JP6631297B2 - Method of estimating soundness of secondary battery in system using both fuel cell and secondary battery, and system using both fuel cell and secondary battery - Google Patents

Method of estimating soundness of secondary battery in system using both fuel cell and secondary battery, and system using both fuel cell and secondary battery Download PDF

Info

Publication number
JP6631297B2
JP6631297B2 JP2016024675A JP2016024675A JP6631297B2 JP 6631297 B2 JP6631297 B2 JP 6631297B2 JP 2016024675 A JP2016024675 A JP 2016024675A JP 2016024675 A JP2016024675 A JP 2016024675A JP 6631297 B2 JP6631297 B2 JP 6631297B2
Authority
JP
Japan
Prior art keywords
secondary battery
open
charging rate
circuit voltage
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016024675A
Other languages
Japanese (ja)
Other versions
JP2017143026A (en
Inventor
佐藤 勝彦
勝彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP2016024675A priority Critical patent/JP6631297B2/en
Publication of JP2017143026A publication Critical patent/JP2017143026A/en
Application granted granted Critical
Publication of JP6631297B2 publication Critical patent/JP6631297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池と二次電池を併用するシステムにおける二次電池の健全度推定方法、および、同方法を実施するための燃料電池と二次電池を併用するシステムに関する。   The present invention relates to a method for estimating the soundness of a secondary battery in a system using both a fuel cell and a secondary battery, and a system using both a fuel cell and a secondary battery for implementing the method.

燃料電池は、燃料(水素など)と酸化剤(酸素など)を反応させることにより電力を取り出す発電装置であり、燃料を補充することで継続的に電源として使用できるが、低温始動時に出力が不安定になる問題がある。また、燃料や酸化剤を燃料電池に連続的に供給するための補機用電力も必要である。   A fuel cell is a power generator that extracts power by reacting a fuel (such as hydrogen) with an oxidant (such as oxygen). The fuel cell can be used continuously as a power source by replenishing the fuel. There is a problem of becoming stable. Also, electric power for auxiliary equipment for continuously supplying fuel and oxidant to the fuel cell is required.

そこで、燃料電池と二次電池を併用する電源システムを構築し、始動時の電源や補機用電源に二次電池を用いることが有利である。このようなシステムを搭載した車両では、二次電池の充電率(State of charge:SOC)や健全度(State of health:SOH)を把握し、走行に支障がないよう管理することが求められる。   Therefore, it is advantageous to construct a power supply system using both the fuel cell and the secondary battery, and to use the secondary battery as a power supply at the time of starting and a power supply for auxiliary equipment. In a vehicle equipped with such a system, it is required that the state of charge (SOC) and the state of health (SOH) of the secondary battery be grasped and managed so as not to hinder traveling.

二次電池のSOHは、満充電状態からの完全放電によって劣化時の電池容量を測定して初期容量との比を算出することにより求めることができるが、点検時など特殊な場合を除き、車両運用時に満充電から完全放電を行うのは困難である。そこで、二次電池のSOHを直接求める代わりに、他のパラメータからSOHを推定する手法が採られる。   The SOH of a secondary battery can be obtained by measuring the battery capacity at the time of deterioration due to complete discharge from a fully charged state and calculating the ratio to the initial capacity. It is difficult to completely discharge from full charge during operation. Therefore, instead of directly obtaining the SOH of the secondary battery, a method of estimating the SOH from other parameters is employed.

例えば、特許文献1には、二次電池の放電中、コンプレッサによる燃料電池内部の水分掃気中の一定電流、一定出力状態で測定した電圧、温度、電流測定値を、予め作成した劣化判定マップに当てはめ、劣化レベルを判定する方法が開示されている。しかし、この方法では、温度やSOCなど、実際の運用条件毎に多数の劣化マップを作成しておく必要があり、特許文献1には、二次電池の劣化度合いを三段階に分けて判定する場合が示されているものの、劣化判定レベルの細分化には限界がある。   For example, Patent Literature 1 discloses that a constant current, a voltage, a temperature, and a current measured in a constant output state during a scavenging of moisture in a fuel cell by a compressor during discharge of a secondary battery are stored in a deterioration determination map created in advance. A method of fitting and determining the degradation level is disclosed. However, in this method, it is necessary to prepare a number of deterioration maps for each actual operating condition such as temperature and SOC, and Patent Literature 1 determines the degree of deterioration of the secondary battery in three stages. Although the case is shown, there is a limit in subdividing the deterioration determination level.

しかも、この方法では、二次電池の健全度(SOH=劣化時の電池容量/初期の電池容量)を数値として求めることができないという問題がある。二次電池の充電率(SOC)は、残容量/電池容量から求めるため、二次電池が劣化した場合、SOHを取得できないと、充電率(SOC)を正確に求めることができない。   In addition, this method has a problem that the soundness of the secondary battery (SOH = battery capacity at the time of deterioration / initial battery capacity) cannot be obtained as a numerical value. Since the state of charge (SOC) of the secondary battery is obtained from the remaining capacity / battery capacity, when the secondary battery has deteriorated, the SOH cannot be obtained without accurately obtaining the state of charge (SOC).

一方、満充電状態からの完全放電によって劣化時の電池容量を測定する代わりに、ある区間の電流積算値に基づく充電率変化と、開回路電圧(OCV)から求めた充電率(開放電圧充電率)の差との比からSOHを推定する方法もある。しかし、この方法では、充放電前後の開回路電圧(OCV)の測定を無負荷状態かつ分極緩和状態で行う必要があり、分極緩和状態になるには、充放電終了後数十分ないし数時間を要するので、特殊な場合以外では利用困難であった。   On the other hand, instead of measuring the battery capacity at the time of deterioration due to complete discharge from the fully charged state, a change in the charge rate based on the current integrated value in a certain section and the charge rate (open-circuit charge rate) obtained from the open circuit voltage (OCV) ) Can be used to estimate the SOH. However, in this method, it is necessary to measure the open circuit voltage (OCV) before and after charging / discharging in a no-load state and in a polarization-relaxed state, and it takes tens of minutes to several hours after the end of charge / discharge to enter the polarization-relaxed state. Therefore, it was difficult to use it except in special cases.

特開2009−231197号公報JP 2009-231197 A

本発明は従来技術の上記の点に鑑みてなされたものであり、その目的は、燃料電池と二次電池を併用するシステムにおいて、二次電池の健全度を低コストかつ高精度で算出することができ、二次電池の管理精度を向上できる二次電池の健全度推定方法および装置を提供することにある。   The present invention has been made in view of the above points of the related art, and an object thereof is to calculate the soundness of a secondary battery with low cost and high accuracy in a system using both a fuel cell and a secondary battery. It is an object of the present invention to provide a method and an apparatus for estimating the soundness of a secondary battery that can improve the management accuracy of the secondary battery.

上記課題を解決するために、本発明者が鋭意検討した結果、燃料電池と二次電池を併用するシステムの停止後に次回始動に備えて実施される二次電池の回復充電に着目し、前後2回の回復充電の目標充電率に有意な差を設けることで、その間の開放電圧充電率の差および電流積算充電率が、有意な大きさをもった値となり、それらの値から二次電池の健全度を精度よく算出できるという知見を得て本発明に想到した。   In order to solve the above-mentioned problems, the present inventor has conducted intensive studies. As a result, the present inventors focused on the recovery charging of the secondary battery which is performed in preparation for the next start after stopping the system using both the fuel cell and the secondary battery. By providing a significant difference between the target charging rates of the recovery charging times, the difference between the open-circuit charging rate and the current integrated charging rate during that time becomes a value having a significant magnitude. The present inventors have found that the degree of soundness can be accurately calculated, and have arrived at the present invention.

すなわち本発明は、燃料電池と二次電池を併用するシステムにおいて、
前記システムの待機時間を挟む前後2回の使用(100,200)の後に、前記二次電池を異なる目標充電率に充電して(130,230)開放電圧を測定し(170,270)、それぞれの開放電圧に基づいて開放電圧充電率(SOCv1,SOCv2)を算出する(180,280)とともに、前記2回の開放電圧測定間の入出力電流積算値を求め(280)、それに基づいて電流積算充電率(ΔSOCi)を算出し(282)、前記2回の開放電圧充電率の差をΔSOCv、前記電流積算充電率をΔSOCiとして、前記二次電池の健全度SOHを、
式:ΔSOCi/ΔSOCv=SOHより推定する(284)ことを特徴とする。
That is, the present invention relates to a system using both a fuel cell and a secondary battery,
After two uses (100, 200) before and after the standby time of the system, the secondary battery is charged to different target charging rates (130, 230), and the open-circuit voltage is measured (170, 270). The open-circuit voltage charging rate (SOCv1, SOCv2) is calculated based on the open-circuit voltage (SOCv1, SOCv2) (180, 280), and the input / output current integrated value between the two open-circuit voltage measurements is obtained (280). A charge rate (ΔSOCi) is calculated (282), and a degree of health SOH of the secondary battery is defined assuming that a difference between the two open-circuit charge rates is ΔSOCv and the integrated current charge rate is ΔSOCi.
Equation (284): Estimate from ΔSOCi / ΔSOCv = SOH (284).

上記方法によれば、燃料電池と二次電池を併用するシステムにおいて通常実施される二次電池の回復充電を利用して二次電池の健全度を実用的な頻度で精度よく算出でき、しかも、二次電池の健全度を充電率(残容量)の算出や劣化判定に直接利用できる数値として取得できることに加えて、劣化マップが不要であり、導入コストおよび運用コストも少なく、二次電池の管理精度を向上するうえで有利である。   According to the above method, the soundness of the secondary battery can be accurately calculated at a practical frequency using recovery charging of the secondary battery usually performed in a system using both the fuel cell and the secondary battery, and In addition to being able to obtain the degree of soundness of the secondary battery as a numerical value that can be directly used for calculating the charge rate (remaining capacity) and determining deterioration, a deterioration map is not required, and the introduction and operation costs are low, and the management of the secondary battery This is advantageous in improving accuracy.

本発明に係る二次電池の健全度推定方法は具体的に、
燃料電池と二次電池を併用するシステムにおける二次電池の健全度推定方法であって、
前記二次電池からの放電を伴う前記システムの第一の使用(100)の後に、
前記二次電池を第一の目標充電率に充電するステップ(130)と、
前記充電後に前記第一の目標充電率にて第一の開放電圧を測定するステップ(170)と、
前記第一の開放電圧に基づいて第一の開放電圧充電率(SOCv1)を算出するステップ(180)と、
前記目標充電率を前記第一の目標充電率と異なる第二の目標充電率に変更または設定するステップ(138,238)と、を実施し、
前記二次電池からの放電を伴う前記システムの第二の使用(200)の後に、
前記二次電池を前記第二の目標充電率に充電するステップ(230)と、
前記充電後に前記第二の目標充電率にて第二の開放電圧を測定するステップ(270)と、
前記第二の開放電圧に基づいて第二の開放電圧充電率(SOCv2)を算出するステップ(280)と、
前記第一の開放電圧測定から前記第二の開放電圧測定までの入出力電流積算値(SOCi2)を求めるステップ(280)と、
前記電流積算値に基づいて電流積算充電率(ΔSOCi)を算出するステップ(282)と、
前記第一の開放電圧充電率(SOCv1)と前記第二の開放電圧充電率(SOCv2)との差を(ΔSOCv)、前記電流積算充電率を(ΔSOCi)として、前記二次電池の健全度SOHを、式:ΔSOCi/ΔSOCv=SOHより推定するステップ(284)と、を実施することを含む、二次電池の健全度推定方法として規定される。
The method for estimating the soundness of a secondary battery according to the present invention is specifically,
A method for estimating the soundness of a secondary battery in a system using both a fuel cell and a secondary battery,
After a first use (100) of the system with discharging from the secondary battery,
Charging the secondary battery to a first target charging rate (130);
Measuring a first open circuit voltage at the first target charging rate after the charging (170);
Calculating a first open-circuit voltage charging rate (SOCv1) based on the first open-circuit voltage (180);
Changing or setting the target charging rate to a second target charging rate different from the first target charging rate (138, 238);
After a second use (200) of the system with discharging from the secondary battery,
Charging the secondary battery to the second target charging rate (230);
Measuring a second open circuit voltage at the second target charging rate after the charging (270);
Calculating a second open-circuit voltage charging rate (SOCv2) based on the second open-circuit voltage (280);
A step (280) of obtaining an input / output current integrated value (SOCi2) from the first open-circuit voltage measurement to the second open-circuit voltage measurement;
Calculating (282) a current integrated charging rate (ΔSOCi) based on the current integrated value;
Assuming that the difference between the first open-circuit voltage charging rate (SOCv1) and the second open-circuit voltage charging rate (SOCv2) is (ΔSOCv), and the current integrated charging rate is (ΔSOCi), the degree of health SOH of the secondary battery is (284) is estimated from the equation: ΔSOCi / ΔSOCv = SOH.

上記によってさらに明らかなように、システムの通常の運用の中で健全度の推定を実施でき、しかも、各算出値は二次電池の充電率管理と共通のパラメータであり、SOC管理とSOH管理を並行して総合的に実施できる利点がある。   As is clear from the above, the estimation of the soundness can be performed during the normal operation of the system, and the calculated values are parameters common to the charge rate management of the secondary battery, and the SOC management and the SOH management are performed. There is an advantage that it can be implemented comprehensively in parallel.

本発明に係る二次電池の健全度推定方法の好適な態様では、
前記二次電池を第一の目標充電率に充電する前記ステップ(130)は、前記二次電池からの放電を伴う前記システムの第一の使用(100)の後の第一の停止操作(110)で開始され、かつ、前記燃料電池からの給電によって実施され、
前記第一の開放電圧充電率を算出する前記ステップ(180)は、前記システムの次の起動操作(150)により開始され、
前記二次電池を第二の目標充電率に充電する前記ステップ(230)は、前記二次電池からの放電を伴う前記システムの第二の使用(200)の後の第二の停止操作(210)で開始され、かつ、前記燃料電池からの給電によって実施され、
前記第二の開放電圧充電率を算出する前記ステップ(280)は、前記システムのさらに次の起動操作(250)により開始されるので、通常の運用時の操作で自動的に適正なタイミングで健全度の推定と劣化管理を実施するうえで有利である。
In a preferred aspect of the method for estimating the soundness of a secondary battery according to the present invention,
The step (130) of charging the secondary battery to a first target charging rate comprises a first stop operation (110) after a first use (100) of the system with a discharge from the secondary battery. ) And is implemented by power supply from the fuel cell,
The step (180) of calculating the first open-circuit charge rate is started by a next start-up operation (150) of the system;
The step (230) of charging the secondary battery to a second target charge rate comprises a second shutdown operation (210) after a second use (200) of the system with discharging from the secondary battery. ) And is implemented by power supply from the fuel cell,
The step (280) of calculating the second open-circuit charging rate is started by the next start-up operation (250) of the system. This is advantageous in performing degree estimation and deterioration management.

本発明において、前記第一の開放電圧充電率と前記第二の開放電圧充電率との差は、満充電を100%として10%以上であることが好適である。この構成により、開放電圧充電率の差および電流積算充電率の差が有意な大きさをもった値となり、測定誤差の影響を排除して高精度かつ安定的に健全度の算出を行うのに有利である。   In the present invention, it is preferable that a difference between the first open-circuit voltage charging rate and the second open-circuit voltage charging rate is 10% or more when a full charge is 100%. With this configuration, the difference between the open-circuit charging rate and the difference between the current integrated charging rates has a significant value, and the accuracy of the soundness can be calculated with high accuracy and stability while eliminating the influence of the measurement error. It is advantageous.

本発明において、前記第一の開放電圧充電率および前記第二の開放電圧充電率は、何れも満充電を100%として70%以上であることが好適である。始動時に燃料電池の出力不足を補うためには、二次電池の充電率が十分に確保されている必要があり、70%以上であれば、そのようなシステムの機能を損なうことなく、健全度推定を実施できる。   In the present invention, it is preferable that each of the first open-circuit voltage charging rate and the second open-circuit voltage charging rate is 70% or more when a full charge is 100%. In order to compensate for the insufficient output of the fuel cell at the time of starting, it is necessary that the charging rate of the secondary battery is sufficiently ensured. If it is 70% or more, the soundness of such a system is maintained without impairing the function of such a system. An estimate can be made.

また、本発明は、燃料電池(3)と二次電池(2)を併用するシステムであって、
前記燃料電池の発電および前記二次電池の充放電を管理する電力管理装置(4)と、
前記二次電池の状態を管理するバッテリー管理装置(1)と、を備え、
前記電力管理装置(4)は、前記二次電池を目標充電率まで充電する充電制御手段(40)を含み、
前記バッテリー管理装置(1)は、前記二次電池の開放電圧を測定する手段(22)、前記開放電圧に基づいて開放電圧充電率を算出する手段(12)、前記二次電池の電流積算値を測定する手段(21,11)、および、前記電流積算値に基づいて電流積算充電率を算出する手段(11)を含み、
前記システムの使用後に充電率が所定以下の場合に回復充電が実施されるように構成されているものにおいて、
前記回復充電の完了後に前記目標充電率を、第一の目標充電率から第二の目標充電率に変更し、前記変更された目標充電率を次の回復充電まで記憶する手段(10,41)と、
前記第一の目標充電率に充電された状態で測定された第一の開放電圧に基づく第一の開放電圧充電率(SOCv1)と、前記第二の目標充電率に充電された状態で測定された第二の開放電圧に基づく第二の開放電圧充電率(SOCv2)との差をΔSOCv、前記電流積算値の測定手段により測定された前記第一の開放電圧測定から前記第二の開放電圧測定までの入出力電流積算値に基づく電流積算充電率をΔSOCiとして、前記二次電池の健全度SOHを、式:ΔSOCi/ΔSOCv=SOHより算出する健全度推定手段(10)と、を備えたことを特徴とするシステムをも対象としている。
Further, the present invention relates to a system using both a fuel cell (3) and a secondary battery (2),
A power management device (4) for managing power generation of the fuel cell and charging / discharging of the secondary battery;
A battery management device (1) for managing a state of the secondary battery,
The power management device (4) includes charging control means (40) for charging the secondary battery to a target charging rate,
The battery management device (1) includes means (22) for measuring an open voltage of the secondary battery, means (12) for calculating an open voltage charging rate based on the open voltage, and an integrated current value of the secondary battery. means for measuring (21, 11), and, seen including means (11) for calculating a current integration SOC based on the current integrated value,
In a configuration in which the recovery charge is performed when the charge rate is equal to or less than a predetermined value after use of the system ,
Means for storing the target charging rate after the completion of the recovery charge, to change from the first target charging rate to a second target charging rate, the changed target charging rate to the next recovery charge (10,41) When,
A first open-circuit voltage charging rate (SOCv1) based on the first open-circuit voltage measured in a state charged to the first target charging rate, and measured in a state charged to the second target charging rate. The difference from the second open-circuit voltage charging rate (SOCv2) based on the second open-circuit voltage is ΔSOCv, the second open-circuit voltage measurement from the first open-circuit voltage measurement measured by the current integrated value measuring means. And a soundness estimating means (10) for calculating a soundness SOH of the secondary battery from an equation: ΔSOCi / ΔSOCv = SOH, where ΔSOCi is a current integrated charging rate based on the input / output current integrated value up to and including It is also intended for systems characterized by.

本発明において、前記バッテリー管理装置(1)は、目標充電率まで充電後に前記二次電池が定常状態であることを判定する定常状態判定手段(13)をさらに含み、前記二次電池が定常状態であると判定された場合に、前記二次電池の開放電圧が測定または取得されるように構成されていることが好適である。   In the present invention, the battery management device (1) further includes a steady state determining means (13) for determining that the secondary battery is in a steady state after charging to a target charging rate, wherein the secondary battery is in a steady state. Preferably, when it is determined that the open circuit voltage is determined, the open circuit voltage of the secondary battery is measured or obtained.

本発明において、前記定常状態判定手段は、前記目標充電率までの充電完了後の所定時間の経過を判定する手段、または、開放電圧の変化が所定値以下となったことを判定する手段を含むことができる。   In the present invention, the steady state determining unit includes a unit that determines a lapse of a predetermined time after the completion of charging up to the target charging rate, or a unit that determines that a change in the open-circuit voltage has become a predetermined value or less. be able to.

本発明は、上述の通り構成されているので、燃料電池と二次電池を併用するシステムにおいて、二次電池の健全度を低コストかつ高精度で算出することができ、二次電池の管理精度を向上するうえで有利である。   Since the present invention is configured as described above, in a system using both a fuel cell and a secondary battery, the soundness of the secondary battery can be calculated with low cost and high accuracy, and the management accuracy of the secondary battery can be calculated. It is advantageous in improving.

燃料電池と二次電池を併用する車両用電源システムを示すブロック図である。FIG. 2 is a block diagram showing a vehicle power supply system using both a fuel cell and a secondary battery. 燃料電池と二次電池を併用する車両用電源システムにおけるバッテリー管理ユニットを示すブロック図である。FIG. 3 is a block diagram showing a battery management unit in a vehicle power supply system using both a fuel cell and a secondary battery. 本発明実施形態に係る燃料電池と二次電池を併用する車両用電源システムの運用に沿った二次電池の健全度推定プロセスを示すフローチャートである。5 is a flowchart illustrating a process of estimating the soundness of a secondary battery along with the operation of a vehicle power supply system using both a fuel cell and a secondary battery according to an embodiment of the present invention. 本発明実施形態に係る燃料電池と二次電池を併用する車両用電源システムの回復充電シーケンスを示すフローチャートである。4 is a flowchart illustrating a recovery charging sequence of the vehicle power supply system using both the fuel cell and the secondary battery according to the embodiment of the present invention. 本発明実施形態に係る燃料電池と二次電池を併用する車両用電源システムにおける二次電池の充電率変化を示すグラフである。4 is a graph showing a change in a charging rate of a secondary battery in a vehicle power supply system using both a fuel cell and a secondary battery according to an embodiment of the present invention.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。
図1は、燃料電池3と二次電池2を併用する車両用電源システムを構成する主要部品を示しており、この電源システムを搭載した車両(燃料電池車両)は、電力管理装置4により、燃料電池3で発電した電力と二次電池2に蓄電した電力を制御して、駆動用モータ5を駆動して走行する。車両の減速時には、回生電力を二次電池2に充電する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows main components constituting a vehicle power supply system using both a fuel cell 3 and a secondary battery 2. A vehicle equipped with this power supply system (fuel cell vehicle) is controlled by a power management device 4 to provide fuel. The power generated by the battery 3 and the power stored in the secondary battery 2 are controlled to drive the drive motor 5 to travel. When the vehicle decelerates, the regenerative power is charged in the secondary battery 2.

燃料電池3(燃料電池スタック)は、正極に酸化剤(正極活性物質)として空気中の酸素をコンプレッサ32で供給し、負極に燃料(負極活性物質)として水素タンク31から水素を供給することで、膜電極複合体に担持された触媒による酸化還元反応を生じさせ、電力を得るものであり、水素タンク31のバルブやコンプレッサ32などの補機類を作動させるための電力は二次電池2から供給される。   The fuel cell 3 (fuel cell stack) supplies oxygen in the air as an oxidant (positive electrode active material) to the positive electrode by the compressor 32 and supplies hydrogen from the hydrogen tank 31 to the negative electrode as fuel (negative electrode active material). In addition, an electric power is obtained by causing an oxidation-reduction reaction by a catalyst supported on the membrane electrode assembly, and electric power for operating auxiliary equipment such as a valve of the hydrogen tank 31 and a compressor 32 is supplied from the secondary battery 2. Supplied.

燃料電池3の起動時は、1)作動温度(60℃〜80℃程度)に比べて低温(−30〜45℃程度)であることによる低触媒活性、2)固体高分子膜内が低加湿状態であることによるイオン低電導性、3)停止中に正極側が空気に置換されることによる酸素過多、4)触媒表面の被毒物質被覆による触媒活性低下等の理由により、燃料電池3の出力が不安定となる。   When the fuel cell 3 is started, 1) low catalytic activity due to a low temperature (about -30 to 45 ° C.) compared to an operating temperature (about 60 ° C. to 80 ° C.) 2) low humidification inside the solid polymer membrane Low ion conductivity due to the state, 3) excessive oxygen due to air being replaced on the positive electrode side during shutdown, 4) output of fuel cell 3 due to reduced catalytic activity due to coating of poisoning substances on the catalyst surface, etc. Becomes unstable.

そこで、起動直後から燃料電池3が定常運転状態になるまでの間、二次電池2を駆動用モータ5の電力源として用いることで、キーオン後、車両を即時に通常走行させることができるようにしている。二次電池2は、バッテリー管理ユニット(以下BMU:Battery management unit)により、所定の使用範囲内(例えば、SOC:30〜70%)で充放電するように制御されるが、燃料電池3の起動時には、上述の理由により、二次電池2のSOCを使用上限に近い状態にしておくことが望ましい。   Therefore, the secondary battery 2 is used as a power source for the drive motor 5 immediately after the start-up and until the fuel cell 3 enters a steady operation state, so that the vehicle can be immediately driven normally after key-on. ing. The secondary battery 2 is controlled by a battery management unit (BMU: Battery management unit) so as to be charged and discharged within a predetermined usage range (for example, SOC: 30 to 70%). At times, it is desirable to keep the SOC of the secondary battery 2 close to the upper limit of use for the above-described reason.

図2は、燃料電池3と二次電池2を併用する車両用電源システムにおけるBMU1を示すブロック図であり、BMU1は、電流、電圧、温度データの記録、SOC管理(SOC推定アルゴリズム・テーブルデータ)、SOH管理(SOH推定アルゴリズム)、SOP管理(SOP推定アルゴリズム・テーブルデータ)、電流・電圧・温度上下限管理、セルバランス制御などを実行するプログラムを格納するROM、演算処理を行うCPU、データ記録を行うメモリー、入出力インターフェースなどで構成され、電流センサ21、電圧センサ22、温度センサ23を介して電流・電圧・電池温度を常時モニタし、安全な状態で使用できるように、基本ルーチンに従って二次電池2を管理しつつ、電力管理装置4からの入出力要求に応じて二次電池2の充放電制御を行う。   FIG. 2 is a block diagram showing a BMU 1 in a vehicle power supply system using both the fuel cell 3 and the secondary battery 2. The BMU 1 records current, voltage, and temperature data, and manages SOC (SOC estimation algorithm / table data). , ROM for storing programs for executing SOH management (SOH estimation algorithm), SOP management (SOP estimation algorithm / table data), current / voltage / temperature upper / lower limit management, cell balance control, etc., CPU for arithmetic processing, data recording The current / voltage / battery temperature is constantly monitored via a current sensor 21, a voltage sensor 22, and a temperature sensor 23, and the basic routine is used so that the device can be used in a safe state. While managing the secondary battery 2, the secondary battery is operated in response to an input / output request from the power management device 4. Perform two of the charge and discharge control.

SOC管理は、二次電池の充電率(SOC=残容量/電池容量)を電流積算値およびOCV−SOC特性から推定する。電流センサ21に測定される充放電時の電流積算値と初期残量の和を電池容量で除して得られるSOCi(電流積算充電率)を用いて残量表示を行う。長時間の運用では積算電流の計測誤差が蓄積するので、所定待機時間後のキーオン時に無負荷かつ分極緩和状態で電圧センサ22に測定される開回路電圧(OCV)に基づきOCV−SOC特性からSOCv(開放電圧充電率)を算出し、SOCを補正する。なお、二次電池の劣化により電池容量が減少するため、SOC管理にはSOHの正確な推定と可及的高頻度のアップデートが不可欠である。   In the SOC management, the charging rate (SOC = remaining capacity / battery capacity) of the secondary battery is estimated from the integrated current value and the OCV-SOC characteristic. The remaining amount is displayed using SOCi (current integrated charging rate) obtained by dividing the sum of the current integrated value during charging and discharging measured by the current sensor 21 and the initial remaining amount by the battery capacity. Since a measurement error of the integrated current accumulates in a long-time operation, the SOCv is determined from the OCV-SOC characteristic based on the open circuit voltage (OCV) measured by the voltage sensor 22 in the no-load and depolarized state at the time of key-on after the predetermined standby time. (Open-circuit voltage charging rate) is calculated, and the SOC is corrected. Since the battery capacity decreases due to the deterioration of the secondary battery, accurate estimation of the SOH and update as frequently as possible are indispensable for SOC management.

二次電池2は、車両減速時には回生電力により充電されるが、急加速時や上り坂等では燃料電池3の出力をアシストするために放電するので、走行後にSOCが高い状態にあるとは限らない。二次電池2のSOCが低い状態で燃料電池3を起動すると、燃料電池3が定常状態になる前に二次電池2のSOCが使用範囲を下回ってしまい、システム停止の恐れがある。   The rechargeable battery 2 is charged by regenerative power when the vehicle decelerates, but is discharged in order to assist the output of the fuel cell 3 during rapid acceleration or uphill, so that the SOC is not necessarily in a high state after traveling. Absent. If the fuel cell 3 is started in a state where the SOC of the secondary battery 2 is low, the SOC of the secondary battery 2 falls below a use range before the fuel cell 3 becomes in a steady state, and there is a possibility that the system may be stopped.

このような問題を回避するために、燃料電池車には、起動時における二次電池のSOCを使用上限付近に維持するための「回復充電モード」が組み込まれている。回復充電モードでは、図4に示す充電シーケンスが、図示しない燃料電池車両のECUにより制御、実行されるが、二次電池のSOC管理部分はBMUにより制御される。回復充電モードについては後述する。   In order to avoid such a problem, the fuel cell vehicle is provided with a “recovery charging mode” for maintaining the SOC of the secondary battery at the time of startup near the upper limit of use. In the recovery charging mode, the charging sequence shown in FIG. 4 is controlled and executed by the ECU of the fuel cell vehicle (not shown), but the SOC management part of the secondary battery is controlled by the BMU. The recovery charging mode will be described later.

SOH管理は、二次電池2の健全度(SOH=劣化時の電池容量/初期の電池容量)を、後述のように、SOCi(電流積算充電率)とSOCv(開放電圧充電率)に基づいて推定し、所定値以上あるか否か判定する。SOHが所定値未満の場合は劣化警報を出力し、二次電池の交換を促す。SOHは二次電池の劣化に伴う容量減少により新品時の1から徐々に低下していく。リチウムイオン二次電池の場合、充放電の繰り返しによるサイクル劣化や保管による貯蔵劣化が知られており、車両用電源としての用途ではSOHは0.8以上とされ、0.8未満になると劣化警報が出されるように設定されている。   In the SOH management, the degree of soundness of the secondary battery 2 (SOH = battery capacity at the time of deterioration / initial battery capacity) is determined based on SOCi (current integrated charging rate) and SOCv (open voltage charging rate), as described later. It is estimated and it is determined whether or not it is equal to or more than a predetermined value. If the SOH is less than the predetermined value, a deterioration alarm is output to urge replacement of the secondary battery. The SOH gradually decreases from 1 at the time of a new product due to a decrease in capacity due to deterioration of the secondary battery. In the case of lithium ion secondary batteries, cycle deterioration due to repeated charging and discharging and storage deterioration due to storage are known. For use as a vehicle power supply, the SOH is set to 0.8 or more, and when it is less than 0.8, a deterioration alarm is issued. Is set to be issued.

SOP管理は、二次電池2の充放電可能電力(State of power:SOP)を算出し、二次電池の充放電制御を最適化する。SOPは二次電池の内部抵抗に依存し、電池の内部抵抗は、SOH・SOC・温度で異なるため、これらをパラメータとしたSOPマップ(テーブルデータ)を用意し、SOC推定値・温度実測値をマップに当てはめてSOPを算出する。したがって、SOP管理にもSOHの正確な推定と可及的高頻度のアップデートが不可欠である。   The SOP management calculates the chargeable / dischargeable power (State) of the secondary battery 2 (SOP) and optimizes the charge / discharge control of the secondary battery. Since the SOP depends on the internal resistance of the secondary battery, and the internal resistance of the battery differs depending on the SOH, SOC, and temperature, an SOP map (table data) using these parameters as parameters is prepared, and the estimated SOC and measured temperature are calculated. The SOP is calculated by applying to the map. Therefore, accurate estimation of the SOH and updating as frequently as possible are essential for SOP management.

次に、本発明の主題である回復充電を利用したSOH推定について説明する。   Next, the SOH estimation using the recovery charge, which is the subject of the present invention, will be described.

回復充電は、電源システム(燃料電池車両)の使用後に次回使用に備えて、燃料電池3の発電電力を利用して、二次電池2を定電流制御または定電圧制御により目標充電率まで充電する。この充電制御は電力管理装置4の充電制御部40によって行われるが、回復充電を利用したSOH推定アルゴリズム10はBMU1に実装され、SOH推定アルゴリズム10によって目標充電率41が設定または更新される。   In the recovery charging, the secondary battery 2 is charged to a target charging rate by constant current control or constant voltage control using the generated power of the fuel cell 3 in preparation for the next use after the use of the power supply system (fuel cell vehicle). . This charge control is performed by the charge control unit 40 of the power management apparatus 4. The SOH estimation algorithm 10 using the recovery charge is mounted on the BMU 1, and the target charge rate 41 is set or updated by the SOH estimation algorithm 10.

図3は、電源システム(燃料電池車両)の運用に沿った二次電池の健全度推定プロセスを示すフローチャートであり、図5は、その間における二次電池の充電率変化を示すグラフである。本発明では、連続した2回の回復充電(130,230)における目標充電率(SOC)を異なる値にすることで、その間の開放電圧充電率差(ΔSOCv=SOCv1−SOCv2)と電流積算充電率差(ΔSOCi=SOCi1−SOCi2)が有意な大きさの値になるようにして、ΔSOCvとΔSOCiの比からSOHを算出する。   FIG. 3 is a flowchart illustrating a process of estimating the soundness of the secondary battery along with the operation of the power supply system (fuel cell vehicle), and FIG. 5 is a graph illustrating a change in the charging rate of the secondary battery during the process. In the present invention, the target charging rate (SOC) in two consecutive recovery chargings (130, 230) is set to different values, so that the open-circuit charging rate difference (ΔSOCv = SOCv1-SOCv2) and the current integrated charging rate The SOH is calculated from the ratio between ΔSOCv and ΔSOCi such that the difference (ΔSOCi = SOC1−SOCi2) has a significant value.

目標充電率差(ΔSOC)について、理論的には、ΔSOCが0でない限りSOHを算出可能であるが、ΔSOCvはOCV測定時の電圧測定誤差の影響を受け、ΔSOCiは電流積算時の電流測定誤差の影響を受けるため、ΔSOCが小さいと、ΔSOCvとΔSOCiの比が誤差に埋もれてしまう虞がある。したがって、その観点からは目標充電率差(ΔSOC)は大きい方がよいが、二次電池2のSOCは、電池の安全性確保と劣化抑制の観点から使用上限SOCが設定され、さらに、不意の過充電なども想定して適度なマージンも考慮される。加えて、そもそも回復充電の目的は、次回起動時のアシスト電力確保であるため、各回の目標充電率は可及的上限側にあることが望ましい。本実施例では、後述の実験から、前後2回の目標充電率(SOC)を70%および80%、目標充電率差(ΔSOC)=10%としている。   For the target charging rate difference (ΔSOC), SOH can theoretically be calculated as long as ΔSOC is not 0. However, ΔSOCv is affected by the voltage measurement error during OCV measurement, and ΔSOCi is the current measurement error during current integration. Therefore, if ΔSOC is small, the ratio between ΔSOCv and ΔSOCi may be buried in an error. Therefore, from this viewpoint, it is better that the target charging rate difference (ΔSOC) is large. However, the SOC of the secondary battery 2 is set to the upper limit SOC in view of ensuring the safety of the battery and suppressing deterioration. An appropriate margin is also taken into account, assuming overcharging and the like. In addition, since the purpose of the recovery charging is to secure the assist power at the next start-up, it is desirable that the target charging rate of each time be as high as possible. In the present embodiment, based on experiments to be described later, the target charging rates (SOC) before and after twice are set to 70% and 80%, and the target charging rate difference (ΔSOC) = 10%.

開放電圧充電率(SOCv)の基になるOCV測定時期(170,270)について、既に述べたように、OCV測定は、無負荷状態かつ分極緩和状態で行う必要があり、二次電池が分極緩和状態になるには、充放電終了後数十分〜数時間を要する。燃料電池車両では、キーOFF(110,210)後、システムチェック(120,220)を経て回復充電(130,230)モードに移行するので、回復充電が終了して完全停止(140,240)状態になってから次回キーON(150,250)までの待機時間(図5中の時刻t12〜t21区間、t22〜t31区間)が所定時間(数十分〜数時間)を経過した場合(160,260)が最適である。   As described above, the OCV measurement needs to be performed in the no-load state and the depolarized state as described above for the OCV measurement timing (170, 270) based on the open-circuit charge rate (SOCv). It takes several tens minutes to several hours after the end of charging and discharging to reach the state. In the fuel cell vehicle, after the key is turned off (110, 210), the system shifts to the recovery charging (130, 230) mode through the system check (120, 220), so that the recovery charging is completed and the vehicle is completely stopped (140, 240). When the standby time until the next key ON (150, 250) after the time (time interval t12 to t21, interval t22 to t31 in FIG. 5) exceeds a predetermined time (several minutes to several hours) (160, 160). 260) is optimal.

回復充電後の所定時間は、二次電池の分極緩和時間に対応するが、電池の種類や充放電履歴、温度・SOC・SOHによって異なるため、温度・SOC・SOH毎に緩和時間を求め、OCV測定時の状態に応じて可変とするか、予想される条件における最長時間に設定する。例えば、SOC70%・SOH1.0のリチウムイオン二次電池の例では、温度25℃時の緩和時間:23分に対して、−10℃時の緩和時間は90分となる。また、SOH1.0・温度25℃・SOC70%時の緩和時間:23分に対して、SOH0.93時の緩和時間は60分となる。車両運用時の目標充電率(例えば70〜80%)を基準に、想定される温度範囲0〜35℃、SOH範囲1.0〜0.8として緩和時間を概算することにより所定時間を設定してもよいし、上記電池使用条件において緩和時間が最長と予想されるSOH0.8・温度−10℃時の緩和時間を基準に所定時間を設定してもよい。   The predetermined time after the recovery charge corresponds to the polarization relaxation time of the secondary battery, but differs depending on the type of battery, charge / discharge history, temperature, SOC, and SOH. Therefore, the relaxation time is obtained for each temperature, SOC, and SOH. It is variable depending on the state at the time of measurement, or set to the longest time under the expected conditions. For example, in the case of a lithium ion secondary battery having an SOC of 70% and SOH of 1.0, the relaxation time at -10 ° C. is 90 minutes, while the relaxation time at 25 ° C. is 23 minutes. Further, the relaxation time at 0.93 hours of SOH is 60 minutes, while the relaxation time at 1.0 hours of SOH, 25 ° C. and 70% SOC is 23 minutes. Based on a target charging rate during vehicle operation (for example, 70 to 80%), a predetermined time is set by estimating a relaxation time with an assumed temperature range of 0 to 35 ° C. and an SOH range of 1.0 to 0.8. Alternatively, the predetermined time may be set based on the relaxation time at SOH 0.8 at a temperature of −10 ° C., where the relaxation time is expected to be the longest under the above-mentioned battery use conditions.

回復充電モードは、図示しない燃料電池車両のECUにより、図4に示すような充電シーケンスに従って次のように実行される。充電シーケンスが開始されると(131)、BMU1は前回の回復充電時に更新されかつ記憶された目標充電率が取得され(132)、現在のSOCと比較される(133)。現在のSOCが目標充電率より大きい場合は回復充電を行わず、充電シーケンスを終了する。現在のSOCが目標充電率に満たない場合は、現在のSOCと目標充電率の差に基づいて必要な充電量が算出され(134)、所定Cレートでの充電時間が算出され(135)、電力管理装置4により定電流制御にて回復充電が開始される(136)。そして充電が完了すると(137)、次回の回復充電のために目標充電率が更新され(138)、BMU1のメモリーに記憶される。充電シーケンスが終了すると、システムの電源がOFFになり完全停止状態となる(139)。   The recovery charge mode is executed by the ECU of the fuel cell vehicle (not shown) according to a charge sequence as shown in FIG. When the charging sequence is started (131), BMU1 is updated and stored at the previous recovery charging and the stored target charging rate is obtained (132) and compared with the current SOC (133). If the current SOC is higher than the target charging rate, the recovery sequence is not performed, and the charging sequence ends. If the current SOC is less than the target charging rate, a required charging amount is calculated based on the difference between the current SOC and the target charging rate (134), and a charging time at a predetermined C rate is calculated (135). Recovery charging is started by the power management device 4 under constant current control (136). When the charging is completed (137), the target charging rate is updated for the next recovery charging (138) and stored in the memory of the BMU1. When the charging sequence is completed, the power of the system is turned off and the system is completely stopped (139).

(目標充電率およびSOH推定精度を検証するための模擬充放電試験)
次に、種々の目標充電率の設定例に基づくSOH推定精度を検証するために、二次電池として3Ah級リチウムイオン電池(定格容量2.9Ah、東芝製)の劣化セル(SOH:0.93、満充電からの放電容量測定実測値)を用い、図5に示されるような走行(100,200)〜キーOFF(110,210)〜回復充電(130,230)〜完全停止(140,240)〜キーON(150,250)を模擬した充放電試験を以下のように実施した。
(Simulated charge / discharge test to verify target charging rate and SOH estimation accuracy)
Next, in order to verify the SOH estimation accuracy based on the setting examples of various target charging rates, a deteriorated cell (SOH: 0.93) of a 3 Ah class lithium ion battery (rated capacity 2.9 Ah, manufactured by Toshiba) as a secondary battery was used. Using the actual measured values of the discharge capacity from the full charge, the traveling (100, 200) to the key OFF (110, 210) to the recovery charge (130, 230) to the complete stop (140, 240) as shown in FIG. ) To a key ON (150, 250) were performed as follows.

但し、二次電池は、温度25℃の恒温槽内に設置し、2回の回復充電を行う代わりに、初期SOCを1回目の回復充電後に待機時間を経て測定した開放電圧充電率(SOCv1)およびそれに基づいて更新された電流積算充電率(SOCi1)として、キーON(150)から1回の走行(200)を模擬した充放電を行い、その後、初期SOC(=SOCv1=SOCi1)と有意な目標充電率差(ΔSOC:2、5、10、15%)のある目標充電率まで回復充電(230)を実施し、待機時間を経たのちOCV測定(250,270)を行い、初期SOC(=SOCv1=SOCi1)と回復充電後のSOCvとSOCi(図5におけるSOCv2とSOCi2)からΔSOC(=初期SOC−SOCv2)とΔSOCi(=初期SOC−SOCi2)を求め、ΔSOCVとΔSOCiの比からSOHを算出した。   However, the secondary battery is placed in a thermostat at a temperature of 25 ° C., and instead of performing the recovery charging twice, an open-circuit voltage charging rate (SOCv1) measured after a standby time after the initial recovery charging of the initial SOC. And charge / discharge simulating one run (200) from key ON (150) as a current integrated charging rate (SOCi1) updated based on the current integrated charging rate (SOCi1). Thereafter, the initial SOC (= SOCv1 = SOCi1) is significant. Recovery charging (230) is performed up to a target charging rate having a target charging rate difference (ΔSOC: 2, 5, 10, 15%). After a standby time, OCV measurement (250, 270) is performed, and the initial SOC (= From the SOCv1 = SOCi1 and the SOCv and the SOCi after the recovery charge (SOCv2 and SOCi2 in FIG. 5), ΔSOC (= initial SOC−SOCv2) and ΔSOCi (= initial SOC) SOCi2) asking was calculated SOH from the ratio of ΔSOCV and DerutaSOCi.

回復充電条件を表1に示す。表1中、初期SOCは、図5中1回目のキーON時(150)におけるSOC(SOCv1、SOCi1)を模擬し、目標充電率は、図5中2回目のキーON時(250)におけるSOC(SOCv2、SOCi2)を模擬している。

Figure 0006631297
Table 1 shows the recovery charging conditions. In Table 1, the initial SOC simulates the SOC (SOCv1, SOCi1) at the first key ON (150) in FIG. 5, and the target charging rate is the SOC at the second key ON (250) in FIG. (SOCv2, SOCi2).
Figure 0006631297

(1)初期SOC調整充放電
直前の充放電から3時間以上経過していることを確認の上、端子電圧を測定して、OCV−SOC法により現在のSOCを求め、試験を実施する初期SOC(70、72、75、80、85%)とズレがある場合には、SOC調整のための充放電を行った。
(1) Initial SOC adjustment charge / discharge After confirming that three hours or more have elapsed since the last charge / discharge, measure the terminal voltage, obtain the current SOC by the OCV-SOC method, and execute the test. (70, 72, 75, 80, 85%), charge / discharge for SOC adjustment was performed.

(2)SOCv1、SOCi1の取得
調整充放電後、3時間静置した後の端子電圧測定値をOCVとし、OCV−SOC特性から開放電圧充電率SOCv1を求め、このSOCv1に基づいて電流積算充電率の初期値(SOCi1=SOCv1)を更新した(180)。
(2) Acquisition of SOCv1 and SOCi1 The terminal voltage measurement value after standing for 3 hours after the adjustment charging / discharging is defined as OCV, the open-circuit voltage charging rate SOCv1 is obtained from the OCV-SOC characteristic, and the current integrated charging rate is determined based on the SOCv1. (SOCi1 = SOCv1) was updated (180).

(3)車両走行模擬充放電
車両の走行を模擬し、10C放電3秒、10C充電3秒、1C放電3秒、1C充電3秒、15C放電3秒、15C充電3秒、25C放電6秒、15C充電3秒の基本パターンを1セットとして繰り返し、走行終了時のSOC目標値を50%として充放電を行うとともに、充放電中の電流積算値を逐次記録した。
なお、1C(Cレート)は、ある定格容量の電池を定電流放電して1時間で放電終了となる場合の電流レート、電流値(A)/電池容量(Ah)である。
(3) Vehicle running simulation charge / discharge Simulates running of the vehicle, and discharges 10C for 3 seconds, 10C for 3 seconds, 1C for 3 seconds, 1C for 3 seconds, 15C for 3 seconds, 15C for 3 seconds, 25C for 6 seconds, The charge / discharge was performed with the SOC target value at the end of traveling being 50%, and the integrated current value during the charge / discharge was sequentially recorded.
1C (C rate) is a current rate and a current value (A) / battery capacity (Ah) in a case where a battery having a certain rated capacity is discharged at a constant current and discharge is completed in one hour.

(4)静置
キーOFF(210)および回復充電前のシステムチェック(220)を想定し、1分間静置した。
(4) Stationary Assuming the key OFF (210) and the system check (220) before recovery charging, the apparatus was allowed to stand for 1 minute.

(5)回復充電模擬充電
回復充電(230)を模擬し、10Cレートで充電を行った。回復充電における目標充電率は表1に示したように初期SOC±2、5、10、15%とした。なお、この間も電流積算値の逐次記録は継続される。
(5) Recovery charge simulated charge Recovery charge (230) was simulated and charged at a 10C rate. The target charging rate in the recovery charging was set to the initial SOC ± 2, 5, 10, and 15% as shown in Table 1. During this time, the sequential recording of the current integrated value is continued.

(6)SOCv2、SOCi2の取得
回復充電(230)後に一晩放置した後、キーON(250)することを想定し、回復充電後に所定時間(6時間)静置し、その後、OCV測定(270)を実施し、OCV−SOC特性からSOCv2を求めるとともに、上記(2)以降の電流積算値に基づいて電流積算充電率SOCi2を算出した(280)。
(6) Acquisition of SOCv2 and SOCi2 It is assumed that the key is turned on (250) after being left overnight after the recovery charge (230), and then left for a predetermined time (6 hours) after the recovery charge, and then the OCV measurement (270) ), SOCv2 was obtained from the OCV-SOC characteristic, and the current integrated charging rate SOCi2 was calculated based on the current integrated value after (2) (280).

(7)SOHの算出
電流積算値を∫i(t)dtとすると、ΔSOCiは次式1で表される。
ΔSOCi=SOCi1−SOCi2=∫i(t)dt/FCCi (式1)
電流積算値∫i(t)dtを用いると、ΔSOCvは次式2で表される。
ΔSOCv=SOCv1−SOCv2=∫i(t)dt/FCC (式2)
したがって、SOH推定値は次式3により算出される(282)。
SOH=ΔSOCi/ΔSOCv
=[{∫i(t)dt}/FCCi]/[{∫i(t)dt}/FCC] (式3)
(7) Calculation of SOH Assuming that the integrated current value is ∫i (t) dt, ΔSOCi is expressed by the following equation 1.
ΔSOCi = SOC1−SOCi2 = ∫i (t) dt / FCCi (Equation 1)
When the current integrated value ∫i (t) dt is used, ΔSOCv is expressed by the following equation 2.
ΔSOCv = SOCv1-SOCv2 = ∫i (t) dt / FCC (Equation 2)
Therefore, the SOH estimation value is calculated by the following equation 3 (282).
SOH = ΔSOCi / ΔSOCv
= [{I (t) dt} / FCCi] / [{i (t) dt} / FCC] (Equation 3)

(8)試験結果
満充電からの完全放電によって事前に求めたSOH実測値(=0.92)と、上式1〜3により求めたSOH推定値との差、ΔSOHを算出した結果を表2に示す。この結果から、目標充電率の差ΔSOCが満充電を100%として10%以上であれば、実測値と同等のSOH推定値が得られることが分かる。

Figure 0006631297
(8) Test Results Table 2 shows the difference between the actual measured SOH value (= 0.92) previously obtained by complete discharge from full charge and the estimated SOH value obtained by the above formulas 1 to 3, and ΔSOH. Shown in From this result, it can be seen that if the difference ΔSOC between the target charging rates is 10% or more with the full charge being 100%, an SOH estimated value equivalent to the actually measured value can be obtained.

Figure 0006631297

また、全体的に、初期SOCより目標充電率が高い場合、すなわち、前後2回の回復充電における2回目の目標充電率が高くなる場合の方が僅かに良好な結果を示しているが、ΔSOCが10%以上では2回目の目標充電率が相対的に低くなる場合にも十分に実用的な結果となっており、図3、図5に示すような運用において、高低2つの目標充電率を交互に設定する継続的な運用が可能であることを示している。   On the whole, when the target charging rate is higher than the initial SOC, that is, when the second target charging rate in the two recovery chargings before and after is higher, a slightly better result is shown. Is 10% or more, a sufficiently practical result is obtained even when the second target charging rate becomes relatively low. In the operation shown in FIGS. This indicates that continuous operation can be set alternately.

(取得されたSOH推定値のBMU内パラメータへの反映)
以上のプロセスを通して取得されたSOH推定値に基づいて、図2に示すBMU1のSOHが更新され(284)、さらに所定値(例えば0.8)と比較され、所定値未満の場合はバッテリー劣化警報が出力され(286)、電池点検・交換を促す。さらに、取得されたSOHに基づいて、FCC値、SOC算出のためのOCV−SOC特性(ルックアップテーブル)、電力管理装置4の充放電制御に利用されるSOP算出用マップがアップデートされる。また、OCV測定のための待機時間が可変の使用では、SOHに基づいて待機時間の基礎パラメータが更新される。
(Reflection of the acquired SOH estimation value to the parameters in the BMU)
The SOH of the BMU 1 shown in FIG. 2 is updated (284) based on the estimated SOH value obtained through the above process, and is compared with a predetermined value (for example, 0.8). Is output (286) to urge battery inspection and replacement. Further, based on the acquired SOH, the FCC value, the OCV-SOC characteristic (lookup table) for SOC calculation, and the SOP calculation map used for charge / discharge control of the power management device 4 are updated. When the standby time for the OCV measurement is variable, the basic parameter of the standby time is updated based on the SOH.

上記実施形態では、二次電池2が回復充電後に所定時間が経過することをもって分極緩和状態にあると判断する場合を示したが、BMU1に定常状態判定手段13を実装し、二次電池2が定常状態にあることを実際に検知してOCV測定に移行するように構成することもできる。   In the above-described embodiment, the case has been described where it is determined that the secondary battery 2 is in the polarization relaxation state when a predetermined time has elapsed after the recovery charge. However, the steady state determination unit 13 is mounted on the BMU 1 and the secondary battery 2 It is also possible to configure so as to actually detect that it is in a steady state and to shift to OCV measurement.

このような定常状態判定手段13としては、二次電池の分極緩和時間を温度、SOC、SOH等をパラメータとして予めマップ(ルックアップテーブル)を作成しておき、判定時の状況から分極緩和時間を推定する態様や、端子電圧(OCV)の単位時間当たりの変化が所定以下になった場合に定常状態であると判定する(その際のOCVを採用する)態様で実施可能である。   Such a steady state determination means 13 prepares a map (look-up table) in advance by using the polarization relaxation time of the secondary battery as a parameter such as temperature, SOC, SOH, and the like, and determines the polarization relaxation time from the situation at the time of determination. The present invention can be implemented in a mode of estimating or in a mode of determining a steady state when the change in terminal voltage (OCV) per unit time becomes equal to or less than a predetermined value (using the OCV at that time).

また、二次電池2に対して分極緩和時間短縮処理を実施することで強制的に分極を緩和させ、OCV測定に移行するように構成することもできる。このような分極緩和時間短縮処理としては、例えば、二次電池に対して、ごく短い時間(2〜3秒)の単発放電と単発充電を連続して実施し、充電状態で電流を遮断し、開回路状態とする構成にて実施可能である。   Further, it is also possible to perform a polarization relaxation time shortening process on the secondary battery 2 to forcibly relax the polarization and shift to the OCV measurement. As such a polarization relaxation time shortening process, for example, a single-shot discharge and a single-shot charge for a very short time (2 to 3 seconds) are continuously performed on a secondary battery, and a current is cut off in a charged state. This can be implemented in a configuration in which the circuit is in an open circuit state.

以上、本発明の実施の形態について述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想に基づいてさらに各種の変形および変更が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention.

例えば、上記実施形態では、本発明を、燃料電池と二次電池を併用する電源システムを搭載した燃料電池車両(HEV)に実施する場合について述べたが、本発明はこれに限定されるものではなく、電動車両(EV)はもちろん、自動車、二輪車、電動船外機などの移動体の電源システム、さらには、燃料電池と二次電池を併用する家庭用電源・緊急電源のための電源システムとしても実施可能である。   For example, in the above embodiment, the case where the present invention is applied to a fuel cell vehicle (HEV) equipped with a power supply system using both a fuel cell and a secondary battery is described, but the present invention is not limited to this. Not only, as a power supply system for electric vehicles (EV), but also for mobile objects such as automobiles, motorcycles, and electric outboard motors, and as a power supply system for home and emergency power supplies that use both fuel cells and secondary batteries Is also feasible.

1 BMU(バッテリー管理ユニット)
2 二次電池
3 燃料電池
4 電力管理装置
5 モータ
10 SOH推定
11 電流積算充電率
12 開放電圧充電率
13 定常状態判定
21 電流センサ
22 電圧センサ
23 温度センサ
40 充放電制御
41 目標充電率
1 BMU (battery management unit)
2 Rechargeable battery 3 Fuel cell 4 Power management device 5 Motor 10 SOH estimation 11 Current integrated charging rate 12 Open voltage charging rate 13 Steady state determination 21 Current sensor 22 Voltage sensor 23 Temperature sensor 40 Charge / discharge control 41 Target charging rate

Claims (8)

燃料電池と二次電池を併用するシステムにおける二次電池の健全度推定方法であって、
前記システムの待機時間を挟む前後2回の使用の後に、前記二次電池を異なる目標充電率に充電して開放電圧を測定し、それぞれの開放電圧に基づいて開放電圧充電率を算出するとともに、前記2回の開放電圧測定間の入出力電流積算値を求め、それに基づいて電流積算充電率を算出し、前記2回の開放電圧充電率の差をΔSOCv、前記電流積算充電率をΔSOCiとして、前記二次電池の健全度SOHを、
式:ΔSOCi/ΔSOCv=SOHより推定する、二次電池の健全度推定方法。
A method for estimating the soundness of a secondary battery in a system using both a fuel cell and a secondary battery,
After two uses before and after the standby time of the system, the rechargeable battery is charged to a different target charging rate to measure an open-circuit voltage, and an open-circuit voltage charging rate is calculated based on each open-circuit voltage. An input / output current integrated value between the two open-circuit voltage measurements is obtained, a current integrated charging rate is calculated based on the input / output current integrated value, a difference between the two open-circuit voltage charging rates is ΔSOCv, and the current integrated charging rate is ΔSOCi, Degree of health SOH of the secondary battery,
Formula: A method of estimating the degree of soundness of the secondary battery, which is estimated from ΔSOCi / ΔSOCv = SOH.
燃料電池と二次電池を併用するシステムにおける二次電池の健全度推定方法であって、
前記二次電池からの放電を伴う前記システムの第一の使用の後に、
前記二次電池を第一の目標充電率に充電するステップと、
前記充電後に前記第一の目標充電率にて第一の開放電圧を測定するステップと、
前記第一の開放電圧に基づいて第一の開放電圧充電率を算出するステップと、
前記目標充電率を前記第一の目標充電率と異なる第二の目標充電率に変更または設定するステップと、
を実施し、
前記二次電池からの放電を伴う前記システムの第二の使用の後に、
前記二次電池を前記第二の目標充電率に充電するステップと、
前記充電後に前記第二の目標充電率にて第二の開放電圧を測定するステップと、
前記第二の開放電圧に基づいて第二の開放電圧充電率を算出するステップと、
前記第一の開放電圧測定から前記第二の開放電圧測定までの入出力電流積算値を求めるステップと、
前記電流積算値に基づいて電流積算充電率を算出するステップと、
前記第一の開放電圧充電率と前記第二の開放電圧充電率との差をΔSOCv、前記電流積算充電率をΔSOCiとして、前記二次電池の健全度SOHを
式:ΔSOCi/ΔSOCv=SOHより推定するステップと、
を実施することを含む、二次電池の健全度推定方法。
A method for estimating the soundness of a secondary battery in a system using both a fuel cell and a secondary battery,
After a first use of the system with a discharge from the secondary battery,
Charging the secondary battery to a first target charging rate;
Measuring a first open circuit voltage at the first target charging rate after the charging;
Calculating a first open voltage charging rate based on the first open voltage;
Changing or setting the target charging rate to a second target charging rate different from the first target charging rate,
And implement
After a second use of the system with discharge from the secondary battery,
Charging the secondary battery to the second target charging rate;
Measuring a second open circuit voltage at the second target charging rate after the charging;
Calculating a second open-circuit voltage charging rate based on the second open-circuit voltage;
Determining the input / output current integrated value from the first open-circuit voltage measurement to the second open-circuit voltage measurement,
Calculating a current integrated charging rate based on the current integrated value;
Assuming that the difference between the first open-circuit voltage charging rate and the second open-circuit voltage charging rate is ΔSOCv and the integrated current charging rate is ΔSOCi, the soundness SOH of the secondary battery is estimated from the equation: ΔSOCi / ΔSOCv = SOH. Steps to
And a method for estimating the soundness of a secondary battery.
前記二次電池を第一の目標充電率に充電する前記ステップは、前記二次電池からの放電を伴う前記システムの第一の使用の後の第一の停止操作で開始され、かつ、前記燃料電池からの給電によって実施され、
前記第一の開放電圧充電率を算出する前記ステップは、前記システムの次の起動操作により開始され、
前記二次電池を第二の目標充電率に充電する前記ステップは、前記二次電池からの放電を伴う前記システムの第二の使用の後の第二の停止操作で開始され、かつ、前記燃料電池からの給電によって実施され、
前記第二の開放電圧充電率を算出する前記ステップは、前記システムのさらに次の起動操作により開始される、請求項2に記載の二次電池の健全度推定方法。
Charging the rechargeable battery to a first target charge rate begins with a first shut-down operation after a first use of the system with discharging from the rechargeable battery; and Powered by batteries,
The step of calculating the first open-circuit voltage charging rate is started by a next startup operation of the system,
Charging the rechargeable battery to a second target charge rate begins with a second shutdown operation after a second use of the system with discharging from the rechargeable battery; and Powered by batteries,
3. The method according to claim 2, wherein the step of calculating the second open-circuit voltage charging rate is started by a next startup operation of the system. 4.
前記第一の開放電圧充電率と前記第二の開放電圧充電率との差は、満充電を100%として10%以上である、請求項2または3に記載の二次電池の健全度推定方法。   The health estimation method for a secondary battery according to claim 2 or 3, wherein a difference between the first open-circuit voltage charging rate and the second open-circuit voltage charging rate is 10% or more when a full charge is 100%. . 前記第一の開放電圧充電率および前記第二の開放電圧充電率は、何れも満充電を100%として70%以上である、請求項2〜4の何れか一項に記載の二次電池の健全度推定方法。   5. The secondary battery according to claim 2, wherein each of the first open-circuit voltage charging rate and the second open-circuit voltage charging rate is 70% or more when a full charge is 100%. Health estimation method. 燃料電池と二次電池を併用するシステムであって、
前記燃料電池の発電および前記二次電池の充放電を管理する電力管理装置と、
前記二次電池の状態を管理するバッテリー管理装置と、を備え、
前記電力管理装置は、前記二次電池を目標充電率まで充電する充電制御手段を含み、
前記バッテリー管理装置は、前記二次電池の開放電圧を測定する手段、前記開放電圧に基づいて開放電圧充電率を算出する手段、前記二次電池の電流積算値を測定する手段、および、前記電流積算値に基づいて電流積算充電率を算出する手段を含み、
前記システムの使用後に充電率が所定以下の場合に回復充電が実施されるように構成されているものにおいて、
前記回復充電の完了後に前記目標充電率を、第一の目標充電率から第二の目標充電率に変更し、前記変更された目標充電率を次の回復充電まで記憶する手段と、
前記第一の目標充電率に充電された状態で測定された第一の開放電圧に基づく第一の開放電圧充電率と、前記第二の目標充電率に充電された状態で測定された第二の開放電圧に基づく第二の開放電圧充電率との差をΔSOCv、前記電流積算値の測定手段により測定された前記第一の開放電圧測定から前記第二の開放電圧測定までの入出力電流積算値に基づく電流積算充電率をΔSOCiとして、前記二次電池の健全度SOHを、
式:ΔSOCi/ΔSOCv=SOHより算出する健全度推定手段と、
を備えたことを特徴とする燃料電池と二次電池とを併用するシステム。
A system that uses a fuel cell and a secondary battery together,
A power management device that manages power generation of the fuel cell and charge / discharge of the secondary battery,
A battery management device that manages the state of the secondary battery,
The power management device includes charging control means for charging the secondary battery to a target charging rate,
The battery management device includes a unit configured to measure an open-circuit voltage of the secondary battery, a unit configured to calculate an open-circuit charge rate based on the open-circuit voltage, a unit configured to measure an integrated current value of the secondary battery, and the current. Including means for calculating a current integrated charging rate based on the integrated value,
In a configuration in which the recovery charge is performed when the charge rate is equal to or less than a predetermined value after use of the system,
Means for changing the target charging rate after the completion of the recovery charging, from the first target charging rate to the second target charging rate, and storing the changed target charging rate until the next recovery charging;
A first open-circuit voltage charging rate based on a first open-circuit voltage measured in a state charged to the first target charging rate, and a second open-circuit voltage charging rate measured in a state charged to the second target charging rate Is the difference between the second open-circuit voltage charging rate based on the open-circuit voltage and ΔSOCv, the input / output current integration from the first open-circuit voltage measurement to the second open-circuit voltage measurement measured by the current integration value measuring means. Assuming that the current integrated charging rate based on the value is ΔSOCi, the health SOH of the secondary battery is
Soundness estimating means calculated from the equation: ΔSOCi / ΔSOCv = SOH;
A system using both a fuel cell and a secondary battery, comprising:
前記バッテリー管理装置は、目標充電率まで充電後に前記二次電池が定常状態であることを判定する定常状態判定手段をさらに含み、前記二次電池が定常状態であると判定された場合に、前記二次電池の開放電圧が測定または取得されるように構成されていることを特徴とする請求項6に記載の燃料電池と二次電池とを併用するシステム。   The battery management device further includes a steady state determination unit that determines that the secondary battery is in a steady state after charging to a target charging rate, and when it is determined that the secondary battery is in a steady state, The system according to claim 6, wherein the open-circuit voltage of the secondary battery is measured or obtained. 前記定常状態判定手段は、前記目標充電率までの充電完了後の所定時間の経過を判定する手段、または、開放電圧の変化が所定値以下となったことを判定する手段を含むことを特徴とする請求項7に記載の燃料電池と二次電池とを併用するシステム。   The steady state determination means includes means for determining the elapse of a predetermined time after completion of charging up to the target charging rate, or including means for determining that the change in the open-circuit voltage has become a predetermined value or less. A system using both the fuel cell according to claim 7 and a secondary battery.
JP2016024675A 2016-02-12 2016-02-12 Method of estimating soundness of secondary battery in system using both fuel cell and secondary battery, and system using both fuel cell and secondary battery Active JP6631297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016024675A JP6631297B2 (en) 2016-02-12 2016-02-12 Method of estimating soundness of secondary battery in system using both fuel cell and secondary battery, and system using both fuel cell and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016024675A JP6631297B2 (en) 2016-02-12 2016-02-12 Method of estimating soundness of secondary battery in system using both fuel cell and secondary battery, and system using both fuel cell and secondary battery

Publications (2)

Publication Number Publication Date
JP2017143026A JP2017143026A (en) 2017-08-17
JP6631297B2 true JP6631297B2 (en) 2020-01-15

Family

ID=59628639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016024675A Active JP6631297B2 (en) 2016-02-12 2016-02-12 Method of estimating soundness of secondary battery in system using both fuel cell and secondary battery, and system using both fuel cell and secondary battery

Country Status (1)

Country Link
JP (1) JP6631297B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019058666A1 (en) * 2017-09-22 2020-11-26 積水化学工業株式会社 Secondary battery deterioration detection system
KR20200033554A (en) 2018-09-20 2020-03-30 삼성전자주식회사 Method and apparatus estimating state of battery
KR102655398B1 (en) 2018-10-01 2024-04-05 삼성전자주식회사 Chariging method and apparatus optimized based on electrochemical modeling
JP7194081B2 (en) * 2019-06-17 2022-12-21 株式会社豊田自動織機 fuel cell system
CN114379386B (en) * 2022-03-25 2022-06-10 北京理工大学 Fuel cell and lithium battery hybrid system collaborative recession control method and system
CN116252682B (en) * 2023-05-16 2023-07-21 车百中汽科技(北京)有限公司 Method and system for determining health degree of power battery of new energy automobile

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008312418A (en) * 2007-06-18 2008-12-25 Honda Motor Co Ltd Fuel-cell loading vehicle
JP4744622B2 (en) * 2009-07-01 2011-08-10 トヨタ自動車株式会社 Vehicle control device
JP5419832B2 (en) * 2010-09-07 2014-02-19 カルソニックカンセイ株式会社 Battery capacity calculation device and battery capacity calculation method
JP5349567B2 (en) * 2011-11-11 2013-11-20 カルソニックカンセイ株式会社 Battery pack input / output possible power estimation apparatus and method
JP5307269B1 (en) * 2012-05-11 2013-10-02 カルソニックカンセイ株式会社 Apparatus for estimating cell state of battery pack
JP5409840B2 (en) * 2012-05-11 2014-02-05 カルソニックカンセイ株式会社 Apparatus for estimating cell state of battery pack
JP6180249B2 (en) * 2013-09-18 2017-08-16 Kyb株式会社 Battery capacity estimation apparatus and battery capacity estimation method

Also Published As

Publication number Publication date
JP2017143026A (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6631297B2 (en) Method of estimating soundness of secondary battery in system using both fuel cell and secondary battery, and system using both fuel cell and secondary battery
CN111801586B (en) Method for evaluating remaining performance of rechargeable battery, program for evaluating remaining performance of rechargeable battery, computing device, and system for evaluating remaining performance
KR101245788B1 (en) Method and device for controlling the operating point of a battery
JP4864383B2 (en) Deterioration state estimation device for power storage device
US9037426B2 (en) Systems and methods for determining cell capacity values in a multi-cell battery
JP6033155B2 (en) Battery control device
JP4153520B2 (en) Secondary battery evaluation method
US6300763B1 (en) Method of calculating dynamic state-of-charge within a battery
CN109342950B (en) Method, device and equipment for evaluating state of charge of lithium battery
US10209319B2 (en) State of deterioration or state of charges estimating apparatus for secondary battery
JP6500789B2 (en) Control system of secondary battery
US9400313B2 (en) Method and device for determining the actual capacity of a battery
JP7201792B2 (en) BATTERY MANAGEMENT DEVICE, BATTERY MANAGEMENT METHOD, POWER STORAGE SYSTEM
CN103149535A (en) Method and apparatus for online determination of battery state of charge and state of health
JP2010249797A (en) State determination device and control device of secondary battery
JPWO2017033311A1 (en) Deterioration degree estimation device and deterioration degree estimation method
CN110376536B (en) SOH detection method and device for battery system, computer equipment and storage medium
JPWO2012137456A1 (en) Remaining life judgment method
JP5409840B2 (en) Apparatus for estimating cell state of battery pack
JP2018155706A (en) Device for estimating degradation state of secondary battery, battery system having the same, and electric vehicle
KR20170006400A (en) Device for checking of battery SOC on vehicle and method thereof
US11047917B2 (en) Power supply system
CN113075558B (en) Battery SOC estimation method, device and system
KR20190048089A (en) Apparatus and method for estimating state of health of battery
KR20100020113A (en) Method of balancing cell in battery pack of hev

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R151 Written notification of patent or utility model registration

Ref document number: 6631297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151