JP6649585B2 - Underwater length measuring device - Google Patents

Underwater length measuring device Download PDF

Info

Publication number
JP6649585B2
JP6649585B2 JP2016096376A JP2016096376A JP6649585B2 JP 6649585 B2 JP6649585 B2 JP 6649585B2 JP 2016096376 A JP2016096376 A JP 2016096376A JP 2016096376 A JP2016096376 A JP 2016096376A JP 6649585 B2 JP6649585 B2 JP 6649585B2
Authority
JP
Japan
Prior art keywords
light
wavelength band
length measuring
distance
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016096376A
Other languages
Japanese (ja)
Other versions
JP2017203723A (en
Inventor
隆史 小薮
隆史 小薮
正輝 堀
正輝 堀
Original Assignee
ダイトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイトロン株式会社 filed Critical ダイトロン株式会社
Priority to JP2016096376A priority Critical patent/JP6649585B2/en
Publication of JP2017203723A publication Critical patent/JP2017203723A/en
Application granted granted Critical
Publication of JP6649585B2 publication Critical patent/JP6649585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本発明は、水中測長装置に関する。   The present invention relates to an underwater length measuring device.

従来、船舶や潜水艦などで水中や海中(以下、総称して水中という)の探査を行う際に用いられる水中測長装置として、トリガ信号を送って生成したレーザ光を物体へ向けて照射し、物体で反射したレーザ光を光センサで受光し、レーザ光の発振時とレーザ光の受光時との時間差から物体との距離を算出するものが知られている(下記特許文献1参照)。   Conventionally, as an underwater length measuring device used when conducting underwater or underwater (hereinafter, collectively referred to as underwater) exploration in ships and submarines, a laser beam generated by sending a trigger signal is irradiated toward an object, There is known a method in which a laser beam reflected by an object is received by an optical sensor, and a distance to the object is calculated from a time difference between when the laser beam is oscillated and when the laser beam is received (see Patent Document 1 below).

特開平9−229622号公報JP-A-9-229622

水中では、波長が短い可視光ほど吸収減衰しにくいため、物体へ向けて照射するパルスレーザ光として青色波長帯のレーザ光を用いることが測長可能なエリアを広くできる点で好ましい。しかし、波長が短い可視光は、マリンスノーや海底の熱水噴出孔から吹き出すスモーカーなどのような水中を浮遊する水中浮遊粒子によって散乱しやすいため、水中浮遊粒子が高密度に浮遊していると、水中浮遊粒子によってすべて散乱されることがある。   In water, visible light having a shorter wavelength is less likely to be absorbed and attenuated, and therefore, it is preferable to use laser light in the blue wavelength band as pulsed laser light for irradiating an object, because the area where the length can be measured can be widened. However, visible light with a short wavelength is easily scattered by waterborne particles floating in the water, such as marine snow and smokers blowing out from the hot water vents on the sea floor. , May be all scattered by suspended particles in water.

そのため、水中測長装置において物体へ向けて照射するレーザ光として青色波長帯の光を用いると、光センサで受光した光が水中浮遊粒子による反射光であるのか、海底面などの光反射体による反射光であるのかを判別できず、水中浮遊粒子を光反射体と誤認して測長することがある。   Therefore, if a blue wavelength band is used as the laser light to irradiate the object in the underwater length measuring device, whether the light received by the optical sensor is reflected light by suspended particles in the water or by a light reflector such as the sea bottom In some cases, it is not possible to determine whether the light is reflected light, and the particles suspended in water may be misidentified as a light reflector and measured.

本発明は、上記実情に鑑みてなされたものであって、水中浮遊粒子を光反射体と誤認することなく測長が可能な水中測長装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an underwater length measuring device capable of measuring a length without misidentifying suspended particles in water as a light reflector.

本発明に係る水中測長装置は、水中に存在する測長対象物に波長の異なる複数の可視光を照射する光源部と、前記測長対象物で反射された光を検出する検出部と、前記光源部が可視光を出射した時刻から前記検出部が反射光を検出するまでの遅延時間を波長毎に計測する処理部とを備え、前記処理部は、波長毎に計測した遅延時間と、前記検出部が検出した光の種類とに基づいて、前記測長対象物までの距離を算出するものにおいて、前記光源部は、第1波長帯の可視光と、前記第1波長帯より長波長の第2波長帯の可視光とを照射し、前記処理部は、前記第1波長帯の可視光の遅延時間から算出された前記測長対象物までの第1距離と、前記第2波長帯の可視光の遅延時間から算出された前記測長対象物までの第2距離とが異なる場合、前記第1距離に水中浮遊粒子群が存在することを検出する。 The underwater length measuring device according to the present invention is a light source unit that irradiates a plurality of visible lights having different wavelengths to a length measurement target existing in water, and a detection unit that detects light reflected by the length measurement target, A processing unit that measures a delay time from the time when the light source unit emits visible light to the detection unit detects the reflected light for each wavelength, the processing unit includes a delay time measured for each wavelength, In calculating the distance to the object to be measured based on the type of light detected by the detection unit , the light source unit includes a visible light in a first wavelength band and a wavelength longer than the first wavelength band. Irradiating with visible light of the second wavelength band, the processing unit, the first distance to the object to be measured calculated from the delay time of the visible light of the first wavelength band, the second wavelength band If the second distance to the object to be measured calculated from the visible light delay time is different, Detecting the presence of waterborne particles to the first distance.

本発明の好ましい実施形態において、前記光源部は、パルスレーザ光を照射し、前記処理部は、前記光源部が出射した前記第1波長帯の可視光のパルス幅と、前記第1波長帯の可視光の反射光のパルス幅とに基づいて、前記可視光の照射方向に沿った前記水中浮遊粒子群の長さを算出する。さらに、好ましい実施形態において、前記処理部は、前記光源部が出射した前記第1波長帯の可視光の強度と、前記第1波長帯の可視光の反射光の強度とに基づいて、前記水中浮遊粒子群を構成する水中浮遊粒子の粒子径を算出する。 In a preferred embodiment of the present invention, the front Symbol light source unit, by applying a pulse laser beam, wherein the processing unit, and the pulse width of the visible light of the first wavelength band wherein the light source unit is emitted, the first waveband The length of the suspended particle group in the water along the irradiation direction of the visible light is calculated based on the pulse width of the reflected light of the visible light. Further, in a preferred embodiment, the processing unit is configured to perform the processing based on the intensity of the visible light in the first wavelength band emitted from the light source unit and the intensity of the reflected light of the visible light in the first wavelength band. The particle diameter of the suspended particles in water constituting the suspended particle group is calculated.

本発明に係る水中測長装置は、水中に存在する測長対象物に波長の異なる複数の可視光を照射する光源部と、前記測長対象物で反射された光を検出する検出部と、前記光源部が可視光を出射した時刻から前記検出部が反射光を検出するまでの遅延時間を波長毎に計測する処理部とを備え、前記処理部は、波長毎に計測した遅延時間と、前記検出部が検出した光の種類とに基づいて、前記測長対象物までの距離を算出するものにおいて、前記光源部は、第1波長帯の可視光と、前記第1波長帯より長波長の第2波長帯の可視光とを照射し、前記処理部は、前記第1波長帯の可視光の遅延時間から算出された前記測長対象物までの距離と、前記第2波長帯の可視光の遅延時間から算出された前記測長対象物までの距離とが同じ場合、算出された前記測長対象物までの距離に光反射体が存在することを検出する。 The underwater length measuring device according to the present invention is a light source unit that irradiates a plurality of visible lights having different wavelengths to a length measurement target existing in water, and a detection unit that detects light reflected by the length measurement target, A processing unit that measures a delay time from the time when the light source unit emits visible light to the detection unit detects the reflected light for each wavelength, the processing unit includes a delay time measured for each wavelength, In calculating the distance to the object to be measured based on the type of light detected by the detection unit, the light source unit includes a visible light in a first wavelength band and a wavelength longer than the first wavelength band. And the visible light of the second wavelength band, and the processing unit transmits the visible light of the second wavelength band to the distance measurement target calculated from the delay time of the visible light of the first wavelength band. If the distance to the object to be measured calculated from the delay time of light is the same, Detects that the light reflector is present in the distance to the length measuring object.

本発明の好ましい実施形態において、前記第1波長帯が青色波長帯であり、前記第2波長帯が緑色波長帯である。   In a preferred embodiment of the present invention, the first wavelength band is a blue wavelength band, and the second wavelength band is a green wavelength band.

本発明によれば、水中浮遊粒子を光反射体と誤認することなく測長対象物までの距離を測長することができる。   ADVANTAGE OF THE INVENTION According to this invention, the distance to a length measurement object can be measured without misidentifying the suspended particles in water as a light reflector.

本発明に係る水中測長装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of an underwater length measuring device concerning the present invention. 本発明に係る水中測長装置の各種信号のタイムチャートである。It is a time chart of various signals of the underwater length measuring device concerning the present invention. 本発明に係る水中測長装置が照射した可視光の経路を示す図である。It is a figure which shows the path | route of the visible light irradiated by the underwater length measuring apparatus which concerns on this invention. 本発明に係る水中測長装置が照射した可視光の経路を示す図である。It is a figure which shows the path | route of the visible light irradiated by the underwater length measuring apparatus which concerns on this invention. 本発明に係る水中測長装置が照射した可視光の経路を示す図である。It is a figure which shows the path | route of the visible light irradiated by the underwater length measuring apparatus which concerns on this invention. 本発明に係る水中測長装置の各種信号のタイムチャートである。It is a time chart of various signals of the underwater length measuring device concerning the present invention.

以下、本発明の1実施形態について図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る水中測長装置10は、波長の異なる複数の可視光(400〜750nm)を水中に存在する測長対象物A、Bに向けて照射し、測長対象物A、Bで反射された光を検出することで、水中測長装置10から測長対象物A、Bまでの距離を得る装置であり、図1に示すように、光源部11と検出部12と処理部13とを備える。なお、本明細書及び図において、測長対象物Aは海底面のような光が透過しない光反射体を表し、測長対象物Bはマリンスノーや海底の熱水噴出孔から吹き出すスモーカーなどのような水中を浮遊する水中浮遊粒子が集まった水中浮遊粒子群を表している。   The underwater length measuring device 10 according to the present embodiment irradiates a plurality of visible lights (400 to 750 nm) having different wavelengths toward the length measuring objects A and B existing in the water, and This is a device that obtains the distance from the underwater length measuring device 10 to the length measuring objects A and B by detecting the reflected light. As shown in FIG. 1, the light source unit 11, the detecting unit 12, and the processing unit 13 And In this specification and the drawings, the measurement object A represents a light reflector such as the sea bottom which does not transmit light, and the measurement object B is such as a marine snow or a smoker which blows out from a hot water jet hole on the sea floor. It represents a group of suspended particles in the water, in which particles suspended in the water are collected.

光源部11は、青色レーザ装置11Bと緑色レーザ装置11Gとを備え、測長対象物A、Bに向けて波長の異なる複数種類(この例では2種類)のレーザ光を照射する。青色レーザ装置11Bは、青色の波長帯(例えば、400〜500nm)、この例では、中心波長が450nmの第1波長帯(445〜455nm)の青色レーザ光を発光する半導体レーザ素子を備える。青色レーザ装置11Bは、繰り返し周波数が50Hzでパルス幅が6nsのパルス状の青色レーザ光を発生する。緑色レーザ装置11Gは、緑色の波長帯(例えば、500〜580nm)、この例では、中心波長が532nmの第2波長帯(527〜537nm)の緑色レーザ光を発光する半導体レーザ素子を備える。緑色レーザ装置11Gは、繰り返し周波数数が50Hzでパルス幅が6nsのパルス状の青色レーザ光を発生する。   The light source unit 11 includes a blue laser device 11B and a green laser device 11G, and irradiates a plurality of types (two types in this example) of laser beams having different wavelengths to the length measurement objects A and B. The blue laser device 11B includes a semiconductor laser element that emits blue laser light in a blue wavelength band (e.g., 400 to 500 nm), in this example, a first wavelength band (445 to 455 nm) having a center wavelength of 450 nm. The blue laser device 11B generates pulsed blue laser light having a repetition frequency of 50 Hz and a pulse width of 6 ns. The green laser device 11G includes a semiconductor laser element that emits green laser light in a green wavelength band (for example, 500 to 580 nm), in this example, a second wavelength band (527 to 537 nm) having a center wavelength of 532 nm. The green laser device 11G generates pulsed blue laser light having a repetition frequency of 50 Hz and a pulse width of 6 ns.

光源部11を構成する青色レーザ装置11B及び緑色レーザ装置11Gには、光源駆動回路14で生成した第1トリガ信号St1及び第2トリガ信号St2が入力される。青色レーザ装置11Bに入力される第1トリガ信号St1と緑色レーザ装置11Gに入力される第2トリガ信号St2とは所定時間ずれている。第1トリガ信号St1と第2トリガ信号St2との時間差は、青色レーザ装置11Bや緑色レーザ装置11Gからレーザ光を照射してから測長対象物A,Bによる反射光が検出部12に戻るまでの時間より十分に長い時間に設定されている。これにより、青色レーザ装置11B及び緑色レーザ装置11Gは、異なるタイミングでそれぞれパルス状のレーザ光を発生させるとともに、青色レーザ光及び緑色レーザ光の反射光を異なるタイミングで検出部12が受光するようになっている。   The first trigger signal St1 and the second trigger signal St2 generated by the light source drive circuit 14 are input to the blue laser device 11B and the green laser device 11G constituting the light source unit 11. The first trigger signal St1 input to the blue laser device 11B and the second trigger signal St2 input to the green laser device 11G are shifted by a predetermined time. The time difference between the first trigger signal St1 and the second trigger signal St2 is from the time when the laser light is emitted from the blue laser device 11B or the green laser device 11G until the light reflected by the length measurement objects A and B returns to the detection unit 12. The time is set to be much longer than the time. Accordingly, the blue laser device 11B and the green laser device 11G generate pulsed laser light at different timings, respectively, and the detection unit 12 receives reflected light of the blue laser light and the green laser light at different timings. Has become.

光源駆動回路14は、生成した第1トリガ信号St1及び第2トリガ信号St2を青色レーザ装置11B及び緑色レーザ装置11Gとともに処理部13にも入力する。   The light source drive circuit 14 also inputs the generated first trigger signal St1 and second trigger signal St2 to the processing unit 13 together with the blue laser device 11B and the green laser device 11G.

検出部12は、フォトダイオード(PD)やアバランシェフォトダイオード(APD)や光電子増倍管(PMT)などの受光素子を備え、測長対象物A,Bで反射された反射光を受光して受光信号Spに変換し、得られた受光信号Spを処理部13へ出力する。   The detection unit 12 includes a light receiving element such as a photodiode (PD), an avalanche photodiode (APD), or a photomultiplier tube (PMT), and receives and receives light reflected by the length measurement objects A and B. The received light signal Sp is converted to a signal Sp, and the obtained light reception signal Sp is output to the processing unit 13.

処理部13は、光源駆動回路14から入力された第1トリガ信号St1及び第2トリガ信号St2と検出部12で得られた受光信号Spに基づいて、検出部12が検出した光の種類を特定するとともに、検出部12が検出した光について波長毎に遅延時間を計測する。   The processing unit 13 specifies the type of light detected by the detection unit 12 based on the first trigger signal St1 and the second trigger signal St2 input from the light source driving circuit 14 and the light reception signal Sp obtained by the detection unit 12. At the same time, the delay time of the light detected by the detection unit 12 is measured for each wavelength.

具体的には、図2に示すように、第1トリガ信号St1を青色レーザ装置11Bに入力した時刻から第2トリガ信号St2を緑色レーザ装置11Gに入力した時刻までの間に検出部12が受光信号Spを検出すると、処理部13は、当該受光信号Spを第1トリガ信号St1によって発生した青色レーザ光の反射光による受光信号Sp1と特定する。   Specifically, as shown in FIG. 2, the detection unit 12 receives light from the time when the first trigger signal St1 is input to the blue laser device 11B to the time when the second trigger signal St2 is input to the green laser device 11G. When detecting the signal Sp, the processing unit 13 specifies the received light signal Sp as the received light signal Sp1 due to the reflected light of the blue laser light generated by the first trigger signal St1.

青色レーザ光の反射光による受光信号Sp1を特定すると、処理部13は、第1トリガ信号St1と受光信号Sp1との時間差ΔT1、つまり、青色レーザ装置11Bが青色レーザ光を出射した時刻から検出部12が青色レーザ光の反射光を検出するまでの遅延時間を計測するとともに、計測した遅延時間ΔT1から下記式(1)に基づいて水中測長装置10から測長対象物までの第1距離D1を算出する。なお、式(1)において、vはレーザ光の速度、nは水の屈折率を示す。   When the light receiving signal Sp1 based on the reflected light of the blue laser light is specified, the processing unit 13 determines the time difference ΔT1 between the first trigger signal St1 and the light receiving signal Sp1, that is, the detecting unit from the time when the blue laser device 11B emits the blue laser light. 12 measures a delay time until the reflected light of the blue laser light is detected, and, based on the measured delay time ΔT1, a first distance D1 from the underwater length measuring device 10 to the object to be measured based on the following equation (1). Is calculated. In equation (1), v indicates the speed of the laser beam, and n indicates the refractive index of water.

(数1)
D1=vΔT1/2n (1)
(Equation 1)
D1 = vΔT1 / 2n (1)

また、緑色レーザ光についても青色レーザ光の場合と同様、第2トリガ信号St2を緑色レーザ装置11Gに入力した時刻から第1トリガ信号St1を青色レーザ装置11Bに入力した時刻までの間に検出部12が受光信号Spを検出すると、処理部13は、当該受光信号Spを第2トリガ信号St2によって発生した緑色レーザ光の反射光による受光信号Sp2と特定する。   As for the green laser light, similarly to the case of the blue laser light, the detecting unit is provided between the time when the second trigger signal St2 is input to the green laser device 11G and the time when the first trigger signal St1 is input to the blue laser device 11B. When the light-receiving signal Sp is detected by the processing unit 12, the processing unit 13 identifies the light-receiving signal Sp as a light-receiving signal Sp2 due to the reflected light of the green laser light generated by the second trigger signal St2.

緑色レーザ光の反射光による受光信号Sp2を特定すると、処理部13は、第2トリガ信号St2と受光信号Sp2との時間差ΔT2、つまり、緑色レーザ装置11Gが緑色レーザ光を出射した時刻から検出部12が緑色レーザ光の反射光を検出するまでの遅延時間を計測するとともに、青色レーザ光の場合と同様、計測した遅延時間ΔT2に基づいて水中測長装置10から測長対象物までの第2距離D2を算出する。   When the light receiving signal Sp2 due to the reflected light of the green laser light is specified, the processing unit 13 determines the time difference ΔT2 between the second trigger signal St2 and the light receiving signal Sp2, that is, the detecting unit from the time when the green laser device 11G emits the green laser light. 12 measures the delay time until the reflected light of the green laser light is detected, and, similarly to the case of the blue laser light, the second time from the underwater length measuring device 10 to the object to be measured based on the measured delay time ΔT2. The distance D2 is calculated.

そして、処理部13は、検出部12が検出した光の種類と、波長毎に計測した遅延時間ΔT1、ΔT2に基づいて、測長対象物までの距離を検出するとともに、測長対象物が海底面のような光が透過しない光反射体であるのか、あるいは、水中浮遊粒子が集まった水中浮遊粒子群であるのかを検出する。   Then, the processing unit 13 detects the distance to the object to be measured based on the type of light detected by the detecting unit 12 and the delay times ΔT1 and ΔT2 measured for each wavelength. It is detected whether it is a light reflector such as a surface through which light does not pass, or whether it is a group of suspended particles in the water.

例えば、図1に示すように、水中測長装置10から離れた位置に光反射体からなる測長対象物Aが存在し、水中測長装置10と測長対象物Aとの間に水中浮遊粒子群からなる測長対象物Bが存在し、水中浮遊粒子群を構成する水中浮遊粒子の密度が高い場合、波長の短い可視光(この例では、青色レーザ光)は、これより波長の長い可視光(この例では、緑色レーザ光)に比べて水中浮遊粒子散乱されやすいため、青色レーザ光は水中浮遊粒子群からなる測長対象物Bを透過することなく反射され、緑色レーザ光は測長対象物Bを透過しその先にある光反射体からなる測長対象物Aで反射される。   For example, as shown in FIG. 1, there is a length measuring object A made of a light reflector at a position distant from the underwater length measuring device 10, and the water floating between the underwater length measuring device 10 and the length measuring object A. In the case where the length measurement object B composed of particles is present and the density of suspended particles in water constituting the suspended particles in water is high, visible light having a short wavelength (in this example, blue laser light) has a longer wavelength. Since the suspended particles in water are more easily scattered than visible light (in this example, green laser light), the blue laser light is reflected without transmitting through the length measurement object B composed of the suspended particles in water, and the green laser light is measured. The light passes through the long object B and is reflected by the length measuring object A, which is a light reflector ahead of the long object B.

そのため、処理部13は、検出部12の受光信号Spから青色レーザ光と緑色レーザ光を検出する。処理部13は、検出した青色レーザ光と緑色レーザ光についてそれぞれ遅延時間ΔT1、ΔT2を計測するとともに、計測した遅延時間ΔT1、ΔT2に基づいて水中測長装置10から測長対象物までの第1距離D1及び第2距離D2を算出するが、青色レーザ光は測長対象物Aまで到達することなく測長対象物Bで反射し、緑色レーザ光は測長対象物Bを透過して測長対象物Aで反射しているため、処理部13で算出された第1距離D1は第2距離D2より短くなる。   Therefore, the processing unit 13 detects the blue laser light and the green laser light from the light reception signal Sp of the detection unit 12. The processing unit 13 measures the delay times ΔT1 and ΔT2 with respect to the detected blue laser light and green laser light, respectively, and based on the measured delay times ΔT1 and ΔT2, the first time from the underwater length measuring device 10 to the object to be measured. The distance D1 and the second distance D2 are calculated. The blue laser light is reflected by the object B without reaching the object A, and the green laser light is transmitted through the object B and measured. Because the light is reflected by the object A, the first distance D1 calculated by the processing unit 13 is shorter than the second distance D2.

よって、処理部13は、検出部12の受光信号Spから青色レーザ光と緑色レーザ光を検出し、かつ、青色レーザ光の遅延時間ΔT1から算出された第1距離D1と、緑色レーザ光の遅延時間ΔT2から算出された第2距離D2とが異なっている場合、波長の短い光から算出された距離(つまり、第1距離D1)を水中浮遊粒子群からなる測長対象物Bまでの距離とし、波長の長い光から算出された距離(つまり、第2距離D2)を光反射体からなる測長対象物Aまでの距離とする。   Therefore, the processing unit 13 detects the blue laser light and the green laser light from the light reception signal Sp of the detection unit 12, and calculates the first distance D1 calculated from the delay time ΔT1 of the blue laser light and the delay of the green laser light. When the second distance D2 calculated from the time ΔT2 is different, the distance calculated from the short-wavelength light (that is, the first distance D1) is defined as the distance to the length measurement object B including the suspended particles in water. The distance calculated from the long-wavelength light (that is, the second distance D2) is defined as the distance to the length measurement target A including the light reflector.

また、図3に示すように、水中測長装置10から離れた位置に光反射体からなる測長対象物Aが存在し、水中測長装置10と測長対象物Aとの間に水中浮遊粒子群からなる測長対象物Bが存在しない場合、青色レーザ光及び緑色レーザ光はいずれも光反射体からなる測長対象物Aで反射される。   As shown in FIG. 3, there is a length measuring object A made of a light reflector at a position distant from the underwater length measuring device 10, and the water floating between the underwater length measuring device 10 and the length measuring object A. When there is no length measurement target B composed of particle groups, both the blue laser light and the green laser light are reflected by the length measurement target A composed of a light reflector.

処理部13は、検出部12の受光信号から青色レーザ光と緑色レーザ光を検出する。処理部13は、検出した青色レーザ光と緑色レーザ光についてそれぞれ遅延時間ΔT1、ΔT2を計測するとともに、計測した遅延時間ΔT1、ΔT2に基づいて水中測長装置10から測長対象物までの第1距離D1及び第2距離D2を算出するが、青色レーザ光及び緑色レーザ光はいずれも測長対象物Aで反射しているため、処理部13で算出された第1距離D1と第2距離D2は等しくなる。   The processing unit 13 detects blue laser light and green laser light from the light reception signal of the detection unit 12. The processing unit 13 measures the delay times ΔT1 and ΔT2 with respect to the detected blue laser light and green laser light, respectively, and based on the measured delay times ΔT1 and ΔT2, the first time from the underwater length measuring device 10 to the object to be measured. The distance D1 and the second distance D2 are calculated. Since both the blue laser light and the green laser light are reflected by the length measuring object A, the first distance D1 and the second distance D2 calculated by the processing unit 13 are calculated. Are equal.

よって、処理部13は、検出部12の受光信号から青色レーザ光と緑色レーザ光を検出し、かつ、青色レーザ光の遅延時間ΔT1から算出された第1距離D1と、緑色レーザ光の遅延時間ΔT2から算出された第2距離D2とが等しい場合、算出された距離D1、D2を光反射体からなる測長対象物Aまでの距離とする。   Therefore, the processing unit 13 detects the blue laser light and the green laser light from the light reception signal of the detection unit 12, and calculates the first distance D1 calculated from the delay time ΔT1 of the blue laser light and the delay time of the green laser light. When the second distance D2 calculated from ΔT2 is equal, the calculated distances D1 and D2 are set as the distance to the length measurement target A including the light reflector.

また、図4に示すように、水中測長装置10から離れた位置に水中浮遊粒子群からなる測長対象物Bが存在し、青色レーザ光及び緑色レーザ光によって測長が可能な範囲に光反射体からなる測長対象物Aが存在しない場合、青色レーザ光は水中浮遊粒子群からなる測長対象物Bで反射され、緑色レーザ光は測長対象物Bを透過し、その後、消滅する。   Further, as shown in FIG. 4, there is a length measurement object B composed of suspended particles in water at a position distant from the underwater length measuring device 10, and light is emitted to a range where the length can be measured by the blue laser light and the green laser light. When there is no length measuring object A made of a reflector, the blue laser light is reflected by the length measuring object B made of a group of suspended particles in water, and the green laser light passes through the length measuring object B and then disappears. .

そのため、処理部13は、検出部12の受光信号から青色レーザ光を検出するが、緑色レーザ光をしない。   Therefore, the processing unit 13 detects the blue laser light from the light reception signal of the detection unit 12, but does not emit the green laser light.

よって、処理部13は、検出部12の受光信号Spから青色レーザ光を検出し、緑色レーザ光を検出しない場合は、青色レーザ光の遅延時間ΔT1から算出された第1距離D1を水中浮遊粒子群からなる測長対象物Bまでの距離とする。   Therefore, the processing unit 13 detects the blue laser light from the light reception signal Sp of the detection unit 12 and, when not detecting the green laser light, determines the first distance D1 calculated from the delay time ΔT1 of the blue laser light by the floating particles in the water. The distance to the object to be measured B consisting of a group is set.

また、図5に示すように、水中測長装置10から離れた位置に光反射体からなる測長対象物Aが存在し、水中測長装置10と測長対象物Aとの間に水中浮遊粒子群からなる測長対象物Bが存在し、水中浮遊粒子群を構成する水中浮遊粒子の密度が低い場合、青色レーザ光の一部は水中浮遊粒子群からなる測長対象物Bで反射されるが、残部が測長対象物Bを透過して光反射体からなる測長対象物Aで反射され、緑色レーザ光は測長対象物Bを透過しその先にある光反射体からなる測長対象物Aで反射される。水中浮遊粒子群からなる測長対象物Bで反射される青色レーザ光は、測長対象物Bを透過しながら測長対象物Bにおける青色レーザ光の進行方向(照射方向)の様々な位置で反射される。   Further, as shown in FIG. 5, there is a length measuring object A made of a light reflector at a position distant from the underwater length measuring device 10, and the water floating between the underwater length measuring device 10 and the length measuring object A. When there is a length measurement object B composed of particles, and the density of the particles suspended in water constituting the particles suspended in water is low, a part of the blue laser light is reflected by the object B measured for particles suspended in water. However, the remaining portion is transmitted through the length measuring object B and reflected by the length measuring object A composed of a light reflector, and the green laser light is transmitted through the length measuring object B and is measured by the light reflecting body located ahead. It is reflected by the long object A. The blue laser light reflected by the object to be measured B composed of a group of suspended particles in water is transmitted through the object to be measured B at various positions in the traveling direction (irradiation direction) of the blue laser light on the object to be measured B. Is reflected.

そのため、処理部13は、検出部12の受光信号Spから青色レーザ光と緑色レーザ光を検出する。この時、青色レーザ光は、水中浮遊粒子群からなる測長対象物Bと、その先にある光反射体からなる測長対象物Aで反射されるため、処理部13は、図6に示すように、青色レーザ光の反射光として測長対象物Bによる反射光の受光信号Sp1Bと、測長対象物Aによる反射光の受光信号Sp1Aとを検出する。   Therefore, the processing unit 13 detects the blue laser light and the green laser light from the light reception signal Sp of the detection unit 12. At this time, the blue laser light is reflected by the length measurement target B composed of a group of suspended particles in the water and the length measurement target A composed of a light reflector located in front of the blue laser light. As described above, the light receiving signal Sp1B of the reflected light from the length measuring object B and the light receiving signal Sp1A of the reflected light from the length measuring object A are detected as the reflected light of the blue laser light.

処理部13は、検出した青色レーザ光について受光信号Sp1B及び受光信号Sp1Aについてそれぞれ遅延時間ΔT1B及び遅延時間ΔT1Aを計測し、検出した緑色レーザ光について遅延時間ΔT2を計測するとともに、計測した遅延時間ΔT1B、ΔT1A、ΔT2に基づいて水中測長装置10から測長対象物までの第1距離D1B、第1距離D1A及び第2距離D2を算出する。図5の場合、青色レーザ光は水中浮遊粒子群からなる測長対象物Bと光反射体からなる測長対象物Aで反射され、緑色レーザ光は光反射体からなる測長対象物Aで反射されるため、処理部13で算出された第1距離D1B、第1距離D1A及び第2距離D2のうち第1距離D1Bは第1距離D1A及び第2距離D2より短くなり、第1距離D1Aと第2距離D2は等しくなる。   The processing unit 13 measures the delay time ΔT1B and the delay time ΔT1A for the received light signal Sp1B and the received light signal Sp1A for the detected blue laser light, measures the delay time ΔT2 for the detected green laser light, and measures the measured delay time ΔT1B. , ΔT1A, ΔT2, the first distance D1B, the first distance D1A, and the second distance D2 from the underwater length measuring device 10 to the object to be measured are calculated. In the case of FIG. 5, the blue laser light is reflected by a length measuring object B composed of a group of suspended particles in water and a length measuring object A composed of a light reflector, and the green laser light is reflected by a length measuring object A composed of a light reflector. Since the light is reflected, the first distance D1B among the first distance D1B, the first distance D1A, and the second distance D2 calculated by the processing unit 13 is shorter than the first distance D1A and the second distance D2, and the first distance D1A. And the second distance D2 are equal.

よって、処理部13は、検出部12の受光信号から2種類の青色レーザ光と緑色レーザ光を検出した場合において、一方の青色レーザ光の遅延時間ΔT1Bから算出された第1距離D1Bと、緑色レーザ光の遅延時間ΔT2から算出された第2距離D2とが異なっている場合、算出された距離のうち短い第1距離D1Bを水中浮遊粒子群からなる測長対象物Bまでの距離とし、他方の青色レーザ光の遅延時間ΔT1Aから算出された第1距離DA1と緑色レーザ光の遅延時間ΔT2から算出された第2距離D2とが等しい場合、算出された距離DA1、D2を光反射体からなる測長対象物Aまでの距離とする。   Accordingly, when the processing unit 13 detects two types of blue laser light and green laser light from the light reception signal of the detection unit 12, the processing unit 13 calculates the first distance D1B calculated from the delay time ΔT1B of one blue laser light and the green When the second distance D2 calculated from the delay time ΔT2 of the laser beam is different, the shorter first distance D1B among the calculated distances is set as the distance to the length measurement target B including the suspended particles in water. When the first distance DA1 calculated from the delay time ΔT1A of the blue laser light is equal to the second distance D2 calculated from the delay time ΔT2 of the green laser light, the calculated distances DA1 and D2 are formed by the light reflector. The distance to the length measurement object A is assumed.

また、図5の場合、青色レーザ光は測長対象物Bにおける青色レーザ光の進行方向の様々な位置で反射される。測長対象物Bの手前側(水中測長装置10側)で反射された青色レーザ光と測長対象物Bの奥側で反射された青色レーザ光とでは光路長が異なるため、測長対象物Bの奥側で反射された青色レーザ光は、測長対象物Bの手前側で反射された青色レーザ光より両者の光路差(つまり、青色レーザ光の進行方向に沿った測長対象物Bの長さの2倍の長さ)に応じた時刻だけ遅れて検出部12で検出される。その結果、遅れた時刻だけ受光信号Sp1Bのパルス幅が青色レーザ装置11Bから照射された青色レーザ光のパルス幅より長くなる。   In the case of FIG. 5, the blue laser light is reflected at various positions in the traveling direction of the blue laser light on the length measurement object B. Since the optical path lengths of the blue laser light reflected on the near side of the length measurement object B (on the underwater length measuring device 10 side) and the blue laser light reflected on the back side of the length measurement object B are different, the length measurement target The blue laser light reflected on the far side of the object B is different from the blue laser light reflected on the near side of the length measuring object B by an optical path difference between the two (that is, the length measuring object along the traveling direction of the blue laser light). (The length twice as long as the length of B) is detected by the detection unit 12 with a delay by a time corresponding to the time. As a result, the pulse width of the light receiving signal Sp1B becomes longer than the pulse width of the blue laser light emitted from the blue laser device 11B by the delayed time.

そのため、処理部13は、測長対象物Bによる反射光の受光信号Sp1Bのパルス幅Wと、青色レーザ装置11Bから照射された青色レーザ光のパルス幅との時間差Δtから下記式(2)に基づいて青色レーザ光の進行方向に沿った測長対象物Bの長さLを算出する。なお、式(2)において、vは青色レーザ光の速度、nは水の屈折率を示す。   Therefore, the processing unit 13 calculates the time difference Δt between the pulse width W of the light reception signal Sp1B of the reflected light from the length measurement target B and the pulse width of the blue laser light emitted from the blue laser device 11B into the following equation (2). The length L of the length measurement target B along the traveling direction of the blue laser light is calculated based on the length L. In equation (2), v represents the speed of the blue laser light, and n represents the refractive index of water.

(数2)
L=vΔt/2n (2)
(Equation 2)
L = vΔt / 2n (2)

以上のような本実施形態の水中測長装置10では、水中に存在する測長対象物に向けて波長の異なる複数の可視光を照射し、検出部12で検出された光の種類と、処理部13が波長毎に計測した遅延時間とに基づいて、測長対象物までの距離を算出するため、距離を算出した測長対象物が、光反射体からなる測長対象物Aであるのか水中浮遊粒子群からなる測長対象物Bであるのかを判別することができる。   In the underwater length measuring apparatus 10 of the present embodiment as described above, a plurality of visible lights having different wavelengths are irradiated to the length measuring object existing in the water, and the type of light detected by the detection unit 12 and the processing are performed. In order to calculate the distance to the object to be measured based on the delay time measured by the unit 13 for each wavelength, is the object to be measured whose distance is calculated the object to be measured A composed of a light reflector? It can be determined whether or not the object is a length measurement object B composed of a group of suspended particles in water.

また、本実施形態では、青色レーザ光の一部は水中浮遊粒子群からなる測長対象物Bで反射され、残部が測長対象物Bを透過して光反射体からなる測長対象物Aで反射される場合に、光源部11の青色レーザ装置11Bが出射した青色レーザ光のパルス幅と青色レーザ光の反射光のパルス幅との時間差Δtが、測長対象物Bの手前側で反射された青色レーザ光と測長対象物Bの奥側で反射された青色レーザ光との光路差に対応するため、当該時間差Δtに基づいて、青色レーザ光の照射方向に沿った測長対象物Bの長さを得ることができる。   Further, in the present embodiment, a part of the blue laser light is reflected by the length measuring object B composed of a group of suspended particles in the water, and the remaining part is transmitted through the length measuring object B and the length measuring object A composed of a light reflector is formed. , The time difference Δt between the pulse width of the blue laser light emitted by the blue laser device 11B of the light source unit 11 and the pulse width of the reflected light of the blue laser light is reflected on the near side of the object B to be measured. In order to correspond to the optical path difference between the blue laser light thus reflected and the blue laser light reflected on the far side of the length measurement object B, the length measurement object along the irradiation direction of the blue laser light is determined based on the time difference Δt. The length of B can be obtained.

また、本実施形態では、水中において吸収減衰しにくい青色の波長帯と緑色の波長帯の可視光を測長対象物に向けて照射するため、広い範囲にわたって光反射体と水中浮遊粒子群とを判別しつつ測長対象物までの距離を測定することができる。   Further, in the present embodiment, in order to irradiate visible light in the blue wavelength band and the green wavelength band, which are hardly absorbed and attenuated in water, toward the object to be measured, the light reflector and the suspended particles in water are spread over a wide range. The distance to the object to be measured can be measured while determining.

(第2実施形態)
上記した第1実施形態では、水中測長装置10から一方向へ可視光を照射し、その反射光を検出することで、一方向の測長対象物までの距離を測定する場合について説明したが、特定方向から順次走査して測長対象物までの距離を二次元的に取得してもよい。
(2nd Embodiment)
In the above-described first embodiment, a case has been described in which the underwater length measuring device 10 emits visible light in one direction and detects the reflected light to measure the distance to the length measurement target in one direction. Alternatively, the distance to the object to be measured may be acquired two-dimensionally by sequentially scanning from a specific direction.

(第3実施形態)
上記した第1実施形態では、処理部13が、検出部12が検出した受光信号Spから遅延時間ΔT1、ΔT2を計測し、水中測長装置10から測長対象物までの距離を算出する場合について説明したが、これに加えて、水中浮遊粒子群を検出した場合、つまり、青色レーザ光の遅延時間ΔT1から算出された第1距離D1と緑色レーザ光の遅延時間ΔT2から算出された第2距離D2とが異なっている場合に、青色レーザ装置11Bが出射した青色レーザ光の強度と、水中浮遊粒子群からなる測長対象物Bで反射した青色レーザ光の反射光の強度とに基づいて、水中浮遊粒子群を構成する水中浮遊粒子の粒子径を算出してもよい。
(Third embodiment)
In the first embodiment described above, the case where the processing unit 13 measures the delay times ΔT1 and ΔT2 from the received light signal Sp detected by the detection unit 12 and calculates the distance from the underwater length measuring device 10 to the object to be measured. In addition to the above description, when a group of suspended particles in water is detected, that is, the first distance D1 calculated from the delay time ΔT1 of the blue laser light and the second distance calculated from the delay time ΔT2 of the green laser light When D2 is different, based on the intensity of the blue laser light emitted by the blue laser device 11B and the intensity of the reflected light of the blue laser light reflected by the length measurement object B composed of the suspended particles in water, The particle diameter of the suspended particles in the water constituting the suspended particle group in the water may be calculated.

(他の実施形態)
上記した実施形態では、光源部11が照射する可視光として、半導体レーザ素子よりパルス状のレーザ光を照射する場合について説明したが、連続的にレーザ光を出すCWレーザ光や、LEDから照射する可視光であってもよい。
(Other embodiments)
In the above-described embodiment, the case where pulsed laser light is irradiated from the semiconductor laser element as the visible light irradiated by the light source unit 11 has been described. However, CW laser light that continuously emits laser light or irradiation from the LED is used. It may be visible light.

また、上記した実施形態では、波長の異なる可視光として青色及び緑色の可視光を照射したが、青紫色と青色や、青色と赤色や、緑色と赤色など、測長対象物Bを構成する水中浮遊粒子の粒子径や密度などに応じて、可視光(400〜750nm)から異なる波長の光を適宜選択して照射することができる。また、測長対象物に向けて照射する光の種類も2種類に限定されず、2種以上を照射してもよい。   Further, in the above-described embodiment, blue and green visible lights are irradiated as visible lights having different wavelengths. However, underwater that constitutes the length measurement target B, such as blue-violet and blue, blue and red, and green and red, is used. Light having a different wavelength from visible light (400 to 750 nm) can be appropriately selected and irradiated according to the particle diameter and density of the suspended particles. In addition, the type of light irradiated to the object to be measured is not limited to two types, and two or more types may be irradiated.

また、上記した実施形態では、トリガ信号と受光信号との時間差から遅延時間を計測したが、青色レーザ装置11Bや緑色レーザ装置11Gから放出されたレーザ光をビームスプリッタによって分割し、分割した光による受光信号の時間差から遅延時間を計測し、測長対象物までの距離を測長してもよい。   In the above-described embodiment, the delay time is measured from the time difference between the trigger signal and the received light signal. However, the laser light emitted from the blue laser device 11B or the green laser device 11G is split by the beam splitter, and the split light is used. The delay time may be measured from the time difference between the received light signals, and the distance to the object to be measured may be measured.

以上、本発明の実施形態を説明したが、この実施形態は例として提示したものであり、
発明の範囲を限定することを意図していない。この実施形態は、その他の様々な形態で実
施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変
更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様
に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
As described above, the embodiment of the present invention has been described. However, this embodiment is presented as an example.
It is not intended to limit the scope of the invention. This embodiment can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.

10…水中測長装置、11…光源部、11B…青色レーザ装置、11G…緑色レーザ装置、12…検出部、13…処理部、14…光源駆動回路、A…測長対象物、B…測長対象物 DESCRIPTION OF SYMBOLS 10 ... Underwater length measuring device, 11 ... Light source part, 11B ... Blue laser device, 11G ... Green laser device, 12 ... Detection part, 13 ... Processing part, 14 ... Light source drive circuit, A ... Target object for measuring, B ... Measurement Long object

Claims (5)

水中に存在する測長対象物に向けて波長の異なる複数の可視光を照射する光源部と、
前記測長対象物で反射された光を検出する検出部と、
前記光源部が可視光を出射した時刻から前記検出部が反射光を検出するまでの遅延時間を波長毎に計測する処理部とを備え、
前記処理部は、前記検出部が検出した光の種類と、波長毎に計測した遅延時間とに基づいて、前記測長対象物までの距離を算出する水中測長装置において、
前記光源部は、第1波長帯の可視光と、前記第1波長帯より長波長の第2波長帯の可視光とを照射し、
前記処理部は、前記第1波長帯の可視光の遅延時間から算出された前記測長対象物までの第1距離と、前記第2波長帯の可視光の遅延時間から算出された前記測長対象物までの第2距離とが異なる場合、前記第1距離に水中浮遊粒子群が存在することを検出する水中測長装置。
A light source unit for irradiating a plurality of visible lights having different wavelengths toward a length measuring object existing in water,
A detection unit that detects light reflected by the object to be measured,
A processing unit that measures a delay time for each wavelength from the time when the light source unit emits visible light until the detection unit detects the reflected light,
The processing unit, the type of light detected by the detection unit, based on the delay time measured for each wavelength, in the underwater length measuring device to calculate the distance to the object to be measured ,
The light source unit emits visible light of a first wavelength band and visible light of a second wavelength band longer than the first wavelength band,
The processing unit may include a first distance to the object to be measured calculated from a delay time of visible light in the first wavelength band, and the length measurement calculated from a delay time of visible light in the second wavelength band. An underwater length measuring device that detects that a group of suspended particles in water exists at the first distance when the second distance to the object is different.
前記光源部は、パルスレーザ光を照射し、
前記処理部は、前記光源部が出射した前記第1波長帯の可視光のパルス幅と、前記第1波長帯の可視光の反射光のパルス幅とに基づいて、前記可視光の照射方向に沿った前記水中浮遊粒子群の長さを算出する請求項に記載の水中測長装置。
The light source unit irradiates a pulsed laser beam,
The processing unit is configured to determine the irradiation direction of the visible light based on the pulse width of the visible light in the first wavelength band emitted by the light source unit and the pulse width of the reflected light of the visible light in the first wavelength band. The underwater length measuring device according to claim 1 , wherein the length of the suspended particle group in the water along the length is calculated.
前記処理部は、前記光源部が出射した前記第1波長帯の可視光の強度と、前記第1波長帯の可視光の反射光の強度とに基づいて、前記水中浮遊粒子群を構成する水中浮遊粒子の粒子径を算出する請求項又はに記載の水中測長装置。 The processing unit is configured to control the intensity of the visible light in the first wavelength band emitted by the light source unit and the intensity of the reflected light of the visible light in the first wavelength band. The underwater length measuring device according to claim 1 or 2 , wherein the particle size of the suspended particles is calculated. 水中に存在する測長対象物に向けて波長の異なる複数の可視光を照射する光源部と、
前記測長対象物で反射された光を検出する検出部と、
前記光源部が可視光を出射した時刻から前記検出部が反射光を検出するまでの遅延時間を波長毎に計測する処理部とを備え、
前記処理部は、前記検出部が検出した光の種類と、波長毎に計測した遅延時間とに基づいて、前記測長対象物までの距離を算出する水中測長装置において、
前記光源部は、第1波長帯の可視光と、前記第1波長帯より長波長の第2波長帯の可視光とを照射し、
前記処理部は、前記第1波長帯の可視光の遅延時間から算出された前記測長対象物までの距離と、前記第2波長帯の可視光の遅延時間から算出された前記測長対象物までの距離とが同じ場合、算出された前記測長対象物までの距離に光反射体が存在することを検出する水中測長装置。
A light source unit for irradiating a plurality of visible lights having different wavelengths toward a length measuring object existing in water,
A detection unit that detects light reflected by the object to be measured,
A processing unit that measures a delay time for each wavelength from the time when the light source unit emits visible light until the detection unit detects the reflected light,
The processing unit is based on the type of light detected by the detection unit, based on the delay time measured for each wavelength, in the underwater length measuring device to calculate the distance to the object to be measured,
The light source unit emits visible light of a first wavelength band and visible light of a second wavelength band longer than the first wavelength band,
The processing unit is configured to calculate the distance to the object to be measured calculated from the delay time of the visible light in the first wavelength band and the object to be measured calculated from the delay time of the visible light in the second wavelength band. If the distance to the same, said calculated length measuring length measuring device to that of water detecting that the optical reflector is present in the distance to the object.
前記第1波長帯が青色波長帯であり、前記第2波長帯が緑色波長帯である請求項1〜4のいずれか1項に記載の水中測長装置。 The underwater length measuring device according to any one of claims 1 to 4 , wherein the first wavelength band is a blue wavelength band, and the second wavelength band is a green wavelength band.
JP2016096376A 2016-05-12 2016-05-12 Underwater length measuring device Active JP6649585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016096376A JP6649585B2 (en) 2016-05-12 2016-05-12 Underwater length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016096376A JP6649585B2 (en) 2016-05-12 2016-05-12 Underwater length measuring device

Publications (2)

Publication Number Publication Date
JP2017203723A JP2017203723A (en) 2017-11-16
JP6649585B2 true JP6649585B2 (en) 2020-02-19

Family

ID=60322128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016096376A Active JP6649585B2 (en) 2016-05-12 2016-05-12 Underwater length measuring device

Country Status (1)

Country Link
JP (1) JP6649585B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582068A (en) * 1978-12-15 1980-06-20 Nec Corp Measuring unit for water depth using laser
US5034810A (en) * 1989-12-07 1991-07-23 Kaman Aerospace Corporation Two wavelength in-situ imaging of solitary internal waves
JPH09229618A (en) * 1996-02-27 1997-09-05 Mitsubishi Electric Corp Distance measuring apparatus for space craft
US9989631B2 (en) * 2013-05-29 2018-06-05 Mitsubishi Electric Corporation Laser radar device and radar image generating method
EP2866047B1 (en) * 2013-10-23 2020-12-23 Ladar Limited A detection system for detecting an object on a water surface
JP6242325B2 (en) * 2014-11-18 2017-12-06 三菱電機株式会社 Water temperature measuring device and water temperature measuring method

Also Published As

Publication number Publication date
JP2017203723A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
US10018725B2 (en) LIDAR imaging system
US7834984B2 (en) Device for optical distance measurement
EP3457177A1 (en) Distance measurement apparatus
DE502004006046D1 (en) METHOD FOR MEASURING WIND SPEEDS WITH A DOPPLER LIDAR SYSTEM, ESPECIALLY ON AIRCRAFT, AND DOPPLER LIDAR SYSTEM
US11828874B2 (en) Electronic apparatus and method
US10816663B2 (en) Distance measuring device and distance measuring method
JP2016180623A5 (en)
WO2014178376A1 (en) Laser radar device
JP6493018B2 (en) Laser distance measuring device
CN207557477U (en) Underwater laser radar system based on single-photon detecting survey technology
JP7015801B2 (en) Electronic devices and methods
KR20090121609A (en) Multi channel laser range finder
JP2006021720A (en) Lamp device with distance measuring function
JP6649585B2 (en) Underwater length measuring device
JP7256631B2 (en) distance measuring device
JP5376824B2 (en) Position measuring apparatus and position measuring processing method
WO2020022206A1 (en) Distance measurement device
JP2003057343A (en) Laser ranging device
JPH04297888A (en) Underwater laser radar
JP6242325B2 (en) Water temperature measuring device and water temperature measuring method
JP2009276248A (en) Laser radar device
CN212749236U (en) Two-dimensional scanning remote laser radar
JP2020067361A (en) Measurement device, method for measuring distance, program, and recording medium
RU2587100C2 (en) Method of increasing information value and efficiency of laser radar
JP2015224965A (en) Laser radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R150 Certificate of patent or registration of utility model

Ref document number: 6649585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250