JP6647979B2 - Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material - Google Patents

Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material Download PDF

Info

Publication number
JP6647979B2
JP6647979B2 JP2016134783A JP2016134783A JP6647979B2 JP 6647979 B2 JP6647979 B2 JP 6647979B2 JP 2016134783 A JP2016134783 A JP 2016134783A JP 2016134783 A JP2016134783 A JP 2016134783A JP 6647979 B2 JP6647979 B2 JP 6647979B2
Authority
JP
Japan
Prior art keywords
water
roadbed material
expansion
structural unit
roadbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016134783A
Other languages
Japanese (ja)
Other versions
JP2018003529A (en
Inventor
光藤 浩之
浩之 光藤
渡辺 哲哉
哲哉 渡辺
達也 須藤
達也 須藤
岡田 和寿
和寿 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
JFE Mineral Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd, JFE Mineral Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP2016134783A priority Critical patent/JP6647979B2/en
Publication of JP2018003529A publication Critical patent/JP2018003529A/en
Application granted granted Critical
Publication of JP6647979B2 publication Critical patent/JP6647979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Road Paving Structures (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、膨張抑制剤を含有する路盤材、及び路盤材の膨張抑制方法に関する。道路や駐車場等に用いられる路盤材には、天然砕石のほかに、鉄鋼スラグや再生材料等がある。これらの路盤材にCaOやMgO等の膨張性鉱物が含まれると、それらが水分と反応してCaO水和物やMgO水和物を形成する。これらの水和物は元の鉱物に比べて単位物質量あたりの体積が大きいため、体積膨張し、路盤等の***や破壊を引き起こし、更には舗装に隣接した構造物等を破壊することがある。本発明は、CaOやMgO等の膨張性鉱物を含有する例えば鉄鋼スラグのような路盤材の膨張を実用上充分に抑えることができる膨張抑制剤を含有する路盤材、及び路盤材の膨張抑制方法に関する。尚、本発明において、路盤材には、未舗装道路や未舗装の駐車場、広場、資材置き場などの整地等に使用される土工用材も含まれる。 The present invention, roadbed material containing Rise Zhang inhibitors, and to the expansion method of suppressing roadbeds. Roadbed materials used for roads, parking lots, and the like include, in addition to natural crushed stone, steel slag and recycled materials. When expandable minerals such as CaO and MgO are contained in these roadbed materials, they react with moisture to form CaO hydrate and MgO hydrate. Since these hydrates have a larger volume per unit material amount than the original mineral, they may expand in volume, cause uplift or destruction of the roadbed, etc., and may even destroy structures adjacent to the pavement. . The present invention relates to a roadbed material containing an expansion inhibitor capable of sufficiently suppressing the expansion of a roadbed material such as steel slag containing expandable minerals such as CaO and MgO, and a method of suppressing the expansion of a roadbed material. About. In the present invention, the roadbed material also includes earthwork materials used for leveling of unpaved roads, unpaved parking lots, open spaces, material storage areas, and the like.

従来、鉄鋼スラグを路盤材として用いる場合、鉄鋼スラグに含まれる膨張性鉱物の水和反応を進行させる通常エージング処理や、温水又は蒸気による促進エージング処理が行なわれている。しかし、かかる通常エージング処理や促進エージング処理では実際のところ、かかる処理を行なった鉄鋼スラグを路盤材として用いたときに、路盤材の膨張を充分に抑えることができない場合が生じるという問題がある。   Conventionally, when steel slag is used as a roadbed material, a normal aging treatment for promoting a hydration reaction of expansive minerals contained in the steel slag and an accelerated aging treatment with warm water or steam have been performed. However, such a normal aging treatment and an accelerated aging treatment actually have a problem in that when the steel slag subjected to such treatment is used as a roadbed material, the expansion of the roadbed material may not be sufficiently suppressed.

前記のような問題は、CaOの水和反応は速いが、MgOの水和反応は遅いことに起因することが指摘され(例えば、非特許文献1参照)、またCaOは水中20℃において3日で水和率が100%に到達するが、MgOは水中20℃において180日で水和率が57%に留まり、MgOの水和速度はCaOの1/100程度と非常に遅いことに起因することが指摘されている(例えば、非特許文献2参照)。   It has been pointed out that such a problem is caused by the fact that the hydration reaction of CaO is fast but the hydration reaction of MgO is slow (for example, see Non-Patent Document 1). The hydration rate reaches 100% at 20 ° C., but the hydration rate of MgO stays at 57% in water at 20 ° C. for 180 days, and the hydration rate of MgO is very slow, about 1/100 of that of CaO. (For example, see Non-Patent Document 2).

Jurgen Geiseler,Ruth Schlosser,Rudiger Scheel,Klaus Koch and Dieter Janke:Steel Research 58(1987),p.210Jurgen Geiseler, Ruth Schlosser, Rudiger Scheel, Klaus Koch and Dieter Janke: Steel Research 58 (1987), p. 210 GAO Peiwei, LU Xiaolin, GENG Fei, LI Xiaoyan, HOU Jie,LIN Hui,SHI Nannan.Production of MgO−type expansive agentin dam concrete by use of industrial by−products,Build Environ,Vol.43 No.4 Page.453〜457 (2008.04)GAO Peiwei, LU Xiaolin, GENG Fei, LI Xiaoyan, HOU Jie, LIN Hui, SHI Nannan. Production of MgO-type expansive agentin dam-concrete by use of industrial by-products, Build Environ, Vol. 43 No. 4 Page. 453-457 (2008.04)

本発明が解決しようとする課題は、通常エージング処理や促進エージング処理を行なわなくても、CaOやMgO等の膨張性鉱物を含有する鉄鋼スラグのような路盤材の膨張を長時間に亘って実用上充分に抑えることができる膨張抑制剤を含有する路盤材、及び路盤材の膨張抑制方法を提供する処にある。 The problem to be solved by the present invention is that the expansion of a roadbed material such as steel slag containing an expandable mineral such as CaO or MgO can be performed for a long time without performing an ordinary aging treatment or an accelerated aging treatment. roadbed material containing swelling inhibitors which can be suppressed above sufficiently, and the processing to provide an expansion method for suppressing roadbeds.

本発明者らは、前記の課題を解決するべく研究した結果、CaOやMgO等の膨張性鉱物を含有する鉄鋼スラグのような路盤材に用いる膨張抑制剤として、水不溶性の高吸水性樹脂が正しく好適であることを見出した。   The present inventors have conducted research to solve the above-mentioned problems, and as a result, a water-insoluble superabsorbent resin is used as an expansion inhibitor for use in roadbed materials such as steel slag containing expandable minerals such as CaO and MgO. It has been found that it is correct and suitable.

すなわち本発明は、膨張性鉱物を含有する路盤材において、水不溶性の高吸水性樹脂から成る膨張抑制剤が路盤材中に1質量%以下含有されていることを特徴とする路盤材に係る。
また、本発明は、膨張性鉱物を含有する路盤材の膨張抑制方法であって、水不溶性の高吸水性樹脂から成る膨張抑制剤が路盤材中に1質量%以下配合されることを特徴とする路盤材の膨張抑制方法に係る。
That is, the present invention relates in roadbed material containing Rise tonicity minerals, the roadbed expansion inhibitor comprising a superabsorbent polymer water-insoluble, characterized in that it is contained 1 wt% or less in roadbeds .
Further, the present invention relates to a method for suppressing the expansion of a roadbed material containing an expansive mineral, wherein an expansion inhibitor comprising a water-insoluble superabsorbent resin is blended in the roadbed material at 1% by mass or less. The present invention relates to a method for suppressing expansion of a roadbed material to be performed.

本発明において、膨張抑制剤として用いる水不溶性の高吸水性樹脂は、一般的に紙おむつや生理用品等の衛生材料に使用され、また土壌保水剤や保冷剤等の非衛生材料にも使用されているもので、水にはほとんど不溶であり、水を高度に吸水して膨潤し、一度吸水すると僅かな圧力をかけても離水しにくい特性を持っている架橋構造の樹脂である。かかる水不溶性の高吸水性樹脂を路盤材の膨張抑制剤として用いた場合、路盤材中の膨張性鉱物であるCaOやMgOが水和物となって膨張すると、周辺の高吸水性樹脂が圧搾されて離水し、収縮するので、路盤材全体としては体積膨張せず、また高吸水性樹脂の吸水によってCaOやMgOの水和反応水が少なくなるので、水和膨張それ自体が減少する。   In the present invention, the water-insoluble superabsorbent resin used as a swelling inhibitor is generally used for sanitary materials such as disposable diapers and sanitary articles, and is also used for non-sanitary materials such as soil water retention agents and cold preservatives. It is a resin with a crosslinked structure that is almost insoluble in water, swells by absorbing water to a high degree, and has a property that once absorbed, it is difficult to separate even if a slight pressure is applied. When such a water-insoluble superabsorbent resin is used as an expansion inhibitor for a roadbed material, when CaO or MgO, which is an expansive mineral in the roadbed material, becomes a hydrate and expands, the surrounding superabsorbent resin is compressed. As a result, the roadbed material does not expand in volume due to water release and contraction, and the hydration reaction water of CaO or MgO decreases due to the water absorption of the highly water-absorbent resin, so that the hydration expansion itself decreases.

膨張抑制剤として使用できる水不溶性の高吸水性樹脂としては、ポリアクリル酸(塩)系、ポリスルホン酸(塩)系、無水マレイン酸(塩)系、ポリアクリルアミド系、ポリビニルアルコール系、ポリエチレンオキシド系、ポリアスパラギン酸(塩)系、ポリグルタミン酸(塩)系、ポリアルギン酸(塩)系、デンプン系、セルロース系等のものが挙げられる。尚、ここでいうところの系とは、それらを主成分としていることを表しでおり、単一の構成単位や2種類以上の構成単位から構成されていてもよく、製造上の理由から、重合開始剤、内部架橋剤、連鎖移動剤、キレート剤、架橋抑制剤、界面活性剤等が含まれていてもよい。また製造方法は、水溶液重合、逆相乳化重合、逆相懸濁重合等のいずれの方法でもよい。   Examples of the water-insoluble superabsorbent resin that can be used as an expansion inhibitor include polyacrylic acid (salt), polysulfonic acid (salt), maleic anhydride (salt), polyacrylamide, polyvinyl alcohol, and polyethylene oxide. And polyaspartic acid (salt), polyglutamic acid (salt), polyalginic acid (salt), starch, and cellulose. The term “system” as used herein means that these are the main components, and may be composed of a single structural unit or two or more types of structural units. An initiator, an internal crosslinking agent, a chain transfer agent, a chelating agent, a crosslinking inhibitor, a surfactant and the like may be contained. The production method may be any method such as aqueous solution polymerization, reversed-phase emulsion polymerization, and reversed-phase suspension polymerization.

以上、膨張抑制剤として使用できる水不溶性の高吸水性樹脂を例示したが、なかでも水不溶性の高吸水性樹脂としては、全構成単位中に下記の化1で示される構成単位Aと下記の化2で示される構成単位Bとを合計で50モル%以上有する水不溶性で高吸水性のアクリル酸系架橋重合体が好ましい。   As described above, the water-insoluble superabsorbent resin which can be used as the expansion inhibitor has been exemplified. Among the water-insoluble superabsorbent resins, the structural unit A represented by the following chemical formula 1 in all the structural units and the following A water-insoluble, highly water-absorbing acrylic acid-based crosslinked polymer having a total of 50 mol% or more of the structural unit B represented by Chemical Formula 2 is preferable.

化2において、
M:アルカリ金属、アルカリ土類金属、アンモニウム又は有機アミン
In Chemical Formula 2,
M: alkali metal, alkaline earth metal, ammonium or organic amine

構成単位Aを形成することとなる単量体はアクリル酸である。構成単位Bを形成することとなる単量体としては、1)アクリル酸ナトリウム、アクリル酸カリウム、アクリル酸リチウム等のアクリル酸アルカリ金属塩、2)アクリル酸カルシウム、アクリル酸マグネシウム等のアクリル酸アルカリ土類金属塩、3)アクリル酸のアンモニウム塩、4)アクリル酸トリエタノールアミン、アクリル酸ジエタノールアミン等のアクリル酸有機アミン塩が挙げられる。構成単位Bには、単量体としてアクリル酸を用いて重合した後、アルカリ金属、アルカリ土類金属又は有機アミンで中和して得られるアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、有機アミン塩が含まれる。なかでも構成単位Bの塩としては、アルカリ金属塩が好ましく、ナトリウム塩がより好ましい。   The monomer that forms the structural unit A is acrylic acid. Examples of the monomer that forms the structural unit B include: 1) alkali metal acrylates such as sodium acrylate, potassium acrylate, and lithium acrylate; 2) alkali acrylates such as calcium acrylate and magnesium acrylate. Earth metal salts; 3) ammonium salts of acrylic acid; 4) organic amine salts of acrylic acid such as triethanolamine acrylate and diethanolamine acrylate. In the structural unit B, after polymerization using acrylic acid as a monomer, an alkali metal, an alkaline earth metal salt, an ammonium salt, an organic compound obtained by neutralizing with an alkali metal, an alkaline earth metal or an organic amine are used. Amine salts are included. Among them, the salt of the structural unit B is preferably an alkali metal salt, and more preferably a sodium salt.

前記の水不溶性で高吸水性のアクリル酸系架橋重合体は、構成単位A及び構成単位B以外に、他の構成単位を有することができる。かかる他の構成単位を形成することとなる単量体としては、1)メタクリル酸、メタクリル酸の塩、クロトン酸、クロトン酸の塩、イタコン酸、イタコン酸の塩、マレイン酸、マレイン酸の塩、無水マレイン酸、フマル酸、フマル酸の塩等のα,β−不飽和カルボン酸又はその塩、2)アクリルアミド、メタクリルアミド、アクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシエチル、酢酸ビニル等のビニル単量体等が挙げられるが、なかでもアクリルアミドが好ましい。   The above-mentioned water-insoluble and highly water-absorbing acrylic acid-based crosslinked polymer can have other structural units in addition to the structural units A and B. Examples of the monomer that forms such another structural unit include: 1) methacrylic acid, methacrylic acid salt, crotonic acid, crotonic acid salt, itaconic acid, itaconic acid salt, maleic acid, and maleic acid salt. Α, β-unsaturated carboxylic acids such as maleic anhydride, fumaric acid, and salts of fumaric acid or salts thereof, 2) acrylamide, methacrylamide, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, vinyl acetate, etc. Among them, acrylamide is preferable.

また前記の水不溶性で高吸水性のアクリル酸系架橋重合体において、架橋構造部分の構成単位を形成することとなる単量体としては、1)N,N−メチレンビスアクリルアミド等のアミド系架橋性単量体、2)エチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ) アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等のエステル系架橋性単量体、3)グリセリンジアリルエーテル、グリセリントリアリルエーテル、トリメチロールプロパンジアリルエーテル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールテトラアリルエーテル等のエーテル系架橋性単量体、4)エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル等の多価グリシジル化合物系架橋性単量体等が挙げられる。   In the above-mentioned water-insoluble and highly water-absorbing acrylic acid-based crosslinked polymer, the monomers that form the structural unit of the crosslinked structure portion include: 1) N, N-methylenebisacrylamide and other amide-based crosslinked polymers. 2) ethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, etc. Ester crosslinkable monomers, 3) glycerin diallyl ether, glycerin triallyl ether, trimethylolpropane diallyl ether, trimethylolpropane triallyl ether, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, etc. And 4) polyvalent glycidyl compound-based crosslinkable monomers such as ethylene glycol diglycidyl ether and diethylene glycol diglycidyl ether.

前記の水不溶性で高吸水性のアクリル酸系架橋重合体は、全構成単位中に構成単位Aと構成単位Bとを合計で50モル%以上有するものであるが、なかでも構成単位Aと構成単位Bとを合計で60モル%以上有し、構成単位A/構成単位B=85/15〜5/95(モル比)の割合で有するものが好ましく、構成単位Aと構成単位Bとを合計で90モル%以上有し、且つ構成単位A/構成単位B=70/30〜10/90(モル比)の割合で有するものがより好ましい。またかかるアクリル酸系架橋重合体としては、全構成単位中に、前記のような架橋性単量体から形成された架橋構造部分の構成単位を0.001〜1モル%有するものが好ましく、0.01〜0.5モル%有するものがより好ましい。   The above-mentioned water-insoluble and highly water-absorbing acrylic acid-based crosslinked polymer has a total of 50 mol% or more of the structural unit A and the structural unit B in all the structural units. It is preferable that the total amount of the structural unit A and the structural unit B is 60 mol% or more, and the structural unit A / the structural unit B = 85/15 to 5/95 (molar ratio). It is more preferable to have 90% by mole or more, and to have the ratio of structural unit A / structural unit B = 70/30 to 10/90 (molar ratio). Further, as such an acrylic acid-based crosslinked polymer, a polymer having 0.001 to 1 mol% of a structural unit of a crosslinked structure portion formed from the above crosslinkable monomer in all the structural units is preferable. Those having 0.01 to 0.5 mol% are more preferable.

前記の水不溶性で高吸水性のアクリル酸系架橋重合体それ自体は、公知の方法で合成できる。これには例えば、特開平3−56513号公報に記載の方法が挙げられる。より具体的には、ステンレス製圧力反応容器に、まずアクリル酸水溶液と水酸化ナトリウム水溶液とを加えてアクリル酸を部分中和し、次に架橋性単量体を加え、更に窒素雰囲気下に過硫酸塩及び促進剤を加えた後、加圧下に60〜110℃の温度で重合反応を行うことにより合成できる。   The water-insoluble and highly water-absorbing acrylic acid-based crosslinked polymer itself can be synthesized by a known method. For example, a method described in JP-A-3-56513 can be mentioned. More specifically, first, an acrylic acid aqueous solution and a sodium hydroxide aqueous solution are added to a stainless steel pressure reaction vessel to partially neutralize acrylic acid, then a crosslinkable monomer is added, and the mixture is further subjected to a nitrogen atmosphere. After adding the sulfate and the promoter, the compound can be synthesized by performing a polymerization reaction at a temperature of 60 to 110 ° C. under pressure.

本発明において、路盤材の膨張抑制剤として用いる水不溶性の高吸水性樹脂は、粒子径が10〜2000μmであるものが好ましく、粒子径が10〜1000μmであるものがより好ましい。またかかる水不溶性の高吸水性樹脂は、その吸水量が20g/g以上のものが好ましく、30〜70g/gのものがより好ましい。ここでの吸水量は、JIS K7223−1996に定義された方法にて、0.9質量%の食塩水を用いた場合の測定量である。   In the present invention, the water-insoluble superabsorbent resin used as the expansion inhibitor of the roadbed material preferably has a particle size of 10 to 2000 μm, more preferably 10 to 1000 μm. The water-insoluble superabsorbent resin preferably has a water absorption of 20 g / g or more, more preferably 30 to 70 g / g. The water absorption here is a measured amount when 0.9% by mass of saline is used in accordance with the method defined in JIS K7223-1996.

路盤材の膨張抑制剤として用いる水不溶性の高吸水性樹脂は、膨張性鉱物を含有する路盤材、例えば鉄鋼スラグの質量に対して1質量%以下となるように用いる。水不溶性の高吸水性樹脂は、単独で使用しても、あるいは必要に応じ2種類以上を併用しても構わない。また水不溶性の高吸水性樹脂の本来的機能を損なわない限り、水溶性アクリル酸(塩)系ポリマーやその塩、オキシカルボン酸やその塩、単糖類、多糖類、消泡剤、起泡剤、ポゾラン物質、水硬性物質等と併用しても構わない。水不溶性の高吸水性樹脂は、膨張性鉱物を含有する路盤材にそのまま添加しても、又は吸水させてから添加してもよく、双方を併用してもよい。膨張性鉱物を含有する路盤材は、予めこれに水不溶性の高吸水性樹脂を加えておいたものを路盤材として用いてもよいし、既に施工されている膨張性鉱物を含有する路盤材を取出し、これに高吸水性樹脂を加えた後に、再度路盤材として用いてもよい。以上説明したような水不溶性の高吸水性樹脂の市販品としては、三洋化成工業社製の共に商品名でサンフレッシュGTやアクアパールDS、日本触媒社製の商品名でアクアリックCA、住友精化社製の商品名でアクアキープSA等が挙げられる。   The water-insoluble superabsorbent resin used as the expansion inhibitor of the roadbed material is used so as to be 1% by mass or less with respect to the mass of the roadbed material containing expandable minerals, for example, steel slag. The water-insoluble superabsorbent resin may be used alone or, if necessary, in combination of two or more. Water-soluble acrylic acid (salt) -based polymers and salts thereof, oxycarboxylic acids and salts thereof, monosaccharides, polysaccharides, defoamers, foaming agents, as long as the essential functions of the water-insoluble superabsorbent resin are not impaired , Pozzolanic substances, hydraulic substances and the like. The water-insoluble superabsorbent resin may be added as it is to the roadbed material containing the expansible mineral, or may be added after absorbing water, or both may be used in combination. The roadbed material containing the expansive mineral may be one in which a water-insoluble superabsorbent resin is added to the roadbed material in advance, or the roadbed material containing the expansive mineral that has already been constructed may be used. After taking out and adding the superabsorbent resin thereto, it may be used again as a roadbed material. Commercial products of the water-insoluble superabsorbent resin described above include Sunfresh GT and Aquapearl DS, both manufactured by Sanyo Chemical Industries, and Aquaric CA, Sumitomo Seimitsu, manufactured by Nippon Shokubai Co., Ltd. Aqua keep SA and the like are available under the trade name of Kakesha Co., Ltd.

本発明の膨張抑制剤を含有する路盤材、及び路盤材の膨張抑制方法は、時間のかかる通常エージング処理や、コストのかかる促進エージング処理をわざわざ行なわなくても、膨張性鉱物を含有する鉄鋼スラグのような路盤材の膨張を長期間に亘って実用上充分に抑えることができるという効果がある。 It roadbed material containing Rise Zhang inhibitor of the present invention, and a method of expansion suppressing roadbed material, such or normal aging time, without purposely performed accelerated aging process costly steel containing intumescent mineral There is an effect that expansion of a roadbed material such as slag can be sufficiently suppressed in practical use for a long period of time.

以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明がこれら実施例に限定されるものではない。尚、以下の実施例及び比較例において、部は質量部を、また%は質量%を意味する。   Hereinafter, examples and the like will be described in order to make the configuration and effects of the present invention more specific, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, parts mean parts by mass, and% means mass%.

試験区分1(アクリル酸系架橋重合体等の合成)
・アクリル酸系架橋重合体(A−1)の合成
ステンレス製圧力反応容器に、アクリル酸110.5部、水232部及び30%濃度の水酸化ナトリウム水溶液143.2部をかき混ぜながら加えてアクリル酸を部分中和した。室温まで冷却した後、N,N−メチレンビスアクリルアミド0.4部を加え、窒素でバブリングして混合した。更に10%濃度の過硫酸ナトリウム水溶液0.3部及び10%濃度のエリソルビン酸ナトリウム0.015部を加え、圧力300kPa及び最高温度90℃で60分間、重合反応を行なった。反応系から生成物を分離し、細断して、120℃の熱風乾燥器中で乾燥した後、粉砕し、篩で分級して、水不溶性で粉末状のアクリル酸系架橋重合体(A−1)を得た。
Test Category 1 (Synthesis of acrylic acid-based crosslinked polymer)
・ Synthesis of acrylic acid-based crosslinked polymer (A-1) To a stainless steel pressure reaction vessel, add 110.5 parts of acrylic acid, 232 parts of water, and 143.2 parts of a 30% sodium hydroxide aqueous solution while stirring, and add acrylic. The acid was partially neutralized. After cooling to room temperature, 0.4 parts of N, N-methylenebisacrylamide was added and mixed by bubbling with nitrogen. Further, 0.3 part of a 10% concentration aqueous sodium persulfate solution and 0.015 part of a 10% concentration sodium erythorbate were added, and a polymerization reaction was performed at a pressure of 300 kPa and a maximum temperature of 90 ° C. for 60 minutes. The product was separated from the reaction system, cut into pieces, dried in a hot air drier at 120 ° C., pulverized and classified with a sieve to obtain a water-insoluble and powdery acrylic acid-based crosslinked polymer (A- 1) was obtained.

・アクリル酸系架橋重合体等(A−2)〜(A−5)の合成
アクリル酸系架橋重合体(A−1)と同様にして、アクリル酸系架橋重合体等(A−2)〜(A−5)を得た。以上で合成した各アクリル酸系架橋重合体等の内容を表1にまとめて示した。
・ Synthesis of acrylic acid-based crosslinked polymer (A-2) to (A-5) Similarly to acrylic acid-based crosslinked polymer (A-1), acrylic acid-based crosslinked polymer (A-2) to (A-5) was obtained. Table 1 summarizes the contents of each of the acrylic acid-based crosslinked polymers synthesized as described above.

表1において、
(1)+(2):全構成単位中に占める化1で示される構成単位Aと化2で示される構成単位Bとの合計割合(モル%)
(1)/(2):化1で示される構成単位A/化2で示される構成単位Bの比率(モル比)
吸水量(g/g):JIS K 7223−1996に定義された方法にて、0.9質量%の食塩水を用いた場合の測定量
M−1:メタクリル酸から形成された構成単位
M−2:アクリルアミドから形成された構成単位
L−1:N,N−メチレンビスアクリルアミドから形成された構成単位
L−2:ジエチレングリコールジグリシジルエーテルから形成された構成単位
In Table 1,
(1) + (2): total ratio (mol%) of the structural unit A represented by Chemical Formula 1 and the structural unit B represented by Chemical Formula 2 in all the structural units
(1) / (2): ratio (molar ratio) of the structural unit A represented by the chemical formula 1 / the structural unit B represented by the chemical formula 2
Water absorption (g / g): measured amount using 0.9% by mass of saline according to the method defined in JIS K 7223-1996 M-1: Structural unit formed from methacrylic acid M- 2: Structural unit formed from acrylamide L-1: Structural unit formed from N, N-methylenebisacrylamide L-2: Structural unit formed from diethylene glycol diglycidyl ether

試験区分2(評価その1:10日における水浸膨張比)
試験に供した路盤材としての鉄鋼スラグの組成はCaOが36〜39%、MgOが3.5〜5.7%で、クラッシャラン鉄鋼スラグのCS−40に粒度調整したもの。これをJIS A 5015に従って80℃で10日間(80℃での保持時間は1日6時間)における水浸膨張比を測定した。結果を表2にまとめて示した。各比較例及び実施例に供した鉄鋼スラグは下記の通りである。
比較例1:エージングを行なっていない鉄鋼スラグ。
比較例2:通常(大気)エージングを8ヶ月行なった鉄鋼スラグ。
比較例3:促進エージングである蒸気エージングを48時間行なった鉄鋼スラグ。
実施例1:エージングを行なっていない鉄鋼スラグに、膨張抑制剤として試験区分1で合成したアクリル酸系架橋重合体等(A−1)を0.05%添加した。
実施例2〜8:膨張抑制剤の種類や添加量を表2記載のように変えて実施例1と同様に行なった。
Test Category 2 (Evaluation Part 1:10 Water Immersion Expansion Ratio)
The composition of the steel slag as the roadbed material subjected to the test was 36 to 39% of CaO and 3.5 to 5.7% of MgO, and the grain size was adjusted to crusher-run steel slag CS-40. According to JIS A 5015, the water immersion swelling ratio was measured at 80 ° C. for 10 days (retention time at 80 ° C. is 6 hours a day). The results are summarized in Table 2. The steel slag used for each comparative example and example is as follows.
Comparative Example 1: Steel slag not aged.
Comparative Example 2: Steel slag subjected to normal (atmospheric) aging for 8 months.
Comparative Example 3: Steel slag subjected to steam aging, which is accelerated aging, for 48 hours.
Example 1: 0.05% of an acrylic acid-based crosslinked polymer or the like (A-1) synthesized in Test Category 1 was added as an expansion inhibitor to an unaged steel slag.
Examples 2 to 8: The same procedures were performed as in Example 1 except that the type and amount of the expansion inhibitor were changed as shown in Table 2.

表2において、
A−1〜A−5:試験区分1で合成したアクリル酸系架橋重合体等
C−1:セルロース系吸水性樹脂(日本製紙社製の商品名サンローズSLD−F1、カタログ値 平均粒子径50〜60μm、水不溶性、吸水量17g/g)
In Table 2,
A-1 to A-5: Acrylic acid-based crosslinked polymer synthesized in test category 1, etc. C-1: Cellulose-based water-absorbing resin (trade name Sunrose SLD-F1, manufactured by Nippon Paper Industries, catalog value: average particle diameter 50) 6060 μm, water-insoluble, water absorption 17 g / g)

表2の結果からも明らかなように、MgOの含有量が少ない鉄鋼スラグの場合でも、エージングを行なわなければ、水浸膨張比は2.5%に達するが、通常エージングや促進エージングを行なうことにより、JISの基準を満足する水浸膨張比となることがわかる。また膨張抑制剤として水不溶性の高吸水性樹脂を用いる本発明によれば、わざわざエージングを行なわなくても、JISの基準を満足する水浸膨張比となることがわかる。   As is clear from the results in Table 2, even in the case of iron and steel slag having a low content of MgO, the immersion expansion ratio reaches 2.5% if aging is not performed, but normal aging or accelerated aging is required. It can be seen from the result that the water immersion expansion ratio satisfies the JIS standard. Further, according to the present invention in which a water-insoluble superabsorbent resin is used as the expansion inhibitor, the water immersion expansion ratio satisfies the JIS standard without aging.

試験区分3(評価その2:10日と90日における水浸膨張比)
試験に供した路盤材としての鉄鋼スラグの組成はCaOが40〜43%、MgOが12〜18%で、クラッシャラン鉄鋼スラグのCS−40に粒度調整したもの。これをJISA5015に従って80℃で1日6時間保持の10日間における水浸膨張比に加え、80℃で90日間連続保持したときの水浸膨張比を測定した。結果を表3にまとめて示した。各比較例及び実施例に供した鉄鋼スラグは次の通りである。
比較例4:通常(大気)エージングを8ヶ月行なった鉄鋼スラグ。
実施例9〜16:エージングを行なっていない鉄鋼スラグに、膨張抑制剤として試験区分1で合成したアクリル酸系架橋重合体等を表2記載のように添加した。
Test Category 3 (Evaluation 2: Water immersion expansion ratio at 10 days and 90 days)
The composition of the steel slag as the roadbed material subjected to the test was CaO of 40 to 43%, MgO of 12 to 18%, and the grain size was adjusted to crusher-run steel slag CS-40. This was added to the water immersion swelling ratio at 10 days of holding at 80 ° C. for 6 hours a day according to JISA5015, and the water immersion swelling ratio of continuously holding at 80 ° C. for 90 days was measured. The results are summarized in Table 3. The steel slag used for each comparative example and example is as follows.
Comparative Example 4: Steel slag subjected to normal (atmospheric) aging for 8 months.
Examples 9 to 16: As shown in Table 2, an acrylic acid-based crosslinked polymer synthesized in Test Category 1 was added as an expansion inhibitor to an unaged steel slag.

表3において、
A−1〜A−5:試験区分1で合成したアクリル酸系架橋重合体等
C−1:セルロース系吸水性樹脂(日本製紙社製の商品名サンローズSLD−F1、平均粒子径50μm、水不溶性、吸水量17g/g)
In Table 3,
A-1 to A-5: Acrylic acid-based crosslinked polymer synthesized in Test Category 1, etc. C-1: Cellulose-based water-absorbing resin (Sunrose SLD-F1, trade name, manufactured by Nippon Paper Industries Co., Ltd., average particle diameter 50 μm, water Insoluble, water absorption 17g / g)

表3の結果からも明らかなように、MgOの含有量が多い鉄鋼スラグの場合でも、通常エージングを行なうことにより、80℃で10日間の水浸膨張比(80℃±3℃で6時間保持した後に養生装置内で放冷するという操作を1日1回行ない、これを10日間繰り返した場合の水浸膨張比)が基準の1.5%以下を達成できている。しかし、80℃で90日間連続保持したときの水浸膨張比を測定すると、10%を超える値となっていて、MgOの含有量の多い鉄鋼スラグの場合、通常エージングでは長期間に亘る充分な膨張抑制効果は期待できない。これに対して各実施例では、MgOの含有量が多い鉄鋼スラグの場合に、わざわざ通常エージングを行なわなくても、80℃で10日間の水浸膨張比はすべて0.1〜0.2%となっていて、また膨張抑制剤の種類や添加量によっては80℃で90日間連続保持したときの水浸膨張比を1%未満に抑制できている。   As is clear from the results in Table 3, even in the case of steel slag containing a large amount of MgO, the water immersion expansion ratio at 80 ° C. for 10 days (retained for 6 hours at 80 ° C. ± 3 ° C.) by performing normal aging. After that, an operation of allowing to cool in the curing device is performed once a day, and this operation is repeated for 10 days to achieve a water immersion expansion ratio of 1.5% or less of the standard. However, when the water immersion expansion ratio measured at 80 ° C. continuously for 90 days is more than 10%, in the case of steel slag containing a large amount of MgO, sufficient aging over a long period of time is usually sufficient in the case of steel slag containing a large amount of MgO. The expansion suppression effect cannot be expected. On the other hand, in each of the examples, in the case of steel slag having a high MgO content, the water immersion expansion ratio at 80 ° C. for 10 days was 0.1 to 0.2% in all cases without performing the normal aging. In addition, depending on the type and amount of the expansion inhibitor, the water immersion expansion ratio when continuously maintained at 80 ° C. for 90 days can be suppressed to less than 1%.

Claims (2)

膨張性鉱物を含有する路盤材において、
水不溶性の高吸水性樹脂から成る膨張抑制剤が路盤材中に1質量%以下含有されていることを特徴とする路盤材。
In roadbed materials containing expansive minerals,
A roadbed material characterized in that the roadbed material contains 1% by mass or less of an expansion inhibitor made of a water-insoluble superabsorbent resin.
膨張性鉱物を含有する路盤材の膨張抑制方法であって、
水不溶性の高吸水性樹脂から成る膨張抑制剤が路盤材中に1質量%以下配合されることを特徴とする路盤材の膨張抑制方法。
A method for suppressing the expansion of a roadbed material containing an expandable mineral,
A method for suppressing the expansion of a roadbed material, wherein an expansion inhibitor comprising a water-insoluble superabsorbent resin is incorporated in the roadbed material in an amount of 1% by mass or less.
JP2016134783A 2016-07-07 2016-07-07 Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material Active JP6647979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016134783A JP6647979B2 (en) 2016-07-07 2016-07-07 Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016134783A JP6647979B2 (en) 2016-07-07 2016-07-07 Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material

Publications (2)

Publication Number Publication Date
JP2018003529A JP2018003529A (en) 2018-01-11
JP6647979B2 true JP6647979B2 (en) 2020-02-14

Family

ID=60948589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016134783A Active JP6647979B2 (en) 2016-07-07 2016-07-07 Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material

Country Status (1)

Country Link
JP (1) JP6647979B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195380B (en) * 2019-05-17 2023-04-07 中铁二院工程集团有限责任公司 Ballast track coarse-grained saline soil embankment structure considering severe air temperature influence and construction method
CN111847954A (en) * 2020-07-09 2020-10-30 内蒙古宏尔高新材料科技有限公司 Expansive agent for cement-based self-leveling mortar and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176181A (en) * 1982-04-09 1983-10-15 ニチアス株式会社 Castable composition
US6689204B2 (en) * 2002-02-15 2004-02-10 Clearwater International, L.L.C. Roadbed stabilization
JP4159419B2 (en) * 2003-05-14 2008-10-01 Jfeミネラル株式会社 Earthwork materials
JP5254057B2 (en) * 2008-08-19 2013-08-07 Jfeスチール株式会社 Repair method for roadbeds, etc. to prevent uplift and destruction due to expansion
JP2012057349A (en) * 2010-09-08 2012-03-22 Kankyo Kogaku Kk Civil engineering structure, construction method of civil engineering structure, and civil engineering structure unit

Also Published As

Publication number Publication date
JP2018003529A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
CN100432027C (en) Redispersion powder composition with a binding acceleration effect
JP6647979B2 (en) Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material
CA2524514A1 (en) Self adaptive cement systems
MY197466A (en) Composition of a cement additive material as an additive to cementitious mineral admixtures, and utilised as latent hydraulic binders to improve the outcome of cementitious products
CN104059199B (en) A kind of polycarboxylic acids super-slowly coagulating water reducer and its production and use
JP2602048B2 (en) Cement additives and compositions
US10696890B2 (en) Methods of liquefying and shrinking water-absorbable resins in a water-containing state
JP2009007189A (en) Cement admixture and cement composition
NZ703547A (en) Composition comprising superabsorbent polymer
Zárybnická et al. Design of polymeric binders to improve the properties of magnesium phosphate cement
CN101045789B (en) Manufacturing method of high whiteness water absorption resin
JPS5945949A (en) Cement composition and manufacture
JP6491395B2 (en) Water-soluble film and its use in detergent packets
JP2514202B2 (en) Cement complex
JP6655495B2 (en) Roadbed material containing expansion inhibitor, and method of suppressing expansion of roadbed material
JP4905977B2 (en) Cement admixture and cement composition
JPH08333573A (en) Surplus soil improving agent and improving method
JP2011037647A (en) Mortar for plasterer having small electric resistance, hardened body using it, and corrosion prevention method for steel material inside of concrete structure using it
JP2004244625A (en) Agent for treating wet soil and method for granulating wet soil
JP5308279B2 (en) Spraying material and spraying method using the same
JP2006328320A (en) Agent for treating water-containing soil, and method for granulating water-containing soil
JP6535636B2 (en) Repair method of roadbed
JP2005154522A (en) Method of granulation of water-containing soil and granular soil
JPH1068182A (en) Fire-proof composition and fire-proof molding
JP2003183065A (en) Concrete for greening

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6647979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250