JP6650633B2 - Three-dimensional shape measuring device, three-dimensional shape measuring method, and thin film measuring device - Google Patents

Three-dimensional shape measuring device, three-dimensional shape measuring method, and thin film measuring device Download PDF

Info

Publication number
JP6650633B2
JP6650633B2 JP2015152664A JP2015152664A JP6650633B2 JP 6650633 B2 JP6650633 B2 JP 6650633B2 JP 2015152664 A JP2015152664 A JP 2015152664A JP 2015152664 A JP2015152664 A JP 2015152664A JP 6650633 B2 JP6650633 B2 JP 6650633B2
Authority
JP
Japan
Prior art keywords
polarization
received
light
unit
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015152664A
Other languages
Japanese (ja)
Other versions
JP2017032409A (en
Inventor
森本 哲郎
哲郎 森本
孝夫 友野
孝夫 友野
池内 克史
克史 池内
由枝 小林
由枝 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Toppan Inc
Original Assignee
University of Tokyo NUC
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Toppan Inc filed Critical University of Tokyo NUC
Priority to JP2015152664A priority Critical patent/JP6650633B2/en
Publication of JP2017032409A publication Critical patent/JP2017032409A/en
Application granted granted Critical
Publication of JP6650633B2 publication Critical patent/JP6650633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、三次元形状計測装置、三次元形状計測方法及び薄膜計測装置に関する。   The present invention relates to a three-dimensional shape measuring device, a three-dimensional shape measuring method, and a thin film measuring device.

近年、実物体をデジタル化する技術を用いて、三次元物体の色、形、質感を復元、コンピュータグラフィックによる映像コンテンツを作成する取り組みが、様々な用途で利用されている。しかしながら、多くの複雑な反射特性を持つ物体があり、これらをデジタル化する技術が日々研究されている。   2. Description of the Related Art In recent years, approaches for restoring the color, shape, and texture of a three-dimensional object by using a technology for digitizing a real object and creating video content by computer graphics have been used in various applications. However, there are many objects having complicated reflection characteristics, and techniques for digitizing them are being studied every day.

例えば、ある下地層に層状の媒体が積層されている場合において、物体表面に入射する光は、層の中と表面で反射する光に分かれる。層の中に入った光は下地で跳ね返り、光路差により位相のずれた光として表面から出射する。この二つの光が干渉することにより、虹色の光を作り出す。このように物質の表面構造により、現れる色を構造色という。このような構造色を持つものとして、表面に薄膜が形成された実物体がある。   For example, when a layered medium is laminated on a certain underlayer, light incident on the surface of the object is split into light reflected in the layer and on the surface. Light that has entered the layer bounces off the underlayer and exits the surface as light that is out of phase due to optical path differences. The two lights interfere to create rainbow-colored light. The color that appears due to the surface structure of the substance is called a structural color. As an object having such a structural color, there is a real object having a thin film formed on the surface.

ところで、三次元形状計測の分野では拡散反射物体などの形状を計測するものと、レーザーレンジセンサーやパターン投影による形状計測、又は、ステレオ撮影による形状計測等がある(例えば、特許文献1参照)。   By the way, in the field of three-dimensional shape measurement, there are a method of measuring a shape of a diffuse reflection object or the like, a shape measurement by a laser range sensor or pattern projection, a shape measurement by stereo photography, and the like (for example, see Patent Document 1).

特開平8−233547号公報JP-A-8-233547

しかしながら、表面に薄膜等が形成されて構造色を有する実物体を計測の対象物とした場合、レーザー等を照射して対象物表面における拡散反射光により形状を計測する三次元形状計測装置では、正確に三次元形状を計測できない場合がある。また、ステレオ撮影による二種類の画像情報から三次元形状を推定する三次元形状計測装置では、撮影される方位に応じて構造色の色合いが変化するため、精度よく三次元形状を計測できない場合がある。   However, when a measurement target is a real object having a structural color with a thin film or the like formed on the surface, a three-dimensional shape measurement device that irradiates a laser or the like and measures the shape by diffuse reflection light on the target object surface, There are cases where the three-dimensional shape cannot be measured accurately. In addition, in a three-dimensional shape measurement device that estimates a three-dimensional shape from two types of image information obtained by stereo shooting, since the color of a structural color changes according to the azimuth to be shot, the three-dimensional shape may not be accurately measured. is there.

この発明は、上記課題に鑑みてなされたものであって、表面に薄膜が形成されて構造色を有する対象物の三次元形状を精度よく計測可能な三次元形状計測装置、三次元形状計測方法及び薄膜計測装置を提供することにある。   The present invention has been made in view of the above problems, and has a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method capable of accurately measuring a three-dimensional shape of an object having a structural color with a thin film formed on a surface. And a thin film measuring device.

本発明の一態様は、表面に薄膜が形成された対象物に対し、照射光を、当該対象物の全方位から照射する照射部と、前記対象物の表面で反射した反射光を、当該反射光に含まれる複数の偏光成分ごとに受光する撮像素子を複数配列してなる撮像部と、一つの前記撮像素子が受光した複数の前記偏光成分ごとの受光強度に基づいて、当該撮像素子が受光した前記反射光の偏光度を算出する偏光度演算部と、前記撮像素子ごとに算出された前記偏光度と、前記薄膜の屈折率と、に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの法線の天頂角を算出する天頂角演算部と、前記撮像素子の各々において最大の受光強度を与える前記偏光成分の偏光方位に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの法線の方位角を特定する方位角演算部と、を備え、前記天頂角演算部は、算出された前記偏光度に基づいて、天頂角の候補を複数算出するとともに、前記撮像素子が前記偏光成分ごとに受光した前記反射光の総和受光強度が、予め規定された判定閾値よりも大きいか否かの判定結果に基づいて、前記複数の候補の中から一つの天頂角を特定する、三次元形状計測装置である。 One embodiment of the present invention provides an irradiation unit that irradiates an object having a thin film formed on its surface with irradiation light from all directions of the object, and reflects light reflected on the surface of the object by the reflection. An imaging unit configured by arranging a plurality of imaging elements that receive light for each of a plurality of polarization components included in light; and the imaging element receiving light based on light reception intensity of each of the plurality of polarization components received by one imaging element. The degree of polarization calculating unit that calculates the degree of polarization of the reflected light, the degree of polarization calculated for each image sensor, and the refractive index of the thin film, based on the object corresponding to the image sensor. A zenith angle calculation unit that calculates a zenith angle of a normal line for each surface portion, and a polarization direction of the polarization component that gives a maximum light receiving intensity in each of the imaging elements, based on a polarization direction of the object corresponding to the imaging element. The azimuth of the normal line for each surface part Wherein with an azimuth angle calculator for constant, the, the zenith angle computation unit, based on the calculated degree of polarization, as well as calculates a plurality of candidates for the zenith angle, that the image sensor has received for each of the polarization components A three-dimensional shape measuring apparatus that specifies one zenith angle from among the plurality of candidates based on a determination result as to whether or not the total received light intensity of the reflected light is greater than a predetermined determination threshold .

また、本発明の一態様によれば、前記撮像部は、受光する前記反射光と直交する面内で回転可能に設けられ、前記反射光のうち回転角度に応じた方位に平行な偏光成分を透過させる可変偏光部を有する。   Further, according to one aspect of the present invention, the imaging unit is provided rotatably in a plane orthogonal to the received reflected light, and of the reflected light, emits a polarized light component parallel to an azimuth according to a rotation angle. It has a variable polarization section that allows transmission.

また、本発明の一態様によれば、前記偏光度演算部は、前記撮像素子が受光した複数の前記偏光成分ごとの受光強度のうち、最大の受光強度と最小の受光強度とに基づいて、前記偏光度を算出する。   Further, according to one aspect of the present invention, the degree of polarization calculation unit, of the received light intensity of each of the plurality of polarization components received by the imaging device, based on the maximum received light intensity and the minimum received light intensity, The degree of polarization is calculated.

また、本発明の一態様によれば、前記撮像素子は、前記反射光を、異なる複数の周波数帯ごとに受光可能とされ、前記周波数帯ごとに取得された受光強度の組み合わせに基づいて、当該撮像素子に対応する前記対象物の表面部位ごとに、前記薄膜の膜厚を計測する膜厚計測部を更に備える。   Further, according to one aspect of the present invention, the imaging device is configured to be able to receive the reflected light for each of a plurality of different frequency bands, and based on a combination of received light intensity obtained for each of the frequency bands, The image processing apparatus further includes a film thickness measurement unit that measures a film thickness of the thin film for each surface portion of the object corresponding to an imaging device.

また、本発明の一態様によれば、前記撮像素子は、前記反射光を、RGBの三原色に対応する3つの周波数帯ごとに受光可能とされている。   Further, according to one aspect of the present invention, the image sensor can receive the reflected light for each of three frequency bands corresponding to the three primary colors of RGB.

また、本発明の一態様は、表面に薄膜が形成された対象物に対し、照射光を、当該対象物の全方位から照射するステップと、複数配列された撮像素子で、前記対象物の表面で反射した反射光を、当該反射光に含まれる複数の偏光成分ごとに受光するステップと、一つの前記撮像素子が受光した複数の前記偏光成分ごとの受光強度に基づいて、当該撮像素子が受光した前記反射光の偏光度を算出するステップと、前記撮像素子ごとに算出された前記偏光度と、前記薄膜の屈折率と、に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの法線の天頂角を算出するステップと、前記撮像素子の各々において最大の受光強度を与える前記偏光成分の偏光方位に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの法線の方位角を特定するステップと、を備え、前記天頂角を算出するステップでは、算出された前記偏光度に基づいて、天頂角の候補を複数算出するとともに、前記撮像素子が前記偏光成分ごとに受光した前記反射光の総和受光強度が、予め規定された判定閾値よりも大きいか否かの判定結果に基づいて、前記複数の候補の中から一つの天頂角を特定する、三次元形状計測方法である。 Further, one embodiment of the present invention provides a step of irradiating an object having a thin film formed on its surface with irradiation light from all directions of the object, and a plurality of image sensors arranged on the surface of the object. Receiving the reflected light reflected by the plurality of polarized light components included in the reflected light, and receiving the reflected light by the imaging element based on the received light intensity of each of the plurality of polarized light components received by one imaging element. Calculating the degree of polarization of the reflected light, based on the degree of polarization calculated for each of the imaging devices, and the refractive index of the thin film, for each surface portion of the object corresponding to the imaging device. Calculating the zenith angle of the normal line, and based on the polarization direction of the polarized light component that gives the maximum light receiving intensity in each of the image sensors, the normal line for each surface portion of the object corresponding to the image sensor. Azimuth of And a step of specifying, in the step of calculating the zenith angle, based on the calculated degree of polarization, as well as calculates a plurality of candidates for the zenith angle, the reflection image pickup device has received for each of the polarization components A three-dimensional shape measurement method for identifying one zenith angle from among the plurality of candidates based on a determination result as to whether or not the total light receiving intensity of light is greater than a predetermined determination threshold .

また、本発明の一態様は、表面に薄膜が形成された対象物に対し、照射光を、当該対象物の全方位から照射する照射部と、前記対象物の表面で反射した反射光を、当該反射光に含まれる複数の偏光成分ごと、かつ、異なる複数の周波数帯ごとに受光する撮像素子を複数配列してなる撮像部と、一つの前記撮像素子が受光した複数の前記偏光成分ごとの受光強度に基づいて、当該撮像素子が受光した前記反射光の偏光度を算出する偏光度演算部と、前記撮像素子ごとに算出された前記偏光度と、前記薄膜の屈折率と、に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの法線の天頂角を算出する天頂角演算部と、前記周波数帯ごとに取得された受光強度の組み合わせと、前記天頂角と、に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの前記薄膜の膜厚と前記天頂角との関係で特定される前記周波数帯ごと受光強度の組み合わせを用いることにより、前記薄膜の膜厚を計測する膜厚計測部と、を備える薄膜計測装置である。 Further, according to one embodiment of the present invention, an irradiation unit that irradiates irradiation light from all directions of the object with respect to an object having a thin film formed on a surface thereof, and reflected light reflected on the surface of the object, For each of a plurality of polarization components included in the reflected light, and an imaging unit configured by arranging a plurality of imaging devices that receive light for each of a plurality of different frequency bands, and for each of the plurality of polarization components received by one imaging device Based on the received light intensity, a degree of polarization calculation unit that calculates the degree of polarization of the reflected light received by the imaging device, based on the degree of polarization calculated for each imaging device, and the refractive index of the thin film, A zenith angle calculation unit that calculates a zenith angle of a normal line for each surface portion of the object corresponding to the imaging element, a combination of light reception intensity obtained for each frequency band, and the zenith angle, The pair corresponding to the image sensor By using a combination of received light intensity of each of the frequency bands specified by the relationship between the thickness of the thin film of each surface sites of the object and the zenith angle, and the film thickness measuring unit for measuring the thickness of the thin film, It is a thin film measuring device provided with.

上述の三次元形状計測装置、三次元形状計測方法及び薄膜計測装置によれば、表面に薄膜が形成されて構造色を有する対象物の三次元形状を精度よく計測できる。   According to the three-dimensional shape measuring device, the three-dimensional shape measuring method, and the thin film measuring device described above, it is possible to accurately measure the three-dimensional shape of an object having a structural color with a thin film formed on the surface.

第1の実施形態に係る三次元形状計測装置の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a three-dimensional shape measuring apparatus according to the first embodiment. 第1の実施形態に係る撮像部の機能を説明する第1の図である。FIG. 3 is a first diagram illustrating functions of the imaging unit according to the first embodiment. 第1の実施形態に係る撮像部の機能を説明する第2の図である。FIG. 2 is a second diagram illustrating functions of the imaging unit according to the first embodiment. 第1の実施形態に係る計算処理部の機能構成を示す図である。FIG. 3 is a diagram illustrating a functional configuration of a calculation processing unit according to the first embodiment. 第1の実施形態に係る計算処理部の処理フローを示す図である。FIG. 4 is a diagram illustrating a processing flow of a calculation processing unit according to the first embodiment. 第1の実施形態に係る偏光度演算部の機能を説明する図である。FIG. 4 is a diagram illustrating a function of a polarization degree calculator according to the first embodiment. 第1の実施形態に係る天頂角演算部の機能を説明する第1の図である。FIG. 3 is a first diagram illustrating a function of a zenith angle calculation unit according to the first embodiment. 第1の実施形態に係る天頂角演算部の機能を説明する第2の図である。FIG. 3 is a second diagram illustrating the function of the zenith angle calculation unit according to the first embodiment. 第1の実施形態に係る天頂角演算部の機能を説明する第3の図である。FIG. 5 is a third diagram illustrating the function of the zenith angle calculation unit according to the first embodiment. 第1の実施形態に係る方位角演算部の機能を説明する図である。FIG. 3 is a diagram illustrating a function of an azimuth calculating unit according to the first embodiment. 第1の実施形態に係る膜厚計測部の機能を説明する図である。FIG. 3 is a diagram illustrating a function of a film thickness measurement unit according to the first embodiment.

<第1の実施形態>
以下、第1の実施形態に係る三次元形状計測装置について、図面を参照して説明する。
<First embodiment>
Hereinafter, a three-dimensional shape measuring apparatus according to the first embodiment will be described with reference to the drawings.

図1は、第1の実施形態に係る三次元形状計測装置の構成を示す図である。
図1に示すように、第1の実施形態に係る三次元形状計測装置1は、計算処理部10と、照射部11と、撮像部12と、を備えている。
第1の実施形態に係る三次元形状計測装置1は、表面に既知の屈折率を有する薄膜(後述する薄膜層F)が形成された対象物Gの立体的形状(三次元形状)を、光学的手段を通じて計測可能とする三次元形状計測装置である。
FIG. 1 is a diagram illustrating a configuration of the three-dimensional shape measurement apparatus according to the first embodiment.
As shown in FIG. 1, the three-dimensional shape measuring apparatus 1 according to the first embodiment includes a calculation processing unit 10, an irradiation unit 11, and an imaging unit 12.
The three-dimensional shape measuring apparatus 1 according to the first embodiment optically converts a three-dimensional shape (three-dimensional shape) of an object G on which a thin film having a known refractive index (a thin film layer F described later) is formed on the surface. It is a three-dimensional shape measuring device that can measure through a physical means.

計算処理部10は、三次元形状計測装置1全体の動作を制御する。具体的には、計算処理部10は、後述する照射部11、撮像部12に所定の制御信号を出力しながら、当該照射部11による照射光の照射、撮像部12による撮像処理等の一連の処理を制御する。また、計算処理部10は、撮像部12が取得した対象物Gの撮像データに基づいて、各種演算処理を実行し、対象物Gの立体的形状(三次元形状)を計測する。   The calculation processing unit 10 controls the operation of the entire three-dimensional shape measuring apparatus 1. Specifically, the calculation processing unit 10 outputs a predetermined control signal to the irradiation unit 11 and the imaging unit 12 described later, and performs a series of operations such as irradiation of irradiation light by the irradiation unit 11 and imaging processing by the imaging unit 12. Control processing. Further, the calculation processing unit 10 executes various arithmetic processes based on the imaging data of the object G acquired by the imaging unit 12, and measures the three-dimensional shape (three-dimensional shape) of the object G.

照射部11は、対象物Gの周囲を囲うように配置され、無偏光の照射光α1を、当該対象物Gの全方位から均一に照射する。具体的には、照射部11は、図1に示すように、光源110と、拡散板111と、を有して構成される。
光源110は、対象物Gの周囲に複数設けられ、分光分布がほぼ均一な白色光で無偏光の照射光α1を出射する。
拡散板111は、対象物Gを中心とする球状に形成された板である。拡散板111は、球体の外部に配される複数の光源110が出射する照射光α1を取り込んで板内部で拡散させ、照射光α1の強度分布を球面方向に均一化して球体内部に放射する。これにより、球体内部に配された対象物Gに対し、その全方位において強度が均一化された照射光α1が照射される。
The irradiation unit 11 is arranged so as to surround the periphery of the object G, and uniformly irradiates the non-polarized irradiation light α1 from all directions of the object G. Specifically, the irradiation unit 11 is configured to include a light source 110 and a diffusion plate 111, as shown in FIG.
A plurality of light sources 110 are provided around the object G and emit non-polarized irradiation light α1 as white light having a substantially uniform spectral distribution.
The diffusion plate 111 is a plate formed in a spherical shape with the object G as a center. The diffusing plate 111 takes in the irradiation light α1 emitted from the plurality of light sources 110 disposed outside the sphere, diffuses the inside of the plate, makes the intensity distribution of the irradiation light α1 uniform in the spherical direction, and radiates the inside of the sphere. Thus, the irradiation light α1 having uniform intensity in all directions is irradiated on the object G disposed inside the sphere.

なお、他の実施形態においては、照射部11は、照射光α1を対象物Gの全方位から均一に照射する態様であれば、上述の態様に限定されない。
例えば、照射部11は、一つの光源110から入射した照射光α1を球体の内部において均一に拡散可能な積分球光源を用いてもよい。また、照射部11は、一つ又は複数の光源110を、対象物Gを中心とする球面に沿って移動させながら、照射光α1の全方位からの照射を実現するものであってもよい。
また、上述の「全方位」との文言は、必ずしも、対象物Gの“全ての方位”から照射される意味に限定されず、三次元形状計測装置1による三次元形状の計測精度が許容される限度において一部の方位(例えば、撮像部12が配される方位、及びその対極の方位)からの照射光α1の照射がなされない態様であってもよい。
In another embodiment, the irradiation unit 11 is not limited to the above-described embodiment as long as the irradiation unit 11 uniformly irradiates the irradiation light α1 from all directions of the object G.
For example, the irradiating unit 11 may use an integrating sphere light source capable of uniformly diffusing the irradiation light α1 incident from one light source 110 inside the sphere. The irradiating unit 11 may realize irradiating the irradiation light α1 from all directions while moving one or a plurality of light sources 110 along a spherical surface around the object G.
Further, the term “all directions” is not necessarily limited to the meaning that the object G is irradiated from “all directions”, and the measurement accuracy of the three-dimensional shape by the three-dimensional shape measuring apparatus 1 is allowed. A mode in which the irradiation light α1 is not irradiated from some directions (for example, the direction in which the imaging unit 12 is arranged and the direction of the counter electrode thereof) within a certain limit may be adopted.

撮像部12は、対象物Gを通る基準軸O上に設けられた撮像装置(固定カメラ)である。撮像部12は、照射光α1が対象物Gの表面で反射してなる反射光α2を受光する。具体的には、撮像部12は、図1に示すように、本体部120と、可変偏光部121と、撮像素子122と、を有して構成される。   The imaging unit 12 is an imaging device (fixed camera) provided on a reference axis O passing through the object G. The imaging unit 12 receives a reflected light α2 formed by reflecting the irradiation light α1 on the surface of the object G. Specifically, the imaging unit 12 includes a main body unit 120, a variable polarization unit 121, and an imaging element 122, as shown in FIG.

本体部120は、基準軸Oを光軸とする集光レンズ120aを備え、集光レンズ120aを通じて反射光α2を内部に取り込む。集光レンズ120aを通じて取り込まれた反射光α2は、本体部120の内部においてマトリクス状に複数配列された撮像素子122において受光される。
なお、本実施形態においては、本体部120は、一般的なカラーCCDカメラ等であってよい。
The main body 120 includes a condenser lens 120a having the reference axis O as an optical axis, and takes in the reflected light α2 through the condenser lens 120a. The reflected light α2 captured through the condenser lens 120a is received by the image pickup devices 122 arranged in a matrix in the main body 120.
In the present embodiment, the main body 120 may be a general color CCD camera or the like.

可変偏光部121は、対象物Gと本体部120の集光レンズ120aとの間に配されて、基準軸Oと直交する面内で回転可能に設けられる。可変偏光部121は、入射してきた反射光α2のうち回転角度に応じた方位(偏光方位)に平行な偏光成分を主として透過させる直線偏光フィルタである。この可変偏光部121を所望の回転角度に回転移動させることで、撮像部12の各撮像素子122は、入射した反射光α2を、当該反射光α2に含まれる複数の偏光成分ごとに受光することができる。   The variable polarization section 121 is disposed between the object G and the condenser lens 120a of the main body section 120, and is provided rotatably in a plane orthogonal to the reference axis O. The variable polarization unit 121 is a linear polarization filter that mainly transmits a polarization component parallel to an azimuth (polarization azimuth) corresponding to the rotation angle of the incident reflected light α2. By rotating the variable polarization unit 121 to a desired rotation angle, each imaging element 122 of the imaging unit 12 receives the reflected light α2 that has entered for each of a plurality of polarization components included in the reflected light α2. Can be.

各撮像素子122は、受光した反射光α2の受光強度を電気信号に変換することで、当該受光強度を計測可能とするセンサ素子(フォトセンサ)である。
本実施形態においては、各撮像素子122には、一般的なRGBの三原色に対応する3種類のカラーフィルタ(不図示)が設けられている。これにより、各撮像素子122は、入射した反射光α2を、三原色に対応する異なる3つの周波数帯(波長帯)ごとに受光することができる。
Each imaging element 122 is a sensor element (photo sensor) that can measure the received light intensity by converting the received light intensity of the received reflected light α2 into an electric signal.
In the present embodiment, each image sensor 122 is provided with three types of color filters (not shown) corresponding to three common primary colors of RGB. Thereby, each imaging element 122 can receive the reflected light α2 that has entered for each of three different frequency bands (wavelength bands) corresponding to the three primary colors.

なお、以下の説明において、三次元形状計測装置1は、基準軸Oが天頂方向を向くように配されるものとして説明するが、他の実施形態に係る三次元形状計測装置1においてはこの態様に限定されず、基準軸Oをいかなる方位にも取り得る。   In the following description, the three-dimensional shape measuring apparatus 1 will be described as being arranged such that the reference axis O faces the zenith direction. However, in the three-dimensional shape measuring apparatus 1 according to another embodiment, this aspect is used. However, the reference axis O can take any orientation.

図2は、第1の実施形態に係る撮像部の機能を説明する第1の図である。
以下、図2に示す反射の例を参照しながら、撮像部12の撮像素子122が受光可能な反射光α2について説明する。
図2に示すように、対象物Gの表面の一部である表面部位g1に対し、ある入射角θから入射した照射光α1は、当該表面部位g1において反射角θで反射し、反射光α2となって進行する(“反射光”についての説明は後述する)。
なお、この照射光α1と反射光α2とを含む面を入射面Qと称する。この場合、入射面Qは、反射面(表面部位g1)とは、互いに直交する関係にある。したがって、入射面Qには、表面部位g1の法線方向を示す法線ベクトルNも含まれる。
FIG. 2 is a first diagram illustrating functions of the imaging unit according to the first embodiment.
Hereinafter, the reflected light α2 that can be received by the imaging element 122 of the imaging unit 12 will be described with reference to the example of reflection illustrated in FIG.
As shown in FIG. 2, with respect to surface sites g1 is a part of the surface of the object G, irradiation light α1 incident from the incident angle theta 1 with is reflected by the reflection angle theta 1 in the surface region g1, reflecting It travels as light α2 (the “reflected light” will be described later).
Note that a surface including the irradiation light α1 and the reflected light α2 is referred to as an incident surface Q. In this case, the incident surface Q is orthogonal to the reflecting surface (surface portion g1). Therefore, the incidence plane Q also includes a normal vector N indicating the normal direction of the surface portion g1.

ここで、ある反射光α2が基準軸Oに沿って天頂方向(+Z方向)に進行する場合、図2に示すように、反射光α2は、まず可変偏光部121に入射する。上述したように、可変偏光部121は、基準軸Oと直交する面内(XY平面内)で回転可能に設けられ、その回転角度kに応じた方位nを偏光方位とする偏光成分を主として透過させる。したがって、天頂方向に進行する反射光α2のうち、方位nを偏光方位とする偏光成分のみが透過して、集光レンズ120aを経て撮像素子122に受光される。
可変偏光部121の回転角度kが複数通りに変更されることで、反射光α2に含まれる複数の偏光成分ごとの受光強度を計測することができる。
なお、この場合、ある表面部位g1で反射した反射光α2は、当該表面部位g1に対応する一つの撮像素子122において受光される。
Here, when a certain reflected light α2 travels in the zenith direction (+ Z direction) along the reference axis O, the reflected light α2 first enters the variable polarization unit 121 as shown in FIG. As described above, the variable polarization unit 121 is rotatably provided in a plane orthogonal to the reference axis O (within the XY plane), and mainly transmits a polarization component having an azimuth n corresponding to the rotation angle k as a polarization azimuth. Let it. Accordingly, of the reflected light α2 traveling in the zenith direction, only the polarized light component having the azimuth n as the polarization direction is transmitted and received by the image sensor 122 via the condenser lens 120a.
By changing the rotation angle k of the variable polarization unit 121 in a plurality of ways, it is possible to measure the received light intensity for each of the plurality of polarization components included in the reflected light α2.
In this case, the reflected light α2 reflected at a certain surface part g1 is received by one image sensor 122 corresponding to the certain surface part g1.

可変偏光部121は、後述する計算処理部10による制御により、回転角度kが、0度〜180度で連続的に回転する。回転角度kの所定ステップごとに取得された撮像データは、直ちに、計算処理部10に備えられた記憶部109に記憶される。
なお、撮像部12の構造は、図1、図2に示した態様に限定されない。例えば、撮像部12は、集光レンズ120aと可変偏光部121とが一体に設けられた態様をなしていてもよい。その他、撮像部12は、撮像素子122が反射光α2を異なる複数の偏光成分ごとに受光可能とするものであれば、他の如何なる態様であっても構わない。
The variable polarization unit 121 rotates continuously at a rotation angle k of 0 to 180 degrees under the control of the calculation processing unit 10 described later. The imaging data acquired at every predetermined step of the rotation angle k is immediately stored in the storage unit 109 provided in the calculation processing unit 10.
Note that the structure of the imaging unit 12 is not limited to the modes shown in FIGS. For example, the imaging unit 12 may have a mode in which the condenser lens 120a and the variable polarization unit 121 are provided integrally. In addition, the imaging unit 12 may have any other configuration as long as the imaging element 122 can receive the reflected light α2 for each of a plurality of different polarization components.

図3は、第1の実施形態に係る撮像部の機能を説明する第2の図である。
図3に示すように、対象物Gの下地層には、膜厚dの薄膜層Fが積層されている。ここで想定する対象物Gとは、例えば、蒸着またはコーティングされた加飾材やセキリティ材等である。なお、本実施形態に係る三次元形状計測装置1の計測対象となる対象物Gにおいて、薄膜層Fの膜厚dは未知であってよい。
ただし、本実施形態においては、薄膜層Fの屈折率nは、予め把握されている(既知である)ものとする。
FIG. 3 is a second diagram illustrating functions of the imaging unit according to the first embodiment.
As shown in FIG. 3, a thin film layer F having a film thickness d is laminated on the underlying layer of the object G. The target object G assumed here is, for example, a decorative material or a security material that has been deposited or coated. The thickness d of the thin film layer F of the object G to be measured by the three-dimensional shape measuring apparatus 1 according to the present embodiment may be unknown.
However, in the present embodiment, the refractive index n 2 of the thin film layer F is assumed to be grasped in advance (which is known).

図3では、対象物Gに対して大気層Aを通じて照射光α1が入射角θで入射する例を示している。この場合、図3に示すように、照射光α1は、大気層Aの屈折率n(n=1.0)、薄膜Fの屈折率n、対象物Gの屈折率n、及び、入射角θに応じて、薄膜層Fの内部で反射を繰り返しながら、種々の反射光α21、α22、α23、α24、・・・を出射する。ここで、θ、θはそれぞれ薄膜層F、対象物Gにおける屈折角である。このとき、例えば、薄膜Fの表面で反射した反射光α21と、薄膜Fの内部に透過して下地(対象物Gの表面)で反射した後に再度大気層Aを進行する反射光α22と、の光路差Lにより、互いに強めあう波長と弱めあう波長が生じ、結果として、反射光α21、α22、・・・の総和である反射光α2の分光分布が均一でなくなる。ここで、光路差Lは、図3に示すBC間の距離とCD間の距離との和となることから、以下の式(1)で与えられる。 In Figure 3, the irradiation light α1 shows an example where an incident angle theta 1 through the air layer A to the object G. In this case, as shown in FIG. 3, the irradiation light α1 is the refractive index n 1 (n 1 = 1.0) of the air layer A, the refractive index n 2 of the thin film F, the refractive index n 3 of the object G and, , according to the incident angle theta 1, while being repeatedly reflected inside the film layer F, various reflected light α21, α22, α23, α24, emits .... Here, θ 2 and θ 3 are refraction angles in the thin film layer F and the object G, respectively. At this time, for example, the reflected light α21 reflected on the surface of the thin film F and the reflected light α22 transmitted through the inside of the thin film F, reflected on the groundwork (the surface of the object G), and then proceeding through the atmospheric layer A again. Due to the optical path difference L, a mutually strengthening wavelength and a weakening wavelength are generated, and as a result, the spectral distribution of the reflected light α2 which is the sum of the reflected lights α21, α22,. Here, since the optical path difference L is the sum of the distance between BC and the distance between CD shown in FIG. 3, it is given by the following equation (1).

式(1)より、反射光α21と反射光α22との位相差Δは、式(2)により求められる。   From Expression (1), the phase difference Δ between the reflected light α21 and the reflected light α22 is obtained by Expression (2).

ここで、“λ”は、均一な分光分布を有する照射光α1に含まれる任意の波長である。即ち、照射光α1のうち、位相差Δがπ(半波長)の偶数倍となる条件を満たす波長λの分光成分が強め合って計測され、位相差Δがπの奇数倍となる条件を満たす波長λの分光成分が弱め合って計測される。   Here, “λ” is an arbitrary wavelength included in the irradiation light α1 having a uniform spectral distribution. That is, of the irradiation light α1, the spectral components of the wavelength λ satisfying the condition that the phase difference Δ is an even multiple of π (half wavelength) are measured intensifyingly, and the condition that the phase difference Δ is an odd multiple of π is satisfied. The measurement is performed with the spectral components of the wavelength λ weakened each other.

ここで、照射光α1の強度(光の強さの度合い)を強度Eとすると、反射光α2の強度Eは、反射光α1、α2、・・・の各々の強度E、E、・・・の総和となる。この反射光(反射光α2)の強度Eは、照射光α1の強度E、フレネル反射係数r12、r23及びr21、及び、フレネル透過係数t12、t21によって、式(3)のように近似される。 Here, when the intensity of the irradiation light [alpha] 1 (the intensity degree of the light) the intensity E 0, the intensity E of the reflected light [alpha] 2 is reflected light [alpha] 1, [alpha] 2, the intensity of each of the · · · E 1, E 2, ... The intensity E of the reflected light (reflected light α2) is calculated by the intensity E 0 of the irradiation light α1, the Fresnel reflection coefficients r 12 , r 23 and r 21 , and the Fresnel transmission coefficients t 12 and t 21 in the equation (3). Is approximated as follows.

ここで、フレネル反射係数r12及びフレネル反射係数r23は、それぞれ、大気層Aから薄膜層Fに入射しようとする光の反射係数、及び、薄膜層Fから対象物Gに入射しようとする光の反射係数である。また、フレネル反射係数r21は、薄膜層Fから大気層Aに入射しようとする光の反射係数である。同様に、フレネル透過係数t12及びフレネル透過係数t21は、それぞれ、大気層Aから薄膜層Fに入射しようとする光の透過係数、及び、薄膜層Fから大気層Aに入射しようとする光の透過係数である。 Here, the light Fresnel reflection coefficients r 12 and the Fresnel reflection coefficients r 23, respectively, to be incident reflection coefficient of light to be incident from the atmosphere layer A thin film layer F, and, a thin film layer F to the object G Is the reflection coefficient. The Fresnel reflection coefficient r 21 is a reflection coefficient of light that is going to be incident on the atmosphere layer A from the thin film layer F. Similarly, the light Fresnel transmission coefficient t 12 and the Fresnel transmission coefficient t 21, respectively, of the atmospheric layer A transmission coefficient of light to be incident on the thin film layer F, and attempts to enter the atmospheric layer A thin film layer F Is the transmission coefficient.

式(3)から反射率R(=E/E)の絶対値に変換すると、照射光α1に対する反射光α2の反射率Rが次の式(4)で表される。 When the absolute value of the reflectance R (= E / E 0 ) is converted from Expression (3), the reflectance R of the reflected light α2 with respect to the irradiation light α1 is expressed by the following Expression (4).

このとき、式(4)のフレネル反射係数rは、次の式(5)で表される。   At this time, the Fresnel reflection coefficient r in Expression (4) is expressed by the following Expression (5).

なお、“r”は、照射光α1のs波偏光成分についてのフレネル反射係数rであり、“r”は、照射光α1のp波偏光成分についてのフレネル反射係数rである。また、式(5)におけるi、jは自然数である。 Incidentally, "r s" is the Fresnel reflection coefficient r s for s-wave light component of the illumination light [alpha] 1, "r p" is the Fresnel reflection coefficient r p for p-wave light component of the illumination light [alpha] 1. Further, i and j in Expression (5) are natural numbers.

式(1)、(2)、(4)によれば、均一の分光分布を有する照射光α1は、対象物Gの表面において、波長λごとに異なる反射率Rで反射する。したがって、反射光α2は、当該反射率R(式(4))に応じた不均一な分光分布となる。
撮像部12(撮像素子122)は、このように不均一な分光分布となった反射光α2の受光強度を、三原色(RGB)の各々に対応する周波数帯(波長帯)ごとに計測する。
According to the equations (1), (2), and (4), the irradiation light α1 having a uniform spectral distribution is reflected on the surface of the object G with a different reflectance R for each wavelength λ. Therefore, the reflected light α2 has a non-uniform spectral distribution according to the reflectance R (Equation (4)).
The imaging unit 12 (imaging element 122) measures the received light intensity of the reflected light α2 having the non-uniform spectral distribution in each frequency band (wavelength band) corresponding to each of the three primary colors (RGB).

また、式(5)に基づくs波についてフレネル反射係数r、及び、p波についてのフレネル反射係数rによれば、s波とp波との比率が1:1である照射光α1は、当該s波、p波ごとに互いに異なる反射率R、Rで反射する。したがって、反射光α2は、当該s波の反射率R、及び、p波の反射率Rの比率に応じた度合いで偏光する。
撮像部12(撮像素子122)は、可変偏光部121の回転を通じて、上記のように偏光する反射光α2の受光強度を、複数の異なる偏光成分ごとに計測する。
Also, the Fresnel reflection coefficient for s-wave based on the equation (5) r s, and, according to the Fresnel reflection coefficient r p for p-wave, the ratio between the s-wave and p wave 1: irradiation light α1 is 1 , The s-wave and the p-wave are reflected at different reflectivities R s and R p . Therefore, the reflected light α2 is polarized at a degree corresponding to the ratio of the reflectance R s of the s- wave and the reflectance R p of the p-wave.
The imaging unit 12 (the imaging element 122) measures the received light intensity of the reflected light α2 polarized as described above for each of a plurality of different polarization components through the rotation of the variable polarization unit 121.

図4は、第1の実施形態に係る計算処理部の機能構成を示す図である。
図4に示すように、計算処理部10は、CPU(Central Processing Unit)100と、操作部107と、外部接続インターフェイス108と、記憶部109と、を備えている。計算処理部10は、汎用のパーソナルコンピュータ等であってよい。
FIG. 4 is a diagram illustrating a functional configuration of the calculation processing unit according to the first embodiment.
As shown in FIG. 4, the calculation processing unit 10 includes a CPU (Central Processing Unit) 100, an operation unit 107, an external connection interface 108, and a storage unit 109. The calculation processing unit 10 may be a general-purpose personal computer or the like.

CPU100は、計算処理部10の処理全体を司る演算装置(プロセッサ)である。CPU100は、所定の記憶領域(記憶部109等)に読み込まれた制御・計測用プログラムに基づいて動作することで、撮像制御部101、偏光度演算部102、天頂角演算部103、方位角演算部104、三次元形状構築部105及び膜厚計測部106としての機能を発揮する。
操作部107は、例えばマウス、キーボード、タッチパネル等の入力インターフェイスであって、三次元形状計測装置1のオペレータによる各種操作の入力を受け付ける。
記憶部109は、RAM(Random Access Memory)やHDD(Hard Disk Drive)等の記憶デバイスである。記憶部109には、複数の撮像素子122ごとに取得された分光スペクトル等が撮像データとして記録される。
外部接続インターフェイス108は、外部装置との通信を行うための通信インターフェイスであり、外部接続インターフェイス108は、専用の通信ケーブル等を介して照射部11及び撮像部12に接続されている。
The CPU 100 is an arithmetic device (processor) that controls the entire processing of the calculation processing unit 10. The CPU 100 operates based on a control / measurement program read into a predetermined storage area (the storage unit 109 and the like), thereby obtaining an imaging control unit 101, a polarization degree calculation unit 102, a zenith angle calculation unit 103, and an azimuth angle calculation. The function as the unit 104, the three-dimensional shape construction unit 105, and the film thickness measurement unit 106 is exhibited.
The operation unit 107 is, for example, an input interface such as a mouse, a keyboard, and a touch panel, and receives inputs of various operations by the operator of the three-dimensional shape measuring apparatus 1.
The storage unit 109 is a storage device such as a random access memory (RAM) or a hard disk drive (HDD). In the storage unit 109, a spectrum or the like acquired for each of the plurality of imaging elements 122 is recorded as imaging data.
The external connection interface 108 is a communication interface for performing communication with an external device. The external connection interface 108 is connected to the irradiation unit 11 and the imaging unit 12 via a dedicated communication cable or the like.

次に、CPU100の各種機能(撮像制御部101、偏光度演算部102、天頂角演算部103、方位角演算部104、三次元形状構築部105及び膜厚計測部106)について説明する。   Next, various functions of the CPU 100 (the imaging control unit 101, the degree of polarization operation unit 102, the zenith angle operation unit 103, the azimuth angle operation unit 104, the three-dimensional shape construction unit 105, and the film thickness measurement unit 106) will be described.

撮像制御部101は、外部接続インターフェイス108を介して接続された照射部11及び撮像部12に対し、所定の制御信号を出力しながら、当該照射部11による照射光α1の照射、撮像部12による撮像処理等を制御する。
例えば、撮像制御部101は、照射部11に対し、対象物G(図1)への照射光α1の照射を実施させた状態で、撮像部12に対し、撮像データの取得(各撮像素子122における受光強度の計測)を実施させる。このとき、撮像制御部101は、所定の制御信号を通じて、撮像部12の可変偏光部121の回転角度を所定ステップごとに変化させながら、その都度、撮像データを取得させる。このようにすることで、撮像部12は、反射光α2のうち、上記所定ステップごとに異なる複数の偏光成分ごとの受光強度を、自動的に取得することができる。
The imaging control unit 101 outputs a predetermined control signal to the irradiation unit 11 and the imaging unit 12 connected via the external connection interface 108 while irradiating the irradiation unit 11 with the irradiation light α1, It controls imaging processing and the like.
For example, the imaging control unit 101 obtains imaging data (each imaging element 122) with the imaging unit 12 in a state where the irradiation unit 11 irradiates the irradiation light α1 to the object G (FIG. 1). (Measurement of received light intensity). At this time, the imaging control unit 101 causes the imaging data to be acquired each time while changing the rotation angle of the variable polarization unit 121 of the imaging unit 12 at predetermined steps through a predetermined control signal. In this way, the imaging unit 12 can automatically acquire the received light intensity of each of the plurality of polarization components that are different for each of the predetermined steps in the reflected light α2.

偏光度演算部102は、一つの撮像素子122が受光した複数の偏光成分ごとの受光強度に基づいて、撮像素子122が受光した反射光α2の偏光度(後述する偏光度ρ)を算出する。
天頂角演算部103は、偏光度演算部102によって撮像素子122ごとに算出された偏光度と、既知である薄膜(薄膜層F(図3))の屈折率(屈折率n)と、に基づいて、当該撮像素子122に対応する対象物Gの表面部位ごとの法線の、基準軸Oに対する角度(以下、「天頂角」と称する。)を算出する。
方位角演算部104は、撮像素子122の各々において最大の受光強度を与える偏光成分の偏光方位(方位n(図2))に基づいて、当該撮像素子に対応する対象物Gの表面部位ごとの法線の、基準軸Oの周方向の角度(以下、「方位角」と称する。)を特定する。
三次元形状構築部105は、天頂角演算部103及び方位角演算部104によって特定された表面部位ごとの法線(法線ベクトル)の向く方位に基づいて、対象物Gを構成する表面部位ごとの面の向きを特定しながら、撮像データを有する各撮像素子122に対応する表面部位を全て繋ぎ合わせることで、対象物Gの三次元形状を構築する。
膜厚計測部106は、各撮像素子122において周波数帯ごとに取得された受光強度の組み合わせ(後述する「RGB値」)に基づいて、当該撮像素子122に対応する対象物Gの表面部位ごとに、薄膜層Fの膜厚d(図3)を計測する。
The degree-of-polarization calculating unit 102 calculates the degree of polarization (the degree of polarization ρ, which will be described later) of the reflected light α2 received by the image sensor 122 based on the received light intensity of each of the plurality of polarization components received by one image sensor 122.
The zenith angle calculator 103 calculates the polarization degree calculated for each image sensor 122 by the polarization degree calculator 102 and the refractive index (refractive index n 2 ) of the known thin film (thin film layer F (FIG. 3)). Based on this, an angle (hereinafter, referred to as a “zenith angle”) of a normal to each reference surface O of each surface portion of the object G corresponding to the image sensor 122 is calculated.
The azimuth calculating unit 104 determines, for each surface part of the object G corresponding to the imaging device, based on the polarization azimuth (direction n (FIG. 2)) of the polarization component that gives the maximum light receiving intensity in each of the imaging devices 122. The angle of the normal in the circumferential direction of the reference axis O (hereinafter, referred to as “azimuth angle”) is specified.
The three-dimensional shape constructing unit 105 performs, for each surface part constituting the target object G, based on the orientation of the normal (normal vector) for each surface part specified by the zenith angle calculation unit 103 and the azimuth angle calculation unit 104. The three-dimensional shape of the object G is constructed by connecting all surface portions corresponding to the respective image sensors 122 having image data while specifying the direction of the surface.
The film thickness measuring unit 106 determines, for each surface region of the object G corresponding to the image sensor 122, based on a combination of received light intensities (“RGB values” described later) acquired for each frequency band in each image sensor 122. The thickness d of the thin film layer F (FIG. 3) is measured.

図5は、第1の実施形態に係る計算処理部の処理フローを示す図である。
以下、計算処理部10(CPU100)の各機能構成による具体的な処理フローについて、図5、及び、以下に示す図6〜図10を参照しながら説明する。
FIG. 5 is a diagram illustrating a processing flow of the calculation processing unit according to the first embodiment.
Hereinafter, a specific processing flow according to each functional configuration of the calculation processing unit 10 (CPU 100) will be described with reference to FIG. 5 and FIGS. 6 to 10 described below.

(ステップS1:撮像データ取得)
まず、撮像制御部101は、操作部107を通じて三次元形状計測装置1のオペレータから計測開始の指示を受け付けると、照射部11による対象物Gへの照射処理、及び、撮像部12による撮像処理を実施し、撮像データを取得する(ステップS1)。このとき、撮像制御部101は、撮像部12の可変偏光部121の回転角度k(図2)を所定ステップごとに変更しながら連続的に撮像データを複数取得する。撮像制御部101は、撮像部12により取得された撮像データを、逐次、記憶部109に記録する。
(Step S1: Acquisition of imaging data)
First, when receiving an instruction to start measurement from the operator of the three-dimensional shape measuring apparatus 1 through the operation unit 107, the imaging control unit 101 performs irradiation processing on the target G by the irradiation unit 11 and imaging processing by the imaging unit 12. The process is performed to acquire imaging data (step S1). At this time, the imaging control unit 101 continuously acquires a plurality of pieces of imaging data while changing the rotation angle k (FIG. 2) of the variable polarization unit 121 of the imaging unit 12 at every predetermined step. The imaging control unit 101 sequentially records the imaging data acquired by the imaging unit 12 in the storage unit 109.

(ステップS2:偏光度算出)
次に、偏光度演算部102は、ステップS1で取得された撮像データから、複数の撮像素子122の各々が受光した反射光α2の偏光度ρを算出する(ステップS2)。ここで、偏光度演算部102によるステップS2の処理について、以下の図6を参照しながら詳細に説明する。
(Step S2: Degree of polarization calculation)
Next, the degree-of-polarization calculating unit 102 calculates the degree of polarization ρ of the reflected light α2 received by each of the plurality of image sensors 122 from the image data acquired in step S1 (step S2). Here, the process of step S2 by the polarization degree calculation unit 102 will be described in detail with reference to FIG.

図6は、第1の実施形態に係る偏光度演算部の機能を説明する図である。
図6は、可変偏光部121の回転角度k(横軸)と、一つの撮像素子122において計測された反射光α2の受光強度I(縦軸)と、の関係を表したグラフである。なお、受光強度Iは、反射光α2のRGBに対応する分光成分ごとの受光強度の合計値である。
図6に示すように、可変偏光部121の回転角度k(図2参照)をある基準確度(k=0°)から所定のステップずつ180°回転させると、各撮像素子122において、反射光α2の受光強度Iの最大値(最大受光強度Imax)と、受光強度Iの最小値(最小受光強度Imin)と、が計測される。
ここで、最大受光強度Imaxは、撮像素子122が受光した反射光α2に含まれるs波偏光成分の強度を示すものであり、一方、最小受光強度Iminは、同反射光α2に含まれるp波偏光成分の強度を示すものである。
FIG. 6 is a diagram illustrating the function of the polarization degree calculator according to the first embodiment.
FIG. 6 is a graph showing the relationship between the rotation angle k (horizontal axis) of the variable polarization unit 121 and the received light intensity I (vertical axis) of the reflected light α2 measured by one image sensor 122. The received light intensity I is the total value of the received light intensity for each of the spectral components corresponding to RGB of the reflected light α2.
As shown in FIG. 6, when the rotation angle k (see FIG. 2) of the variable polarization unit 121 is rotated by 180 ° at predetermined steps from a certain reference accuracy (k = 0 °), the reflected light α2 The maximum value of the received light intensity I (maximum received light intensity I max ) and the minimum value of the received light intensity I (minimum received light intensity I min ) are measured.
Here, the maximum received light intensity I max indicates the intensity of the s-wave polarization component included in the reflected light α2 received by the image sensor 122, while the minimum received light intensity I min is included in the reflected light α2. It shows the intensity of the p-wave polarization component.

偏光度演算部102は、各撮像素子122ごとに計測された最大受光強度Imaxと最小受光強度Iminとを用いて、以下の式(6)の演算を行う。 The degree-of-polarization calculating unit 102 calculates the following equation (6) using the maximum received light intensity I max and the minimum received light intensity I min measured for each image sensor 122.

式(6)に示す“ρ”は、受光した反射光α2の直線偏光の度合いを示す偏光度ρである。即ち、偏光度ρが大きいほど反射光α2の直線偏光の度合いが大きくなる(偏光度ρの最大値は“1”)。
このように、偏光度演算部102は、撮像素子122が受光した複数の偏光成分ごとの受光強度Iのうち、最大受光強度Imaxと最小受光強度Iminとに基づいて、各撮像素子122についての偏光度ρを算出する。
“Ρ” shown in Expression (6) is a degree of polarization ρ indicating the degree of linear polarization of the received reflected light α2. That is, the degree of linear polarization of the reflected light α2 increases as the degree of polarization ρ increases (the maximum value of the degree of polarization ρ is “1”).
As described above, the polarization degree calculation unit 102 determines, for each image sensor 122 based on the maximum received light intensity I max and the minimum received light intensity I min among the received light intensities I of the plurality of polarized light components received by the image sensor 122. Is calculated.

(ステップS3:天頂角算出)
次に、天頂角演算部103は、ステップS2で取得された各撮像素子122に対応する偏光度ρに基づいて、複数の撮像素子122の各々に対応する対象物Gの表面部位ごとの天頂角を算出する(ステップS3(図5))。ここで、天頂角演算部103によるステップS3の処理について、以下の図7〜図9を参照しながら詳細に説明する。
(Step S3: zenith angle calculation)
Next, the zenith angle calculation unit 103 calculates the zenith angle for each surface region of the object G corresponding to each of the plurality of imaging elements 122 based on the degree of polarization ρ corresponding to each imaging element 122 acquired in step S2. Is calculated (step S3 (FIG. 5)). Here, the process of step S3 by the zenith angle calculation unit 103 will be described in detail with reference to FIGS.

図7は、第1の実施形態に係る天頂角演算部の機能を説明する第1の図である。
また、図8は、第1の実施形態に係る天頂角演算部の機能を説明する第2の図である。
また、図9は、第1の実施形態に係る天頂角演算部の機能を説明する第3の図である。
FIG. 7 is a first diagram illustrating the function of the zenith angle calculation unit according to the first embodiment.
FIG. 8 is a second diagram illustrating the function of the zenith angle calculation unit according to the first embodiment.
FIG. 9 is a third diagram illustrating the function of the zenith angle calculation unit according to the first embodiment.

図7は、対象物Gの一部を側面側(−Y方向側)から見た場合の様子を示している。
図7に示すように、天頂角演算部103は、対象物Gの各表面部位g1、g1’の各法線ベクトルN、N’の天頂角θ、θ’(法線ベクトルNの基準軸Oに対する角度)を特定する。
具体的には、天頂角演算部103は、対象物Gのある表面部位g1に対応する撮像素子122で受光された反射光α2の偏光度ρ(式(6))に基づいて、当該表面部位g1の法線ベクトルNの天頂角θを特定する。同様に、天頂角演算部103は、表面部位g1’に対応する撮像素子122で受光された反射光α2の偏光度ρに基づいて、法線ベクトルN’の天頂角θ’を特定する。
このようにして、天頂角演算部103は、対象物Gの全表面部位に対応する法線の天頂角を特定する。
FIG. 7 illustrates a state in which a part of the target object G is viewed from the side surface side (−Y direction side).
As shown in FIG. 7, the zenith angle calculation unit 103 calculates the zenith angles θ and θ ′ of the normal vectors N and N ′ of the surface portions g1 and g1 ′ of the object G (the reference axis O of the normal vector N). Angle).
Specifically, the zenith angle calculation unit 103 calculates the surface area based on the degree of polarization ρ (Equation (6)) of the reflected light α2 received by the image sensor 122 corresponding to the surface area g1 of the object G. The zenith angle θ of the normal vector N of g1 is specified. Similarly, the zenith angle calculation unit 103 specifies the zenith angle θ ′ of the normal vector N ′ based on the degree of polarization ρ of the reflected light α2 received by the image sensor 122 corresponding to the surface part g1 ′.
In this manner, the zenith angle calculation unit 103 specifies the zenith angle of the normal corresponding to the entire surface region of the object G.

ここで、反射光α2の偏光度ρは、s波の反射率Rとp波の反射率Rとを用いて、以下の式(7)のようにも表される。 Here, the degree of polarization ρ of the reflected light [alpha] 2, with the reflectivity R p of the reflectivity R s and p waves s-wave, represented in the following equation (7).

式(7)に対し、式(5)に示すフレネル反射係数r、rを適用すると、偏光度ρについての以下の式(8)が導出される。 To equation (7), the Fresnel reflection coefficient r s shown in Equation (5), applying the r p, the following equation for polarization [rho (8) is derived.

式(8)によれば、偏光度ρは、入射角θと、薄膜層F(図3)の屈折率nと、に基づいて特定される。したがって、薄膜層Fの屈折率nが既知の場合、偏光度演算部102が式(6)に基づいて算出した偏光度ρに基づいて、入射角θを2つの候補に特定することができる。 According to equation (8), the degree of polarization [rho, the incident angle theta 1, the refractive index n 2 of the thin film layer F (FIG. 3), is specified based on. Therefore, if the refractive index n 2 of the thin film layer F is known, that the polarization calculation section 102 on the basis of the degree of polarization ρ calculated based on the formula (6), identifies the incident angle theta 1 to the two candidates it can.

ここで、図8は、式(8)に基づくグラフであって、反射光α2の入射角θ(横軸)と偏光度ρ(縦軸)との関係を示すグラフである。図8に示すように、式(8)は、与えられた1つの偏光度ρに対し、最大で2つの解(入射角θ)を有する式である。
天頂角演算部103は、図8に示すように、式(8)に対し、偏光度演算部102によって算出された偏光度ρを適用する。これにより、天頂角演算部103は、入射角θについての2つの解である候補値θ1a、θ1bを算出する。
Here, FIG. 8 is a graph based on Expression (8), and is a graph showing the relationship between the incident angle θ 1 (horizontal axis) of the reflected light α2 and the degree of polarization ρ (vertical axis). As shown in FIG. 8, equation (8) is an equation having at most two solutions (incident angle θ 1 ) for a given degree of polarization ρ.
As shown in FIG. 8, the zenith angle calculation unit 103 applies the polarization degree ρ calculated by the polarization degree calculation unit 102 to Expression (8). As a result, the zenith angle calculation unit 103 calculates candidate values θ 1a and θ 1b as two solutions for the incident angle θ 1 .

なお、以下の説明において、偏光度ρが最大(ρ=1)を与える入射角θをブリュースター角θと称する。ブリュースター角θで入射される照射光α1についての反射光α2は、p波偏光成分がゼロとなり、s波偏光成分のみとなる(即ち、反射光α2は、偏光の度合いが最も大きい状態となる)。
図8に示すように、天頂角演算部103が式(8)に基づいて算出した2つの候補値θ1a、θ1bは、常に、θ1a<θ<θ1bの関係を満たす。
In the following description, it referred to the incident angle theta 1 which the degree of polarization [rho gives the maximum (ρ = 1) and the Brewster angle theta B. Reflected light α2 of irradiating light α1 incident at Brewster angle theta B is p-wave light component becomes zero, only to become s-wave light component (i.e., the reflected light α2 is the degree of polarization and the highest state Become).
As shown in FIG. 8, the two candidate values θ 1a and θ 1b calculated by the zenith angle calculation unit 103 based on Expression (8) always satisfy the relationship θ 1aB1b .

次に、天頂角演算部103は、式(8)に基づいて算出された入射角θについての2つの候補値θ1a、θ1bのうちの何れか一方を選択し、これを天頂角θの算出結果として確定する。 Next, the zenith angle calculation unit 103 selects one of the two candidate values θ 1a and θ 1b for the incident angle θ 1 calculated based on the equation (8), and converts this to the zenith angle θ Is determined as the calculation result.

ここで、図9は、反射光α2の入射角θ(横軸)と総和受光強度I’(縦軸)との関係を示すグラフである。総和受光強度I’は、撮像素子122に受光された反射光α2の分光成分(RGB)ごと、及び、偏光成分ごとの受光強度の総和値である。
図9によれば、入射角θがブリュースター角θよりも小さい場合、総和受光強度I’は、常に、判定閾値Ithよりも小さい値をとることがわかる。また、図9によれば、入射角θがブリュースター角θよりも大きい場合、総和受光強度I’は、常に、判定閾値Ithよりも大きい値をとることがわかる。
Here, FIG. 9 is a graph showing the relationship between the incident angle θ 1 (horizontal axis) of the reflected light α2 and the total received light intensity I ′ (vertical axis). The total received light intensity I ′ is the total value of the received light intensity for each of the spectral components (RGB) of the reflected light α2 received by the image sensor 122 and for each of the polarization components.
According to FIG. 9, when the incident angle theta 1 is less than the Brewster angle theta B, total received light intensity I 'is always seen to take a smaller value than the determination threshold value Ith. In addition, according to FIG. 9, when the incident angle theta 1 is greater than the Brewster angle theta B, total received light intensity I 'is always seen to take a larger value than the determination threshold value Ith.

天頂角演算部103は、入射角θがブリュースター角θであった場合の総和受光強度I’(図9に示す判定閾値Ith)を、事前の実験又は計算により予め記憶している。
そして、天頂角演算部103は、各撮像素子122によって計測された総和受光強度I’が判定閾値Ith以上となっていた場合には、ブリュースター角θよりも大きい候補値θ1bを天頂角θの算出結果とする。一方、天頂角演算部103は、各撮像素子122によって計測された総和受光強度I’が判定閾値Ith未満となっていた場合には、ブリュースター角θよりも小さい候補値θ1aを天頂角θの算出結果とする。
Zenith angle calculation section 103, the sum received light intensity I when the incident angle theta 1 is a Brewster angle theta B '(judgment threshold value Ith shown in FIG. 9), stored in advance by prior experiment or calculation.
If the total received light intensity I ′ measured by each image sensor 122 is equal to or greater than the determination threshold value Ith, the zenith angle calculation unit 103 converts the candidate value θ 1b larger than the Brewster angle θ B to the zenith angle. The calculation result of θ is used. On the other hand, if the total received light intensity I ′ measured by each image sensor 122 is less than the determination threshold Ith, the zenith angle calculation unit 103 converts the candidate value θ 1a smaller than the Brewster angle θ B into the zenith angle. The calculation result of θ is used.

このように、天頂角演算部103は、算出された偏光度ρに基づいて、2つの天頂角θの候補(候補値θ1a、θ1b)を算出する。そして、天頂角演算部103は、撮像素子122が受光した反射光α2の総和受光強度I’が、予め規定された判定閾値Ithよりも大きいか否かの判定結果に基づいて、上記候補の中から算出結果とする天頂角θを特定する。 Thus, the zenith angle calculation unit 103 calculates two zenith angle θ candidates (candidate values θ 1a and θ 1b ) based on the calculated degree of polarization ρ. Then, the zenith angle calculation unit 103 determines whether or not the total light receiving intensity I ′ of the reflected light α2 received by the image sensor 122 is larger than a predetermined threshold Ith. , The zenith angle θ as the calculation result is specified.

(ステップS4:方位角算出)
次に、方位角演算部104は、複数の撮像素子122の各々に対応する対象物Gの表面部位ごとの方位角を算出する(ステップS4(図5))。ここで、方位角演算部104によるステップS4の処理について、以下の図10及び前述した図6を参照しながら詳細に説明する。
(Step S4: Azimuth angle calculation)
Next, the azimuth calculating unit 104 calculates the azimuth of each surface portion of the object G corresponding to each of the plurality of image sensors 122 (Step S4 (FIG. 5)). Here, the process of step S4 by the azimuth angle calculation unit 104 will be described in detail with reference to FIG. 10 and FIG. 6 described above.

図10は、第1の実施形態に係る方位角演算部の機能を説明する図である。
図10は、対象物Gを撮像部12側(+Z方向側)から見た場合の図である。
方位角演算部104は、対象物Gの表面部位g1、g2、・・・ごとに、反射光α2の最大の受光強度Imaxを与える可変偏光部121の回転角度(即ち、反射光α2に含まれる最大の偏光成分の偏光方位)に基づいて、対象物Gの表面部位g1、g2、・・・ごとの法線の方位角φを特定する。
例えば、図10に示すように、方位角演算部104は、表面部位g1に対応する撮像素子122において受光した反射光α2の最大受光強度Imaxを与える可変偏光部121の回転角度kに基づいて、当該表面部位g1における法線ベクトルN1の方位角φを特定する。同様に、方位角演算部104は、表面部位g2、g3、g4、・・・の各々に対応する撮像素子122において受光した反射光α2の最大受光強度Imaxを与える回転角度に基づいて、当該表面部位g2、g3、g4、・・・の各々における法線ベクトルN2、N3、N4、・・・の方位角φ、φ、φ、・・・を特定する。
FIG. 10 is a diagram for explaining the function of the azimuth calculating unit according to the first embodiment.
FIG. 10 is a diagram when the target object G is viewed from the imaging unit 12 side (+ Z direction side).
The azimuth calculating unit 104 calculates the rotation angle (that is, included in the reflected light α2) of the variable polarization unit 121 that gives the maximum received light intensity I max of the reflected light α2 for each surface portion g1, g2,. , The azimuth φ of the normal line for each of the surface portions g1, g2,... Of the object G is specified.
For example, as shown in FIG. 10, the azimuth angle calculation unit 104 is based on the rotation angle k of the variable polarization unit 121 that gives the maximum received light intensity I max of the reflected light α2 received by the image sensor 122 corresponding to the surface part g1. , specifying the azimuth angle phi 1 of the normal vector N1 of the surface sites g1. Similarly, the azimuth calculating unit 104 calculates the azimuth based on the rotation angle that gives the maximum received light intensity I max of the reflected light α2 received by the image sensor 122 corresponding to each of the surface parts g2, g3, g4,. surface sites g2, g3, g4, the normal vector at each ··· N2, N3, N4, azimuth angle ··· φ 2, φ 3, φ 4, identifies the ....

方位角演算部104は、ある表面部位g1に対応する撮像素子122において、可変偏光部121の複数の異なる回転角度kごとに取得された複数の受光強度I(図6)を参照して、最大受光強度Imaxを特定する。
ここで、表面部位g1(図10)に対応する撮像素子122において、当該表面部位g1で反射した反射光α2を最大限に受光可能となる条件は、可変偏光部121の方位nが当該反射光α2の最大偏光成分(即ち、s波偏光成分)の偏光方位に一致する場合である。そして、表面部位g1で反射した反射光α2のs波偏光成分の偏光方位は、当該表面部位g1の方位角φに依存する。
即ち、図6において、最大受光強度Imaxを与える可変偏光部121の回転角度kである最大強度回転角度kmaxが、反射光α2のs波偏光成分の偏光方位に対応する。したがって、方位角演算部104は、この最大強度回転角度kmaxに基づいて表面部位g1の法線ベクトルN1の方位角φを特定することができる。
このようにして、方位角演算部104は、各表面部位に対応する各撮像素子122において、最大受光強度Imaxを与える回転角度kを特定し、対象物Gの全表面部位における法線ベクトルの方位角を特定する。
The azimuth angle calculation unit 104 refers to the plurality of received light intensities I (FIG. 6) acquired for each of the plurality of different rotation angles k of the variable polarization unit 121 in the image sensor 122 corresponding to a certain surface part g1, and The received light intensity I max is specified.
Here, in the image sensor 122 corresponding to the surface portion g1 (FIG. 10), the condition under which the reflected light α2 reflected by the surface portion g1 can be received at the maximum is that the direction n of the variable polarization section 121 is the reflected light. This is the case where the polarization direction coincides with the polarization direction of the maximum polarization component of α2 (ie, the s-wave polarization component). Then, the polarization direction of the s-wave light component of the reflected light α2 reflected by the surface sites g1 depends on the azimuth angle phi 1 of the surface sites g1.
That is, in FIG. 6, the maximum intensity rotation angle k max that is the rotation angle k of the variable polarization unit 121 that gives the maximum received light intensity I max corresponds to the polarization direction of the s-wave polarization component of the reflected light α2. Thus, the azimuth angle calculation unit 104 can identify the azimuth angle phi 1 of the normal vector N1 of the surface sites g1 on the basis of the maximum intensity angle of rotation k max.
In this way, the azimuth angle calculation unit 104 specifies the rotation angle k that gives the maximum received light intensity I max in each imaging element 122 corresponding to each surface part, and calculates the normal vector of the entire surface part of the object G. Specify the azimuth.

なお、上述の方法の場合、最大受光強度Imaxを与える回転角度k(最大強度回転角度kmax)を特定したとしても、対応する表面部位g1における方位角φは、回転角度kmaxと一致する角度か、回転角度kmaxから180°回転した角度か、を特定することができない。
したがって、本実施形態に係る方位角演算部104は、方位角φを、各表面部位の、対象物Gを撮像部12から見た場合における当該対象物Gの外縁との位置関係に基づいて一意に特定する。
具体的には、方位角演算部104は、図10に示すように、対象物Gの外縁を示す輪郭線Gcを抽出する。輪郭線Gcは、対象物Gの領域と、当該対象物Gが存在しない大気層Aの領域と、を区画する境界である。ここで、輪郭線Gcの各所における表面部位の法線ベクトルNが向く方位は、当該輪郭線Gcの各所において対象物Gの領域から大気層Aの領域に向かう方位に一致する。したがって、本実施形態に係る方位角演算部104は、輪郭線Gcの区画内に配される他の表面部位の法線ベクトルは、当該表面部位から近い側に配される輪郭線Gcの所定箇所における法線ベクトルと同じ方位を向いているものと仮定して、方位角φを一意に特定する。
例えば、方位角演算部104は、まず、図10における表面部位g1における方位角φが、最大強度回転角度kmax、又は、最大強度回転角度kmax+180°の何れかであるところまで特定する。次に、方位角演算部104は、表面部位g1の位置から方位角φ=kmaxの方位に位置する輪郭線Gcまでの距離と、表面部位g1から方位角φ=kmax+180°の方位に位置する輪郭線Gcまでの距離と、を比較する。そして、方位角演算部104は、比較の結果、上記距離が短かった方の輪郭線Gcを向く方位となるように方位角φを特定する。
In the case of the above-described method, even if the rotation angle k (maximum intensity rotation angle k max ) that gives the maximum received light intensity I max is specified, the azimuth φ 1 at the corresponding surface portion g1 matches the rotation angle k max. It is not possible to specify whether the angle is a rotation angle or a rotation angle of 180 ° from the rotation angle k max .
Accordingly, the azimuth angle calculation unit 104 according to the present embodiment determines the azimuth angle φ uniquely based on the positional relationship between each surface part and the outer edge of the object G when the object G is viewed from the imaging unit 12. To be specified.
Specifically, the azimuth calculating unit 104 extracts a contour Gc indicating the outer edge of the object G, as shown in FIG. The outline Gc is a boundary that separates the region of the target G from the region of the atmospheric layer A where the target G does not exist. Here, the direction in which the normal vector N of the surface portion in each part of the contour Gc is oriented coincides with the direction from the region of the object G to the region of the atmospheric layer A in each part of the contour Gc. Therefore, the azimuth calculating unit 104 according to the present embodiment determines that the normal vector of the other surface portion arranged in the section of the contour line Gc is the predetermined position of the contour line Gc arranged closer to the surface portion. The azimuth angle φ is uniquely specified on the assumption that the azimuth is oriented in the same direction as the normal vector in.
For example, the azimuth calculating unit 104 first specifies up to the point where the azimuth φ1 at the surface portion g1 in FIG. 10 is one of the maximum strength rotation angle k max or the maximum strength rotation angle k max + 180 °. . Next, the azimuth angle calculation unit 104, a distance to the contour lines Gc located from the position of the surface sites g1 the azimuth of the azimuth angle phi 1 = k max, the surface sites g1 azimuth φ 1 = k max + 180 of ° The distance to the contour line Gc located in the azimuth is compared. The azimuth computation section 104, the result of the comparison, identifying the azimuth angle phi 1 so that the orientation toward the contour line Gc towards the distance is shorter.

(ステップS5:三次元形状の構築)
天頂角演算部103により対象物Gの各表面部位における天頂角θを特定され、方位角演算部104により同表面部位における法線の方位角φを特定されたことで、各表面部位に対応する法線ベクトルNの三次元空間上の方位、即ち、撮像素子122ごとに対応する表面部位ごとの面の向きが特定される。三次元形状構築部105は、ステップS2〜S4の処理によって特定された表面部位ごとの面の向きを参照しながら各表面部位を連結して三次元形状を構築する(ステップS5(図5))。
以上の処理により、計算処理部10は、撮像部12により取得された複数の撮像データに基づいて、対象物Gの三次元形状の計測を完了する。
(Step S5: Construction of three-dimensional shape)
The zenith angle calculation unit 103 specifies the zenith angle θ at each surface part of the object G, and the azimuth calculation unit 104 specifies the azimuth φ of the normal line at the same surface part. The orientation of the normal vector N in the three-dimensional space, that is, the orientation of the surface for each surface portion corresponding to each image sensor 122 is specified. The three-dimensional shape construction unit 105 constructs a three-dimensional shape by connecting the surface parts while referring to the orientation of the surface for each surface part specified by the processing of steps S2 to S4 (step S5 (FIG. 5)). .
Through the above processing, the calculation processing unit 10 completes the measurement of the three-dimensional shape of the object G based on the plurality of pieces of imaging data acquired by the imaging unit 12.

(ステップS6:薄膜層の膜厚の推定)
更に、本実施形態に係る計算処理部10は、膜厚計測部106の機能により、対象物Gの表面に形成された薄膜層F(図3)の膜厚dを推定することができる。膜厚計測部106は、ステップS2で天頂角演算部103により特定された表面部位ごとの天頂角θを利用して、当該表面部位の各々に形成された薄膜層Fの膜厚d(図3)を推定する(ステップS6(図5))。ここで、膜厚計測部106によるステップS6の処理について、以下の図11を参照しながら詳細に説明する。
(Step S6: Estimation of thickness of thin film layer)
Further, the calculation processing unit 10 according to the present embodiment can estimate the film thickness d of the thin film layer F (FIG. 3) formed on the surface of the object G by the function of the film thickness measurement unit 106. The film thickness measurement unit 106 uses the zenith angle θ for each surface region specified by the zenith angle calculation unit 103 in step S2, and the film thickness d of the thin film layer F formed on each of the surface regions (see FIG. 3). ) Is estimated (step S6 (FIG. 5)). Here, the process of step S6 by the film thickness measuring unit 106 will be described in detail with reference to FIG.

図11は、第1の実施形態に係る膜厚計測部の機能を説明する図である。
ここで、式(4)(式(1)、(2)を含む)に対し、「cosθ=1−sinθ」及びスネルの法則を適用することで、式(4)は、薄膜層Fの屈折率n、入射角θ、波長λ、及び、膜厚dの関数となる。
膜厚計測部106は、既知の屈折率nと、ステップS3で算出された天頂角θ(=入射角θ)と、RGBの各分光成分に対応する波長λと、を代入する。これにより、膜厚計測部106は、式(4)に基づいて、撮像素子122ごとに膜厚dを算出できる。
FIG. 11 is a diagram illustrating the function of the film thickness measurement unit according to the first embodiment.
Here, by applying “cos 2 θ = 1−sin 2 θ” and Snell's law to the equation (4) (including the equations (1) and (2)), the equation (4) becomes a thin film. It becomes a function of the refractive index n 2 of the layer F, the incident angle θ 1 , the wavelength λ, and the film thickness d.
Thickness measuring part 106 substitutes the known refractive index n 2, the zenith angle calculated in the step S3 theta (= incident angle theta 1), the wavelength λ corresponding to the respective spectral component of RGB, a. Thus, the film thickness measurement unit 106 can calculate the film thickness d for each image sensor 122 based on Expression (4).

ここで、図11には、式(4)に基づいて膜厚dと入射角θとの関係で特定されるRGB値の分布を示している。ここで、「RGB値」とは、各撮像素子122において反射光α2の分光成分ごと(R、G、Bごと)に取得された受光強度Iの組み合わせであって、当該撮像素子122に対応する画素の色を一意に特定するための情報である。
即ち、式(4)によれば、薄膜層Fの屈折率nが既知の場合、膜厚d(縦軸)及び入射角θ(横軸)の各々に応じて、各撮像素子122において計測されると想定されるRGB値が、図11に示すように分布する。
膜厚計測部106は、撮像部12を通じて実際に取得された撮像データの画素(撮像素子122)ごとのRGB値を、図11に示すRGB値の分布に当てはめることで、対象物Gの表面部位ごとの膜厚dを算出することができる。
Here, FIG. 11 shows the distribution of the RGB values specified by the relationship between the film thickness d and the incident angle theta 1 based on equation (4). Here, the “RGB value” is a combination of the received light intensity I acquired for each spectral component (for each of R, G, and B) of the reflected light α2 in each image sensor 122, and corresponds to the image sensor 122. This is information for uniquely specifying the color of a pixel.
That is, according to the equation (4), when the refractive index n 2 of the thin film layer F is known, according to each of the film thickness d (vertical axis) and the incident angle theta 1 (horizontal axis), in the image pickup elements 122 The RGB values assumed to be measured are distributed as shown in FIG.
The film thickness measuring unit 106 applies the RGB values for each pixel (imaging element 122) of the imaging data actually acquired through the imaging unit 12 to the distribution of the RGB values shown in FIG. It is possible to calculate the film thickness d for each.

なお、図11に示すように、RGB値の分布は、膜厚dに応じて周期的な分布を有している。したがって、RGB値に基づいて膜厚dが一意に特定されない場合も想定される。この場合、膜厚計測部106は、隣接する表面部位g1(図2)の薄膜層Fの膜厚dが急激には変化しないことを想定して規定された拘束条件に従って膜厚dを一意に特定してもよい。例えば、膜厚計測部106は、隣接する複数箇所の表面部位g1における薄膜層Fの膜厚dのばらつきが所定の範囲(±Δd)内に収まっているか否か、を拘束条件としてもよい。   As shown in FIG. 11, the distribution of RGB values has a periodic distribution according to the film thickness d. Therefore, it is assumed that the film thickness d is not uniquely specified based on the RGB values. In this case, the film thickness measuring unit 106 uniquely calculates the film thickness d according to a constraint condition that assumes that the film thickness d of the thin film layer F at the adjacent surface portion g1 (FIG. 2) does not change rapidly. It may be specified. For example, the constraint condition may be that the thickness measuring unit 106 determines whether or not the variation of the thickness d of the thin film layer F at a plurality of adjacent surface portions g1 is within a predetermined range (± Δd).

(作用効果)
以上、第1の実施形態に係る三次元形状計測装置1は、まず、表面に薄膜(薄膜層F)が形成された対象物Gに対し、照射光α1を、当該対象物Gの全方位から照射する照射部11を備えている。
また、三次元形状計測装置1は、対象物Gの表面(表面部位g1等)で反射した反射光α2を、当該反射光α2に含まれる複数の偏光成分(s波、p波)ごとに受光する撮像素子122を複数配列してなる撮像部12を備えている。
また、三次元形状計測装置1は、一つの撮像素子122が受光した複数の偏光成分ごとの受光強度(受光強度I)に基づいて、当該撮像素子122が受光した反射光α2の偏光度(偏光度ρ)を算出する偏光度演算部102を備えている。
また、三次元形状計測装置1は、撮像素子122ごとに算出された偏光度ρと、薄膜の屈折率nと、に基づいて、当該撮像素子122に対応する対象物Gの表面部位ごとの法線(法線N等)の天頂角θを算出する天頂角演算部103を備えている。
更に、三次元形状計測装置1は、撮像素子122の各々において最大の受光強度(最大受光強度Imax)を与える偏光成分の偏光方位(方位n)に基づいて、当該撮像素子122に対応する対象物Gの表面部位ごとの法線の方位角φを特定する方位角演算部104を備えている。
(Effects)
As described above, the three-dimensional shape measuring apparatus 1 according to the first embodiment first emits the irradiation light α1 to the object G having the thin film (thin film layer F) formed on the surface from all directions of the object G. An irradiation unit 11 for irradiation is provided.
Further, the three-dimensional shape measuring apparatus 1 receives the reflected light α2 reflected on the surface of the object G (surface portion g1 or the like) for each of a plurality of polarization components (s-wave, p-wave) included in the reflected light α2. The image pickup unit 12 includes a plurality of image pickup elements 122 that are arranged.
In addition, the three-dimensional shape measuring apparatus 1 determines the degree of polarization (polarization) of the reflected light α2 received by the image sensor 122 based on the received light intensity (received light intensity I) of each of the plurality of polarization components received by one image sensor 122. The degree of polarization ρ).
Also, three-dimensional shape measuring apparatus 1 includes a polarization ρ calculated for each image pickup element 122, and the refractive index n 2 of the thin film, on the basis, for each surface portion of the object G corresponding to the image pickup element 122 A zenith angle calculation unit 103 that calculates a zenith angle θ of a normal line (normal line N or the like) is provided.
Further, the three-dimensional shape measuring apparatus 1 determines the target corresponding to the image sensor 122 based on the polarization direction (direction n) of the polarization component that gives the maximum light reception intensity (maximum light reception intensity I max ) in each of the image sensors 122. An azimuth calculation unit 104 for specifying an azimuth φ of a normal line for each surface portion of the object G is provided.

以上のような構成によれば、上述した天頂角演算部103及び方位角演算部104の機能により、計測された偏光成分ごとの受光強度に基づいて偏光度ρが算出され、対象物Gの表面部位ごとの法線の向く方位を一意に特定することができる。したがって、表面に薄膜が形成されて構造色を有する実物体の三次元形状を精度よく、かつ、簡便に計測することができる。   According to the above configuration, the degree of polarization ρ is calculated based on the measured light receiving intensity for each polarization component by the functions of the zenith angle calculation unit 103 and the azimuth angle calculation unit 104 described above, and the surface of the object G is It is possible to uniquely specify the direction in which the normal is directed for each part. Therefore, it is possible to accurately and easily measure the three-dimensional shape of a real object having a structural color with a thin film formed on the surface.

また、第1の実施形態に係る三次元形状計測装置1によれば、撮像部12は、基準軸Oと直交する面内で回転可能に設けられ、反射光α2のうち回転角度kに応じた方位(方位n)に平行な偏光成分を透過させる可変偏光部121を有している。
このようにすることで、反射光α2に含まれる異なる複数の偏光成分ごとの受光強度を、簡素に計測することができる。
Further, according to the three-dimensional shape measuring apparatus 1 according to the first embodiment, the imaging unit 12 is rotatably provided in a plane orthogonal to the reference axis O, and corresponds to the rotation angle k of the reflected light α2. It has a variable polarization section 121 that transmits a polarization component parallel to the azimuth (azimuth n).
In this way, the received light intensity for each of a plurality of different polarization components included in the reflected light α2 can be simply measured.

また、第1の実施形態に係る三次元形状計測装置1によれば、偏光度演算部102は、撮像素子122が受光した複数の偏光成分ごとの受光強度Iのうち、最大の受光強度(最大受光強度Imax)と最小の受光強度(最小受光強度Imin)とに基づいて、偏光度ρを算出する。
このようにすることで、偏光度演算部102は、撮像素子122によって計測された偏光成分ごとの受光強度Iに基づいて、偏光度ρを算出することができる。
Further, according to the three-dimensional shape measuring apparatus 1 according to the first embodiment, the polarization degree calculation unit 102 determines the maximum light reception intensity (maximum light reception intensity) among the light reception intensities I for the plurality of polarization components received by the image sensor 122. The degree of polarization ρ is calculated based on the received light intensity I max ) and the minimum received light intensity (minimum received light intensity I min ).
In this way, the degree-of-polarization calculation unit 102 can calculate the degree of polarization ρ based on the received light intensity I for each polarization component measured by the image sensor 122.

また、第1の実施形態に係る三次元形状計測装置1によれば、天頂角演算部103は、算出された偏光度ρに基づいて、2つの天頂角θの候補(候補値θ1a、θ1b)を算出するとともに、撮像素子が受光した反射光α2の総和受光強度I’が、予め規定された判定閾値Ithよりも大きいか否かの判定結果に基づいて、候補(候補値θ1a、θ1b)の中から天頂角θを特定する。
このようにすることで、算出された偏光度ρより絞り込まれた天頂角の2つの候補値の中から、精度良く、真の天頂角を特定することができる。
Further, according to the three-dimensional shape measuring apparatus 1 according to the first embodiment, the zenith angle calculation unit 103 determines two zenith angles θ based on the calculated degree of polarization ρ (candidate values θ 1a , θ 1 1b ), and a candidate (candidate value θ 1a , candidate value θ 1a , based on the determination result of whether or not the total received light intensity I ′ of the reflected light α2 received by the image sensor is greater than a predetermined determination threshold Ith. The zenith angle θ is specified from θ 1b ).
In this way, the true zenith angle can be specified with high accuracy from the two zenith angle candidate values narrowed down from the calculated polarization degree ρ.

また、第1の実施形態に係る三次元形状計測装置1によれば、撮像素子122は、反射光α2を、異なる複数の周波数帯(RGB三原色に対応する波長帯)ごとに受光可能とされる。また、三次元形状計測装置1は、周波数帯ごとに取得された受光強度Iの組み合わせ(即ち、撮像データを構成する画素ごとのRGB値)に基づいて、当該撮像素子122に対応する対象物Gの表面部位ごとに、薄膜の膜厚dを計測する膜厚計測部106を更に備えている。
このようにすることで、三次元形状計測装置1は、複雑な三次元形状を有する対象物Gの表面に形成された薄膜の膜厚分布を精度良く、かつ、簡便に推定することができる。
Further, according to the three-dimensional shape measuring apparatus 1 according to the first embodiment, the imaging element 122 can receive the reflected light α2 for each of a plurality of different frequency bands (wavelength bands corresponding to three primary colors of RGB). . In addition, the three-dimensional shape measuring apparatus 1 determines the object G corresponding to the image sensor 122 based on the combination of the received light intensities I acquired for each frequency band (that is, the RGB value for each pixel constituting the image data). Further, a film thickness measuring unit 106 for measuring the film thickness d of the thin film is further provided for each of the surface portions.
By doing so, the three-dimensional shape measuring apparatus 1 can accurately and easily estimate the film thickness distribution of the thin film formed on the surface of the object G having a complicated three-dimensional shape.

以上、第1の実施形態に係る三次元形状計測装置1について詳細に説明したが、本実施形態に係る三次元形状計測装置1の具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。
例えば、他の実施形態に係る三次元形状計測装置1は、三次元形状を有する対象物Gの表面に形成された薄膜層Fの膜厚dを計測する「薄膜計測装置」として機能するものであってもよい。この場合、当該薄膜計測装置としての三次元形状計測装置1は、方位角φを特定する機能を有していなくともよく、したがって、方位角演算部104を具備しなくともよい。ただし、当該他の実施形態に係る三次元形状計測装置1の他の機能構成は、第1の実施形態(図1)と同様である。
As described above, the three-dimensional shape measuring apparatus 1 according to the first embodiment has been described in detail, but a specific mode of the three-dimensional shape measuring apparatus 1 according to the present embodiment is not limited to the above-described one. It is possible to make various design changes without departing from the gist of the invention.
For example, the three-dimensional shape measurement device 1 according to another embodiment functions as a “thin film measurement device” that measures the thickness d of the thin film layer F formed on the surface of the object G having a three-dimensional shape. There may be. In this case, the three-dimensional shape measuring apparatus 1 as the thin film measuring apparatus does not need to have the function of specifying the azimuth angle φ, and therefore does not need to include the azimuth angle calculation unit 104. However, other functional configurations of the three-dimensional shape measuring apparatus 1 according to the other embodiment are the same as those of the first embodiment (FIG. 1).

従来、薄膜の膜厚を計測する手段としては、分光干渉法やエリプソメトリ等が代表的である。しかしながら、これらの手段はいずれも、スポット光が照射された小領域の膜厚しか測定することができず、また、複雑な凹凸の表面上に形成された薄膜の膜厚を計測することは困難である。
一方、本実施形態に係る三次元形状計測装置1(薄膜計測装置)によれば、薄膜層Fの屈折率nが既知でさえあれば、複雑な表面形状を有する対象物に対する1回の撮影だけで、下地層(対象物G)に積層された薄膜層Fの膜厚dの面内分布を全て計測することができる。したがって、複雑な三次元形状の表面上に形成された薄膜の膜厚分布を瞬時に簡素に把握することができる。
Conventionally, as a means for measuring the thickness of a thin film, a spectral interferometry, an ellipsometry, and the like are representative. However, all of these methods can measure only the film thickness of a small area irradiated with spot light, and it is difficult to measure the film thickness of a thin film formed on a complicated uneven surface. It is.
On the other hand, according to the three-dimensional shape measuring apparatus 1 (thin film measuring apparatus) according to the present embodiment, if they have a refractive index n 2 of the thin film layer F is known, imaging of one with respect to the object having a complicated surface shape With only this, it is possible to measure all the in-plane distributions of the film thickness d of the thin film layer F laminated on the base layer (object G). Therefore, the thickness distribution of the thin film formed on the surface of the complicated three-dimensional shape can be grasped instantaneously and simply.

また、上述の各実施形態においては、CPU100の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各手順を行うものとしている。ここで、上述したCPU100の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。ここで、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
また、CPU100の各機能構成が、ネットワークで接続される複数の装置に渡って具備される態様であってもよい。
In each of the above-described embodiments, a program for realizing the function of the CPU 100 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. Each procedure is to be performed. Here, the process of each process of the CPU 100 described above is stored in a computer-readable recording medium in the form of a program, and the various processes are performed by reading and executing the program by the computer. Here, the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to a computer via a communication line, and the computer that has received the distribution may execute the program.
Further, the functional configuration of the CPU 100 may be provided over a plurality of devices connected via a network.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。   Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and equivalents thereof.

1 三次元形状計測装置(薄膜計測装置)
10 計算処理部
100 CPU
101 撮像制御部
102 偏光度演算部
103 天頂角演算部
104 方位角演算部
105 三次元形状構築部
106 膜厚計測部
107 操作部
108 外部接続インターフェイス
109 記憶部
11 照射部
110 光源
111 拡散板
112 固定偏光部
12 撮像部
120 本体部
121 可変偏光部
122 撮像素子
G 対象物
g1 表面部位
O 基準軸
A 大気層
F 薄膜層
α1 照射光
α2 反射光
1 3D shape measuring device (thin film measuring device)
10 Calculation processing unit 100 CPU
101 imaging control unit 102 degree of polarization operation unit 103 zenith angle operation unit 104 azimuth angle operation unit 105 three-dimensional shape construction unit 106 film thickness measurement unit 107 operation unit 108 external connection interface 109 storage unit 11 irradiation unit 110 light source 111 diffusion plate 112 fixed Polarizing section 12 Imaging section 120 Main body section 121 Variable polarizing section 122 Imaging element G Object g1 Surface region O Reference axis A Atmosphere layer F Thin film layer α1 Irradiation light α2 Reflected light

Claims (7)

表面に薄膜が形成された対象物に対し、照射光を、当該対象物の全方位から照射する照射部と、
前記対象物の表面で反射した反射光を、当該反射光に含まれる複数の偏光成分ごとに受光する撮像素子を複数配列してなる撮像部と、
一つの前記撮像素子が受光した複数の前記偏光成分ごとの受光強度に基づいて、当該撮像素子が受光した前記反射光の偏光度を算出する偏光度演算部と、
前記撮像素子ごとに算出された前記偏光度と、前記薄膜の屈折率と、に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの法線の天頂角を算出する天頂角演算部と、
前記撮像素子の各々において最大の受光強度を与える前記偏光成分の偏光方位に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの法線の方位角を特定する方位角演算部と、
を備え、
前記天頂角演算部は、
算出された前記偏光度に基づいて、天頂角の候補を複数算出するとともに、前記撮像素子が前記偏光成分ごとに受光した前記反射光の総和受光強度が、予め規定された判定閾値よりも大きいか否かの判定結果に基づいて、前記複数の候補の中から一つの天頂角を特定する、
三次元形状計測装置。
For an object having a thin film formed on its surface, an irradiation unit that irradiates irradiation light from all directions of the object,
An imaging unit configured by arranging a plurality of imaging elements that receive reflected light reflected on the surface of the target object for each of a plurality of polarization components included in the reflected light,
Based on the received light intensity of each of the plurality of polarized light components received by one image sensor, a degree of polarization calculation unit that calculates the degree of polarization of the reflected light received by the image sensor,
A zenith angle calculation unit that calculates a zenith angle of a normal line for each surface portion of the object corresponding to the imaging element based on the polarization degree calculated for each imaging element and the refractive index of the thin film. When,
An azimuth calculating unit that specifies an azimuth of a normal line for each surface portion of the object corresponding to the imaging device, based on a polarization azimuth of the polarization component that gives a maximum received light intensity in each of the imaging devices.
With
The zenith angle calculation unit,
Based on the calculated degree of polarization, a plurality of zenith angle candidates are calculated, and the total received light intensity of the reflected light received by the image sensor for each polarization component is greater than a predetermined determination threshold. Based on the determination result of whether or not, specify one zenith angle from the plurality of candidates,
3D shape measuring device.
前記撮像部は、
受光する前記反射光と直交する面内で回転可能に設けられ、前記反射光のうち回転角度に応じた方位に平行な偏光成分を透過させる可変偏光部を有する
請求項1に記載の三次元形状計測装置。
The imaging unit,
The three-dimensional shape according to claim 1, further comprising: a variable polarization unit that is rotatably provided in a plane orthogonal to the received reflected light and transmits a polarization component of the reflected light parallel to an azimuth according to a rotation angle. Measuring device.
前記偏光度演算部は、
前記撮像素子が受光した複数の前記偏光成分ごとの受光強度のうち、最大の受光強度と最小の受光強度とに基づいて、前記偏光度を算出する
請求項1又は請求項2に記載の三次元形状計測装置。
The polarization degree calculator,
The three-dimensional polarization according to claim 1, wherein the polarization degree is calculated based on a maximum light reception intensity and a minimum light reception intensity among light reception intensities of the plurality of polarization components received by the imaging element. Shape measuring device.
前記反射光を、異なる複数の周波数帯ごとに受光可能とされ、
前記周波数帯ごとに取得された受光強度の組み合わせに基づいて、当該撮像素子に対応する前記対象物の表面部位ごとに、前記薄膜の膜厚を計測する膜厚計測部を更に備える
請求項1から請求項3の何れか一項に記載の三次元形状計測装置。
The reflected light can be received for each of a plurality of different frequency bands,
The apparatus according to claim 1, further comprising: a film thickness measurement unit configured to measure a film thickness of the thin film for each surface portion of the object corresponding to the imaging device based on a combination of light reception intensities acquired for each of the frequency bands. The three-dimensional shape measuring device according to claim 3.
前記撮像素子は、
前記反射光を、RGBの三原色に対応する3つの周波数帯ごとに受光可能とされている
請求項4に記載の三次元形状計測装置。
The image sensor,
The three-dimensional shape measurement device according to claim 4, wherein the reflected light can be received for each of three frequency bands corresponding to three primary colors of RGB.
表面に薄膜が形成された対象物に対し、照射光を、当該対象物の全方位から照射するステップと、
複数配列された撮像素子で、前記対象物の表面で反射した反射光を、当該反射光に含まれる複数の偏光成分ごとに受光するステップと、
一つの前記撮像素子が受光した複数の前記偏光成分ごとの受光強度に基づいて、当該撮像素子が受光した前記反射光の偏光度を算出するステップと、
前記撮像素子ごとに算出された前記偏光度と、前記薄膜の屈折率と、に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの法線の天頂角を算出するステップと、
前記撮像素子の各々において最大の受光強度を与える前記偏光成分の偏光方位に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの法線の方位角を特定するステップと、
を備え、
前記天頂角を算出するステップでは、
算出された前記偏光度に基づいて、天頂角の候補を複数算出するとともに、前記撮像素子が前記偏光成分ごとに受光した前記反射光の総和受光強度が、予め規定された判定閾値よりも大きいか否かの判定結果に基づいて、前記複数の候補の中から一つの天頂角を特定する、
三次元形状計測方法。
Irradiating the object with the thin film formed on its surface with irradiation light from all directions of the object;
In a plurality of arrayed imaging devices, a step of receiving reflected light reflected on the surface of the object for each of a plurality of polarization components included in the reflected light,
Calculating the degree of polarization of the reflected light received by the image sensor, based on the received light intensity of each of the plurality of polarization components received by one image sensor;
Calculating a zenith angle of a normal line for each surface portion of the object corresponding to the image sensor, based on the degree of polarization calculated for each image sensor and the refractive index of the thin film,
Based on the polarization azimuth of the polarization component that gives the maximum received light intensity in each of the imaging devices, identifying an azimuth of a normal line for each surface portion of the object corresponding to the imaging device,
With
In the step of calculating the zenith angle,
Based on the calculated degree of polarization, a plurality of zenith angle candidates are calculated, and the total received light intensity of the reflected light received by the image sensor for each polarization component is greater than a predetermined determination threshold. Based on the determination result of whether or not, specify one zenith angle from the plurality of candidates,
3D shape measurement method.
表面に薄膜が形成された対象物に対し、照射光を、当該対象物の全方位から照射する照射部と、
前記対象物の表面で反射した反射光を、当該反射光に含まれる複数の偏光成分ごと、かつ、異なる複数の周波数帯ごとに受光する撮像素子を複数配列してなる撮像部と、
一つの前記撮像素子が受光した複数の前記偏光成分ごとの受光強度に基づいて、当該撮像素子が受光した前記反射光の偏光度を算出する偏光度演算部と、
前記撮像素子ごとに算出された前記偏光度と、前記薄膜の屈折率と、に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの法線の天頂角を算出する天頂角演算部と、
前記周波数帯ごとに取得された受光強度の組み合わせと、前記天頂角と、に基づいて、当該撮像素子に対応する前記対象物の表面部位ごとの前記薄膜の膜厚と前記天頂角との関係で特定される前記周波数帯ごと受光強度の組み合わせを用いることにより、前記薄膜の膜厚を計測する膜厚計測部と、
を備える薄膜計測装置。
For an object having a thin film formed on its surface, an irradiation unit that irradiates irradiation light from all directions of the object,
An imaging unit comprising a plurality of imaging elements arranged to receive light reflected by the surface of the object, for each of a plurality of polarization components included in the reflected light, and for each of a plurality of different frequency bands,
Based on the received light intensity of each of the plurality of polarized light components received by one image sensor, a degree of polarization calculation unit that calculates the degree of polarization of the reflected light received by the image sensor,
A zenith angle calculation unit that calculates a zenith angle of a normal line for each surface portion of the object corresponding to the imaging element based on the polarization degree calculated for each imaging element and the refractive index of the thin film. When,
Based on the combination of the received light intensity obtained for each frequency band and the zenith angle, the relationship between the thickness of the thin film and the zenith angle for each surface region of the object corresponding to the imaging device By using a combination of the received light intensity for each of the specified frequency band, a film thickness measurement unit that measures the film thickness of the thin film,
A thin film measuring device comprising:
JP2015152664A 2015-07-31 2015-07-31 Three-dimensional shape measuring device, three-dimensional shape measuring method, and thin film measuring device Active JP6650633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015152664A JP6650633B2 (en) 2015-07-31 2015-07-31 Three-dimensional shape measuring device, three-dimensional shape measuring method, and thin film measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152664A JP6650633B2 (en) 2015-07-31 2015-07-31 Three-dimensional shape measuring device, three-dimensional shape measuring method, and thin film measuring device

Publications (2)

Publication Number Publication Date
JP2017032409A JP2017032409A (en) 2017-02-09
JP6650633B2 true JP6650633B2 (en) 2020-02-19

Family

ID=57987141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152664A Active JP6650633B2 (en) 2015-07-31 2015-07-31 Three-dimensional shape measuring device, three-dimensional shape measuring method, and thin film measuring device

Country Status (1)

Country Link
JP (1) JP6650633B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202002889TA (en) 2017-09-29 2020-04-29 Nike Innovate Cv Structurally-colored articles and methods of making and using structurally-colored articles
WO2019225080A1 (en) * 2018-05-24 2019-11-28 ソニー株式会社 Information processing device, information processing method, and program
CN108917654A (en) * 2018-06-28 2018-11-30 北方民族大学 Novel angle sensor and its measurement method
EP3969947A1 (en) 2019-06-26 2022-03-23 Nike Innovate C.V. Structurally-colored articles and methods for making and using structurally-colored articles
US20210022444A1 (en) 2019-07-26 2021-01-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11241062B1 (en) 2020-08-07 2022-02-08 Nike, Inc. Footwear article having repurposed material with structural-color concealing layer
US11129444B1 (en) 2020-08-07 2021-09-28 Nike, Inc. Footwear article having repurposed material with concealing layer
CN112304249B (en) * 2020-09-22 2022-03-18 江苏大学 System and method for simultaneously detecting three-dimensional surface and thickness distribution of transparent material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231023A (en) * 1994-02-17 1995-08-29 Fujitsu Ltd Thin film shape measuring method
JP3582311B2 (en) * 1996-08-04 2004-10-27 松下電器産業株式会社 Medium measuring method and measuring device
JPH11211433A (en) * 1998-01-30 1999-08-06 Toppan Printing Co Ltd Measuring method and measuring system of surface form of molding
JP2005308612A (en) * 2004-04-23 2005-11-04 Photonic Lattice Inc Ellipsometer and spectroscopic ellipsometer
FR2893428B1 (en) * 2005-11-17 2008-01-11 Univ Bourgogne METHOD AND SYSTEM FOR RECONSTRUCTION OF OBJECT SURFACES BY POLARIZATION IMAGING
JP4324238B2 (en) * 2007-02-13 2009-09-02 パナソニック株式会社 Image processing system, method and apparatus
US7646489B2 (en) * 2007-04-25 2010-01-12 Yokogawa Electric Corporation Apparatus and method for measuring film thickness
JP5751470B2 (en) * 2008-08-20 2015-07-22 国立大学法人東北大学 Shape / tilt detection and / or measurement optical apparatus and method and related apparatus
JP5541653B2 (en) * 2009-04-23 2014-07-09 キヤノン株式会社 Imaging apparatus and control method thereof

Also Published As

Publication number Publication date
JP2017032409A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP6650633B2 (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, and thin film measuring device
JP6364777B2 (en) Image data acquisition system and image data acquisition method
JP6285597B1 (en) Optical measuring apparatus and optical measuring method
US20190066315A1 (en) Depth map with structured and flood light
JP2730864B2 (en) Film thickness measuring system with structure including scattering surface
KR20190133229A (en) Skew Mirror Secondary Imaging
US20090279807A1 (en) System, method and apparatus for image processing and image format
JP2011154042A (en) Wavefront operation and improved 3d measuring apparatus
US20190068853A1 (en) Structured light and flood fill light illuminator
US8619263B2 (en) Film thickness measuring apparatus using interference and film thickness measuring method using interference
TWI528017B (en) Apparatus for measuring thickness and method for measuring thickness for the same
JP5424143B2 (en) Reflection distribution curve modeling method, thickness measurement method using the same, and thickness measurement reflectometer
TWI567364B (en) Structured light generating apparatus, measuring system and method thereof
Atkinson et al. High-sensitivity analysis of polarization by surface reflection
US10996335B2 (en) Phase wrapping determination for time-of-flight camera
JP5058838B2 (en) Information processing apparatus and method
CN110914634B (en) Holographic interferometry method and system
JP2006200999A (en) Image processor and refractive index distribution measuring instrument
WO2018163530A1 (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, and program
Berger et al. Modeling and verifying the polarizing reflectance of real-world metallic surfaces
JP6365977B2 (en) Three-dimensional shape measuring device, three-dimensional shape measuring method, and thin film measuring device
JP6371926B1 (en) Optical measuring apparatus and optical measuring method
JP2015081894A (en) Surface shape measurement device and surface shape measurement method
KR101526486B1 (en) Apparatus for rendering 3D object using optic parameter
Heist et al. BRDF-dependent accuracy of array-projection-based 3D sensors

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180528

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200107

R150 Certificate of patent or registration of utility model

Ref document number: 6650633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250