JP6638934B2 - Method for producing furfural or furfural derivative - Google Patents

Method for producing furfural or furfural derivative Download PDF

Info

Publication number
JP6638934B2
JP6638934B2 JP2015246219A JP2015246219A JP6638934B2 JP 6638934 B2 JP6638934 B2 JP 6638934B2 JP 2015246219 A JP2015246219 A JP 2015246219A JP 2015246219 A JP2015246219 A JP 2015246219A JP 6638934 B2 JP6638934 B2 JP 6638934B2
Authority
JP
Japan
Prior art keywords
furfural
catalyst
derivative
reaction
furfuryl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015246219A
Other languages
Japanese (ja)
Other versions
JP2017109959A (en
Inventor
拓馬 伊藤
拓馬 伊藤
亮介 小林
亮介 小林
望月 学
望月  学
隆昌 秋月
隆昌 秋月
川波 肇
肇 川波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Unitika Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Unitika Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015246219A priority Critical patent/JP6638934B2/en
Publication of JP2017109959A publication Critical patent/JP2017109959A/en
Application granted granted Critical
Publication of JP6638934B2 publication Critical patent/JP6638934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furan Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、フルフラール又はフルフラール誘導体の製造方法に関するものである。   The present invention relates to a method for producing furfural or a furfural derivative.

近年、化石資源の燃焼により発生した二酸化炭素を原因とした地球温暖化が世界的な問題となっている。このような中、化石資源代替バイオマスの活用を探る研究が進められている。
フルフラール類は、化石資源代替バイオマスの中でも石油製基幹物質の代替となる可能性を有しており、特に注目を集めている化合物の一つである。フルフラールはフラン系樹脂の原料や反応溶媒、接着剤などに利用することができる。
In recent years, global warming caused by carbon dioxide generated by burning fossil resources has become a global problem. Under such circumstances, research is being conducted to explore the use of biomass alternatives to fossil resources.
Furfural is one of the compounds that has attracted particular attention because it has the potential to replace petroleum basic substances among fossil resource alternative biomass. Furfural can be used as a raw material of a furan-based resin, a reaction solvent, an adhesive, and the like.

フルフラール又はフルフラール誘導体を得るには、経済上及び環境上の観点から、強力な酸化剤を用いることなく、酸素分子(O)を酸化剤とし、触媒の存在下、対応するフルフリルアルコール誘導体を酸化してアルデヒド化合物であるフルフラール又はフルフラール誘導体とする方法を用いることが望ましい。 In order to obtain furfural or a furfural derivative, from an economic and environmental point of view, without using a strong oxidizing agent, an oxygen molecule (O 2 ) is used as an oxidizing agent, and a corresponding furfuryl alcohol derivative is obtained in the presence of a catalyst. It is desirable to use a method of oxidation to furfural or a furfural derivative as an aldehyde compound.

酸素を酸化剤として、アルコールからアルデヒド化合物を製造するには、種々の貴金属触媒が用いられている。
例えば、非特許文献1には、酸素を酸化剤とし、金及び2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)を触媒として用いて、フルフリルアルコールからフルフラールを製造する方法が開示されている。しかしながら非特許文献1に記載された方法では、反応が均一系で進行するため反応後に生成物から触媒を分離する操作が煩雑になるという問題がある。
Various noble metal catalysts have been used to produce aldehyde compounds from alcohols using oxygen as an oxidizing agent.
For example, Non-Patent Document 1 discloses a method for producing furfural from furfuryl alcohol using oxygen as an oxidizing agent and gold and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as a catalyst. Is disclosed. However, the method described in Non-Patent Document 1 has a problem that since the reaction proceeds in a homogeneous system, the operation of separating the catalyst from the product after the reaction becomes complicated.

一方、非特許文献2には、反応後、反応溶液からろ過により容易に分離回収可能なハイドロタルサイト(HT)固定化金ナノ粒子触媒(以下、「Au/HT」ということもある)を用いて、各種ベンジル型、アリル型、又は脂肪族二級アルコール類を、高選択的に対応するアルデヒド及びケトンへと酸化できることが記載されている。   On the other hand, Non-Patent Document 2 uses a hydrotalcite (HT) -immobilized gold nanoparticle catalyst (hereinafter, also referred to as “Au / HT”) that can be easily separated and recovered from the reaction solution by filtration after the reaction. It is described that various benzyl type, allyl type, or aliphatic secondary alcohols can be oxidized to corresponding aldehydes and ketones with high selectivity.

また、特許文献1、2には、分子状酸素を酸化剤とし、脂肪族アルコール、脂環式アルコール、芳香族アルコール及び複素環式アルコールから対応するアルデヒドを製造する方法に関し、触媒として、担体に担持したルテニウム触媒を用いることが開示されており、多数の例示された複素環式アルコールには、フルフリルアルコールも含まれている。   Patent Documents 1 and 2 disclose a method for producing a corresponding aldehyde from an aliphatic alcohol, an alicyclic alcohol, an aromatic alcohol and a heterocyclic alcohol using molecular oxygen as an oxidizing agent. The use of a supported ruthenium catalyst is disclosed, and a number of the exemplified heterocyclic alcohols also include furfuryl alcohol.

Zhao-gang Wang, Kui Xu, Meng-nan Shen, Ming Lu, SYNLETT 2014,25,2459-2462.Zhao-gang Wang, Kui Xu, Meng-nan Shen, Ming Lu, SYNLETT 2014, 25, 2459-2462. T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K. Kaneda:Adv. Synth. Catal. , 351, 1890-1896 (2009).T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, K. Kaneda: Adv. Synth. Catal., 351, 1890-1896 (2009).

特開平11−226417号公報JP-A-11-226417 特開2001−48824号公報JP 2001-48824 A

しかしながら、酸素を酸化剤とし、非特許文献2に記載されたAu/HTを用いて、フルフラール又はフルフリルアルコール誘導体を酸化した場合、転化率が低く、低収率であることが判明した。
また、特許文献1,2において好ましい担持触媒とされている炭素担持ルテニウム触媒(以下、「Ru/C」とすることもある)を用いた場合、過剰な酸化反応により生成したカルボン酸が原料とエステル反応するか、あるいは、エステル重合が生じることにより、溶媒に不溶の副生成物を生じ、収率が低下するという問題があることが判明した。
However, when the furfural or furfuryl alcohol derivative was oxidized using Au / HT described in Non-Patent Document 2 using oxygen as an oxidizing agent, it was found that the conversion was low and the yield was low.
Further, in the case of using a ruthenium-on-carbon catalyst (hereinafter, also referred to as “Ru / C”) which is a preferred supported catalyst in Patent Documents 1 and 2, a carboxylic acid generated by an excessive oxidation reaction is used as a raw material. It has been found that there is a problem in that the ester reaction or the ester polymerization causes a by-product insoluble in the solvent and the yield is reduced.

本発明は、これらの知見に基づいてなされたものであり、酸素を酸化剤とし、フルフリルアルコール又はフルフリルアルコール誘導体を酸化して、フルフラール又は対応するフルフラール誘導体を得る方法において、転換率が高く、且つ、過剰な酸化反応を起こさない適切な触媒を用いることにより、高収率かつ高選択的にフルフラール又は対応するフルフラール誘導体を製造しうる方法を提供することを目的とする。   The present invention has been made based on these findings, using oxygen as an oxidizing agent, oxidizing furfuryl alcohol or a furfuryl alcohol derivative to obtain furfural or a corresponding furfural derivative, and a high conversion rate. An object of the present invention is to provide a method capable of producing furfural or a corresponding furfural derivative with high yield and high selectivity by using an appropriate catalyst that does not cause an excessive oxidation reaction.

本発明者らは、上記の課題を解決するために鋭意検討した結果、アルミナ担持ルテニウム触媒を用いることによって上記目的を達成できることを見出し、本発明を完成させるに至った。
すなわち、本発明は以下のとおりである。
[1]酸素を酸化剤とし、触媒の存在下、下記の一般式(1)で示されるフルフリルアルコール又はフルフリルアルコール誘導体を酸化して下記の一般式(2)で示されるフルフラール又はフルフラール誘導体を生成させる方法であって、前記触媒として、アルミナ担持ルテニウム触媒を用いることを特徴とするフルフラール又はフルフラール誘導体の製造方法。
The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above objects can be achieved by using a ruthenium catalyst supported on alumina, and have completed the present invention.
That is, the present invention is as follows.
[1] Furfural alcohol or a furfural derivative represented by the following general formula (2) by oxidizing furfuryl alcohol or a furfuryl alcohol derivative represented by the following general formula (1) in the presence of a catalyst using oxygen as an oxidizing agent , Wherein a ruthenium-on-alumina catalyst is used as the catalyst.

[式中、Rはプロトン、メチル基、又はホルミル基である。]
[2]前記酸化反応の圧力が、0.1〜10MPaであることを特徴とする[1]に記載のフルフラール又はフルフラール誘導体の製造方法。
[3]前記酸化反応の温度が、0〜150℃であることを特徴とする[1]又は[2]に記載のフルフラール又はフルフラール誘導体の製造方法。
[Wherein, R is a proton, a methyl group, or a formyl group. ]
[2] The method for producing furfural or a furfural derivative according to [1], wherein the pressure of the oxidation reaction is 0.1 to 10 MPa.
[3] The method for producing furfural or a furfural derivative according to [1] or [2], wherein the temperature of the oxidation reaction is 0 to 150 ° C.

本発明のフルフラール又はフルフラール誘導体の製造法によれば、アルミナ担持ルテニウム触媒を用いることで、常圧の酸素を酸化剤として活用することが可能となり、フルフリルアルコール又はフリフリルアルコール誘導体から高収率および高選択性でフルフラール又はフルフラール誘導体を得ることができる。   According to the method for producing furfural or a furfural derivative of the present invention, by using an alumina-supported ruthenium catalyst, it becomes possible to utilize oxygen at normal pressure as an oxidizing agent and obtain a high yield from furfuryl alcohol or a furfuryl alcohol derivative. Furfural or furfural derivatives can be obtained with high selectivity.

以下、本発明について詳細に説明する。
本発明において原料(基質)として用いる一般式(1)
Hereinafter, the present invention will be described in detail.
General formula (1) used as a raw material (substrate) in the present invention

[式中、Rはプロトン、メチル基、又はホルミル基である。]
で示されるフルフリルアルコール又はフルフリルアルコール誘導体は、特に限定されないが、例えばフルフリルアルコール、5−ヒドロキシメチルフルフラール、3−メチルフルフリルアルコール、4−メチルフルフリルアルコール、5−メチルフルフリルアルコール等が挙げられる。
これらの中でも、フルフリルアルコールや5−ヒドロキシメチルフルフラールは、例えば非可食の木質バイオマスから得られる環境調和型の化学原料として工業的に有用である。
[Wherein, R is a proton, a methyl group, or a formyl group. ]
The furfuryl alcohol or furfuryl alcohol derivative represented by is not particularly limited, but includes, for example, furfuryl alcohol, 5-hydroxymethylfurfural, 3-methylfurfuryl alcohol, 4-methylfurfuryl alcohol, 5-methylfurfuryl alcohol, and the like. Is mentioned.
Among these, furfuryl alcohol and 5-hydroxymethylfurfural are industrially useful as environmentally friendly chemical raw materials obtained from, for example, non-edible woody biomass.

また、本発明により製造される一般式(2)   The general formula (2) produced by the present invention

[式中、Rはプロトン、メチル基、又はホルミル基である。]
で示されるフルフラール又はフルフラール誘導体は、前記のフルフリルアルコール又はフルフリルアルコール誘導体のそれぞれに対応して、フルフラール、ジホルミルフラン、3−メチルフルフラール、4−メチルフルフラール、5−メチルフルフラール等が挙げられる。
[Wherein, R is a proton, a methyl group, or a formyl group. ]
Furfural or furfural derivatives represented by are, for example, furfural, diformylfuran, 3-methylfurfural, 4-methylfurfural, 5-methylfurfural, etc., corresponding to the above furfuryl alcohol or furfuryl alcohol derivative, respectively. .

本発明においては、酸素を酸化剤として用い、上記一般式(1)で示されるフルフリルアルコール誘導体を酸化して、上記一般式(2)で示されるフルフラール誘導体を製造する際に、アルミナ担持ルテニウム触媒を用いることにより、過剰な酸化反応を起こさずに、高収率かつ高選択的に、対応するフルフラール誘導体を得ることがきる。   In the present invention, when oxygen is used as an oxidizing agent to oxidize a furfuryl alcohol derivative represented by the above general formula (1) to produce a furfural derivative represented by the above general formula (2), ruthenium supported on alumina is used. By using a catalyst, the corresponding furfural derivative can be obtained with high yield and high selectivity without causing excessive oxidation reaction.

本発明で用いるアルミナ担持ルテニウム触媒は、反応後、ろ過により容易に系中から分離することができ、洗浄および乾燥後、再び反応に用いることができる。
アルミナ担持ルテニウム触媒としては、市販されているものを用いることができ、例えば、和光純薬工業製、シグマアルドリッチ社製、Alfa Aesar社製などのいずれも市販品が挙げられる。
The alumina-supported ruthenium catalyst used in the present invention can be easily separated from the system by filtration after the reaction, and can be used again for the reaction after washing and drying.
As the alumina-supported ruthenium catalyst, a commercially available one can be used, and examples thereof include commercially available products such as those manufactured by Wako Pure Chemical Industries, Sigma-Aldrich, and Alfa Aesar.

本発明に用いられるルテニウム触媒の触媒量は特に限定されないが、経済性と反応性の観点から、反応基質に対して、ルテニウム原子で1mol%〜30mol%が好ましく、5mol%〜10mol%がより好ましい。
なお、市販品のアルミナ担持ルテニウム触媒におけるルテニウムの担持量は、5重量%のものが一般的であり、酸化反応に用いる際には、反応基質に対するルテニウム原子に換算して用いられる。
The amount of the ruthenium catalyst used in the present invention is not particularly limited, but is preferably 1 mol% to 30 mol%, more preferably 5 mol% to 10 mol% with respect to the reaction substrate, based on the reaction substrate, from the viewpoint of economy and reactivity. .
The amount of supported ruthenium in a commercially available ruthenium-supported alumina catalyst is generally 5% by weight, and when used in an oxidation reaction, it is used in terms of a ruthenium atom relative to a reaction substrate.

本発明では、酸素の存在下で行われ、過酸化水素等の酸化剤を必要としない。そのため安全かつ安価にフルフラール誘導体を製造できる。
本発明に用いられる酸素としては、市販の精製ガスだけでなく、空気中に含まれる酸素を用いてもよい。酸素は、市販のガス採集袋に導入して常圧で用いることができる。また、より効率よく反応させるために、酸素ガスとして反応容器に供されることが好ましい。
The present invention is performed in the presence of oxygen and does not require an oxidizing agent such as hydrogen peroxide. Therefore, a furfural derivative can be produced safely and inexpensively.
As oxygen used in the present invention, not only commercially available purified gas but also oxygen contained in air may be used. Oxygen can be introduced into a commercially available gas collection bag and used at normal pressure. Further, in order to make the reaction more efficient, it is preferable that the oxygen gas is supplied to the reaction vessel.

本発明に用いられる溶媒としては、水、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、ヘキサン、トルエン、アセトン、メチルイソブチルケトン、クロロホルム、ジクロロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。特に限定されないが、非プロトン性有機溶媒が好ましく、中でもトルエン、メチルイソブチルケトンがより好ましく、トルエンがさらに好ましい。   Examples of the solvent used in the present invention include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, hexane, toluene, acetone, methyl isobutyl ketone, chloroform, dichloromethane, N, N-dimethylformamide, and dimethyl sulfoxide. And the like. Although not particularly limited, an aprotic organic solvent is preferable, and among them, toluene and methyl isobutyl ketone are more preferable, and toluene is further more preferable.

本発明の反応濃度は特に限定されないが、経済性と反応性の観点から0.05mol/L〜5mol/Lが好ましく、0.1mo/L〜1mol/Lがより好ましく、0.2mol/L〜0.5mol/Lがさらに好ましい。   The reaction concentration of the present invention is not particularly limited, but is preferably from 0.05 mol / L to 5 mol / L, more preferably from 0.1 mol / L to 1 mol / L, and more preferably from 0.2 mol / L, from the viewpoint of economy and reactivity. 0.5 mol / L is more preferred.

本発明の反応圧力は0.1MPa〜10MPaが好ましく、工業的な観点から0.1MPaがより好ましい。   The reaction pressure of the present invention is preferably 0.1 MPa to 10 MPa, and more preferably 0.1 MPa from an industrial viewpoint.

本発明の反応温度は0℃〜150℃が好ましく、50℃〜120℃がより好ましく、反応性の観点から80℃〜100℃がさらに好ましい。   The reaction temperature of the present invention is preferably from 0C to 150C, more preferably from 50C to 120C, and even more preferably from 80C to 100C from the viewpoint of reactivity.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例及び比較例に用いた触媒における「5mol%」は、いずれも、反応基質に対するルテニウム原子又は金原子の量を示す。   Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In addition, "5 mol%" in the catalysts used in Examples and Comparative Examples each indicates the amount of ruthenium atoms or gold atoms with respect to the reaction substrate.

反応の転化率および収率の決定は以下の方法で行った。
反応粗生成物に内部標準物質として正確に秤量したピラジンを加え、重クロロホルムに溶解することでサンプルを調製した。このサンプルのプロトンスペクトルをJEOL RESONANCE社製の核磁気共鳴スペクトル装置ECA−500を用いて測定した。得られた粗生成物スペクトルのピーク面積を内部標準スペクトルのピーク面積と比較することで転化率および収率を決定した。
The conversion and yield of the reaction were determined by the following methods.
A precisely weighed pyrazine was added as an internal standard substance to the reaction crude product, and dissolved in deuterated chloroform to prepare a sample. The proton spectrum of this sample was measured using a nuclear magnetic resonance spectrometer ECA-500 manufactured by JEOL RESONANCE. The conversion and yield were determined by comparing the peak area of the obtained crude product spectrum with the peak area of the internal standard spectrum.

(実施例1)
フルフリルアルコール(1mmol,98mg)にトルエン(5mL)を加え、Ru/Al(和光純薬工業製)(5mol%Ru)を懸濁させた。酸素ガスを充填したガス採集袋を取り付け、アスピレーターを用いて反応容器内部を酸素置換した。反応液を強く撹拌しながら80℃で24時間反応させた後、ろ過により触媒を除去し、母液を減圧留去した。得られた生成物を分析した結果、原料は完全に消失し、目的のフルフラ−ルの収率は98%であった。
また、溶媒に不溶な副生成物の生成はなかった。
(Example 1)
Tolufuryl alcohol (1 mmol, 98 mg) was added with toluene (5 mL), and Ru / Al 2 O 3 (manufactured by Wako Pure Chemical Industries) (5 mol% Ru) was suspended. A gas collection bag filled with oxygen gas was attached, and the inside of the reaction vessel was replaced with oxygen using an aspirator. After the reaction was allowed to react at 80 ° C. for 24 hours with vigorous stirring, the catalyst was removed by filtration, and the mother liquor was distilled off under reduced pressure. As a result of analyzing the obtained product, the raw material was completely disappeared, and the yield of the target furfural was 98%.
In addition, there was no generation of a by-product insoluble in the solvent.

(実施例2)
基質に5−メチルフルフリルアルコール(1mmol,112mg)を用いる以外は実施例1と同様の手法で行った。得られた生成物を分析した結果、原料は完全に消失し、目的の5−メチルフルフラールの収率は95%であった。
また、溶媒に不溶な副生成物の生成はなかった。
(Example 2)
The procedure was performed in the same manner as in Example 1 except that 5-methylfurfuryl alcohol (1 mmol, 112 mg) was used as the substrate. As a result of analyzing the obtained product, the raw material completely disappeared, and the yield of the desired 5-methylfurfural was 95%.
In addition, there was no generation of a by-product insoluble in the solvent.

(実施例3)
基質に5−ヒドロキシメチルフルフラール(1mmol,126mg)を用いる以外は実施例1と同様の手法で行った。得られた生成物を分析した結果、原料は完全に消失し、目的のジホルミルフランの収率は99%であった。
また、溶媒に不溶な副生成物の生成はなかった。
(Example 3)
The procedure was performed in the same manner as in Example 1 except that 5-hydroxymethylfurfural (1 mmol, 126 mg) was used as the substrate. As a result of analyzing the obtained product, the raw material completely disappeared, and the yield of the target diformylfuran was 99%.
In addition, there was no generation of a by-product insoluble in the solvent.

(実施例4)
溶媒にメチルイソブチルケトン(5mL)を用いる以外は実施例3と同様の手法で行った。得られた生成物を分析した結果、原料の転化率は97%であり、目的のジホルミルフランの収率は72%であった。
また、溶媒に不溶な副生成物の生成はなかった。
(Example 4)
The procedure was performed in the same manner as in Example 3 except that methyl isobutyl ketone (5 mL) was used as the solvent. As a result of analyzing the obtained product, the conversion of the raw material was 97%, and the yield of the target diformylfuran was 72%.
In addition, there was no generation of a by-product insoluble in the solvent.

参考例
溶媒に水(5mL)を用いる以外は実施例3と同様の手法で行った。得られた生成物を分析した結果、原料の転化率は48%であり、目的のジホルミルフランの収率は21%であった。
また、溶媒に不溶な副生成物の生成はなかった。
( Reference example )
The procedure was performed in the same manner as in Example 3, except that water (5 mL) was used as the solvent. As a result of analyzing the obtained product, the conversion of the raw material was 48%, and the yield of the target diformylfuran was 21%.
In addition, there was no generation of a by-product insoluble in the solvent.

(比較例1)
触媒にRu/C(和光純薬工業製)(5mol%Ru)を用いる以外は実施例3と同様の手法で行った。得られた生成物を分析した結果、原料は全て消失し、目的ジホルミルフランの収率は75%であった。
また溶媒に不溶な副生成物が生じていた。
(Comparative Example 1)
The procedure was performed in the same manner as in Example 3, except that Ru / C (manufactured by Wako Pure Chemical Industries) (5 mol% Ru) was used as the catalyst. As a result of analyzing the obtained product, all the raw materials disappeared, and the yield of the target diformylfuran was 75%.
Further, a by-product insoluble in the solvent was generated.

(比較例2)
触媒にハイドロタルサイト担持金触媒(Au/HT)(和光純薬工業製)(5mol%Au)を用いる以外は実施例3と同様の手法で行った。得られた生成物を分析した結果、転化率は19%であり、目的ジアルデヒドの収率は7%であった。
なお、溶媒に不溶な副生成物の生成はなかった。
これらの結果を、以下の表1に記載する。
(Comparative Example 2)
The same procedure as in Example 3 was performed except that a hydrotalcite-supported gold catalyst (Au / HT) (manufactured by Wako Pure Chemical Industries, Ltd.) (5 mol% Au) was used as the catalyst. As a result of analyzing the obtained product, the conversion was 19%, and the yield of the objective dialdehyde was 7%.
In addition, there was no generation of a by-product insoluble in the solvent.
These results are set forth in Table 1 below.

以上のとおり、アルミナ担持ルテニウム触媒を用いた実施例1〜では、転化率及び収率がいずれも高い結果が得られた。また、溶媒は、水よりも、非プロトン性有機溶媒が好ましいことがわかる。
これに対して、比較例1の反応はアルミナ担持ルテニウム触媒の代わりに炭素担持ルテニウム触媒を用いたため、原料はほぼ消失したが、目的物の収率が低くなるとともに、溶媒に不溶の副生成物が生じた。
また、比較例2の反応は、アルミナ担持ルテニウム触媒の代わりにハイドロタルサイト担持金触媒を用いたため、転化率が低く、低収率であった。
As described above, in Examples 1 to 4 using the alumina-supported ruthenium catalyst, high conversion rates and high yields were obtained. Further, it is understood that the solvent is preferably an aprotic organic solvent rather than water.
In contrast, in the reaction of Comparative Example 1, since the ruthenium catalyst supported on carbon was used instead of the ruthenium catalyst supported on alumina, the raw materials almost disappeared, but the yield of the target product was reduced and the by-product insoluble in the solvent was obtained. Occurred.
In the reaction of Comparative Example 2, the conversion was low and the yield was low because the gold catalyst supported on hydrotalcite was used instead of the ruthenium catalyst supported on alumina.

Claims (2)

酸素を酸化剤とし、触媒の存在下、非プロトン性有機溶媒を用いて、下記の一般式(1)で示されるフルフリルアルコール又はフルフリルアルコール誘導体を酸化して下記の一般式(2)で示されるフルフラール又はフルフラール誘導体を生成させる方法であって、前記酸化反応の圧力が0.1MPaであり、前記触媒として、アルミナ担持ルテニウム触媒を用いることを特徴とするフルフラール又はフルフラール誘導体の製造方法。
[式中、Rはプロトン、メチル基、又はホルミル基である。]
Furfuryl alcohol or a furfuryl alcohol derivative represented by the following general formula (1) is oxidized using an aprotic organic solvent in the presence of a catalyst in the presence of a catalyst using oxygen as an oxidizing agent to obtain a compound represented by the following general formula (2) A method for producing furfural or a furfural derivative as described , wherein the pressure of the oxidation reaction is 0.1 MPa, and a ruthenium catalyst supported on alumina is used as the catalyst.
[Wherein, R is a proton, a methyl group, or a formyl group. ]
前記酸化反応の温度が、0〜150℃であることを特徴とする請求項に記載のフルフラール又はフルフラール誘導体の製造方法。 The method for producing furfural or a furfural derivative according to claim 1 , wherein the temperature of the oxidation reaction is 0 to 150 ° C.
JP2015246219A 2015-12-17 2015-12-17 Method for producing furfural or furfural derivative Active JP6638934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015246219A JP6638934B2 (en) 2015-12-17 2015-12-17 Method for producing furfural or furfural derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015246219A JP6638934B2 (en) 2015-12-17 2015-12-17 Method for producing furfural or furfural derivative

Publications (2)

Publication Number Publication Date
JP2017109959A JP2017109959A (en) 2017-06-22
JP6638934B2 true JP6638934B2 (en) 2020-02-05

Family

ID=59081077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246219A Active JP6638934B2 (en) 2015-12-17 2015-12-17 Method for producing furfural or furfural derivative

Country Status (1)

Country Link
JP (1) JP6638934B2 (en)

Also Published As

Publication number Publication date
JP2017109959A (en) 2017-06-22

Similar Documents

Publication Publication Date Title
US9359318B2 (en) Process for the synthesis of 2,5-furandicarboxylic acid
AU2014241870B2 (en) Process for making 2,5-furandicarboxylic acid
JP5550303B2 (en) Process for producing 2,5-furandicarboxylic acid
Vigier et al. Combination of Pd/C and Amberlyst-15 in a single reactor for the acid/hydrogenating catalytic conversion of carbohydrates to 5-hydroxy-2, 5-hexanedione
FI127224B (en) Method for producing muconic acids and furans from aldaric acids
JP2014515037A (en) Process for producing 5-hydroxymethylfurfural
WO2017076947A1 (en) Process for preparing furan-2,5-dicarboxylic acid
US9365531B2 (en) Method for selectively oxidizing 5-hydroxymethyl furaldehyde
FR3008409A1 (en) PROCESS FOR THE PRODUCTION OF 2,5-DICARBOXALDEHYDE FURANE FROM HYDROXYMETHYLFURFURAL AND HALOGENATED DERIVATIVES NOT USING METAL CATALYST
KR20160136849A (en) Method for preparing 2,5-furandicarboxylic acid
Matsumoto et al. Polymer incarcerated ruthenium catalyst for oxidation of alcohols with molecular oxygen
CN108440462B (en) Method for preparing 5-hydroxymethylfurfural from fructose in acid-free system
JP6638934B2 (en) Method for producing furfural or furfural derivative
JP2013126967A (en) Method for producing succinic acid
CN107540520B (en) Method for preparing pyromellitic acid or trimellitic acid from pinacol
JP6369828B2 (en) Method for reducing hydroxymethylfurfural
KR20180031724A (en) Preparation method of 2-hydroxy-1,4-naphtoquinone
JP5053661B2 (en) Method for producing N, N, N ', N'-tetramethylazodicarboxamide
FR3029916A1 (en) PROCESS FOR PRODUCING QUINOLINE IN THE LIQUID PHASE
JP2016164218A (en) Manufacturing method of aromatic hydrocarbon formaldehyde resin
JP2005008617A (en) Method for producing alkyl group-substituted aromatic ketone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191213

R150 Certificate of patent or registration of utility model

Ref document number: 6638934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250