、リブの上部とはリブの上端とし、リブの下部とはリブの下端とする。リブはセル室内の極板群の両端の極板が対向する側の内壁のうち、片側の内壁のみに設けられても、両側の内壁に設けられてもよい。   In this lead-acid battery, the cell chamber has a rib formed of a linear convex portion on an inner wall on a side where the electrode plates at both ends of the electrode plate face each other, and the height of the rib in the projecting direction is Preferably, it is higher at the lower part than at the upper part of the rib. Thereby, the permeation short circuit resistance can be improved. This is presumably because even if the electrode plate swells due to repeated charge and discharge reactions, the ribs can maintain the vertical difference in the distance between the current collectors. The upper part of the rib is the upper end of the rib, and the lower part of the rib is the lower end of the rib. The ribs may be provided on only one inner wall or on both inner walls of the inner wall on the side opposite to the electrode plates at both ends of the electrode group in the cell chamber.

ストラップ連結時に生じた集電体間距離の上下部の差を、好ましい範囲に維持するためには、前記セル室内の正極板及び負極板の間隔の個数がNである場合、前記リブの突出方向の高さは、前記リブの上部よりも下部で0.2Nmm以上高いことが好ましい。例えば、正極板が7枚、負極板が6枚であればNは12である。リブがセル室の両側の内壁に設けられる場合、リブの突出方向の高さは、両側の内壁に設けられるリブの突出方向の高さの和とする。   In order to maintain the difference between the upper and lower distances between the current collectors generated when the straps are connected to each other in a preferable range, when the number of intervals between the positive electrode plate and the negative electrode plate in the cell chamber is N, the projecting direction of the ribs Is preferably higher than the upper part of the rib by 0.2 Nmm or more. For example, if the number of positive electrode plates is seven and the number of negative electrode plates is six, N is 12. When the ribs are provided on the inner walls on both sides of the cell chamber, the height of the ribs in the protruding direction is the sum of the heights of the ribs provided on the inner walls on both sides in the protruding direction.

正極板とセパレータの間、又は負極板とセパレータの間の少なくとも一方の上部には、間隔保持体を有することが好ましい。少なくとも負極板とセパレータの間の上部に間隔保持体を有することがさらに好ましく、正極板とセパレータの間及び負極板とセパレータの間の両方の上部に間隔保持体を有することが特に好ましい。間隔保持体は、櫛歯状スペーサ等の不導体の治具又はゲル材、ボンド、接着剤等の不流動性物質であることが好ましく、充放電反応の妨げにならないように正負極板の枠骨の位置に配置するのが好ましい。間隔保持体は、櫛歯状スペーサ等の不導体の治具であることが特に好ましい。不導体の材質としては例えばABS樹脂が挙げられる。間隔保持体を設けることにより、耐浸透短絡性能をさらに向上させることができる。これは、充放電反応を繰り返して極板が膨れても集電体間距離の上下差を維持することができるためと推察される。なお、正極板又は負極板とセパレータの間の上部とは正極板又は負極板の上半分の領域とセパレータの間とする。正極板又は負極板とセパレータの間の下部とは正極板又は負極板の下半分の領域とセパレータの間とする。   It is preferable that a spacing member is provided between the positive electrode plate and the separator or at least one upper portion between the negative electrode plate and the separator. It is more preferable to have a spacing member at least at the upper part between the negative electrode plate and the separator, and it is particularly preferable to have the spacing member at both the upper part between the positive electrode plate and the separator and between the negative electrode plate and the separator. The spacing member is preferably a non-conductive jig such as a comb-shaped spacer or an imflowable substance such as a gel material, a bond, an adhesive, or the like. Preferably, it is located at the position of the bone. It is particularly preferable that the spacing member is a nonconductive jig such as a comb-like spacer. As a material of the non-conductor, for example, an ABS resin is cited. By providing the spacing member, the permeation short-circuit resistance can be further improved. This is presumably because even if the electrode plate swells due to repeated charge and discharge reactions, the vertical difference in the distance between the current collectors can be maintained. The upper portion between the positive electrode plate or the negative electrode plate and the separator is between the upper half region of the positive electrode plate or the negative electrode plate and the separator. The lower part between the positive electrode plate or the negative electrode plate and the separator is between the lower half region of the positive electrode plate or the negative electrode plate and the separator.

間隔保持体を設けることにより、耐浸透短絡性能をさらに向上させることができるという効果は、正極板と負極板の下部に間隔保持体を設けた場合にも生じるので、下部に間隔保持体を設けてもよい。上部と下部との両方に間隔保持体を設けるとより好ましい。   By providing the spacing member, the effect that the permeation short-circuit resistance can be further improved also occurs when the spacing member is provided below the positive electrode plate and the negative electrode plate. You may. It is more preferable to provide spacing members at both the upper part and the lower part.

本発明に係る鉛蓄電池は、集電体間の間隔が下部よりも上部で広いことにより、耐浸透短絡性能を向上させることができる。これは、集電体間の間隔が下部よりも上部で広いことにより、上部での充放電反応が起こりにくくなり、鉛のデンドライトが成長しにくくなるためと推察される。また、本発明に係る鉛蓄電池は、集電体間の間隔が下部よりも上部が広いことにより、PSOC寿命を向上することができる。これは、集電体間距離がより小さい下部での反応を起こりやすくしてサルフェーションを抑制するとともに、上部での反応を緩和して正極板上部の活物質の劣化を抑制することができるからであると推察される。   ADVANTAGE OF THE INVENTION Since the space | interval between collectors is wider at the upper part than the lower part, the lead storage battery which concerns on this invention can improve permeation short circuit resistance. This is presumably because the charge-discharge reaction at the upper portion is less likely to occur due to the gap between the current collectors being wider at the upper portion than at the lower portion, and lead dendrite is less likely to grow. Further, in the lead storage battery according to the present invention, since the interval between the current collectors is wider at the upper portion than at the lower portion, the PSOC life can be improved. This is because the reaction at the lower part where the distance between the current collectors is smaller is more likely to occur to suppress sulfation, and the reaction at the upper part is moderated to suppress the deterioration of the active material at the upper part of the positive electrode plate. It is presumed that there is.

以下、本発明の具体的な実施例、比較例を示す。   Hereinafter, specific examples and comparative examples of the present invention will be described.

<実施例1>
(正極板)
ボールミル法による鉛酸化物、補強材である合成樹脂繊維、水及び希硫酸を混合することによって正極活物質ペーストを調製した。このペーストをアンチモンフリーのPb−Ca−Sn系合金から成るエキスパンドタイプの格子状の正極集電体に充填し、熟成、乾燥を施して、幅100mm、高さ110mm、厚さ1.6mmの未化成の正極板を作製した。
<Example 1>
(Positive electrode plate)
A cathode active material paste was prepared by mixing lead oxide, a synthetic resin fiber as a reinforcing material, water and dilute sulfuric acid by a ball mill method. This paste is filled into an expandable grid-like positive electrode current collector made of an antimony-free Pb-Ca-Sn-based alloy, aged and dried to obtain a 100 mm-wide, 110 mm-high, 1.6 mm-thick uncollected paste. A chemical positive electrode plate was produced.

(負極板)
ボールミル法による鉛酸化物、鱗片状グラファイト、硫酸バリウム、リグニン、補強材である合成樹脂繊維、水及び希硫酸を混合することによって負極活物質ペーストを調製した。このペーストをアンチモンフリーのPb−Ca−Sn系合金から成るエキスパンドタイプの負極格子に充填し、熟成、乾燥を施して、幅100mm、高さ110mm、厚さ1.3mmの未化成の負極板を作製した。
(Negative electrode plate)
A negative electrode active material paste was prepared by mixing lead oxide, flaky graphite, barium sulfate, lignin, a synthetic resin fiber as a reinforcing material, water and dilute sulfuric acid by a ball mill method. This paste is filled into an expandable negative grid made of an antimony-free Pb-Ca-Sn-based alloy, aged and dried to obtain an unformed negative plate having a width of 100 mm, a height of 110 mm, and a thickness of 1.3 mm. Produced.

(セパレータ)
ベース厚さが0.25mm、正極板に向かい合う面のリブ高さが0.45mmのポリエチレンシートを基材とする合成樹脂製の袋状セパレータを用意し、この袋状セパレータ内に負極板を収納した。
(Separator)
A synthetic resin bag-shaped separator made of a polyethylene sheet having a base thickness of 0.25 mm and a rib height of 0.45 mm facing the positive electrode plate is prepared, and the negative electrode plate is housed in the bag-shaped separator. did.

(電池構成)
前記正極板6枚と前記袋状セパレータに収納された前記負極板7枚とを負極板が外側になるように交互に積層し、集電体間距離が、下部よりも上部で0.2mm広くなるように、正極板の耳及び負極板の耳の間にスペーサを挿入した積層体とした。その後、この積層体の上部をクランプした状態で、前記正極板同士の耳、及び前記負極板同士の耳をそれぞれCOS(Cast On Strap)方式により正極ストラップ、負極ストラップで連結し、極板群を作製した。この極板群を、ポリプロピレン製の電槽のセル室内に収納し、希硫酸を加え、電槽化成を施した。電槽化成後に希硫酸を抜き取り、硫酸を含む電解液を加えて、上部の集電体間距離が2.4mm、下部の集電体間距離が2.2mm、電解液比重が1.285、5hR容量が6Ahの実施例1に係る液式鉛蓄電池を作製した。
(Battery configuration)
The six positive plates and the seven negative plates housed in the bag-like separator are alternately stacked so that the negative plate is on the outside, and the distance between current collectors is 0.2 mm wider at the top than at the bottom. As a result, a laminated body was obtained in which a spacer was inserted between the lugs of the positive electrode plate and the lugs of the negative electrode plate. Thereafter, in a state where the upper portion of the laminate is clamped, the ears of the positive electrode plates and the ears of the negative electrode plates are connected to each other by a positive strap and a negative strap by a COS (Cast On Strap) method, respectively. Produced. This electrode group was housed in a cell chamber of a polypropylene battery case, and diluted sulfuric acid was added thereto to form a battery case. After the formation of the battery case, the diluted sulfuric acid was withdrawn, and an electrolytic solution containing sulfuric acid was added thereto. A liquid lead storage battery according to Example 1 having a 5 hR capacity of 6 Ah was produced.

<実施例2>
積層体の集電体間距離が下部よりも上部で0.4mm広くなるように、正極板の耳及び負極板の耳の間にスペーサを挿入して極板群を作製した以外は、実施例1と同様にして、上部の集電体間距離が2.6mm、下部の集電体間距離が2.2mmの実施例2に係る電池を作製した。
<Example 2>
Except that a spacer group was inserted between the lugs of the positive electrode plate and the lugs of the negative electrode plate to form an electrode plate group so that the distance between the current collectors of the laminate was 0.4 mm wider in the upper portion than in the lower portion. In the same manner as in Example 1, a battery according to Example 2 in which the distance between the upper current collectors was 2.6 mm and the distance between the lower current collectors was 2.2 mm was produced.

<実施例3>
積層体の集電体間距離が下部よりも上部で0.6mm広くなるように、正極板の耳及び負極板の耳の間にスペーサを挿入して極板群を作製した以外は、実施例1と同様にして、上部の集電体間距離が2.8mm、下部の集電体間距離が2.2mmの実施例3に係る電池を作製した。
<Example 3>
Except that the spacers were inserted between the ears of the positive electrode plate and the ears of the negative electrode plate to form an electrode plate group so that the distance between the current collectors of the laminate was 0.6 mm wider at the upper portion than at the lower portion. In the same manner as in 1, a battery according to Example 3 in which the distance between the upper current collectors was 2.8 mm and the distance between the lower current collectors was 2.2 mm was produced.

<実施例4>
積層体の集電体間距離が下部よりも上部で0.8mm広くなるように、正極板の耳及び負極板の耳の間にスペーサを挿入して極板群を作製した以外は、実施例1と同様にして、上部の集電体間距離が3.0mm、下部の集電体間距離が2.2mmの実施例4に係る電池を作製した。
<Example 4>
Example 1 except that a spacer group was inserted between the ears of the positive electrode plate and the ears of the negative electrode plate so that the distance between the current collectors of the laminate was 0.8 mm wider in the upper part than in the lower part. In the same manner as in Example 1, a battery according to Example 4 in which the distance between the upper current collectors was 3.0 mm and the distance between the lower current collectors was 2.2 mm was produced.

<実施例5>
積層体の集電体間距離が下部よりも上部で1.0mm広くなるように、正極板の耳及び負極板の耳の間にスペーサを挿入して極板群を作製した以外は、実施例1と同様にして、上部の集電体間距離が3.2mm、下部の集電体間距離が2.2mmの実施例5に係る電池を作製した。
<Example 5>
Example 1 except that a spacer group was inserted between the ears of the positive electrode plate and the ears of the negative electrode plate so that the distance between the current collectors of the laminate was 1.0 mm wider in the upper part than in the lower part. In the same manner as in 1, a battery according to Example 5 in which the distance between the upper current collectors was 3.2 mm and the distance between the lower current collectors was 2.2 mm was produced.

<比較例1>
積層体の集電体間距離が上下部で同一となるように、正極板の耳及び負極板の耳の間にスペーサを挿入して極板群を作製した以外は、実施例1と同様にして、上下部の集電体間距離がともに2.2mmの比較例1に係る電池を作製した。
<Comparative Example 1>
In the same manner as in Example 1 except that a spacer group was inserted between the ears of the positive electrode plate and the ears of the negative electrode plate so that the distance between the current collectors of the laminate was the same in the upper and lower portions, and the electrode plate group was manufactured. Thus, a battery according to Comparative Example 1 in which both the upper and lower current collector distances were 2.2 mm was produced.

<比較例2>
正極板の耳及び負極板の耳の間にスペーサを挿入せず、積層体上部のクランプ力を調整したCOS方式で溶接し、極板群を作製した以外は、実施例1と同様にして、上部の集電体間距離を下部の集電体間距離2.2mmより狭い2.0mmとした比較例2に係る電池を作製した。
<Comparative Example 2>
Without inserting a spacer between the ears of the positive electrode plate and the ears of the negative electrode plate, welding by the COS method in which the clamping force of the upper part of the laminate was adjusted, except that an electrode plate group was produced, in the same manner as in Example 1, A battery according to Comparative Example 2 in which the distance between the upper current collectors was 2.0 mm, which was smaller than the distance between the lower current collectors of 2.2 mm, was produced.

<実施例6>
実施例1と同様にして極板群を作製した。この極板群を、極板群の両端の極板と対向する両側の内壁に、突出方向への高さが最上部で0.7mm、最下部で1.9mmのリブを有するセル室内に収納した以外は、実施例1と同様にして実施例6に係る電池を作製した。
<Example 6>
An electrode group was produced in the same manner as in Example 1. This electrode plate group is housed in a cell chamber having ribs having a height of 0.7 mm at the uppermost portion and 1.9 mm at the lowermost portion on the inner walls on both sides facing the electrode plates at both ends of the electrode plate group. A battery according to Example 6 was made in the same manner as in Example 1 except for the above.

<実施例7>
実施例2と同様にして極板群を作製した。この極板群を、極板群の両端の極板と対向する両側の内壁に、突出方向への高さが最上部で0.7mm、最下部で3.1mmのリブを有するセル室内に収納した以外は、実施例2と同様にして実施例7に係る電池を作製した。
<Example 7>
An electrode group was produced in the same manner as in Example 2. This electrode group is housed in a cell chamber having ribs having a height of 0.7 mm at the uppermost part and 3.1 mm at the lowermost part on the inner walls on both sides facing the electrode plates at both ends of the electrode group. A battery according to Example 7 was made in the same manner as in Example 2 except for the above.

<比較例3>
比較例2と同様にして極板群を作製した。この極板群を、極板群の両端の極板と対向する両側の内壁に、突出方向への高さが最上部で1.9mm、最下部で0.7mmのリブを有するセル室内に収納した以外は、比較例2と同様にして比較例3に係る電池を作製した。
<Comparative Example 3>
An electrode group was produced in the same manner as in Comparative Example 2. This electrode plate group is housed in a cell chamber having ribs with a height of 1.9 mm at the top and 0.7 mm at the bottom in the protruding direction on the inner walls on both sides facing the electrode plates at both ends of the electrode group. A battery according to Comparative Example 3 was made in the same manner as in Comparative Example 2 except for the above.

<実施例8>
積層体の集電体間距離が、下部で2.0mmとなるように、正極板とセパレータの間の下部に間隔保持体としてABS樹脂からなる櫛歯状スペーサを挿入し、上部で2.2mmとなるように、正極板の耳及び負極板の耳の間にスペーサを挿入した状態で極板群を形成した以外は、実施例1と同様にして実施例8に係る電池を作製した。
<Example 8>
A comb-shaped spacer made of ABS resin is inserted as a space retainer between the positive electrode plate and the separator so that the distance between the current collectors of the laminate is 2.0 mm at the lower part, and 2.2 mm at the upper part. A battery according to Example 8 was manufactured in the same manner as in Example 1, except that the electrode plate group was formed in a state where a spacer was inserted between the lugs of the positive electrode plate and the lugs of the negative electrode plate.

<実施例9>
積層体の集電体間距離が、上部で下部よりも0.2mm広い2.4mmとなるように、正極板とセパレータの間の上部に実施例8と同様の間隔保持体を挿入し、正極板の耳及び負極板の耳の間にスペーサを挿入した状態で極板群を作製した以外は、実施例1と同様にして実施例9に係る電池を作製した。
<Example 9>
The same spacing support as in Example 8 was inserted into the upper portion between the positive electrode plate and the separator so that the distance between the current collectors of the laminate was 2.4 mm at the upper portion, which was 0.2 mm wider than the lower portion. A battery according to Example 9 was manufactured in the same manner as in Example 1, except that the electrode group was manufactured in a state where the spacer was inserted between the ears of the plate and the ears of the negative electrode plate.

<実施例10>
積層体の集電体間距離が、下部で2.0mmとなり、上部で2.4mmとなるように、セパレータと正極板の上部及び下部との間にそれぞれ実施例8と同様の間隔保持体を挿入し、正極板の耳及び負極板の耳の間にスペーサを挿入した状態で極板群を作製した以外は、実施例1と同様にして実施例10に係る電池を作製した。
<Example 10>
The same spacing holder as in Example 8 was placed between the separator and the upper and lower portions of the positive electrode plate such that the distance between the current collectors of the laminate was 2.0 mm at the lower portion and 2.4 mm at the upper portion. A battery according to Example 10 was manufactured in the same manner as in Example 1, except that the electrode group was manufactured in a state where the spacers were inserted between the ears of the positive electrode plate and the ears of the negative electrode plate.

上記の実施例1〜10、及び比較例1〜3の電池について、以下の性能試験を行った。   The following performance tests were performed on the batteries of Examples 1 to 10 and Comparative Examples 1 to 3.

(PSOC寿命試験)
40℃の恒温漕内で、表1、及び図4に示す寿命試験パターンを繰り返し、端子電圧が7.2Vに到達するまでのサイクル数を記録した。なお、工程1から工程5で1サイクルとする。
(PSOC life test)
The life test pattern shown in Table 1 and FIG. 4 was repeated in a constant temperature bath at 40 ° C., and the number of cycles until the terminal voltage reached 7.2 V was recorded. It should be noted that one cycle is performed from step 1 to step 5.


(浸透短絡試験)
上記の実施例1〜10、及び比較例1〜3の電池各20個について、25℃の恒温水槽中で、表2に示す試験パターンサイクルを実行した後、電池を解体して短絡の有無を調べた。短絡が発生していた電池の個数から浸透短絡発生率(%)を求めた。
(Permeation short circuit test)
For each of the 20 batteries of Examples 1 to 10 and Comparative Examples 1 to 3, after executing the test pattern cycle shown in Table 2 in a constant temperature water bath at 25 ° C., the batteries were disassembled to determine whether there was a short circuit. Examined. The penetration short-circuit occurrence rate (%) was determined from the number of batteries in which a short-circuit occurred.

以下の表3、表4及び図5に、実施例1〜10、及び比較例1〜3の電池の上記の試験結果を示す。
なお、「PSOC寿命」は、比較例1の電池のサイクル数を1とした比で示し、「浸透短絡発生率」は5%刻みで示す。
The following Tables 3, 4 and FIG. 5 show the above test results of the batteries of Examples 1 to 10 and Comparative Examples 1 to 3.
The “PSOC life” is shown as a ratio of the cycle number of the battery of Comparative Example 1 as 1, and the “permeation short circuit occurrence rate” is shown in steps of 5%.

表3に示す結果から、集電体間距離が下部よりも上部で広い実施例1〜10の電池は、集電体間距離が上下部で等しい比較例1の電池より、耐浸透短絡性能が優れていることがわかる。集電体間距離が上部よりも下部で広い比較例2の電池は、比較例1の電池よりも、さらに耐浸透短絡性能が劣っている。実施例1〜5の電池をみると、上下部の集電体間距離の差は、0.2mm以上で特に耐浸透短絡性能が高いことがわかる。   From the results shown in Table 3, the batteries of Examples 1 to 10 in which the distance between the current collectors is wider in the upper part than in the lower part have lower penetration short-circuit resistance than the batteries in Comparative Example 1 in which the distance between the current collectors is equal in the upper and lower parts. It turns out that it is excellent. The battery of Comparative Example 2 in which the distance between the current collectors is wider at the lower part than at the upper part is further inferior to the battery of Comparative Example 1 in permeation short-circuit resistance. Looking at the batteries of Examples 1 to 5, it can be seen that the difference in the distance between the current collectors in the upper and lower portions is 0.2 mm or more, in particular, the permeation short-circuit resistance is particularly high.

また、表3及び図5に示す結果から、集電体間距離が下部よりも上部で広い電池においてPSOC寿命性能が向上することがわかる。しかし、上下部の集電体間距離の差が1.0mmを超えると比較例1の電池よりもPSOC寿命性能が劣るため、上下部の集電体間距離の差は1.0mm以下が好ましい。上下部の集電体間距離の差を0.2mm以上0.8mm以下とするとPSOC寿命性能に優れ、かつ耐浸透短絡性能にも優れることがわかる。特に、上下部の集電体間距離の差を0.4mm以上0.6mm以下とすると最もPSOC寿命性能に優れ、かつ耐浸透短絡性能にも優れることがわかる。 In addition, from the results shown in Table 3 and FIG. 5, it can be seen that the PSOC life performance is improved in the battery in which the distance between the current collectors is wider in the upper part than in the lower part. However, if the difference between the upper and lower current collectors exceeds 1.0 mm, the PSOC life performance is inferior to that of the battery of Comparative Example 1. Therefore, the difference between the upper and lower current collectors is preferably 1.0 mm or less. . It can be seen that when the difference in the distance between the upper and lower current collectors is 0.2 mm or more and 0.8 mm or less, the PSOC life performance is excellent and the penetration short circuit resistance is also excellent. In particular, it can be seen that when the difference between the current collectors at the upper and lower portions is 0.4 mm or more and 0.6 mm or less, the PSOC life performance is most excellent and the penetration short circuit resistance is also excellent.

実施例6、7、及び比較例3の電池では、電槽のセル室の内壁が、突出高さが上下部で異なるリブを有し、このリブに両端の極板が接するように極板群が収納されている。表3、表4から、実施例6,7の電池では、集電体間距離の上下部の差がそれぞれ同条件である実施例1,2の電池より、PSOC寿命性能、耐浸透短絡性能ともに優れていることがわかる。また、比較例3の電池では、集電体間距離の上下部の差が同条件である比較例2の電池より、耐浸透短絡性能が悪化している。
電槽のセル室の内壁が、突出高さが上下部で異なるリブを有する電池では、充放電反応を繰り返して極板が膨れても集電体間距離の上下部の差が保たれやすく、電池性能に与える影響も持続しやすいと考えられる。
In the batteries of Examples 6, 7 and Comparative Example 3, the inner wall of the cell chamber of the battery case had ribs having different heights at upper and lower portions, and the electrode plates were arranged such that the electrode plates at both ends were in contact with the ribs. Is stored. Tables 3 and 4 show that the batteries of Examples 6 and 7 have the same PSOC life performance and resistance to short circuit permeation than those of Examples 1 and 2 in which the difference between the upper and lower current collector distances is the same. It turns out that it is excellent. Further, in the battery of Comparative Example 3, the penetration short circuit resistance is worse than that of the battery of Comparative Example 2 in which the difference between the upper and lower portions of the current collector distance is the same.
In a battery in which the inner wall of the cell chamber of the battery case has ribs whose protruding heights are different at the upper and lower portions, the difference between the upper and lower portions of the distance between the current collectors is easily maintained even if the electrode plate swells due to repeated charge and discharge reactions, It is considered that the effect on battery performance is also likely to be sustained.

実施例8〜10の電池は、集電体間距離を下部よりも上部で大きくするとともに、セパレータと正極板との間に間隔保持体を介在させたものである。
表3、表4から、集電体間距離の上下部の差を同条件として比較すると、間隔保持体を設けた実施例8、実施例9の電池は間隔保持体を設けない実施例1の電池よりもさらに耐浸透短絡性能が高いことがわかる。同様に、上部及び下部に間隔保持体を設けた実施例10の電池は間隔保持体を設けない実施例2の電池よりもさらに耐浸透短絡性能が高いことがわかる。これは、間隔保持体を設けることにより、放電反応を繰り返して極板が膨れても集電体間距離の上下差を維持することができるためと考えられる。
間隔保持体を上部及び下部に設ける実施例10の電池は、実施例8、9の電池よりもさらに耐浸透短絡性能が高く、また、PSOC寿命性能も高い。これは、集電体間距離を維持する効果が上下部で均一に持続し、充放電反応を繰り返して極板が膨れても集電体間距離の上下差をより確実に維持することができるためと考えられる。
In the batteries of Examples 8 to 10, the distance between the current collectors was made larger at the upper part than at the lower part, and the spacing member was interposed between the separator and the positive electrode plate.
From Tables 3 and 4, when comparing the difference between the upper and lower portions of the distance between the current collectors under the same condition, the batteries of Examples 8 and 9 in which the spacing member was provided were the same as those in Example 1 in which the spacing member was not provided. It can be seen that the permeation short circuit resistance is higher than that of the battery. Similarly, it can be seen that the battery of Example 10 in which the spacing members were provided on the upper and lower portions had higher permeation short circuit resistance than the battery of Example 2 in which the spacing members were not provided. This is presumably because the provision of the spacing member enables the vertical difference in the distance between the current collectors to be maintained even when the electrode plate swells due to repeated discharge reactions.
The battery of Example 10 in which the spacing members are provided on the upper and lower parts has higher penetration short circuit resistance than the batteries of Examples 8 and 9, and also has a higher PSOC life performance. This is because the effect of maintaining the distance between the current collectors is uniformly maintained in the upper and lower portions, and the difference in the distance between the current collectors can be more reliably maintained even if the electrode plate swells due to repeated charge and discharge reactions. It is thought to be.

上部の集電体間距離が3.2mm以下の場合に浸透短絡が特に発生しやすいため、上部の集電体間距離が3.2mm以下の場合に本発明の効果が特に大きい。   When the distance between the upper current collectors is 3.2 mm or less, the penetration short circuit is particularly likely to occur. Therefore, when the distance between the upper current collectors is 3.2 mm or less, the effect of the present invention is particularly large.

本発明により、鉛蓄電池の耐浸透短絡性能を向上することができる。本発明に係る鉛蓄電池は、PSOCで使用される機会の多いIS用途の鉛蓄電池等への適用が期待される。
According to the present invention, the permeation short-circuit resistance of a lead storage battery can be improved. The lead storage battery according to the present invention is expected to be applied to a lead storage battery or the like for IS use which is frequently used in PSOC.

Claims (5)

正極電極材料を保持する正極集電体を備える正極板と、負極電極材料を保持する負極集電体を備える負極板とを、セパレータを介して積層した極板群と、電解液と、前記極板群を収納するセル室を有する電槽を備えた鉛蓄電池であって、
前記極板群における隣り合う集電体間の間隔が、下部よりも上部で広いことを特徴とするアイドリングストップ車両用鉛蓄電池。
A positive electrode plate provided with a positive electrode current collector holding a positive electrode material, and a negative electrode plate provided with a negative electrode current collector holding a negative electrode material; A lead storage battery including a battery case having a cell chamber for storing a plate group,
A lead storage battery for an idling stop vehicle, wherein an interval between adjacent current collectors in the electrode group is wider at an upper portion than at a lower portion.
前記極板群における隣り合う集電体間の間隔が、下部よりも上部で0.2mm以上広いことを特徴とする請求項1に記載のアイドリングストップ車両用鉛蓄電池。 2. The lead-acid storage battery for an idling stop vehicle according to claim 1, wherein an interval between adjacent current collectors in the electrode plate group is wider than the lower portion by 0.2 mm or more. 3. 前記極板群における隣り合う集電体間の間隔が、下部よりも上部で0.2mm以上1.0mm以下広いことを特徴とする請求項1に記載のアイドリングストップ車両用鉛蓄電池。 The lead storage battery for an idling stop vehicle according to claim 1, wherein an interval between adjacent current collectors in the electrode plate group is wider than a lower portion by 0.2 mm or more and 1.0 mm or less. 前記正極板と前記セパレータの間、又は前記負極板と前記セパレータの間の少なくとも一方の上部又は下部に、間隔保持体を有することを特徴とする請求項1〜3のいずれかに記載のアイドリングストップ車両用鉛蓄電池。 The idling stop according to any one of claims 1 to 3 , wherein a spacing member is provided between at least one of an upper portion and a lower portion between the positive electrode plate and the separator or between the negative electrode plate and the separator. Lead-acid batteries for vehicles . 請求項1〜4のいずれか1項に記載のアイドリングストップ車両用鉛蓄電池を搭載したアイドリングストップ車両。An idling stop vehicle equipped with the lead storage battery for an idling stop vehicle according to any one of claims 1 to 4.
JP2015192805A 2015-09-30 2015-09-30 Lead-acid battery for idling stop vehicle and idling stop vehicle Active JP6651128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015192805A JP6651128B2 (en) 2015-09-30 2015-09-30 Lead-acid battery for idling stop vehicle and idling stop vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015192805A JP6651128B2 (en) 2015-09-30 2015-09-30 Lead-acid battery for idling stop vehicle and idling stop vehicle

Publications (2)

Publication Number Publication Date
JP2017069022A JP2017069022A (en) 2017-04-06
JP6651128B2 true JP6651128B2 (en) 2020-02-19

Family

ID=58494963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015192805A Active JP6651128B2 (en) 2015-09-30 2015-09-30 Lead-acid battery for idling stop vehicle and idling stop vehicle

Country Status (1)

Country Link
JP (1) JP6651128B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102123000B1 (en) * 2018-10-10 2020-06-16 주식회사 한국아트라스비엑스 Short circuit protection device to prevent short circuit due to growth of lead plate

Also Published As

Publication number Publication date
JP2017069022A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6665465B2 (en) Lead storage battery
JP6176180B2 (en) Liquid lead acid battery and idling stop vehicle using liquid lead acid battery
KR20130094194A (en) Battery, battery plate assembly, and method of assembly
EP3352285B1 (en) Lead storage battery
JP5138391B2 (en) Control valve type lead acid battery
JP2021111491A (en) Liquid type lead storage battery
JP2019067741A (en) Lead storage battery
JP7111107B2 (en) Lead storage battery for idling stop
JP6525167B2 (en) Lead storage battery
JP4771678B2 (en) Open-type lead-acid battery for automobiles
JP6651128B2 (en) Lead-acid battery for idling stop vehicle and idling stop vehicle
CN107112598B (en) lead-acid battery
JP5994545B2 (en) Lead acid battery
JP6198046B2 (en) Liquid lead-acid battery
JP4507483B2 (en) Control valve type lead acid battery
JP2013098016A (en) Lead acid battery
JP6572711B2 (en) Lead acid battery
JP4417232B2 (en) Lead acid battery
JP6398111B2 (en) Lead acid battery
JP4984786B2 (en) Lead acid battery
JP2005149916A (en) Control valve type lead storage battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP3567969B2 (en) Sealed lead-acid battery
JP2001185131A (en) Sealed lead acid battery
JP2020047555A (en) Liquid lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200105

R150 Certificate of patent or registration of utility model

Ref document number: 6651128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150