JP6650315B2 - 耐熱性セロビオハイドロラーゼ - Google Patents

耐熱性セロビオハイドロラーゼ Download PDF

Info

Publication number
JP6650315B2
JP6650315B2 JP2016064519A JP2016064519A JP6650315B2 JP 6650315 B2 JP6650315 B2 JP 6650315B2 JP 2016064519 A JP2016064519 A JP 2016064519A JP 2016064519 A JP2016064519 A JP 2016064519A JP 6650315 B2 JP6650315 B2 JP 6650315B2
Authority
JP
Japan
Prior art keywords
cellobiohydrolase
amino acid
seq
acid sequence
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016064519A
Other languages
English (en)
Other versions
JP2017175957A (ja
Inventor
二郎 大熊
二郎 大熊
佳嗣 広瀬
佳嗣 広瀬
みぎわ 須田
みぎわ 須田
明日香 山口
明日香 山口
近藤 康弘
康弘 近藤
大 佐藤
大 佐藤
柴田 大輔
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Kazusa DNA Research Institute Foundation
Original Assignee
Honda Motor Co Ltd
Kazusa DNA Research Institute Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Kazusa DNA Research Institute Foundation filed Critical Honda Motor Co Ltd
Priority to JP2016064519A priority Critical patent/JP6650315B2/ja
Priority to US15/467,542 priority patent/US10435680B2/en
Priority to EP17162735.9A priority patent/EP3225688B1/en
Priority to CN201710182075.XA priority patent/CN107236720B/zh
Publication of JP2017175957A publication Critical patent/JP2017175957A/ja
Application granted granted Critical
Publication of JP6650315B2 publication Critical patent/JP6650315B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01091Cellulose 1,4-beta-cellobiosidase (3.2.1.91)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、耐熱性セロビオハイドロラーゼ、当該耐熱性セロビオハイドロラーゼをコードするポリヌクレオチド、当該耐熱性セロビオハイドロラーゼを発現するための発現ベクター、当該発現ベクターが組込まれた形質転換体及び当該耐熱性セロビオハイドロラーゼを用いたセルロース分解物の製造方法に関する。
地球温暖化や大気汚染などの環境上の問題に加えて、原油価格の大幅上昇や近い将来の原油枯渇予想(ピークオイル)などの輸送用エネルギー供給に関わる懸念から、近年、石油代替エネルギー開発は非常に重要な課題である。植物バイオマス、若しくはリグノセルロースは、地球上に最も豊富にある再生可能エネルギー源であり、石油代替資源として期待されている。植物バイオマス乾燥重量の主要構成要素は、セルロースやヘミセルロース等の多糖類とリグニンから成るリグノセルロースである。例えば、多糖類は、グリコシド加水分解酵素であるセルラーゼやヘミセルラーゼによってグルコースやキシロースなどの単糖に加水分解された後、バイオ燃料や化成品の原料として利用される。
リグノセルロースは複雑な構造を持ち、難分解性であり、単一のグリコシド加水分解酵素では分解、糖化が難しい。リグノセルロースの全分解には、一般的に、エンドグルカナーゼ(セルラーゼ又はエンド−1,4−β−D−グルカナーゼ、EC 3.2.1.4)、エキソ型のセロビオハイドロラーゼ(1,4−β−セロビオシダーゼ又はセロビオハイドロラーゼ、EC 3.2.1.91、EC 3.2.1.176)、β−グルコシダーゼ(EC 3.2.1.21)の3種の酵素が必要とされ、その他にも、ヘミセルラーゼであるキシラナーゼ(エンド−1,4−β−キシラナーゼ、EC 3.2.1.8)やβ−キシロシダーゼ(EC 3.2.1.37)などの他の植物細胞壁分解酵素も含めた複数酵素の適切な配合が必要であると考えられている。
従来のリグノセルロースを資源とするバイオエタノール製造では、エタノールの高エネルギー効率変換を目的として、高固体負荷(30〜60% solid loading)による糖化処理が試みられている。このような高固体負荷によるリグノセルロースの酵素糖化は、バイオマス糖化液の粘性が高く、リグノセルロースの加水分解反応が進み難い。そこで、耐熱性酵素を用いて、例えば65℃以上の高温で酵素糖化処理を行うことにより、加水分解反応速度が上昇することに加えて、バイオマス糖化液の粘性が低下することから、糖化反応時間の短縮及び酵素量の削減が達成できると期待される。また、高温で反応を行うことにより酵素反応中の雑菌の繁殖を防ぐことができるという利点もある。このため、各種グリコシド加水分解酵素について、より耐熱性に優れた酵素の開発が望まれている。
高温環境で機能するセルラーゼについては、これまでに、好熱性糸状菌や好熱性細菌等からの分離が試みられているが、これらの多くはエンドグルカナーゼ活性、キシラナーゼ活性、キシロシダーゼ活性、又はグルコシダーゼ活性を持つ酵素であり、リグノセルロース加水分解プロセスにおいて重要な役割を果たすセロビオハイドロラーゼについては多くはない。例えば、セルロースの非還元末端から加水分解するセロビオハイドロラーゼについては、GH6ファミリーにおいて、至適温度が75℃を超えるものが報告されている(例えば、特許文献1参照)。
セロビオハイドロラーゼの中には、セルロースを加水分解する触媒ドメインだけでなく、セルロースへ結合する機能を持つモジュール(CBM、carbohydrate−binding module)を持つものがある。CBMはそれ自身分解活性を持たないが、単独でセルロースに結合する能力を有する。CBMの機能としては、不溶性の基質に吸着することで、基質周辺における触媒ドメインの濃度を上昇させてセルロースの分解速度を向上させたり、CBMの結合によってセルロース鎖間の水素結合を切り離して結晶構造を崩したりすることが知られている(非特許文献1、2)。また、結晶性セルロースを分解するCBHからCBMを除くと可溶性基質に対する反応性は変わらないにも係わらず、結晶性セルロースに対する分解活性や親和性が極端に低下することから、CBMは酵素が結晶性セルロースに作用するために必要なドメインであると考えられている(非特許文献3)。
国際公開第2014/157492号
Bolam et al., Biochemical Journal, 1998, vol.331, p.775-781. DIN et al., Proceedings of the National Academy of Sciences USA, 1994, vol.91, p.11383-11387. Riedel et al., FEMS Microbiology Letters, 1998, vol.164, p.261-267.
本発明は、少なくとも95℃で、さらにはカルシウムイオン存在下においては105℃でセロビオハイドロラーゼ活性を示す、新規なCBMを有する耐熱性セロビオハイドロラーゼ、当該CBMを有する耐熱性セロビオハイドロラーゼをコードするポリヌクレオチド、当該耐熱性セロビオハイドロラーゼを発現するための発現ベクター、当該発現ベクターが組込まれた形質転換体及び当該耐熱性セロビオハイドロラーゼを用いたセルロース分解物の製造方法を提供することを目的とする。
本発明者らは、上記課題を解決すべく、温泉高温土壌から直接DNAを抽出し、難培養性微生物叢の大規模メタゲノムシーケンスを行うことにより、新規アミノ酸配列を持つ耐熱性セロビオハイドロラーゼの取得に成功し、本発明を完成させた。
すなわち、本発明に係る耐熱性セロビオハイドロラーゼ、ポリヌクレオチド、発現ベクター、形質転換体、耐熱性セロビオハイドロラーゼの製造方法、セルラーゼ混合物及びセルロース分解物の製造方法は、下記[1]〜[12]である。
[1] (A1)配列番号1で表されるアミノ酸配列からなるポリペプチド、又は
(C1)配列番号1で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつセルロースへ結合する機能を有するポリペプチド、
からなるセルロース結合モチーフ領域と、セロビオハイドロラーゼ触媒領域とを有し、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有することを特徴とする、耐熱性セロビオハイドロラーゼ。
[2] 前記セロビオハイドロラーゼ触媒領域が、
(A2)配列番号3で表されるアミノ酸配列のうちの164位のロイシン残基から590位のプロリン残基までの部分配列からなるポリペプチド、又は
(C2)配列番号3で表されるアミノ酸配列のうちの164位のロイシン残基から590位のプロリン残基までの部分配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチド、
からなる、前記[1]の耐熱性セロビオハイドロラーゼ。
[3] (A3)配列番号3で表されるアミノ酸配列からなるポリペプチド、又は
(C3)配列番号3で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチド、
からなる、前記[1]の耐熱性セロビオハイドロラーゼ。
[4] カルシウムイオン存在下において、少なくとも105℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有する、前記[1]〜[3]のいずれかの耐熱性セロビオハイドロラーゼ。
[5] (a1)配列番号1で表されるアミノ酸配列からなるポリペプチドをコードする塩基配列
(c1)配列番号1で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつセルロースへ結合する機能を有するポリペプチドをコードする塩基配列、又は
(d1)配列番号2で表される塩基配列と90%以上の配列同一性を有し、かつセルロースへ結合する機能を有するポリペプチドをコードする塩基配列
と、
セロビオハイドロラーゼ触媒活性を有するポリペプチドをコードする塩基配列と、を有する、ポリヌクレオチド。
[6] (a2)配列番号3で表されるアミノ酸配列からなるポリペプチドをコードする塩基配列
(c2)配列番号3で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチドをコードする塩基配列、又は
(d2)配列番号4で表される塩基配列と90%以上の配列同一性を有し、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチドをコードする塩基配列
からなる、前記[5]のポリヌクレオチド。
[7] 前記ポリペプチドが、カルシウムイオン存在下において、少なくとも105℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有する、前記[5]又は[6]のポリヌクレオチド。
[8] 前記[5]〜[7]のいずれかのポリヌクレオチドが組込まれており、宿主細胞において、セロビオハイドロラーゼ活性を有するポリペプチドを発現し得る、発現ベクター。
[9] 前記[8]の発現ベクターが導入されている、形質転換体。
[10] 前記[8]の形質転換体内で、耐熱性セロビオハイドロラーゼを生産することを含む、耐熱性セロビオハイドロラーゼの製造方法。
[11] 前記[1]〜[4]のいずれかの耐熱性セロビオハイドロラーゼ、又は前記[5]〜[7]のいずれかのポリヌクレオチドがコードする耐熱性セロビオハイドロラーゼと、少なくとも1種のその他のグリコシド加水分解酵素とを含む、グリコシド加水分解酵素混合物。
[12] セルロースを含む材料を、前記[1]〜[4]のいずれかの耐熱性セロビオハイドロラーゼ、前記[5]〜[7]のいずれかのポリヌクレオチドがコードする耐熱性セロビオハイドロラーゼ、又は前記[8]に記載の形質転換体に接触させることにより、セルロース分解物を生産することを含む、セルロース分解物の製造方法。
本発明に係る耐熱性セロビオハイドロラーゼは、少なくとも95℃、pH5.5において、カルシウムイオン存在下においては少なくとも105℃、pH5.5において、セロビオハイドロラーゼ活性を有する。このため、当該耐熱性セロビオハイドロラーゼは、高温条件下におけるセルロースの糖化処理に好適である。
また、本発明に係るポリヌクレオチド、当該ポリヌクレオチドが組込まれた発現ベクター、当該発現ベクターが導入されている形質転換体は、本発明に係る耐熱性セロビオハイドロラーゼの製造に好適に用いられる。
オープンリーディングフレームAR19G−166c4Aがコードすると推定されるポリペプチドのアミノ酸配列(配列番号3)と放線菌マイクロビスポーラ・サブスピーシーズのα−L−アラビノフラノシダーゼのCBM2領域のアミノ酸配列のアライメント図である。 実施例1において、AR19G−166c4A−19−2遺伝子を大腸菌に発現させて得られたAR19G−166c4A−19−2タンパク質のSDS−PAGE解析結果を示した図であり、図2(A)がCBB染色の結果、図2(B)がウェスタンブロッティングの結果である。 実施例1において、AR19G−166c4A−19−2遺伝子を大腸菌に発現させて得られたAR19G−166c4A−19−2タンパク質と、AR19G−166−QA遺伝子を大腸菌に発現させて得られたAR19G−166−QAタンパク質の、カルシウムイオン存在下又は非存在下における各温度におけるPSA加水分解活性(pH5.5)を計測した結果を示した図である。 実施例1において、AR19G−166c4A−19−2遺伝子を大腸菌に発現させて得られたAR19G−166c4A−19−2タンパク質と、AR19G−166−QA遺伝子を大腸菌に発現させて得られたAR19G−166−QAタンパク質の、カルシウムイオン存在下又は非存在下における各温度におけるアビセル加水分解活性(pH5.5)を計測した結果を示した図である。 実施例1において、AR19G−166c4A−19−2遺伝子を大腸菌に発現させて得られたAR19G−166c4A−19−2タンパク質と、AR19G−166−QA遺伝子を大腸菌に発現させて得られたAR19G−166−QAタンパク質が示す、カルシウムイオン存在下又は非存在下における熱変性に伴って引き起こされるSYPRO Orangeの蛍光強度変化を示した図であり、図5(A)が蛍光強度の実測値を、図5(B)が1階微分「−d(Fluorescence)/dt」を、それぞれ示す。 実施例1において、AR19G−166−RAタンパク質と、AR19G−166−RAタンパク質にAR19G−166c4A−19−2タンパク質のCBMを付加したAR19G−166c4A−19−2−1タンパク質の、カルシウムイオン存在下又は非存在下における各温度におけるアビセル加水分解活性(pH5.5)を計測した結果を示した図である。
[耐熱性セロビオハイドロラーゼ]
糸状菌、細菌、アーキアを含む多くの微生物は難培養性であり、土壌など微生物環境に生息する菌の99%が未知の菌であるといわれている。特に、高温環境に生息する微生物の培養は極めて困難であり、現在の微生物の単離を目指す培養技術では、自然界から採取された天然サンプル中に生息する微生物の0.1%以下を単離しているにすぎないと考えられている。この微生物の難培養性が、耐熱性セロビオハイドロラーゼの開発が進まない一因である。よって、耐熱性セロビオハイドロラーゼの開発には、従来のような単離培養技術に頼らないアプローチが必要である。
近年、ギガ塩基対の大量配列解読を可能にした次世代シーケンサーが開発されたことにより、土壌等に含まれる微生物叢のゲノムを丸ごと解読することが可能となった。この解析技術を利用して、土壌などの環境サンプルから微生物集団のゲノムDNAを調製し、ゲノム構成が不均一、雑多な集団について直接ゲノムを網羅的に解読し、並列コンピュータにより解読データをアセンブルすることで微生物叢ゲノム配列を再構成するメタゲノム解析法が提案され、難培養性微生物のゲノム解読が急速に進展した。
本発明者らは、後記実施例1に示すように、日本国内において採取した高温温泉土壌から微生物集団のゲノムDNAを調製し、ゲノムDNAのショットガンシーケンス及びアノテーションを行い、既知セロビオハイドロラーゼ酵素と類似したアミノ酸配列を持つオープンリーディングフレーム(ORF)を得た。得られたORFの塩基配列情報に基づいてプライマーを設計し、PCR法により、高温温泉土壌由来のゲノムDNAから遺伝子候補をクローニングした。PCRクローニングされたDNAを大腸菌に組込み、当該塩基配列がコードするタンパク質を発現させ、リン酸膨潤アビセル(phosphoric acid swollen Avicel、PSA)分解活性アッセイによる機能スクリーニングを行った。最終的に、これらのORFの中からPSA分解活性を持つ耐熱性セロビオハイドロラーゼ(以下、「AR19G−166c4A−19−2」)を得た。AR19G−166c4A−19−2のアミノ酸配列を配列番号3に、塩基配列を配列番号4に、それぞれ表す。
AR19G−166c4A−19−2は、セロビオハイドロラーゼ触媒領域とCBM(セルロース結合モジュール)を有する。配列番号3のアミノ酸配列のうち、2位のシステイン残基から103位のシステイン残基までの102アミノ酸残基がCBM領域であり、164位のロイシン残基から590位のプロリン残基までの427アミノ酸残基がセロビオハイドロラーゼ触媒領域である。AR19G−166c4A−19−2のCBM領域のアミノ酸配列を配列番号1に、塩基配列を配列番号2に、それぞれ表す。つまり、AR19G−166c4A−19−2は、セロビオハイドロラーゼ活性を有するグリコシド加水分解酵素である。
なお、本発明及び本願明細書において、「セロビオハイドロラーゼ活性」とは、β−1,3結合とβ−1,4結合からなるグルカン及び結晶性セルロースからなる群より選択される少なくとも1つの化合物、並びにPSAを基質とし、前記基質を非還元末端側から加水分解することにより、セロビオースを生成する活性を意味する。
CBMは、それ自身分解活性を持たないが、単独でセルロースに結合する能力を有する。CBMの機能としては、不溶性の基質に吸着することにより、基質周辺における触媒ドメインの濃度を上昇させてセルロースの分解速度を向上させたり、CBMの結合によってセルロース鎖間の水素結合を切り離して結晶構造を崩したりすることが知られている。
AR19G−166c4A−19−2のアミノ酸配列を公知のアミノ酸配列データベースに対して検索したところ、セロビオハイドロラーゼ触媒領域は、特許文献1に記載のAR19G−166RAの1アミノ酸変異体(R299Q)であるAR19G−166−QAのアミノ酸配列(配列番号10)と同一であった。また、CBMのアミノ酸配列は、放線菌マイクロビスポーラ・サブスピーシーズ(Microbispora sp.)のα−L−アラビノフラノシダーゼ(Genbank 登録ID:ETK36906.1)(配列番号9)のCBM(carbohydrate−binding module)2領域と最も配列同一性が高く、両者は64%の配列同一性(相同性)を示した。
AR19G−166c4A−19−2は、AR19G−166RAの1アミノ酸変異体(R299Q)と同じセロビオハイドロラーゼ触媒領域を有することから、AR19G−166RAやAR19G−166QVと同様に、PSAに対し高い加水分解活性を示し、β−1,3結合とβ−1,4結合グルカンからなるリケナン(Lichenan)や結晶性セルロースのアビセルに対し、弱いながらも分解活性を示す。一方、カルボキシメチルセルロース(CMC)やβ−1,3結合とβ−1,6結合グルカンからなるラミナリン(Laminarin)に対しては、ほとんど分解活性は示さない。
AR19G−166c4A−19−2は、少なくとも95℃、pH5.5の条件下でセロビオハイドロラーゼ活性を有する。実際に、後記実施例1に示すように、AR19G−166c4A−19−2は、pH5.5の条件下で、50〜105℃の広い温度範囲内でPSA加水分解活性を示し、50〜99℃の広い温度範囲内でアビセル加水分解活性を示す。
また、AR19G−166c4A−19−2は、2価の金属イオン存在下で、金属イオン非存在下よりも、高温下でより高いセロビオハイドロラーゼ活性を示す。実際に、後記実施例1に示すように、AR19G−166c4A−19−2は、75℃以上の高温下において、カルシウムイオン存在下のほうが、カルシウムイオン非存在下よりも、高いセロビオハイドロラーゼ活性を示す。特に、AR19G−166c4A−19−2は、カルシウムイオン存在下において、少なくとも105℃、pH5.5の条件下でPSA加水分解活性を有する。
一般的に何らかの生理活性を有するタンパク質は、その生理活性を損なうことなく、1個又は複数個のアミノ酸を欠失、置換又は付加させることができる。つまり、AR19G−166c4A−19−2に対しても、セロビオハイドロラーゼ活性を失わせることなく、1個又は複数個のアミノ酸を欠失、置換又は付加させることができる。
すなわち、本発明に係る耐熱性セロビオハイドロラーゼは、下記(A1)〜(C1)のいずれかからなるCBMとセロビオハイドロラーゼ触媒領域とを有し、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有する、耐熱性セロビオハイドロラーゼである。本発明に係る耐熱性セロビオハイドロラーゼは、CBMを有することによって、セロビオハイドロラーゼ触媒領域のみからなる耐熱性セロビオハイドロラーゼよりも高いセロビオハイドロラーゼ活性を示す。
(A1)配列番号1で表されるアミノ酸配列からなるポリペプチド、
(B1)配列番号1で表されるアミノ酸配列のうちの1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつセルロースへ結合する機能を有するポリペプチド、又は
(C1)配列番号1で表されるアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなり、かつセルロースへ結合する機能を有するポリペプチド。
本発明に係る耐熱性セロビオハイドロラーゼが有するセロビオハイドロラーゼ触媒領域は、本発明に係るCBM(前記(A1)〜(C1)のいずれかからなるCBM)と連結されることにより、少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチドであれば特に限定されるものではなく、公知の耐熱性セロビオハイドロラーゼの中から適宜選択して用いることができる。
本発明に係る耐熱性セロビオハイドロラーゼが有するセロビオハイドロラーゼ触媒領域としては、下記(A2)〜(C2)のいずれかが好ましい。
(A2)配列番号3で表されるアミノ酸配列のうちの164位のロイシン残基から590位のプロリン残基までの部分配列からなるポリペプチド、
(B2)配列番号3で表されるアミノ酸配列のうちの164位のロイシン残基から590位のプロリン残基までの部分配列のうちの1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチド、又は
(C2)配列番号3で表されるアミノ酸配列のうちの164位のロイシン残基から590位のプロリン残基までの部分配列と70%以上の配列同一性を有するアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチド。
本発明に係る耐熱性セロビオハイドロラーゼが有するCBMとセロビオハイドロラーゼ触媒領域は、直接連結されていてもよく、1個以上のアミノ酸残基からなるリンカーにより連結されていてもよい。また、CBMとセロビオハイドロラーゼ触媒領域は、CBMがN末端側になるように連結されていてもよく、CBMがC末端側になるように連結されていてもよい。
本発明に係る耐熱性セロビオハイドロラーゼとしては、例えば、下記(A3)〜(C3)のいずれかからなるポリペプチド、又はこれを有するポリペプチドが挙げられる。
(A3)配列番号3で表されるアミノ酸配列からなるポリペプチド、
(B3)配列番号3で表されるアミノ酸配列のうちの1若しくは数個のアミノ酸が欠失、置換若しくは付加されているアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチド、又は
(C3)配列番号3で表されるアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチド。
前記(B1)、(B2)、及び(B3)のポリペプチドにおいて、配列番号1又は配列番号3で表されるアミノ酸配列に対して欠失、置換若しくは付加されるアミノ酸の数は、1〜20個が好ましく、1〜10個がより好ましく、1〜5個がさらに好ましい。
前記(C1)、(C2)、及び(C3)のポリペプチドにおいて、配列番号1又は配列番号3で表されるアミノ酸配列との配列同一性は、70%以上100%未満であれば特に限定されないが、80%以上100%未満であることが好ましく、85%以上100%未満であることがより好ましく、90%以上100%未満であることがさらに好ましく、95%以上100%未満であることが特に好ましい。
なお、アミノ酸配列同士の配列同一性(相同性)は、2つのアミノ酸配列を、対応するアミノ酸が最も多く一致するように、挿入及び欠失に当たる部分にギャップを入れながら並置し、得られたアラインメント中のギャップを除くアミノ酸配列全体に対する一致したアミノ酸の割合として求められる。アミノ酸配列同士の配列同一性は、当該技術分野で公知の各種相同性検索ソフトウェアを用いて求めることができる。本発明におけるアミノ酸配列の配列同一性の値は、公知の相同性検索ソフトウェアBLASTPにより得られたアライメントを元にした計算によって得られる。
前記(B1)〜(B3)及び(C1)〜(C3)のポリペプチドとしては、人工的に設計されたものであってもよく、AR19G−166c4A−19−2等のホモログ又はその部分タンパク質であってもよい。
前記(A1)〜(A3)、(B1)〜(B3)、(C1)〜(C3)のポリペプチドは、それぞれ、アミノ酸配列に基づいて化学的に合成してもよく、後記の本発明に係るポリヌクレオチドを用いて、タンパク質発現系によって生産してもよい。また、前記(B1)〜(B3)及び(C1)〜(C3)のポリペプチドは、それぞれ、配列番号1又は配列番号3で表されるアミノ酸配列からなるポリペプチドに基づいて、アミノ酸変異を導入する遺伝子組換え技術を用いて人工的に合成することもできる。
本発明に係る耐熱性セロビオハイドロラーゼは、PSAを基質とする。当該耐熱性セロビオハイドロラーゼは、PSA以外のその他のβグルカンを基質としてもよい。当該その他のβグルカンとしては、例えば、アビセル(Avicel)、結晶性バクテリアセルロース(Bacterial microcrystalline cellulose、BMCC)、濾紙などの結晶性セルロース、CMC、セロビオース等のβ−1,4結合からなるグルカン;キシラン;PNPGAL;PNPX;リケナン等のβ−1,3結合とβ−1,4結合からなるグルカン;ラミナリン等のβ−1,3結合とβ−1,6結合からなるグルカン;β−1,3結合からなるグルカン;ゲンチオビオース等のβ−1,6結合からなるグルカン等が挙げられる。本発明に係る耐熱性セロビオハイドロラーゼとしては、PSAに加えてアビセル及びリケナンを基質とするものが好ましい。
本発明に係る耐熱性セロビオハイドロラーゼは、少なくともpH5.5の条件で、PSAを基質とする加水分解活性を、70〜100℃の温度範囲内で示すことが好ましく、70〜105℃の温度範囲内で示すことがより好ましく、50〜105℃の温度範囲内で示すことがさらに好ましい。本発明に係る耐熱性セロビオハイドロラーゼの至適温度は、85〜100℃の範囲内にあることが好ましく、90〜100℃の範囲内にあることがより好ましい。
本発明に係る耐熱性セロビオハイドロラーゼとしては、少なくともpH4.5〜6.0の範囲内においてセロビオハイドロラーゼ活性を示すものが好ましく、pH4.0〜6.5の範囲内においてセロビオハイドロラーゼ活性を示すものがより好ましい。
また、本発明に係る耐熱性セロビオハイドロラーゼは、2価の金属イオン存在下で、金属イオン非存在下よりもより高温でも高いセロビオハイドロラーゼ活性を示すことが好ましい。本発明に係る耐熱性セロビオハイドロラーゼは、2価の金属イオン存在下で、少なくとも80〜100℃の温度範囲内、かつpH4.5〜6.0でセロビオハイドロラーゼ活性を有することが好ましく、80〜105℃の温度範囲内、かつpH4.5〜6.5のpH範囲内でセロビオハイドロラーゼ活性を示すことがより好ましく、50〜105℃の温度範囲内、かつpH4.5〜6.5のpH範囲内でセロビオハイドロラーゼ活性を示すことがさらに好ましい。
本発明に係る耐熱性セロビオハイドロラーゼは、セロビオハイドロラーゼ活性以外のセルロース加水分解活性を有していてもよい。その他のセルロース加水分解活性としては、キシラナーゼ活性、β−ガラクトシダーゼ活性、エンドグルカナーゼ活性、キシロシダーゼ活性、又はβ−グルコシダーゼ活性等が挙げられる。
本発明に係る耐熱性セロビオハイドロラーゼは、本発明に係るCBMと耐熱性セロビオハイドロラーゼ触媒領域とのみからなる酵素であってもよく、その他の領域を含んでいてもよい。その他の領域としては、公知のセロビオハイドロラーゼが有する、セロビオハイドロラーゼ触媒領域以外の領域が挙げられる。例えば、本発明に係る耐熱性セロビオハイドロラーゼには、公知のセロビオハイドロラーゼに対し、セロビオハイドロラーゼ触媒領域を前記(A3)〜(C3)のポリペプチドに置換することによって得られる酵素や、公知のセロビオハイドロラーゼに前記(A1)〜(C1)のポリペプチドを付加した酵素も含まれる。
本発明に係る耐熱性セロビオハイドロラーゼは、その他にも、N末端又はC末端に、細胞内の特定の領域に移行させて局在させ得るシグナルペプチドや、細胞外へ分泌するシグナルペプチドを有していてもよい。このようなシグナルペプチドとして、例えば、アポプラスト移行シグナルペプチド、小胞体保留シグナルペプチド、核移行シグナルペプチド、分泌型シグナルペプチド等がある。小胞体保留シグナルペプチドとして、例えば、HDELのアミノ酸配列からなるシグナルペプチド等がある。
また、本発明に係る耐熱性セロビオハイドロラーゼは、その他にも、発現系を用いて生産した場合に簡便に精製可能とするため、例えばN末端やC末端に、各種タグが付加されていてもよい。当該タグとしては、例えば、Hisタグ、HA(hemagglutinin)タグ、Mycタグ、及びFlagタグ等の組換えタンパク質の発現・精製において汎用されているタグを用いることができる。
[耐熱性セロビオハイドロラーゼをコードするポリヌクレオチド]
本発明に係るポリヌクレオチドは、本発明に係る耐熱性セロビオハイドロラーゼをコードする。当該耐熱性セロビオハイドロラーゼは、当該ポリヌクレオチドが組込まれた発現ベクターを宿主に導入することにより、当該宿主の発現系を利用して生産することができる。
具体的には、本発明に係るポリヌクレオチドは、下記(a1)〜(e1)のいずれかの塩基配列と、セロビオハイドロラーゼ触媒活性を有するポリペプチドをコードする塩基配列とを有する、ポリヌクレオチドである。
(a1)配列番号1で表されるアミノ酸配列からなるポリペプチドをコードする塩基配列、
(b1)配列番号1で表されるアミノ酸配列のうちの1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつセルロースへ結合する機能を有するポリペプチドをコードする塩基配列、
(c1)配列番号1で表されるアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなり、かつセルロースへ結合する機能を有するポリペプチドをコードする塩基配列、
(d1)配列番号2で表される塩基配列と80%以上の配列同一性を有し、かつセルロースへ結合する機能を有するポリペプチドをコードする塩基配列、又は
(e1)配列番号2で表される塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドの塩基配列であり、かつセルロースへ結合する機能を有するポリペプチドをコードする塩基配列。
本発明に係るポリヌクレオチドとしては、下記(a2)〜(e2)のいずれかの塩基配列からなるポリヌクレオチド、又は下記(a2)〜(e2)のいずれかの塩基配列を含む塩基配列からなるポリヌクレオチドが挙げられる。
(a2)配列番号3で表されるアミノ酸配列からなるポリペプチドをコードする塩基配列、
(b2)配列番号3で表されるアミノ酸配列のうちの1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチドをコードする塩基配列、
(c2)配列番号3で表されるアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチドをコードする塩基配列、
(d2)配列番号4で表される塩基配列と80%以上の配列同一性を有し、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチドをコードする塩基配列、又は
(e2)配列番号4で表される塩基配列からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドの塩基配列であり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチドをコードする塩基配列。
なお、本願及び本願明細書において、「ポリヌクレオチドにおいて塩基が欠失する」とは、ポリヌクレオチドを構成しているヌクレオチドの一部が失われる(除去される)ことを意味する。
本発明及び本願明細書において、「ポリヌクレオチドにおいて塩基が置換する」とは、ポリヌクレオチドを構成している塩基が別の塩基に変わることを意味する。
本発明及び本願明細書において、「ポリヌクレオチドにおいて塩基が付加される」とは、ポリヌクレオチド中に新たな塩基が挿入されることを意味する。
本発明及び本願明細書において、「ストリンジェントな条件」とは、例えば、Molecular Cloning−A LABORATORY MANUAL THIRD EDITION(Sambrookら、Cold Spring Harbor Laboratory Press)に記載の方法が挙げられる。例えば、6×SSC(20×SSCの組成:3M塩化ナトリウム、0.3Mクエン酸溶液、pH7.0)、5×デンハルト溶液(100×デンハルト溶液の組成:2質量%ウシ血清アルブミン、2質量%フィコール、2質量%ポリビニルピロリドン)、0.5質量%のSDS、0.1mg/mLサケ***DNA、及び50%フォルムアミドからなるハイブリダイゼーションバッファー中で、42〜70℃で数時間から一晩インキュベーションを行うことによりハイブリダイズさせる条件を挙げることができる。なお、インキュベーション後の洗浄の際に用いる洗浄バッファーとしては、好ましくは0.1質量%SDS含有1×SSC溶液、より好ましくは0.1質量%SDS含有0.1×SSC溶液である。
前記(a1)〜(e1)及び(a2)〜(e2)の塩基配列においては、縮重コドンは、宿主のコドン使用頻度の高いものを選択することが好ましい。例えば、前記(a1)の塩基配列としては、配列番号2で表される塩基配列であってもよく、配列番号2で表される塩基配列を、コードするアミノ酸配列は変更せずに、宿主において使用頻度の高いコドンへ改変した塩基配列であってもよい。コドンの改変は、公知の遺伝子配列変異技術又は人工遺伝子合成によって行うことができる。
配列番号2又は配列番号4で表される塩基配列からなるポリヌクレオチドは、塩基配列情報に基づいて化学的に合成してもよく、AR19G−166c4A−19−2をコードする遺伝子(「AR19G−166c4A−19−2遺伝子」ということがある。)の全長若しくはセロビオハイドロラーゼ触媒領域及びCBMを含む部分領域を遺伝子組換え技術によって自然界から取得したものであってもよい。AR19G−166c4A−19−2遺伝子の全長又はその部分領域は、例えば、自然界から微生物を含むサンプルを取得し、当該サンプルから回収されたゲノムDNAを鋳型として、配列番号2で表される塩基配列に基づいて常法により設計したフォワードプライマーとリバースプライマーを用いてPCRを行うことによって得ることができる。当該サンプルから回収したmRNAを鋳型として逆転写反応により合成されたcDNAを鋳型としてもよい。
前記(d1)及び(d2)の塩基配列において、配列番号2又は配列番号4で表される塩基配列との配列同一性は、80%以上100%未満であれば特に限定されないが、85%以上100%未満であることが好ましく、90%以上100%未満であることがより好ましく、95%以上100%未満であることがさらに好ましく、98%以上100%未満であることがよりさらに好ましい。
なお、塩基配列同士の配列同一性(相同性)は、2つの塩基配列を、対応する塩基が最も多く一致するように、挿入及び欠失に当たる部分にギャップを入れながら並置し、得られたアラインメント中のギャップを除く塩基配列全体に対する一致した塩基の割合として求められる。塩基配列同士の配列同一性は、当該技術分野で公知の各種相同性検索ソフトウェアを用いて求めることができる。本発明における塩基配列の配列同一性の値は、公知の相同性検索ソフトウェアBLASTNにより得られたアライメントを元にした計算によって得られる。
例えば、前記(b1)、(b2)、(c1)、(c2)、(d1)又は(d2)の塩基配列からなるポリヌクレオチドは、それぞれ、配列番号2又は配列番号4で表される塩基配列からなるポリヌクレオチドに対して、1又は2以上の塩基を欠失、置換若しくは付加することによって人工的に合成することができる。また、前記(b1)、(b2)、(c1)、(c2)、(d1)又は(d2)の塩基配列としては、AR19G−166c4A−19−2遺伝子のホモログ遺伝子の全長配列又はその部分配列であってもよい。AR19G−166c4A−19−2遺伝子のホモログ遺伝子は、塩基配列が既知の遺伝子のホモログ遺伝子を取得する際に用いられる遺伝子組換え技術によって取得することができる。
本発明に係るポリヌクレオチドは、セロビオハイドロラーゼ触媒領域とCBMをコードする領域のみを有するものであってもよく、当該領域に加えて、リンカー配列、各種シグナルペプチド、各種タグ等をコードする領域を有していてもよい。
[発現ベクター]
本発明に係る発現ベクターは、前記本発明に係るポリヌクレオチドが組込まれており、宿主細胞において、少なくとも95℃、pH5.5の条件下でセロビオハイドロラーゼ活性を有するポリペプチドを発現し得る。すなわち、前記本発明に係るポリヌクレオチドが、前記本発明に係る耐熱性セロビオハイドロラーゼを発現し得る状態で組込まれた発現ベクターである。具体的には、上流から、プロモーター配列を有するDNA、前記本発明に係るポリヌクレオチド、ターミネーター配列を有するDNAからなる発現カセットとして発現ベクターに組込まれていることが必要である。なお、ポリヌクレオチドの発現ベクターへの組込みは、周知の遺伝子組み換え技術を用いることにより行うことができ、市販の発現ベクター作製キットを用いてもよい。
当該発現ベクターとしては、大腸菌等の原核細胞へ導入されるものであってもよく、酵母、糸状菌、昆虫培養細胞、哺乳培養細胞、植物細胞等の真核細胞へ導入されるものであってもよい。これらの発現ベクターとしては、それぞれの宿主に応じて通常用いられる任意の発現ベクターを用いることができる。
本発明に係る発現ベクターは、前記本発明に係るポリヌクレオチドのみならず、薬剤耐性遺伝子等も組込まれた発現ベクターであることが好ましい。発現ベクターにより形質転換された細胞と形質転換されていない細胞の選抜を容易に行うことができるためである。当該薬剤耐性遺伝子として、例えば、カナマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子、ビアラホス耐性遺伝子等がある。
[形質転換体]
本発明に係る形質転換体は、本発明に係る発現ベクターが導入されている。当該形質転換体中では、本発明に係る耐熱性セロビオハイドロラーゼを発現させ得る。従来公知のセロビオハイドロラーゼは、現宿主のレンジが狭い、つまり、異種発現が難しいものが多い。これに対して、本発明に係る耐熱性セロビオハイドロラーゼは、大腸菌、酵母、糸状菌、高等植物葉緑体等、広範な発現宿主に発現させることができる。このため、発現ベクターを導入する宿主としては、大腸菌等の原核細胞であってもよく、酵母、糸状菌、昆虫培養細胞、哺乳培養細胞、又は植物細胞等の真核細胞であってもよい。大腸菌の形質転換体を培養することにより、本発明に係る耐熱性セロビオハイドロラーゼを、より簡便かつ大量に生産することができる。一方で、真核細胞内ではタンパク質に糖鎖修飾が施されるため、真核細胞の形質転換体を用いることにより、原核細胞の形質転換体を用いた場合よりも、より耐熱性に優れた耐熱性セロビオハイドロラーゼを生産し得る。
発現ベクターを用いて形質転換体を作製する方法は、特に限定されるものではなく、形質転換体を作製する場合に通常用いられている方法により行うことができる。当該方法として、例えば、アグロバクテリウム法、パーティクルガン法、エレクトロポレーション法、及びPEG(ポリエチレングリコール)法等がある。このうち、宿主が植物細胞である場合には、パーティクルガン法又はアグロバクテリウム法で行うことが好ましい。
宿主として、原核細胞、酵母、糸状菌、昆虫培養細胞、又は哺乳培養細胞等を用いた場合には、得られた形質転換体は、一般的には、形質転換前の宿主と同様にして、常法により培養することができる。
[耐熱性セロビオハイドロラーゼの製造方法]
本発明に係る耐熱性セロビオハイドロラーゼの製造方法は、前記本発明に係る形質転換体内で、耐熱性セロビオハイドロラーゼを生産する方法である。前記本発明に係るポリヌクレオチドが、発現の時期等の制御能を有していないプロモーターの下流に組込まれている発現ベクターを用いて製造された形質転換体内では、本発明に係る耐熱性セロビオハイドロラーゼが恒常的に発現している。一方で、特定の化合物や温度条件等によって発現を誘導するいわゆる発現誘導型プロモーターを用いて製造された形質転換体に対しては、それぞれの発現誘導条件に適した誘導処理を行うことにより、当該形質転換体内に耐熱性セロビオハイドロラーゼを発現させる。
形質転換体によって生産された耐熱性セロビオハイドロラーゼは、当該形質転換体内に留めた状態で使用してもよく、当該形質転換体から抽出・精製してもよい。
形質転換体から耐熱性セロビオハイドロラーゼを抽出又は精製する方法は、耐熱性セロビオハイドロラーゼの活性を損なわない方法であれば、特に限定されるものではなく、細胞や生体組織からポリペプチドを抽出する場合に通常用いられている方法によって抽出することができる。当該方法として、例えば、形質転換体を適当な抽出バッファーに浸し、耐熱性セロビオハイドロラーゼを抽出した後、抽出液と固形残渣に分離する方法が挙げられる。当該抽出バッファーとしては、界面活性剤等の可溶化剤を含有するものが好ましい。形質転換体が植物である場合には、抽出バッファーに浸す前に、予め当該形質転換体を細断又は粉砕しておいてもよい。また、抽出液と固形残渣を分離する方法としては、例えば、濾過方法、圧縮濾過方法、又は遠心分離処理方法等の公知の固液分離処理を用いることができ、抽出バッファーに浸した状態の形質転換体を搾ってもよい。抽出液中の耐熱性セロビオハイドロラーゼは、塩析法、限外濾過法、又はクロマトグラフィー法等の公知の精製方法を用いて精製することができる。
本発明に係る耐熱性セロビオハイドロラーゼを、形質転換体内で分泌型シグナルペプチドを有する状態で発現させた場合には、当該形質転換体を培養した後、得られた培養物から形質転換体を除いた培養液上清を回収することにより、簡便に耐熱性セロビオハイドロラーゼを含む溶液を得ることができる。また、本発明に係る耐熱性セロビオハイドロラーゼが、Hisタグ等のタグを有している場合、当該タグを利用したアフィニティクロマトグラフィ法により、抽出液や培養上清中の耐熱性セロビオハイドロラーゼを簡便に精製することができる。
すなわち、本発明に係る耐熱性セロビオハイドロラーゼの製造方法は、前記本発明に係る形質転換体内で、耐熱性セロビオハイドロラーゼを生産すること、及び所望により前記形質転換体から前記耐熱性セロビオハイドロラーゼを抽出し精製することを含む。
[グリコシド加水分解酵素混合物]
前記本発明に係る耐熱性セロビオハイドロラーゼ、又は前記本発明に係る耐熱性セロビオハイドロラーゼの製造方法によって製造された耐熱性セロビオハイドロラーゼと、少なくとも1種のその他のグリコシド加水分解酵素を含むグリコシド加水分解酵素混合物として使用することもできる。前記本発明に係る耐熱性セロビオハイドロラーゼの製造方法によって製造された耐熱性セロビオハイドロラーゼは、形質転換体内に含まれた状態のものであってもよく、形質転換体から抽出又は精製されたものであってもよい。本発明に係る耐熱性セロビオハイドロラーゼを、その他のグリコシド加水分解酵素との混合物としてセルロースの分解反応に用いることにより、難分解性であるリグノセルロースをより効率よく分解させることができる。
当該グリコシド加水分解酵素混合物に含まれる前記耐熱性セロビオハイドロラーゼ以外のその他のグリコシド加水分解酵素としては、セルロースの加水分解活性を有するものであれば特に限定されるものではない。当該グリコシド加水分解酵素混合物に含まれる前記セロビオハイドロラーゼ以外のその他のグリコシド加水分解酵素としては、例えば、キシラナーゼ、若しくはβ−キシロシダーゼ等のヘミセルラーゼ、セロビオハイドロラーゼ、β−グルコシダーゼ、又はエンドグルカナーゼ等が挙げられる。本発明に係るグリコシド加水分解酵素混合物としては、ヘミセルラーゼとエンドグルカナーゼの少なくとも一方を含むものが好ましく、ヘミセルラーゼとエンドグルカナーゼを両方含むものがより好ましい。中でも、キシラナーゼ、β−キシロシダーゼ、セロビオハイドロラーゼ、及びエンドグルカナーゼからなる群より選択される1種以上のグリコシド加水分解酵素を含むものが好ましく、キシラナーゼ、β−キシロシダーゼ、セロビオハイドロラーゼ、及びエンドグルカナーゼを全て含むものがより好ましい。
当該グリコシド加水分解酵素混合物に含まれるその他のグリコシド加水分解酵素は、少なくとも70℃でグリコシド加水分解活性を有する耐熱性グリコシド加水分解酵素であることが好ましく、70〜95℃でグリコシド加水分解活性を有する耐熱性グリコシド加水分解酵素であることがより好ましく、70〜105℃でグリコシド加水分解活性を有する耐熱性グリコシド加水分解酵素であることがさらに好ましい。当該グリコシド加水分解酵素混合物に含まれる全ての酵素が耐熱性であることにより、当該グリコシド加水分解酵素混合物によるセルロースの分解反応を高温条件下で効率よく行うことができる。すなわち、当該グリコシド加水分解酵素混合物が耐熱性グリコシド加水分解酵素のみを含む場合、当該グリコシド加水分解酵素混合物をリグノセルロース糖化処理に用いることにより、糖化温度70〜95℃の高温環境下でリグノセルロース加水分解反応を行うことが可能になる。この高温糖化により、酵素量と糖化時間を著しく減らすことができ、糖化コストが大幅に削減される。
[セルロース分解物の製造方法]
本発明に係るセルロース分解物の製造方法は、本発明に係る耐熱性セロビオハイドロラーゼにより、セルロースを分解して分解物を得る方法である。具体的には、セルロースを含む材料を、本発明に係る耐熱性セロビオハイドロラーゼ、本発明に係る形質転換体、又は本発明に係る耐熱性セロビオハイドロラーゼの製造方法によって製造された耐熱性セロビオハイドロラーゼに接触させることにより、セルロース分解物を生産する。
セルロースを含む材料としては、セルロースが含まれていれば特に限定されるものではない。当該材料としては、例えば、雑草や農業系廃棄物等のセルロース系バイオマス、又は古紙等が挙げられる。当該セルロースを含む材料は、本発明に係る耐熱性セロビオハイドロラーゼと接触させる前に、破砕若しくは細断等の物理的処理、酸若しくはアルカリ等による化学処理、又は適当なバッファーへの浸漬又は溶解処理等を行っておくことが好ましい。
本発明に係る耐熱性セロビオハイドロラーゼによるセルロースの加水分解反応の反応条件は、当該耐熱性セロビオハイドロラーゼがセロビオハイドロラーゼ活性を示す条件であればよい。例えば、2価金属イオン非存在下では、60〜100℃、pH4.5〜6.5で反応を行うことが好ましく、50〜100℃、pH4.5〜6.5で反応を行うことがより好ましい。また、2価金属イオン存在下では、80〜105℃、pH4.5〜6.5で反応を行うことが好ましく、70〜105℃、pH4.5〜6.5で反応を行うことがより好ましい。前記加水分解反応の反応時間は、加水分解に供されるセルロースを含む材料の種類、前処理の方法、又は量等を考慮して適宜調整される。例えば、10分間〜100時間、セルロース系バイオマスを分解する場合には、1〜100時間の反応時間で前記加水分解反応を行うことができる。
セルロースの加水分解反応には、本発明に係る耐熱性セロビオハイドロラーゼに加えて、少なくとも1種のその他のグリコシド加水分解酵素を用いることも好ましい。当該その他のグリコシド加水分解酵素としては、前記グリコシド加水分解酵素混合物に含められるグリコシド加水分解酵素と同様のものを用いることができ、少なくとも70℃で、好ましくは少なくとも70〜100℃でグリコシド加水分解活性を有する耐熱性グリコシド加水分解酵素であることが好ましい。また、当該セルロース分解物の製造方法には、本発明に係る耐熱性セロビオハイドロラーゼ、本発明に係る形質転換体、又は本発明に係る耐熱性セロビオハイドロラーゼの製造方法によって製造された耐熱性セロビオハイドロラーゼに代えて、前記グリコシド加水分解酵素混合物を用いてもよい。
次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]温泉土壌からの新規耐熱性セロビオハイドロラーゼのクローニング
<1> 温泉土壌からのDNA抽出と全ゲノムシーケンス(Whole Genome Sequence、WGS)
耐熱性セロビオハイドロラーゼ(至適温度:55℃以上)、超耐熱性セロビオハイドロラーゼ(至適温度:80℃以上)の遺伝子探索を目的として、中性〜弱アルカリ性温泉から土壌DNAを採取し、これらの土壌を構成する微生物叢メタゲノムDNAの塩基配列解読を行った。
中性〜弱アルカリ性温泉土壌サンプルとして、野外にて高温の温泉が噴き出している日本国内の3ヶ所、5地点(メタゲノムDNAサンプルN2、AR19、AR15、OJ1、及びH1)から、土壌、泥、バイオマットを含む温泉水を採取した。これらの温泉土壌サンプルは、採取時の温度58〜78℃、pH7.2〜8のレンジにあった。
採取した温泉土壌サンプル各10gから、DNA抽出キット(ISOIL Large for Beads ver.2、NIPPON GENE社製)を使い、DNAを抽出した。抽出されたDNAのうち5μgに対して、ロシュダイアグノスティックス社製のシーケンサーGS FLX Titanium 454を用いて、メタゲノムDNAのショットガンシーケンスを行った。
温泉土壌サンプルAR15について、メタゲノムDNAの配列解読を行い、平均リード長396bp、総リード数2,766,332個、総ゲノム解読量1,106,243,280bpの全ゲノムシーケンス(WGS)データセットを得た。
<2> 温泉メタゲノムデータのアセンブルと統計量
Roche 454の出力(sffファイル)を、Genomics Workbench Ver.4ソフトウエア(CLC社製)を用いて、低品質リードのトリミング及びde novoアセンブルを行った。
500bp以上にアセンブルされた総コンティグ長は、合計159,587,150bpであり、このデータセットをセルラーゼ酵素遺伝子解析に用いた。トリミング後のリード総数は2,766,328リードであり、平均で1,230bpのコンティグにアセンブルされ(計129,742コンティグ)、このうち最大コンティグ長は105,977bpであった。
<3> セロビオハイドロラーゼのオープンリーディングフレーム(ORF)予測
UniProtデータベース(http://www.uniprot.org/)からEC番号が3.2.1.4(セルラーゼ)、3.2.1.21(β−グルコシダーゼ)、3.2.1.37(β−キシロシダーゼ) 、3.2.1.91(セルロース 1,4−β−セロビオシダーゼ)、3.2.1.8(エンド1,4−β−キシラナーゼ)の配列をダウンロードし(アクセス日:2011/12/9)、これらグリコシド加水分解酵素遺伝子のプロテオームローカルデータベースを構築した。アノテーションソフトウェアMeteGeneAnotator(Noguchi et al.,MetaGeneAnnotator: Detecting Species-Specific Patterns of Ribosomal Binding Site for Precise Gene Prediction in Anonymous Prokaryotic and Phage Genomes, DNA Res. 2008, 15, 387-396.)を使用して、前記<2>で得たコンティグ配列から、遺伝子領域(=オープンリーディングフレーム)を推定した。推定されたORFからグリコシド加水分解酵素遺伝子を抽出するために、BLASTP(blastall ver. 2.2.18)を使い、前記ローカルデータベースに参照した。BLASTPのoption条件は、「Filter query sequence=false」、「Expectation value(E)<1e−20」[以下、デフォルト値:Cost to open a gap=−1、Cost to extended gap=−1、X dropoff value for gapped alignment=0、Threshold for extending hits=0、Word size=default]とし、ヒットした配列をグリコシド加水分解酵素遺伝子として収集した。
<4> 遺伝子のグリコシド加水分解酵素(GH)ファミリー分類
前記<3>で収集されたセルラーゼ、エンドヘミセルラーゼ、脱分岐酵素等のグリコシド加水分解酵素を含む配列についてについて、タンパク質の機能領域配列データベースpfam HMMs(Pfam version 23.0 and HMMER v2.3;Finn et al.,Nucleic Acids Research Database,2010,Issue 38,p.D211-222)を基準に、機能分類を行った。具体的には、タンパク質モチーフ検索プログラムHMMER(Durbin et al.,‘The theory behind profile HMMs. Biological sequence analysis: probabilistic models of proteins and nucleic acids’, 1998,Cambridge University Press.;hmmpfam(Ver.2.3.2)、E−value cutoff<1e−5; Database=Pfam_fs(models that can be used to find fragments of the represented domains in a sequence.))を用いて、Pfam領域データベースとの相同性からグリコシド加水分解酵素(GH)ファミリーを決定した。
温泉土壌サンプルAR19のシーケンスデータを用いたBLASTPによる相同性検索及びpfam HMMsにより、61個のORFがセロビオハイドロラーゼ遺伝子と予測された。このうちの1つは、既知のAR19G−166RAの1アミノ酸変異体(R299Q)AR19G−166−QAの配列のN末端側に、新規なCBMファミリー2の配列が付加したものであった。このORFについてプライマーを設計し、ゲノムDNA増幅キット(GenomiPhi V2 DNA Amplification Kit、GEヘルスケア社製)で増幅した温泉土壌DNAをテンプレートにしてPCRにより遺伝子をクローニングした。その結果、5’末端側にCBMファミリー2を有するGHファミリー6のセロビオハイドロラーゼ配列を持つオープンリーディングフレームAR19G−166c4Aからセロビオハイドロラーゼ遺伝子AR19G−166c4A−19−2が単離された。
<5> オープンリーディングフレームAR19G−166c4A
オープンリーディングフレームAR19G−166c4Aは、590アミノ酸残基からなるポリペプチド(配列番号3)をコードし、1位のアミノ酸残基がアラニン(A)から開始し、3’末端が終始コドンで終わっている不完全長配列(配列番号4)であった。モチーフの配列相同性から、オープンリーディングフレームAR19G−166c4Aは、2位のシステイン(C)から103位のシステイン(C)までの102アミノ酸残基がCBMファミリー2ドメインであり、164位のロイシン(L)から590位のプロリン(P)までの427アミノ酸残基がGlycosidehydrolase family 6触媒ドメインをコードしていると推測された。このCBMファミリー2ドメインは、放線菌マイクロビスポーラ・サブスピーシーズのα−L−アラビノフラノシダーゼのCBM2領域(配列番号9の29〜128位のアミノ酸からなる領域)とCBM領域について64%のアミノ酸配列同一性を示す、新規な配列であった。配列相同性は、ClustalWアルゴリズムにより算出した。
図1に、オープンリーディングフレームAR19G−166c4Aがコードすると推定されるポリペプチドのアミノ酸配列(配列番号3)とマイクロビスポーラ・サブスピーシーズのα−L−アラビノフラノシダーゼ(配列番号9)のCBM2領域のアミノ酸配列のアライメントを示す。図1中、黒白反転のアミノ酸は、これらの全アミノ酸配列において同一アミノ酸残基(identical)を示し、「−」は欠失(ギャップ)を示す。
<6> セロビオハイドロラーゼ遺伝子AR19G−166c4A−19−2
PCRクローニングによりオープンリーディングフレームAR19G−166c4Aからセロビオハイドロラーゼ遺伝子AR19G−166c4A−19−2を単離した。AR19G−166c4A−19−2遺伝子は、オープンリーディングフレームAR19G−166c4Aと全て同一の1,773bpからなる塩基配列を含んでいた。
<7> セロビオハイドロラーゼ酵素タンパク質の発現及び精製
配列番号7で表される塩基配列からなるフォワードプライマー(5’−GTGATGGCCTGCCAGGTGTCCTAC−3’:配列番号5で表される塩基配列の5’末端側に6塩基(GTGATG)付加し、5’末端をリン酸化したもの。)と配列番号8で表される塩基配列からなるリバースプライマー(5’−ATGCAGAGCTCTTAGGGTTGGATCGGCGGATAG−3’:配列番号6で表される塩基配列の5’末端側に制限酵素Sac I認識配列を付加したもの。Sac Iはベクターへの挿入に利用する配列である。)を用い、KOD−Plus−Neo(TOYOBO社製)で増幅したPCR産物をpLEAD5ベクター(ニッポン・ジーン社製)へ挿入し、大腸菌JM109株に形質転換した。なお、配列番号5で表される塩基配列は、配列番号4で表される塩基配列の1〜18位の塩基からなる部分配列と相同的な(同一の)塩基配列である。また、配列番号6で表される塩基配列は、配列番号4で表される塩基配列の1,752〜1,773位の塩基からなる部分配列と相補的な塩基配列である。コロニーPCRによりポジティブクローンを選抜し、100mg/Lアンピシリンを含むLB液体培地を用いて37℃、200rpmで17〜20時間培養した後、ミニプレップキット(Wizard plus SV Minipreps DNA Purification System、Promega社製)を用いてプラスミドの調製を行った。調製したプラスミドは、シーケンサー(ライフテクノロジーズ社の3730 DNA Analyzer)を用いて配列確認を行った。PCRクローニングにより、オープンリーディングフレームAR19G−166c4Aから遺伝子クローンAR19G−166c4A−19−2を得た。
シーケンス確認されたAR19G−166c4A−19−2/pLEAD5プラスミドを持つ形質転換大腸菌クローンを、50mg/Lアンピシリンを含むTurbo Broth培地(アテナ エンバイロメンタル サイエンス社製)に植菌し、 約20時間培養することによって目的タンパク質を発現させた。培養後、遠心分離処理を行って大腸菌を回収し、培養液の1/10容量の50mM Tris−HClバッファー(pH8.0)を加えて懸濁した。その後、超音波破砕装置astrason3000(MISONIX社製)を用いて、5分間破砕−5分間休止工程を7〜8サイクル繰返し、目的タンパク質を含む遺伝子組換え大腸菌の粗抽出物を得た。当該遺伝子組換え大腸菌粗抽出物をフィルター(孔径φ=0.45μm、ミリポア社製)で濾過し、得られた濾液を遺伝子組換え大腸菌破砕上清とした。
当該遺伝子組換え大腸菌破砕上清を、50mM Tris−HClバッファー(pH8.0)で平衡化したイオン交換カラムHiTrap Q HP(GEヘルスケア社製)に充填し、中高圧液体クロマトグラフィーシステムAKTA design(GEヘルスケア社製)を用いて、1MのNaClを含む50mM Tris−HClバッファー(pH8.0)にて0〜50%の濃度勾配でタンパク質を分画した。セロビオハイドロラーゼ活性のあった分画は、まとめて混合した後、遠心式の限外濾過膜VIVASPIN 20(Sartorius stedim社製)によって750mMの硫酸アンモニウムを含む50mM Tris−HClバッファー(pH8.0)へ溶液交換した。溶液交換後のセロビオハイドロラーゼ活性分画を、同液で平衡化した疎水性相互作用分離カラムHiTrap Phnenyl HP(GEヘルスケア社製)に充填し、50mM Tris−HClバッファー(pH8.0)にて0〜100%の濃度勾配でタンパク質を分画した。セロビオハイドロラーゼ活性のあった分画は、まとめて混合した後に、液量が8mL程度になるまでVIVASPIN 20を用いて濃縮した。濃縮したサンプルは、150mMのNaClを含む50mM Tris−HClバッファー(pH8.0)で平衡化したゲル濾過カラムHiload26/60 superdex200 pg(GEヘルスケア社製)に添加し、カラム体積の1〜1.5倍容の同バッファーを流速2〜3mL/分で流すことによって分画した。セロビオハイドロラーゼ活性のあった分画は、まとめて混合した後、50mM Tris−HClバッファー(pH8.0)への溶液交換と濃縮を行い、終濃度約1mg/mLの精製酵素を得た。
遺伝子組換え大腸菌破砕上清と精製酵素(精製したセロビオハイドロラーゼ酵素タンパク質)を、SDS−PAGE解析により確認した。遺伝子組換え大腸菌破砕上清と精製酵素のSDS電気泳動は、ミニプロティアンTGXステインフリーゲル(Bio−Rad社製)を用いて行った。前記上清又は精製酵素を、それぞれTris−SDS βME処理液(コスモバイオ社製)と1:1で混合した泳動用サンプルを、100℃で10分間処理した後、1サンプルあたり、遺伝子組換え大腸菌破砕上清は10μL、精製酵素は1μgをそれぞれ泳動させた。泳動終了後、CBB染色とウェスタンブロッティングによって、タンパク質のバンドを検出した。
ウェスタンブロッティングは、SDS電気泳動を行った後、転写装置Trans−Blot SD(バイオラッド社製)とTrans−Blot Turbo Transfer Pack(バイオラッド社製)を用いてポリフッ化ビニリデン膜へ転写した。膜上のタンパク質は1000倍に希釈したウサギ1次抗体と反応させた。当該ウサギ1次抗体は、AR19G−166−RAがコードする384〜403位の20アミノ酸残基(CDPNGQSRYNSAYPTGALPN)からなるポリペプチドを合成し、ウサギを免疫して得られた血清をアフィニティー精製することによって作製した(オペロンバイオテクノロジー社製)。タンパク質と結合した1次抗体の検出は、FastWestern Blotting kit(Pierce社製)を用いて行い、化学発光シグナルの検出には、イメージング装置Ez−Capture MG(ATTO社製)を使用した。
図2に、AR19G−166c4A−19−2遺伝子を導入した形質転換大腸菌から調製された遺伝子組換え大腸菌破砕上清及び当該遺伝子組換え大腸菌破砕上清から精製された精製酵素のSDS−PAGE解析のCBB染色の結果(図2(A))とウェスタンブロッティングの結果(図2(B))を示す。レーン1はタンパク質質量指標、レーン2は遺伝子組換え大腸菌破砕上清、レーンPは精製酵素の電気泳動パターンである。この結果、CBB染色とウェスタンブロッティングの両方において、前記遺伝子組換え大腸菌破砕上清(レーン2)において、アミノ酸配列(配列番号3)から予想される質量63.4kDa近傍に強いバンドが認められ、精製酵素(レーンP)では、当該バンドに対応する単一バンドが認められた(図中、矢印)。
<8> セロビオハイドロラーゼ活性
AR19G−166c4A−19−2遺伝子がコードする酵素タンパク質(AR19G−166c4A−19−2)のPSA及びアビセルを基質としたセロビオハイドロラーゼ活性を調べた。計測には、前記<7>で得られた精製酵素を0.05MのTris−HClバッファー(pH8.0)で1mg/mLに希釈して用いた。
基質として用いるPSAは、リン酸溶液でアビセル粉末(微結晶性セルロース粉末、Merck社製)を一旦溶解させた後に滅菌蒸留水を加えて析出させた後、pHが5以上になるまで洗浄することによって調製した。なお、以降の実験に用いたPSAは全て当該方法により調製した。
反応には、サーモミキサー(エッペンドルフ社)を用い、反応容器には1.5mL容のサンプルチューブを使用し、反応液の組成は、10μLの希釈した精製酵素、40μLの精製水、 50μLの200mM 酢酸バッファー(pH5.5)、100 μLの1質量% 基質溶液とした。PSAを基質とした場合の95〜110℃の反応には、リアクティサーモ(ジーエルサイエンス社製)を用い、反応容器には、1.5mL容のガラスバイアルを使用し、反応液量を400μLとした。反応液の組成は、20μLの希釈した精製酵素、80μLの精製水、100μLの200mM 酢酸バッファー(pH5.5)、200μLの1質量% PSA溶液とした。
全ての計測において、精製酵素溶液の代わりに50mM Tris−HClバッファー(pH8.0)を入れて同条件で反応させた混合液をコントロール区とした。また、基質溶液と、精製酵素溶液と、精製水と、バッファーとの混合液は、反応温度で5分間それぞれ別々に保温(プリインキュベーション)した後に混合し、反応開始とした。PSAでは20分間、アビセルでは60分間の反応終了後は、各反応液に対して等量の3,5−dinitrosalicylic acid reagent(DNS溶液)を加えて100℃で5分間加熱処理し、5分間の氷冷後に17500×gで遠心分離処理し、上清を得た。上清中の還元糖量を、分光光度計を用いて540nmの吸光度を計測し、グルコースで作成した検量線を用いて算出し、コントロール区との差分から酵素の加水分解によって生成した還元糖量を求めた。1分間に1μmolの還元糖を生成する酵素活性を1Uとし、タンパク質量で除した値を比活性(U/mg)とした。各計測は、3回の独立した試行により行い、平均値と標準誤差を求めた。
<9> AR19G−166c4A−19−2の温度依存性
AR19G−166c4A−19−2のPSA加水分解活性及びアビセル加水分解活性の温度依存性を調べた。
具体的には、PSA加水分解活性の温度依存性の測定は、反応温度を、50、60、65、70、75、80、85、90、95、100、105、又は110℃とした以外は、前記<8>と同様に行い、酵素の加水分解によって生成した還元糖量を求め、PSA加水分解活性(U/mg)を算出した。
アビセル加水分解活性の温度依存性の測定は、反応温度を、50、60、70、75、80、85、90、又は99℃とした以外は、前記<8>と同様に行い、酵素の加水分解によって生成した還元糖量を求め、アビセル加水分解活性(U/mg)を算出した。
また、精製水の代わりに10mM CaCl水溶液を加えた反応液でも同様に測定し、酵素の加水分解によって生成した還元糖量を求め、PSA加水分解活性(U/mg)とアビセル加水分解活性(U/mg)を算出した。
さらに、比較対象として、CBM部を持たないAR19G−166−QAについても同様の測定を行った。
PSA加水分解活性の測定結果を図3に示す。AR19G−166c4A−19−2は、温度範囲50〜105℃においてPSA加水分解活性を示した(図3)。特に、カルシウムイオン存在下では、100〜105℃においても高いPSA加水分解活性を示した。最も高い活性を示した至適温度(Topt)は、カルシウムイオンが無い場合(図中、「AR19G−166c4A−19−2」)と有る場合(図中、「AR19G−166c4A−19−2+Ca2+」)で、それぞれ95℃と105℃であった。一方、AR19G−166−QAの至適温度は、カルシウムイオンが無い場合(図中、「AR19G−166−QA」)と有る場合(図中、「AR19G−166−QA+Ca2+」)で、それぞれ70℃と80℃であった。これらの結果は、CBMによって、PSA分解活性における至適温度が、25℃も上昇したことを示す。
アビセル加水分解活性の測定結果を図4に示す。AR19G−166c4A−19−2とAR19G−166−QAのいずれにおいても、カルシウムイオンの有無に関わらず、至適温度は85℃であった。しかしながら、AR19G−166c4A−19−2においては、アビセル分解活性の大幅な上昇が見られた。AR19G−166−QAの至適温度85℃におけるアビセル分解活性の平均値は、カルシウムイオンが無い場合と有る場合で、それぞれ0.17±0.05U/mgと0.12±0.04U/mgであったのに対し、AR19G−166c4A−19−2では、それぞれ0.34±0.03U/mgと0.43±0.02U/mgとなった。これらの結果は、CBMによって、アビセル分解活性が、カルシウムイオン非存在下で2倍、カルシウムイオン存在下では3.6倍も上昇したことを示す。
<10> Differential scanning fluorimetryによるセロビオハイドロラーゼの熱安定性測定
Differential scanning fluorimetry (DSF)は、蛍光色素とリアルタイムPCR装置を用いて、タンパク質の熱変性を計測する方法の一つであり、様々なタンパク質に応用可能である。SYPRO Orange等、DSFに使われる蛍光色素は、疎水性部位と結合する無極性条件下で蛍光を発し、一方、水に溶けた極性条件下では発光が抑えられる。通常、タンパク質はその熱変性温度において折畳み構造が解け、内部にある疎水性部位がタンパク質表面に露出する。この露出した疎水性部位にSYPRO Orangが結合すると、波長470〜480nmの励起光により、波長595nm付近にピークを持つ強い蛍光を発する。タンパク質溶液の温度を一定間隔で段階的に上昇させ、蛍光強度を計測することにより、熱崩壊温度(=蛍光強度の変化点)が算出される。
計測には、前記<7>で得られた精製酵素AR19G−166c4A−19−2を水で1mg/mLに調整した精製酵素溶液又はAR19G−166−QAを水で1mg/mLに調整した精製酵素溶液を用いた。
具体的には、96穴PCRプレート(Multiplate 96 Well PCR Plate MLL−9651、Bio−Rad社製)のウェルに100倍希釈したSYPRO Orange(ライフテクノロジーズ社製)を2μL、濃度1mg/mLの精製酵素溶液を1μL、200mM 酢酸バッファー(pH5.5)を5μL、精製水又は精製水と10mM CaClを2:1で混合した溶液を12μL加え、各ウェルの容積を20μLとした。PCRプレートはOptical 8連フラットキャップ(Bio−Rad社製)でシールし、リアルタイムPCR装置(CFX96 Touch Real−Time PCR System、Bio−Rad社製)で0.2℃ずつ、30℃から100℃までウェルの温度を上昇させ、ターゲット温度が達成されてから10秒間経過した後、各ウェルの蛍光強度を同時計測した。波長帯域450〜490nmの光発光ダイオード(LED)によりSYPRO Orangeを励起し、SYPRO Orange放射光は560〜580nmレンジの帯域通過フィルターを通し、CCDカメラで蛍光強度の計測を行い、蛍光強度変化を温度の関数としてプロットした。熱変性温度(melting temperature;Tm値)は、温度関数である蛍光強度曲線の1階微分(図5(B)のY軸に示した「−d(Fluorescence)/dt」)の極小値として定義した。リアルタイムPCRに付属の解析ソフトウェアCFX Manager(Bio−Rad社製)を使い、データ解析を行った。各計測は、3回の独立した試行により行い、平均値と標準誤差を求めた。
図5には、DSF法により計測したAR19G−166c4A−19−2及びAR19G−166−QAの酵素タンパク質が示す、熱変性に伴って引き起こされるSYPRO Orangeの蛍光強度変化を示す。図5(A)は実測データであり、図5(B)は図5(A)の蛍光強度変化曲線の1階微分「−d(Fluorescence)/dt」を示している。
AR19G−166c4A−19−2(CaCl無添加)の蛍光強度の一階微分は、93.0±0℃に極小点を持ち、この温度で熱変性が起こることを示した。この温度は、PSA加水分解活性から求めたこの酵素の至適温度95℃に近かった。また、CaClを添加した条件では、100℃に達しても極小点が出現しないことから、熱変性温度は100℃以上であることが推測された。一方、AR19G−166−QAの熱変性温度の平均値は、それぞれ75.3±0.1℃(CaCl無添加)と80.9±0.2℃(CaCl添加)であり、PSA加水分解活性から求めた当該酵素の至適温度70℃(CaCl無添加)と80℃(CaCl添加)に近い値を示した。
<11> CBM領域によるセロビオハイドロラーゼ活性への効果
AR19G−166c4A−19−2の持つCBM領域を他の酵素に付加した場合の効果を確認するため、当該CBM領域をAR19G−166−RAに付加した状態のセロビオハイドロラーゼ(AR19G−166c4A−19−2−1、配列番号11)を作製し、アビセル分解活性の測定を行った。 AR19G−166c4A−19−2−1遺伝子(配列番号12)は、QuickChange Site−Directed Mutagenesis Kit(Agilent Technologies社製)を用い、AR19G−166c4A−19−2の462番目のグルタミンをアルギニンに置換することにより作製した。具体的には、AR19G−166c4A−19−2/pLEAD5をテンプレートにし、配列番号13で表される塩基配列からなる突然変異誘発プライマー1及び配列番号14で表される塩基配列からなる突然変異誘発プライマー2を用いて作製した。AR19G−166c4A−19−2−1の発現と精製は前記<7>と同様にして行い、セロビオハイドロラーゼ活性の温度依存性は前記<9>と同様にして行った。さらに、比較対象として、CBMを持たないAR19G−166−RAについても同様の測定を行った。
アビセル分解活性の計測結果を図6に示す。AR19G−166c4A−19−2−1では、CBMを持たないAR19G−166−RAと比べて、60〜85℃の範囲でアビセル分解活性の大幅な上昇が見られた。AR19G−166c4A−19−2−1の80℃におけるアビセル分解活性の平均値は、カルシウムイオンが無い場合と有る場合で、それぞれ0.26±0.06U/mgと0.31±0.01U/mgであったのに対し、AR19G−166−RAでは、それぞれ0.06±0.06U/mgと0.10±0.01U/mgであった。このことは、CBMによって、アビセル分解活性が4.3倍(カルシウムイオン存在下では3.1倍)も上昇したことを示す。
これらの結果が示す通り、本発明に係る耐熱性セロビオハイドロラーゼの持つCBMを、他のセロビオハイドロラーゼ酵素に付加することにより、当該酵素のセロビオハイドロラーゼ活性を上昇させることができる。
本発明に係る耐熱性セロビオハイドロラーゼは、少なくとも95℃、pH5.5の条件下でPSAを基質とした加水分解活性を有しており、高温条件下におけるセルロース含有バイオマスの糖化処理に好適である。このため、当該耐熱性セロビオハイドロラーゼ及びその生産に用いられるポリヌクレオチド、当該ポリヌクレオチドが組込まれた発現ベクター、当該発現ベクターが導入されている形質転換体は、例えば、セルロース含有バイオマスからのエネルギー産生の分野において利用が可能である。

Claims (12)

  1. (A1)配列番号1で表されるアミノ酸配列からなるポリペプチド、又は
    (C1)配列番号1で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつセルロースへ結合する機能を有するポリペプチド、
    からなるセルロース結合モチーフ領域と、セロビオハイドロラーゼ触媒領域とを有し、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有することを特徴とする、耐熱性セロビオハイドロラーゼ。
  2. 前記セロビオハイドロラーゼ触媒領域が、
    (A2)配列番号3で表されるアミノ酸配列のうちの164位のロイシン残基から590位のプロリン残基までの部分配列からなるポリペプチド、又は
    (C2)配列番号3で表されるアミノ酸配列のうちの164位のロイシン残基から590位のプロリン残基までの部分配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチド、
    からなる、請求項1に記載の耐熱性セロビオハイドロラーゼ。
  3. (A3)配列番号3で表されるアミノ酸配列からなるポリペプチド、又は
    (C3)配列番号3で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチド、
    からなる、請求項1に記載の耐熱性セロビオハイドロラーゼ。
  4. カルシウムイオン存在下において、少なくとも105℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有する、請求項1〜3のいずれか一項に記載の耐熱性セロビオハイドロラーゼ。
  5. (a1)配列番号1で表されるアミノ酸配列からなるポリペプチドをコードする塩基配列
    (c1)配列番号1で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつセルロースへ結合する機能を有するポリペプチドをコードする塩基配列、又は
    (d1)配列番号2で表される塩基配列と90%以上の配列同一性を有し、かつセルロースへ結合する機能を有するポリペプチドをコードする塩基配列
    と、
    セロビオハイドロラーゼ触媒活性を有するポリペプチドをコードする塩基配列と、を有する、ポリヌクレオチド。
  6. (a2)配列番号3で表されるアミノ酸配列からなるポリペプチドをコードする塩基配列
    (c2)配列番号3で表されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列からなり、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチドをコードする塩基配列、又は
    (d2)配列番号4で表される塩基配列と90%以上の配列同一性を有し、かつ少なくとも95℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有するポリペプチドをコードする塩基配列
    からなる、請求項5に記載のポリヌクレオチド。
  7. 前記ポリペプチドが、カルシウムイオン存在下において、少なくとも105℃、pH5.5の条件下でリン酸膨潤アビセルを基質とした加水分解活性を有する、請求項5又は6に記載のポリヌクレオチド。
  8. 請求項5〜7のいずれか一項に記載のポリヌクレオチドが組込まれており、
    宿主細胞において、セロビオハイドロラーゼ活性を有するポリペプチドを発現し得る、発現ベクター。
  9. 請求項8に記載の発現ベクターが導入されている、形質転換体。
  10. 請求項9に記載の形質転換体内で、耐熱性セロビオハイドロラーゼを生産することを含む、耐熱性セロビオハイドロラーゼの製造方法。
  11. 請求項1〜4のいずれか一項に記載の耐熱性セロビオハイドロラーゼ、又は請求項5〜7のいずれか一項に記載のポリヌクレオチドがコードする耐熱性セロビオハイドロラーゼ、少なくとも1種のその他のグリコシド加水分解酵素とを含む、グリコシド加水分解酵素混合物。
  12. セルロースを含む材料を、請求項1〜4のいずれか一項に記載の耐熱性セロビオハイドロラーゼ、請求項5〜7のいずれか一項に記載のポリヌクレオチドがコードする耐熱性セロビオハイドロラーゼ、又は請求項9に記載の形質転換体接触させることにより、セルロース分解物を生産することを含む、セルロース分解物の製造方法。
JP2016064519A 2016-03-28 2016-03-28 耐熱性セロビオハイドロラーゼ Active JP6650315B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016064519A JP6650315B2 (ja) 2016-03-28 2016-03-28 耐熱性セロビオハイドロラーゼ
US15/467,542 US10435680B2 (en) 2016-03-28 2017-03-23 Thermostable cellobiohydrolase
EP17162735.9A EP3225688B1 (en) 2016-03-28 2017-03-24 Thermostable cellobiohydrolase
CN201710182075.XA CN107236720B (zh) 2016-03-28 2017-03-24 耐热性纤维二糖水解酶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064519A JP6650315B2 (ja) 2016-03-28 2016-03-28 耐熱性セロビオハイドロラーゼ

Publications (2)

Publication Number Publication Date
JP2017175957A JP2017175957A (ja) 2017-10-05
JP6650315B2 true JP6650315B2 (ja) 2020-02-19

Family

ID=58428112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064519A Active JP6650315B2 (ja) 2016-03-28 2016-03-28 耐熱性セロビオハイドロラーゼ

Country Status (4)

Country Link
US (1) US10435680B2 (ja)
EP (1) EP3225688B1 (ja)
JP (1) JP6650315B2 (ja)
CN (1) CN107236720B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108715833B (zh) * 2018-06-01 2021-09-14 天晴干细胞股份有限公司 一种负载血小板裂解液的微球制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785854B2 (en) * 2006-08-31 2010-08-31 Iogen Energy Corporation Modified cellulases with increased thermostability, thermophilicity, and alkalophilicity
WO2014155566A1 (ja) 2013-03-27 2014-10-02 本田技研工業株式会社 耐熱性セロビオハイドロラーゼ
JP6340647B2 (ja) * 2014-03-13 2018-06-13 本田技研工業株式会社 超耐熱性セロビオハイドロラーゼ
JP6357702B2 (ja) 2014-03-13 2018-07-18 本田技研工業株式会社 耐熱性セロビオハイドロラーゼ及びそのアミノ酸置換変異体

Also Published As

Publication number Publication date
CN107236720B (zh) 2020-10-16
EP3225688B1 (en) 2020-06-03
EP3225688A1 (en) 2017-10-04
CN107236720A (zh) 2017-10-10
JP2017175957A (ja) 2017-10-05
US10435680B2 (en) 2019-10-08
US20170275606A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6330240B2 (ja) 耐熱性β−グルコシダーゼ
JP6340647B2 (ja) 超耐熱性セロビオハイドロラーゼ
JP6354462B2 (ja) Ghファミリー10に属する耐熱性キシラナーゼ
JP6350987B2 (ja) GHファミリー3に属する耐熱性β―キシロシダーゼ
JP6677554B2 (ja) 耐熱性セロビオハイドロラーゼ
JP6650315B2 (ja) 耐熱性セロビオハイドロラーゼ
JP6286745B2 (ja) 耐熱性β−グルコシダーゼ
JP6364662B2 (ja) GHファミリー3に属する耐熱性β―キシロシダーゼ
JP6319904B2 (ja) 耐熱性β−グルコシダーゼ
JP6429377B2 (ja) 耐熱性セロビオハイドロラーゼ
JP6586659B2 (ja) 耐熱性グリコシド加水分解酵素
JP6315807B2 (ja) Ghファミリー12に属する超耐熱性エンドグルカナーゼ
EP2980210A1 (en) Thermostable xylanase belonging to gh family 10
JP6531974B2 (ja) 耐熱性セロビオハイドロラーゼ
EP3133156B1 (en) Hyperthermostable endoglucanase
EP3133155B1 (en) Hyperthermostable endoglucanase
JP6268486B2 (ja) Ghファミリー12に属する超耐熱性エンドグルカナーゼ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R150 Certificate of patent or registration of utility model

Ref document number: 6650315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250