JP6627131B2 - 結晶性積層構造体および半導体装置 - Google Patents

結晶性積層構造体および半導体装置 Download PDF

Info

Publication number
JP6627131B2
JP6627131B2 JP2015095287A JP2015095287A JP6627131B2 JP 6627131 B2 JP6627131 B2 JP 6627131B2 JP 2015095287 A JP2015095287 A JP 2015095287A JP 2015095287 A JP2015095287 A JP 2015095287A JP 6627131 B2 JP6627131 B2 JP 6627131B2
Authority
JP
Japan
Prior art keywords
layer
substrate
metal
crystalline
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015095287A
Other languages
English (en)
Other versions
JP2015227279A5 (ja
JP2015227279A (ja
Inventor
俊実 人羅
俊実 人羅
真也 織田
真也 織田
章夫 高塚
章夫 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flosfia Inc
Original Assignee
Flosfia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flosfia Inc filed Critical Flosfia Inc
Priority to JP2015095287A priority Critical patent/JP6627131B2/ja
Publication of JP2015227279A publication Critical patent/JP2015227279A/ja
Publication of JP2015227279A5 publication Critical patent/JP2015227279A5/ja
Application granted granted Critical
Publication of JP6627131B2 publication Critical patent/JP6627131B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Led Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、半導体装置、特に電力用または受発光用半導体装置に有用な結晶性積層構造体および前記結晶性積層構造体からなる半導体装置に関する。
高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。しかも、広いバンドギャップからLEDやセンサー等の受発光装置としての応用も期待されている。当該酸化ガリウムは非特許文献1によると、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶することによりバンドギャップ制御することが可能であり、InAlGaO系半導体として極めて魅力的な材料系統を構成している。ここでInAlGaO系半導体とはInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5〜2.5)を示し、酸化ガリウムを内包する同一材料系統として俯瞰することができる。
これらのInAlGaO系半導体を用いた半導体装置を実現するために用いる下地材料としては、β酸化ガリウム基板やサファイア基板が検討されてきた。
特許文献1によると、β酸化ガリウム基板を用いる場合、酸化ガリウムのホモエピタキシャル成長が可能であり、酸化アルミニウムガリウム薄膜の高品質化が可能である。しかしながら、調達可能な基板サイズは限られておりシリコンやサファイア等の既に大量生産が進んでいる材料と比較して大口径化が困難であった。
特許文献2および特許文献3によると、サファイア基板を用いる場合、コランダム構造を有するAlGa(0≦X≦2、0≦Y≦2、X+Y=2)薄膜の高品質化は可能であるが、βガリア構造膜の高品質化は困難である。また、サファイアが絶縁体であるために下地材料に電流を流すことができない問題もある。この場合、下地材料上にソース、ドレインのいずれかの電極を形成することができず、半導体装置の単位面積当たり出力電流に限界が生じてしまう。6インチ、8インチに大口径化した場合には、これらの大口径化サファイアの産業応用はそれほど進んでいないため安定調達不安があるとともに調達コスト上昇という問題もあった。
また酸化ガリウムやサファイアの低い熱伝導率も半導体装置の高耐熱化に際して課題となっている。
さらに、下地材料の特性は低損失な半導体装置を実現するための電気特性上の課題も引き起こしている。例えば、高耐圧、低損失な半導体装置を実現するためにはチャネル層での低損失化に加えて、チャネル層以外での損失を低減する必要がある。例えば、半導体装置を構成するコンタクト領域の低損失化が要求されており、さらに、縦型半導体装置では下地材料や、下地材料とチャネル層との間の層の低損失化が要求されている。
加えて、携帯機器等の発展に伴い、情報処理端末の単位体積あたり処理能力向上を背景として、半導体装置の小型化が要求されており、異なる機能を有する半導体装置を複合化して半導体装置の個数を低減する市場要求もある。ここでは、産業応用が圧倒的に進んでいるSiを用いた半導体装置、又は基板との複合化が強く求められている。これまでに結晶成長技術の実証されている酸化ガリウム、サファイア基板いずれを用いた場合であっても、この複合化を実現するには下地材料等の張り替えが必要であり、実現困難であった。
ところで、InAlGaO系半導体の重要な応用分野として、GaN、AlN、InN、AlGaN、InGaN、InAlGaN等の窒化物半導体の下地材料応用も重要である。窒化物半導体はLED、レーザー等の受発光分野で産業応用されているが、もっとも一般的なサファイア基板を下地材料として用いたときには導電層であるn層による電圧降下・発熱損失・電流分布の不均一等が問題になるとともに、サファイア基板が絶縁であるために両極性の電極を同じInAlGaN半導体上に形成しなければならないことに起因する電流密度の限界等が問題となっている。LED素子とSi半導体装置との複合化が困難という課題もある。Si{111}面上での窒化物半導体の成膜技術は緩衝層等の工夫により注目されているが、量産化されているSi{100}面上での窒化物半導体の成膜技術は進展しておらず、産業応用はいまだ困難である。
特許文献3によるとβ酸化ガリウム基板を下地材料として用いて窒化ガリウムの結晶成長をすることができるが、調達可能な基板サイズは限られておりシリコンやサファイア等の既に大量生産が進んでいる材料と比較して大口径化が困難であった。
非特許文献2によるとMITのTomas Palaciosらは、Si{111}上に成長したAlGaN/GaN膜をSi{111}基板から剥離し、AlGaN/GaN薄膜をSi{100}基板へ貼り付け、SiデバイスとGaNデバイスの集積を図っている。しかしながら、作業工数が多く基板全面に綺麗に剥離することが困難という問題があった。
なお、非特許文献3には、Pt{111}上にアルミナ薄膜を形成した積層構造体が記載されている。特許文献4には、Pt{111}層上に酸化チタン層(TiOx)を形成した積層構造体が記載されている。また、特許文献5〜7には、Pt{111}からなる下地膜や下部電極の上に、強誘電体膜を形成した積層構造体が記載されている。しかしながら、非特許文献3記載のアルミナ、特許文献4記載の酸化チタン、特許文献5〜7記載の強誘電体膜(PZT膜等)は、いずれも半導体として機能するものではなく、電気伝導性を利用して電気伝導性下地材料や電極材料として利用することも含め、それ自体を半導体装置の半導体として利用することは困難であった。
以上の通り、半導体装置に用いられる積層構造体にはまだまだ課題が多く、例えば、金属層と半導体層との界面でピニングが生じたり、成膜後にはショットキーコンタクトが維持できなかったり、縦方向導通が不可であったり、半導体装置の照度にムラがでたり、輝度などについてもまだまだ満足のいくものではなく、半導体装置の大電流化にも制約が多いなど、特に、半導体の電気特性において、多くの課題があった。
国際公開第2013/035842号 国際公開第2013/035844号 特開2013−058636号公報 特開2011−192975号公報 特開2011−029399号公報 特開2012−256850号公報 特開2012−256851号公報
金子健太郎、「コランダム構造酸化ガリウム系混晶薄膜の成長と物性」、京都大学博士論文、平成25年3月 IEEE EDL、30、1015、2009年 WILSON K et al,Electronic, Structural, and Reactive Properties of Ultrathin Aluminum Oxide Films on Pt(111),The Journal of Physical Chemistry B,1998年,Vol.102,P.1736-1744
本発明は、上記課題に鑑み、半導体特性に優れた結晶性積層構造体を提供することを目的とする。
本発明者らは、上記目的を達成すべく鋭意検討した結果、一軸に配向している金属を主成分として含む金属層上に、直接又は他の層を介して、結晶性酸化物半導体を主成分として含む半導体層を備えている積層構造体であって、前記結晶性酸化物半導体が、ガリウム、インジウムおよびアルミニウムから選ばれる1または2以上の金属を含む酸化物半導体であり、さらに、一軸に配向している結晶性積層構造体が、導電性の制御容易性に優れ、縦方向導通が可能であり、良好な電気特性を有していることを見出し、上記した従来の課題を一挙に解決できることを知見した。
また、本発明者らは、前記結晶性積層構造体を備えている半導体装置が、InAlGaO系半導体向けの応用分野として、チャネル層以外での損失を低減することができ、安価で大口径化可能な下地材料上に半導体層を形成することができ、β酸化ガリウム基板やサファイア基板よりも熱伝導率の良い下地材料上に半導体層を形成することができることを知見し、さらに、窒化物半導体向けの応用分野として、InAlGaO系半導体を下地材料として用いることにより、受発光層以外での損失を低減させ無駄な発熱を低減することができること、安価で大口径化可能な下地材料上に半導体層を形成することができること、Si半導体装置との複合化を実現することができることを見出した。
また、本発明者らは、上記知見を得た後、さらに検討を重ねて、本発明を完成させるに至った。
すなわち、本発明は、[1]一軸に配向している金属を主成分として含む金属層上に、直接又は他の層を介して、結晶性酸化物半導体を主成分として含む半導体層を備えている積層構造体であって、前記結晶性酸化物半導体が、ガリウム、インジウムおよびアルミニウムから選ばれる1または2以上の金属を含む酸化物半導体であり、さらに、一軸に配向していることを特徴とする結晶性積層構造体に関する。
また、本発明は、以下の発明に関する。
[2]前記結晶性酸化物半導体が、ガリウムを含む酸化物半導体である前記[1]記載の結晶性積層構造体。
[3] 前記結晶性酸化物半導体が、コランダム構造またはβガリア構造を有する酸化物半導体である前記[1]または[2]に記載の結晶性積層構造体。
[4] 前記金属が、白金、金またはパラジウムである前記[1]〜[3]のいずれかに記載の結晶性積層構造体。
[5] 前記金属層が、下地基板上に設けられた金属膜で構成されている前記[1]〜[4]のいずれかに記載の結晶性積層構造体。
[6] 前記下地基板が、サファイア基板、Si基板、石英基板、窒化アルミニウム基板、窒化ホウ素基板、SiC基板、ガラス基板、SiGe基板またはプラスチック基板である前記[5]記載の結晶性積層構造体。
] 前記[1]〜[]のいずれかに記載の結晶性積層構造体からなることを特徴とする半導体装置。
] 前記[1]〜[]のいずれかに記載の結晶性積層構造体上に、直接または他の層を介して、電極を備えていることを特徴とする半導体装置。
] 一軸に配向している金属を主成分として含む金属層と、前記金属層上に、直接又は他の層を介して、結晶性酸化物半導体を主成分として含む半導体層とを備えている半導体装置であって、前記結晶性酸化物半導体が、ガリウム、インジウムおよびアルミニウムから選ばれる1または2以上の金属を含む酸化物半導体であり、さらに、一軸に配向していることを特徴とする半導体装置。
10] 縦型デバイスである前記[]〜[]のいずれかに記載の半導体装置。
11] パワーデバイスである前記[]〜[10]のいずれかに記載の半導体装置。
12] ショットキーバリアダイオード(SBD)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)または発光ダイオード(LED)である前記[]〜[11]のいずれかに記載の半導体装置。
13] ショットキーバリアダイオード(SBD)、金属酸化膜半導体電界効果トランジスタ(MOSFET)または静電誘導トランジスタ(SIT)である前記[]〜[12]のいずれかに記載の半導体装置。
14] 前記結晶性積層構造体の上面または下面に、直接または他の層を介して、発光層を備えている発光ダイオードである前記[]〜[12]のいずれかに記載の半導体装置。
本発明の結晶性積層構造体は、半導体特性に優れ、特に、導電性の制御容易性に優れ、縦方向導通が可能であり、良好な電気特性を有している。
本発明の実施の形態の事例を示す結晶性積層構造体の断面図である。 本発明の実施の形態の他の例を示す結晶性積層構造体の断面図である。 本発明の実施の形態の他の例を示す結晶性積層構造体の断面図である。 本発明の実施の形態の他の例を示す結晶性積層構造体の断面図である。 本発明の実施の形態の他の例を示す結晶性積層構造体の断面図である。 本発明の実施の形態の他の例を示す結晶性積層構造体の断面図である。 本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。 本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。 本発明の金属半導体電界効果トランジスタ(MESFET)の好適な一例を模式的に示す図である。 本発明の高電子移動度トランジスタ(HEMT)の好適な一例を模式的に示す図である。 本発明の金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な一例を模式的に示す図である。 図11の金属酸化膜半導体電界効果トランジスタ(MOSFET)の製造工程の一部を説明するための模式図である。 本発明の金属酸化膜半導体電界効果トランジスタ(MOSFET)の一例を模式的に示す図である。 本発明の静電誘導トランジスタ(SIT)の好適な一例を模式的に示す図である。 図8のSITの製造工程の一部を説明するための模式図である。 本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。 本発明の高電子移動度トランジスタ(HEMT)の好適な一例を模式的に示す図である。 本発明の金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な一例を模式的に示す図である。 本発明の接合電界効果トランジスタ(JFET)の好適な一例を模式的に示す図である。 本発明の絶縁ゲート型バイポーラトランジスタ(IGBT)の好適な一例を模式的に示す図である。 本発明の発光素子(LED)の好適な一例を模式的に示す図である。 本発明の発光素子(LED)の好適な一例を模式的に示す図である。 本発明の実施の形態の事例を示す成膜装置の構成図である。 本発明の実施例のX線回折プロファイルの一例を示す図である。 本発明の実施例のX線回折プロファイルの一例を示す図である。 本発明の実施例のX線回折プロファイルの一例を示す図である。 本発明の実施例のX線回折プロファイルの一例を示す図である。 本発明のショットキーバリアダイオード(SBD)の好適な一例を模式的に示す図である。 本発明の実施例におけるIV特性の評価結果を示す図である。 本発明の好適な実施の態様の一つであるストライプ状の金属層を模式的に説明する図である。 本発明の好適な実施の態様の一つであるドット状の金属層を模式的に説明する図である。 本発明の好適な実施の態様の一つである逆ドットパターン状の金属層を模式的に説明する図である。 実施例におけるTEM像を示す図である。
本発明の結晶性積層構造体は、一軸に配向している金属を主成分として含む金属層上に、直接又は他の層を介して、結晶性酸化物半導体を主成分として含む半導体層を備えている。
前記金属は、一軸に配向している金属であれば、特に限定されない。「一軸に配向している金属」は、膜厚方向及び膜面内方向、もしくは膜厚方向などの一定の方向に単一の結晶方位をもつ金属であればそれでよく、一軸に優先配向している金属も含む。本発明においては、膜厚方向に一軸に配向しているのが好ましい。配向については、一軸に配向しているのか否かをX線回折法により確認することができる。例えば、一軸に配向している結晶面に由来するピークとその他の結晶面に由来するピークとの積分強度比と、ランダムに配向した同一結晶粉末の一軸に配向している結晶面に由来するピークとその他の結晶面に由来するピークとの積分強度比と比較して、大きい場合(好ましくは倍以上大きい場合、より好ましくは一桁以上大きい場合)に、一軸に配向していると判断することができる。前記金属の種類としては、例えば、白金(Pt)、金(Au)、パラジウム(Pd)、銀(Ag)、クロム(Cr)、銅(Cu)、鉄(Fe)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、マンガン(Mn)、モリブデン(Mo)、アルミニウム(Al)またはハフニウム(Hf)等が挙げられ、これらの合金が前記金属であってもよい。本発明においては、前記金属が、一軸に配向している白金、金またはパラジウムであるのが好ましく、{111}面に配向している金属であるのも好ましく、{111}面に配向している白金、金またはパラジウムであるのがより好ましい。
前記金属層は、前記一軸に配向している金属を主成分として含んでいれば特に限定されず、通常、前記金属を50モル%以上含む金属層であり、好ましくは、80モル%以上含む金属層であり、より好ましくは、90モル%以上含む金属層である。前記金属層は、金属基板で構成されていてもよいし、下地基板上に設けられた金属膜で構成されていてもよい。前記金属層は、連続した金属膜からなっていてもよいし、連続していない金属膜からなっていてもよい。不連続の金属膜で構成されていてもよい。なお、連続していない金属膜や不連続の金属膜の形状は、特に限定されず、ストライプ状、ドット状およびランダム状ならびにこれらの逆パターン状のいずれの形状であってもよい。ストライプ状の場合には、例えば図30に示されるように、下地基板171上に、ストライプ状の金属層172が形成されているのが好ましい。また、ドット状の場合には、例えば図31に示されるように、下地基板171上に、ドット状の金属層172が形成されているのが好ましく、逆ドットパターン状の場合には、例えば図32に示されるように、下地基板171上に、ドットの穴が設けられた金属層172が形成されているのが好ましい。このような好ましいパターンによれば、金属層上に積層された前記半導体層の結晶性をより優れたものにすることができ、中でも結晶成長により形成した半導体層の結晶性をより優れたものにすることができる。
前記金属基板としては、例えば、上記金属の種類で例示した金属を主成分として含む金属基板などが挙げられ、より具体的には、白金(Pt)、金(Au)、パラジウム(Pd)、銀(Ag)、クロム(Cr)、銅(Cu)、鉄(Fe)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、マンガン(Mn)およびモリブデン(Mo)からなる1または2以上の金属を50質量%以上(好ましくは80質量%以上、より好ましくは90質量%以上)含む金属基板などが挙げられる。前記金属膜としては、例えば、上記金属の種類で例示した金属を主成分として含む金属膜などが挙げられ、より具体的には、白金(Pt)、金(Au)、パラジウム(Pd)、銀(Ag)、クロム(Cr)、銅(Cu)、鉄(Fe)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)、マンガン(Mn)およびモリブデン(Mo)からなる1または2以上の金属を50%以上(好ましくは80%以上、より好ましくは90%以上)含む金属膜などが挙げられる。本発明においては、前記金属層が、下地基板上に設けられた金属膜で構成されているのが好ましい。前記下地基板は、本発明の目的を阻害しない限り、特に限定されない。前記下地基板としては、例えば、サファイア基板、Si基板、石英基板、窒化アルミニウム基板、窒化ホウ素基板、SiC基板、ガラス基板(ホウケイ酸ガラス基板や結晶化ガラス基板も含む)、SiGe基板またはプラスチック基板などが挙げられる。本発明においては、前記下地基板が、c面サファイア基板またはSi基板{100}であるのが好ましい。このような好ましい基板を用いることにより、より半導体特性を向上させることができる。なお、本発明においては、前記金属層を電極として半導体装置に用いることもできる。
前記結晶性酸化物半導体は、ガリウム、インジウムおよびアルミニウムから選ばれる1または2以上の金属を含む酸化物半導体であって、さらに、一軸に配向していれば、特に限定されない。「一軸に配向している酸化物半導体」は、膜厚方向及び膜面内方向、もしくは膜厚方向などの一定の方向に単一の結晶方位をもつ酸化物半導体であれば、特に限定されず、一軸に優先配向している酸化物半導体も含まれる。本発明においては、膜厚方向に一軸に配向しているのが好ましい。配向については、上記金属層の場合と同様であり、一軸に配向しているのか否かをX線回折法により確認することができる。例えば、一軸に配向している結晶面に由来するピークとその他の結晶面に由来するピークとの積分強度比と、ランダムに配向した同一結晶粉末の一軸に配向している結晶面に由来するピークとその他の結晶面に由来するピークとの積分強度比と比較して、大きい場合(好ましくは倍以上大きい場合、より好ましくは一桁以上大きい場合)に、一軸に配向していると判断することができる。本発明においては、前記一軸に配向している結晶性酸化物半導体が単結晶であるのが好ましい。酸化物半導体の種類としては、例えば、InAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5〜2.5)などが挙げられる。本発明においては、前記酸化物半導体が、ガリウムを含む酸化物半導体であるのが好ましく、コランダム構造またはβガリア構造を有する酸化物半導体であるのも好ましく、α−Gaまたはβ−Gaであるのがより好ましい。このような好ましい酸化物半導体を、上記した好ましい金属と共に用いることにより、より電気特性に優れた結晶性積層構造体を得ることができる。
なお、前記半導体層は、結晶性酸化物半導体を主成分として含んでいれば、特に限定されないが、通常、前記結晶性酸化物半導体を50モル%以上含む半導体層であり、好ましくは、80モル%以上含む半導体層であり、より好ましくは、90モル%以上含む半導体層である。
以下、添付図面を参照して、酸化物半導体薄膜の成膜に関する好適な形態を説明する。具体的には、好ましい実施形態の一つである、金属層としての白金、金又はパラジウムの薄膜又は基板形成に関する形態で、酸化物半導体薄膜の成膜にミストCVD法を用いた形態で説明する。なお、各図において同一の符号を付した構成要素は同一であるものとする。
1.白金、金又はパラジウムの薄膜又は基板形成
白金、金又はパラジウムの基板を使用するときは、市販の材料を購入すればよい。成膜、デバイスプロセス等の工程で損傷せず、扱いやすい100μm以上の厚みを有するものが望ましく、成膜面は化学研磨等の方法で平坦に加工されていることが望ましい。白金や金の薄膜はスパッタ、蒸着、メッキをはじめ、種々の成膜手法を利用することができる。面方位{111}の試料を作製するために、成膜中に加熱処理してもよいし、成膜後に加熱処理してもよい。少なくともインジウム、アルミニウム、ガリウムのいずれか一つ、又はこれらを組み合わせた結晶性酸化物半導体薄膜成膜時の熱エネルギーにより白金、金、又はパラジウムを配向させてもよい。
白金、金又はパラジウムの薄膜を成膜する前に、被成膜材料との間に酸化シリコンやチタン、ニッケルなどの層をブロック層として、あるいは密着度強化層を入れることもできる。ブロック層は各層の下地材料が上層に熱処理等のプロセスにより拡散、混入することを防ぐ目的で導入される。ブロック層より上の層に形成された半導体装置の周波数特性を改善する効果もある。ブロック層や密着度強化層にチタン、ニッケル等の金属や酸化亜鉛、酸化スズ、ITO、InGaZnO、InO、GaO、InAlGaO等の低抵抗金属酸化膜を用いることで、白金、金又はパラジウムと下地材料とを低抵抗に接続すること、あるいは当該接続にオーミック特性を付与することができる。このときの金属酸化膜は必ずしも一軸に配向する必要はなく、アモルファスや多結晶でも構わない。密着強度向上には材料特性に加えて各層の下地材料との相性を踏まえて選定され、好適にはチタンやニッケルが用いられる。チタンのようにブロック層と密着度強化層とを兼ねることができる層もある。
好ましい実施形態の一例としては、c面サファイア上に白金、金又はパラジウムの薄膜を蒸着又はスパッタ法により形成する方法がある。薄膜の厚みは特に限定しないが500nm以下、より好適には50nm以下であることが好ましい。
好ましい実施形態の一例としては、Si{100}面に酸化シリコン膜を熱酸化により形成したのち、加熱処理を加えながら、スパッタ法によって白金、金又はパラジウムを成膜する方法がある。成膜後の加熱処理を行うことにより、更に白金、金又はパラジウムの結晶性を向上することができる。
2.酸化物半導体薄膜の成膜
<原料>
結晶性酸化物の原料については特に限定しないが、ガリウム化合物とインジウム化合物、アルミニウム化合物のいずれか、又はこれらを組み合わせた金属化合物を材料として用いることができる。ガリウム金属やインジウム金属を出発材料として成膜直前にガリウム化合物やインジウム化合物を形成してもよい。ガリウム化合物とインジウム化合物には、有機錯体やハロゲン化物をはじめ、非常に多くの種類のものがあるが、本実施形態では、ガリウム化合物、インジウム化合物としてはガリウムアセチルアセトナート、インジウムアセチルアセトナートを用い、アルミニウム化合物としてはアルミニウムアセチルアセトナートを用いる。
原料溶液の溶媒は、水、過酸化水素水、有機溶媒であることが好ましい。原料溶液中には、ドーパント化合物を添加することができ、これによって、形成される薄膜に導電性を付与することができるため、半導体層として利用することができる。
InAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5〜2.5)でX,Y,Zのうち少なくとも2つが0よりも大きい場合のように、2種類以上の金属元素を含む薄膜(混晶膜)を形成する場合、1種類の原料溶液中に2種類以上の金属化合物を溶解させてもよく、金属化合物ごとに原料溶液を準備し、それぞれの原料溶液を別々に微粒子化してもよい。
なお、本明細書中のInAlGaという表記はあくまで金属イオンと酸素イオンの比率を表現するために用いるのであって、「X+Y+Z=2」と表記していないことからも明らかなように、ノンストイキオメトリー酸化物も含んでおり、これは、金属不足酸化物、金属過剰酸化物だけでなく、酸素不足酸化物、酸素過剰酸化物も含む。
<微粒子化>
原料溶液を微粒子化して原料微粒子を生成する方法は、特に限定されないが、原料溶液に超音波振動を印加して微粒子化する方法が一般的である。また、これ以外の方法でも、例えば、原料溶液を噴霧することによって原料溶液を微粒子化することによっても原料微粒子を生成することができる。
<キャリアガス>
キャリアガスは、例えば窒素であるが、アルゴン、酸素、オゾン、空気などのガスを用いてもよい。また、キャリアガスの流量は、特に限定されないが、例えば、0.1〜50L/minである。原料溶液に有機溶媒を使用するときは酸素元素を含む酸素、オゾン等のガスを用いることが好ましい。
<成膜室・被成膜試料・成膜>
原料微粒子は、キャリアガスによって成膜室に供給され、成膜室において反応が起こって成膜室内に載置された被成膜試料上に薄膜が形成される。被成膜試料上に形成される薄膜は、酸化物結晶(好ましくは酸化物単結晶)の薄膜である。
成膜室は、薄膜形成が行われる空間であり、その構成や材料は特に限定されない。成膜室は、一例では、実施例のように石英管の一端から原料微粒子を含むキャリアガスを供給し、石英管の他端から排ガスを排出する構成である。この構成の場合、被成膜試料は、成膜面が水平になるように配置してもよく、キャリアガスの供給側に向けて例えば45度に傾斜するように配置してもよい。また、例えば、数mm以下のチャネルを反応領域として利用するファインチャネル法や、基板上に直線状のノズルを設け、ここから基板に垂直方向に原料微粒子(およびキャリアガス)を吹き付け、さらにノズルを直線状の出口とは垂直方向に移動させるというリニアソース法や、複数の方式を混合した、あるいは派生させた方式による成膜法を利用してもよい。ファインチャネル法では、均質な薄膜作製と原料の利用効率の向上が可能であるし、リニアソース法では、将来の大面積基板およびロールツーロールでの連続成膜が可能である。成膜室は、例えば成膜室の周囲をヒータで取り囲む等によって内部空間を所望温度に加熱できる構成になっている。また、成膜室は、大気圧ではなく加圧や減圧をしてもよい。
成膜時の成膜室の加熱温度は、原料溶液に含まれる原料溶質(ガリウム化合物、インジウム化合物等)を化学反応させることができる温度であれば特に限定されず、例えば300〜1500℃であり、400〜700℃が好ましく、450〜550℃がさらに好ましい。加熱温度が低すぎると原料溶質の反応速度が遅くて成膜速度が遅くなり、加熱温度が高すぎると、形成された薄膜のエッチング速度が大きくなってしまって成膜速度が遅くなってしまうからである。加熱温度は、具体的には例えば、300、350、400、450、500、550、600、650、700、750、800、900、1000、1500℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ただし、酸化物半導体薄膜がコランダム構造(α層)である場合、成膜温度が高温の場合はβ相が成長しやすいため、α相単相を得たい場合は温度ごとに、溶液の濃度および、組成、成膜時の流量などの条件の最適化が必要である。酸化物半導体薄膜は、いずれも単一組成膜であっても混晶膜であってもよい。混晶膜とする場合は、2種類以上の溶質を混合した溶液13aからミストを発生させるか、または、別々に発生させた2種類以上のミストを同時に成膜室16に導入すればよい。
被成膜試料は、白金、金又はパラジウムの薄膜又は基板、好ましくは面方位の配向した薄膜又は基板、例えば{111}に配向したものが形成可能であれば特に限定されない。白金、金又はパラジウムの薄膜を形成する場合の好適な例としては下地材料としてSi基板、ガラス基板、サファイア基板のいずれかを用いてもよい。Si基板としては{100}が特に好ましいが{111}基板でもよい。被成膜試料の、その他の好適な下地材料例としてはコランダム構造を有する薄膜又は基板、GaNやZnOに代表される六方晶の結晶構造を有する薄膜又は基板、YSZに代表されるような立方晶の結晶構造を有する薄膜又は基板、またはβ型酸化ガリウム薄膜又は基板、γ型酸化ガリウム薄膜又は基板等が挙げられる。白金、金又はパラジウムの薄膜と下地材料との間にはアモルファス酸化物を形成することが好ましい。当該アモルファス酸化物が導電性酸化物であれば、下地材料上に電極を形成することができ、半導体装置の面積を小型化できる場合もある。
白金、金又はパラジウムの薄膜又は基板と少なくともインジウム、アルミニウム、ガリウムを含む酸化物半導体薄膜との間に緩衝層を入れることも可能である。緩衝層は少なくともインジウム、アルミニウム、ガリウムを含む、酸化物半導体薄膜と異なる組成の酸化物でもよい。緩衝層は白金、金又はパラジウムの薄膜と酸化物半導体薄膜との間に形成される。例えば、低い成膜温度で形成され、白金、金又はパラジウムの表面状態を良好に保った状態で酸化物半導体薄膜の形成を可能とする。他の例では、白金や金との接触抵抗を低減するために白金、金又はパラジウムと上層の酸化物半導体薄膜との間に形成された、仕事関数の低いチタンなどの金属又は酸化亜鉛、酸化インジウム、ITO、InGaZnOなどの金属酸化物の薄膜でもよい。コランダム構造、βガリア構造、ビックスバイト構造を有していても良く、酸化物半導体薄膜層と同一の結晶構造を有することが好ましい。
本実施形態の方法によって製造可能な半導体装置又は結晶体の例を図1〜6に示す。
図1の例では、白金、金又はパラジウムの基板2上にInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5〜2.5)単結晶膜1がこの順で形成される。
図2の例では、下地材料5上に白金、金又はパラジウムの薄膜4が成膜され、その上にInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5〜2.5)単結晶膜3がこの順で形成される。白金、金又はパラジウムの薄膜4は配向していることが好ましく、特に{111}面に配向していることが好ましい。下地材料5としてはSi基板、サファイア基板、ガラス基板が好ましく、Cuをはじめとする金属基板でもよい。
図3の例では白金、金又はパラジウムの薄膜7と下地材料9との間にブロック層8を成膜している。ブロック層8は下地材料9が白金、金又はパラジウムの薄膜7に表出することを防ぐ目的で形成され、チタンや酸化シリコンが好適である。これにより、下地材料由来の不純物を防いだInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5〜2.5)膜6を形成することができる。
図4の例では白金、金又はパラジウムの薄膜11と下地材料13との間に密着度強化層12を成膜している。密着度強化層12は下地材料13と白金、金又はパラジウムの薄膜11との密着度を強化する目的で形成され、チタンやニッケルが好適である。
図5の例では白金、金又はパラジウムの薄膜15と下地材料18との間にブロック層16と密着度強化層17とを成膜している。
ブロック層16と密着度強化層17とは上下逆転する構造で形成されてもよい。密着度強化層17をブロック層16上層に成膜するときには、密着度強化層17が白金、金又はパラジウムの薄膜15と成膜工程あるいは成膜後工程により反応しないことが好ましい。この反応が生じた場合、白金、金又はパラジウムの薄膜に密着度強化層が混合してしまい、良質なInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5〜2.5)膜を形成する妨げとなるためである。しかも、ブロック層16と下地材料18との密着が強固であることが好ましい。
図6の例では酸化物半導体薄膜19と白金、金又はパラジウムの薄膜21との間に緩衝層が形成されている。
<取り出し>
酸化物半導体薄膜の成膜が完了すると、酸化物半導体薄膜付きの下地材料が成膜室から取り出される。
酸化物半導体薄膜をGaN、AlN、InN、AlGaN、InGaN、InAlGaN半導体等の窒化物半導体の下地材料として利用する場合は、MOCVD等の成膜プロセスにより窒化物半導体を成膜する。窒化物半導体の成膜前に窒化処理を施して酸化物半導体薄膜の最表面を窒素化しておくことでInAlGaN等の窒化物半導体の結晶品質を向上することができる。窒化処理には窒素プラズマ処理やアンモニアガスを流しながら高温アニールする方法を用いることができる。
特に、コランダム構造の酸化物半導体薄膜を形成する場合は、低温成長可能であり、Si{100}等を用いて複合化する場合であっても成膜温度等を低く抑えることができるため、コランダム構造以外の同一基板上に形成された材料、薄膜、半導体装置の熱ダメージを低減させることができる。但し、窒化物半導体層を形成する際に熱エネルギーが必要な場合は、コランダム構造を維持するために、相転移防止の手法を導入してもよい。例えば窒化物半導体の低温緩衝層導入などの手法が挙げられる。
相転移を防止又は制御するための手法の一例を以下で紹介する。
例えば、酸化物半導体薄膜の上の層としてよりAl濃度の大きな酸化物半導体薄膜を形成することで、コランダム構造酸化物半導体薄膜、好適にはInAlGaO系半導体の相転移を防止、又は制御することができる。
例えば、窒化物半導体層の成膜温度を下地材料であるコランダム構造酸化物半導体薄膜が相転移しない低い温度に抑えること、詳しくはAl濃度にも依存するが、InAlGaO系半導体の場合は800℃以下に抑えること、特に酸化ガリウム半導体の場合は500℃以下に抑えることが好ましい。
例えば、InAlGaN半導体等の窒化物半導体層とInAlGaO半導体層との間に窒化物半導体の低温緩衝層を入れて、界面形成時の成膜温度を、コランダム構造酸化物半導体薄膜が相転移しない温度に抑えることでInAlGaO系半導体等の酸化物半導体薄膜とInAlGaN等の窒化物半導体との界面を良好に保つことができる。この場合、低温緩衝層形成後の窒化物半導体層の形成温度は、コランダム構造酸化物半導体薄膜が相転移するよりも低い温度に抑えるのが好ましい。
なお、本発明においては、上記したように相転移を防止したり、制御したりしてもよいし、前記の相転移の防止手法又は制御手法等を用いずに、相転移させてもよい。相転移させる場合には、例えば、コランダム構造をβガリア構造に変えること等が考えられる。
また、上記実施形態では、ミストCVD法により酸化物半導体薄膜を成膜したが、他の手法により成膜してもよい。ミストCVD法を用いることで、比較的低温で酸化物半導体薄膜を形成することができる。その結果、白金や金のマイグレーションが生じにくく、また、材料種による熱膨張係数の違いが問題になりにくいというメリットが生じる。酸化物半導体薄膜を成膜可能な他の手法としては、有機金属気相成長法、分子線エピタキシー法、スパッタ法、蒸着法等があり、適宜、成膜後の加熱処理と組み合わせて実施される。成膜後の加熱処理は、その後の製造工程で置かれる、酸化物半導体薄膜の成膜、結晶性向上等を直接の目的としない工程における加熱処理で代替することもできる。
なお、本発明では、酸化物半導体薄膜、緩衝層、ブロック層、窒化物半導体層にインジウム、アルミニウム、ガリウム以外の元素を不純物ドーピングしてもよいし混晶としてもよい。例えば不純物ドーピングにはGe、Sn、Si、Zn、Mg等の元素を用いてもよいし、ブロック層や酸化物半導体薄膜層にはInGaZnOなどの混晶を用いてもよい。これにより、導電性ならびに絶縁性を調整することができる。
さらに、本発明では、酸化物半導体薄膜、緩衝層、ブロック層、白金、金又はパラジウムの一部に、膜組成および元素ドーピング濃度についての一定の繰り返し構造を導入してもよい。これにより、応力緩和の促進、あるいはキャリア濃度の増減、キャリア移動度の大小、密着度、他層の混入防止程度(ブロック度)を調整することが可能である。
以上により、本発明に係る半導体装置の成膜工程は終了し、イオン注入やエッチング、フォトリソグラフィ、加熱処理、電極形成、等のデバイスプロセスへと移される。
その後、金属層などの各層は、下地材料の剥離技術に活用することもできる。例えば、白金や金を薬液等で溶解させ、あらかじめ支持基板に固定した白金や金より上の層を剥離することができる。この場合、白金や金よりを上の層で剥離後に指示基板に固定化させる目的の層は、白金や金を溶解させた薬液で溶解しないよう、薬液を適切に選定しなければならない。
本発明の結晶性積層構造体は、様々な半導体装置に有用であり、とりわけ、パワーデバイスに有用である。また、半導体装置は、電極が半導体層の片面側に形成された横型の素子(横型デバイス)と、半導体層の表裏両面側にそれぞれ電極を有する縦型の素子(縦型デバイス)に分類することができ、本発明においては、前記結晶性積層構造体を横型デバイスにも縦型デバイスにも好適に用いることができるが、中でも、縦型デバイスに用いることが好ましい。前記半導体装置としては、例えば、ショットキーバリアダイオード(SBD)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)または発光ダイオードなどが挙げられる。本発明においては、前記半導体装置が、SBD、MOSFETまたはSITであるのが好ましい。また、本発明においては、前記半導体装置が、p型半導体層を含まないのが好ましい。
なお、本発明の結晶性積層構造体を半導体装置に用いる場合には、本発明の結晶性積層構造体をそのまま又は所望により基板の剥離等を行って、半導体装置に用いることができる。
以下、本発明の結晶性積層構造体の結晶性酸化物半導体薄膜をn型半導体層(n+型半導体やn−型半導体等)に適用した場合の好適な例を、図面を用いて説明するが、本発明は、これらの例に限定されるものではない。なお、以下に例示する半導体装置において、本発明の目的を阻害しない限り、さらに他の層(例えば絶縁体層、半絶縁体層、導体層、半導体層、緩衝層またはその他中間層等)などが含まれていてもよいし、また、緩衝層(バッファ層)なども適宜省いてもよい。
(SBD)
図7は、本発明に係るショットキーバリアダイオード(SBD)の一例を示している。図7のSBDは、n−型半導体層101a、n+型半導体層101b、ショットキー電極105aおよびオーミック電極105bを備えている。
ショットキー電極およびオーミック電極の材料は、公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。
ショットキー電極およびオーミック電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。より具体的に例えば、ショットキー電極を形成する場合、Moからなる層とAlからなる層を積層させ、Moからなる層およびAlからなる層に対して、フォトリソグラフィの手法を利用したパターニングを施すことにより行うことができる。
図7のSBDに逆バイアスが印加された場合には、空乏層(図示せず)がn型半導体層101aの中に広がるため、高耐圧のSBDとなる。また、順バイアスが印加された場合には、オーミック電極105bからショットキー電極105aへ電子が流れる。このようにして前記結晶性積層構造体を用いたSBDは、高耐圧・大電流用に優れており、スイッチング速度も速く、耐圧性・信頼性にも優れている。
図8は、本発明に係るショットキーバリアダイオード(SBD)の一例を示している。図8のSBDは、図7のSBDの構成に加え、さらに絶縁体層104を備えている。より具体的には、n−型半導体層101a、n+型半導体層101b、ショットキー電極105a、オーミック電極105bおよび絶縁体層104を備えている。
絶縁体層104の材料としては、例えば、GaO、AlGaO、InAlGaO、AlInZnGaO、AlN、Hf、SiN、SiON、Al、MgO、GdO、SiOまたはSiなどが挙げられるが、本発明においては、コランダム構造を有するものであるのが好ましい。コランダム構造を有する絶縁体を絶縁体層に用いることで、界面における半導体特性の機能を良好に発現させることができる。絶縁体層104は、n−型半導体層101とショットキー電極105aとの間に設けられている。絶縁体層の形成は、例えば、スパッタリング法、真空蒸着法またはCVD法などの公知の手段により行うことができる。
ショットキー電極やオーミック電極の形成や材料等については、上記図7のSBDの場合と同様である。
図8のSBDは、図7のSBDに比べ、さらに絶縁特性に優れており、より高い電流制御性を有する。
図28は、本発明に係るショットキーバリアダイオード(SBD)の一例を示している。図28のSBDは、n型半導体層101、金属層103、ショットキー電極105a、オーミック電極105bおよび下地基板109を備えている。図28のような構成とすることで、従来のように接触抵抗のためにオーミック電極を大きくする必要がなくなり、オーミック電極を小型化することができる。
(MESFET)
図9は、本発明に係る金属半導体電界効果トランジスタ(MESFET)の一例を示している。図9のMESFETは、n−型半導体層111a、半絶縁体層114、ゲート電極115a、ソース電極115bおよびドレイン電極115cを備えている。
ゲート電極、ドレイン電極およびソース電極の材料は、公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。ゲート電極、ドレイン電極およびソース電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。
半絶縁体層114は、半絶縁体で構成されていればそれでよく、前記半絶縁体としては、例えばルテニウム(Ru)や鉄(Fe)等の半絶縁体ドーパントを含むものやドーピング処理がなされていないもの等が挙げられる。
図9のMESFETでは、ゲート電極下に良好な空乏層が形成されるので、ドレイン電極からソース電極に流れる電流を効率よく制御することができる。
(HEMT)
図10は、本発明に係る光電子移動度トランジスタ(HEMT)の一例を示している。図10のHEMTは、バンドギャップの広いn型半導体層121a、バンドギャップの狭いn型半導体層121b、n+型半導体層121c、半絶縁体層124、ゲート電極125a、ソース電極125bおよびドレイン電極125cを備えている。
ゲート電極、ドレイン電極およびソース電極の材料は、それぞれ公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。ゲート電極、ドレイン電極およびソース電極の形成は、例えば、真空蒸着法またはスパッタリング法などの公知の手段により行うことができる。
なお、ゲート電極下のn型半導体層は、少なくともバンドギャップの広い層121aと狭い層121bとで構成されており、半絶縁体層124は、半絶縁体で構成されていればそれでよく、前記半絶縁体としては、例えばルテニウム(Ru)や鉄(Fe)等の半絶縁体ドーパントを含むものやドーピング処理がなされていないもの等が挙げられる。
図10のHEMTでは、ゲート電極下に良好な空乏層が形成されるので、ドレイン電極からソース電極に流れる電流を効率よく制御することができる。また、本発明においては、さらにリセス構造とすることで、ノーマリーオフを発現することができる。
(MOSFET)
本発明の半導体装置がMOSFETである場合の一例を図11に示す。図11のMOSFETは、トレンチ型のMOSFETであり、n−型半導体層131a、n+型半導体層131b及び131c、ゲート絶縁膜134、ゲート電極135a、ソース電極135bおよびドレイン電極135cを備えている。
ドレイン電極135c上には、例えば厚さ100nm〜100μmのn+型半導体層131bが形成されており、前記n+型半導体層131b上には、例えば厚さ100nm〜100μmのn−型半導体層131aが形成されている。そして、さらに、前記n−型半導体層131a上には、n+型半導体層131cが形成されており、前記n+型半導体層131c上には、ソース電極135bが形成されている。
また、前記n−型半導体層131a及び前記n+型半導体層131c内には、前記n+半導体層131cを貫通し、前記n−型半導体層131aの途中まで達する深さの複数のトレンチ溝が形成されている。前記トレンチ溝内には、例えば、10nm〜1μmの厚みのゲート絶縁膜134を介してゲート電極135aが埋め込み形成されている。
図11のMOSFETのオン状態では、前記ソース電極135bと前記ドレイン電極135cとの間に電圧を印可し、前記ゲート電極135aに前記ソース電極135bに対して正の電圧を与えると、前記n−型半導体層131aの側面にチャネル層が形成され、電子が前記n−型半導体層に注入され、ターンオンする。オフ状態は、前記ゲート電極の電圧を0Vにすることにより、チャネル層ができなくなり、n−型半導体層が空乏層で満たされた状態になり、ターンオフとなる。
図12は、図11のMOSFETの製造工程の一部を示している。例えば図12(a)に示すような積層体を用いて、n−型半導体層131aおよびn+型半導体層131cの所定領域にエッチングマスクを設け、前記エッチングマスクをマスクにして、さらに、反応性イオンエッチング法等により異方性エッチングを行って、図12(b)に示すように、前記n+型半導体層131c表面から前記n−型半導体層131aの途中にまで達する深さのトレンチ溝を形成する。次いで、熱酸化法、真空蒸着法、スパッタリング法、CVD法等の公知の手段を用いて、前記トレンチ溝の側面及び底面に、例えば50nm〜1μm厚のゲート絶縁膜134を形成する。次いで、CVD法、真空蒸着法、スパッタリング法等の公知の手段を用いて、前記トレンチ溝に、例えばポリシリコン等のゲート電極材料をn−型半導体層の厚み以下に形成する。
そして、真空蒸着法、スパッタリング法、CVD法等の公知の手段を用いて、n+型半導体層131c上にソース電極135bを、n+型半導体層131b上にドレイン電極135cを、それぞれ形成することで、パワーMOSFETを製造することができる。なお、ソース電極およびドレイン電極の電極材料は、それぞれ公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。
このようにして得られたMOSFETは、従来のトレンチ型MOSFETに比べて、さらに耐圧性に優れたものとなる。なお、図11では、トレンチ型の縦型MOSFETの例を示したが、本発明においては、これに限定されず、種々のMOSFETの形態に適用可能である。例えば、図11のトレンチ溝の深さをn−型半導体層131aの底面まで達する深さまで掘り下げて、シリーズ抵抗を低減させるようにしてもよい。なお、横型のMOSFETの場合の一例を図13に示す。図13のMOSFETは、n−型半導体層131a、第1のn+型半導体層131b、第2のn+型半導体層131c、ゲート絶縁膜134、ゲート電極135a、ソース電極135b、ドレイン電極135c、緩衝層138および半絶縁体層139を備えている。図13に示すように、n+型半導体層をn−型半導体層に埋め込むことで、より良好に電流を流すことができる。
(SIT)
図14は、本発明の半導体装置がSITである場合の一例を示す。図14のSITは、n−型半導体層141a、n+型半導体層141b及び141c、ゲート電極145a、ソース電極145bおよびドレイン電極145cを備えている。
ドレイン電極145c上には、例えば厚さ100nm〜100μmのn+型半導体層141bが形成されており、前記n+型半導体層141b上には、例えば厚さ100nm〜100μmのn−型半導体層141aが形成されている。そして、さらに、前記n−型半導体層141a上には、n+型半導体層141cが形成されており、前記n+型半導体層141c上には、ソース電極145bが形成されている。
また、前記n−型半導体層141a内には、前記n+半導体層131cを貫通し、前記n−半導体層131aの途中の深さまで達する深さの複数のトレンチ溝が形成されている。前記トレンチ溝内のn−型半導体層上には、ゲート電極145aが形成されている。
図14のSITのオン状態では、前記ソース電極145bと前記ドレイン電極145cとの間に電圧を印可し、前記ゲート電極145aに前記ソース電極145bに対して正の電圧を与えると、前記n−型半導体層141a内にチャネル層が形成され、電子が前記n−型半導体層に注入され、ターンオンする。オフ状態は、前記ゲート電極の電圧を0Vにすることにより、チャネル層ができなくなり、n−型半導体層が空乏層で満たされた状態になり、ターンオフとなる。
図15は、図14のSITの製造工程の一部を示している。例えば図15(a)に示すような積層体を用いて、n−型半導体層141aおよびn+型半導体層141cの所定領域にエッチングマスクを設け、前記エッチングマスクをマスクにして、例えば、反応性イオンエッチング法等により異方性エッチングを行って、図15(b)に示すように、前記n+型半導体層131c表面から前記n−型半導体層の途中まで達する深さのトレンチ溝を形成する。次いで、CVD法、真空蒸着法、スパッタリング法等で、前記トレンチ溝に、例えばポリシリコン等のゲート電極材料をn−型半導体層の厚み以下に形成する。また、真空蒸着法、スパッタリング法、CVD法等の公知の手段を用いて、n+型半導体層131c上にソース電極135bを、n+型半導体層131b上にドレイン電極135cを、それぞれ形成することで、SITを製造することができる。なお、ソース電極およびドレイン電極の電極材料は、それぞれ公知の電極材料であってもよく、前記電極材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。
上記例では、p型半導体を使用していない例を示したが、本発明においては、これに限定されず、p型半導体を用いてもよい。p型半導体を用いた例を図16〜22に示す。これらの半導体装置は、上記例と同様にして製造することができる。なお、p型半導体は、n型半導体と同じ材料であって、p型ドーパントを含むものであってもよいし、異なるp型半導体であってもよい。
図16は、n−型半導体層101a、n+型半導体層101b、p型半導体層102、金属層103、絶縁体層104、ショットキー電極105aおよびオーミック電極105bを備えているショットキーバリアダイオード(SBD)の好適な一例を示す。なお、金属層103は、例えばAl等の金属からなり、ショットキー電極105aを覆っている。図17は、バンドギャップの広いn型半導体層121a、バンドギャップの狭いn型半導体層121b、n+型半導体層121c、p型半導体層123、ゲート電極125a、ソース電極125b、ドレイン電極125cおよび基板129を備えている高電子移動度トランジスタ(HEMT)の好適な一例を示す。
図18は、n−型半導体層131a、第1のn+型半導体層131b、第2のn+型半導体層131c、p型半導体層132、p+型半導体層132a、ゲート絶縁膜134、ゲート電極135a、ソース電極135bおよびドレイン電極135cを備えている金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な一例を示す。なお、p+型半導体層132aは、p型半導体層であってもよく、p型半導体層132と同じであってもよい。図19は、n−型半導体層141a、第1のn+型半導体層141b、第2のn+型半導体層141c、p型半導体層142、ゲート電極145a、ソース電極145bおよびドレイン電極145cを備えている接合電界効果トランジスタ(JFET)の好適な一例を示す。図20は、n型半導体層151、n−型半導体層151a、n+型半導体層151b、p型半導体層152、ゲート絶縁膜154、ゲート電極155a、エミッタ電極155bおよびコレクタ電極155cを備えている絶縁ゲート型バイポーラトランジスタ(IGBT)の好適な一例を示す。
(LED)
図21は、本発明の半導体装置が発光ダイオード(LED)である場合の一例を示す。図21の半導体発光素子は、第2の電極165b上にn型半導体層161を備えており、n型半導体層161上には、発光層163が積層されている。そして、発光層163上には、p型半導体層162が積層されている。p型半導体層162上には、発光層163が発生する光を透過する透光性電極167を備えており、透光性電極167上には、第1の電極165aが積層されている。なお、図21の半導体発光素子は、電極部分を除いて保護層で覆われていてもよい。
透光性電極の材料としては、インジウム(In)またはチタン(Ti)を含む酸化物の導電性材料などが挙げられる。より具体的には、例えば、In、ZnO、SnO、Ga、TiO、CeOまたはこれらの2以上の混晶またはこれらにドーピングされたものなどが挙げられる。これらの材料を、スパッタリング等の公知の手段で設けることによって、透光性電極を形成できる。また、透光性電極を形成した後に、透光性電極の透明化を目的とした熱アニールを施してもよい。
図21の半導体発光素子によれば、第1の電極165aを正極、第2の電極165bを負極とし、両者を介してp型半導体層162、発光層163およびn型半導体層161に電流を流すことで、発光層163が発光するようになっている。
第1の電極165a及び第2の電極165bの材料としては、例えば、Al、Mo、Co、Zr、Sn、Nb、Fe、Cr、Ta、Ti、Au、Pt、V、Mn、Ni、Cu、Hf、W、Ir、Zn、In、Pd、NdもしくはAg等の金属またはこれらの合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン又はポリピロ−ルなどの有機導電性化合物、またはこれらの混合物などが挙げられる。電極の成膜法は特に限定されることはなく、印刷方式、コ−ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ−ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式、などの中から前記材料との適性を考慮して適宜選択した方法に従って形成することができる。
なお、発光素子の別の態様を図22に示す。図22の発光素子では、基板169上にn型半導体層161が積層されており、p型半導体層162、発光層163およびn型半導体層161の一部を切り欠くことによって露出したn型半導体層161の半導体層露出面上の一部に第2の電極165bが積層されている。
このようにして、本発明の結晶性積層構造体を発光素子に用いることにより、高耐圧・大電流のLEDとすることができるだけでなく、内部にも光が吸収されにくく、光の取り出し性にも優れたものとすることができ、輝度も高くすることができる。また、図21に示される発光素子は、図22の発光素子よりも小型化・軽量化することができ、発光効率もさらに良好なものとなる。
以下、本発明の実施例を説明する。
1.実験1
1−1.被成膜試料作成
サファイア基板(並木精密宝石株式会社製、C面、0.55mm厚)上に蒸着装置を利用して白金薄膜を成膜したものを被成膜試料とした。
また、別の例では、Si{100)基板(熱酸化膜100nm、N型、0.525mm厚)上に、スパッタ装置(キャノンアネルバ製EB1100)を用いて白金を600℃で10nm成膜し、その後スパッタ装置(同上)を使用して膜厚35nmで白金薄膜を成膜したものを被成膜試料とした。
また、上述のサファイア基板、又はSi{100}基板を被成膜試料として用い、蒸着装置を利用して金薄膜を35nm成膜した。
1−2.ミストCVD装置
まず、図23を用いて、本実施例で用いたミストCVD装置25を説明する。被成膜試料26には上述1−1に記載の方法にて作製した被成膜試料を用いた。ミストCVD装置25は、下地材料等の被成膜試料26を載置する試料台27と、キャリアガスを供給するキャリアガス源28と、キャリアガス源28から送り出されるキャリアガスの流量を調節するための流量調節弁29と、原料溶液30aが収容されるミスト発生源24と、水31aが入れられる容器31と、容器31の底面に取り付けられた超音波振動子32と、内径40mmの石英管からなる成膜室33と、成膜室の周辺部に設置されたヒータ34を備えている。試料台27は、石英からなり、被成膜試料26を載置する面が傾斜している。成膜室33と試料台27をどちらも石英で作製することにより、被成膜試料26上に形成される薄膜内に装置由来の不純物が混入することを抑制している。
1−3.原料溶液の作製
表1に示す原料溶質を超純水中に溶解させることによって所望の濃度の原料溶液30aを作製した。
1−4.成膜準備
次に、被成膜試料26として、1辺が10mmの正方形で厚さ600μmの下地材料を試料台27上に設置させ、ヒータ34を作動させて成膜室33内を500℃に昇温させた。次に、流量調節弁29を開いてキャリアガス源29からキャリアガスを成膜室33内に供給し、成膜室33の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を5ml/分に調節した。キャリアガスとしては、窒素ガスを用いた。
1−5.薄膜形成
次に、超音波振動子を2.4MHzで振動させ、その振動を、水31aを通じて原料溶液30aに伝播させることによって、原料溶液30aを微粒子化させて原料微粒子を生成した。
この原料微粒子が、キャリアガスによって成膜室33内に導入され、成膜室33内で反応して、被成膜試料26の成膜面でのCVD反応によって被成膜試料26上に薄膜を形成した。
1−6.評価
表1の実験についてのX線回折結果を図24〜図27に示す。サファイア基板上に形成した試料である図24では白金、図25では金が{111}面に配向していることが確認された。そしてそれぞれの薄膜上に一軸に配向しているコランダム構造の酸化ガリウム(α−Ga)単結晶が形成されていることを確認した。白金薄膜・金薄膜が一軸に配向し、その結果、白金薄膜・金薄膜上に結晶性の酸化ガリウム単結晶薄膜が形成されたと考えられる。また、酸化ガリウムの成膜温度を600℃にして白金又は金の薄膜上に酸化ガリウム薄膜を成膜したところ、β型の酸化ガリウム単結晶薄膜を形成することができた。この場合にも、白金薄膜・金薄膜は成膜後に一軸に配向していることを確認した。
図26で示したSi{100}基板(熱酸化膜100nm、N型、0.525mm厚)上で、チタンを10nm、白金薄膜を35nm成膜した試料では、ミストCVD法を用いた酸化ガリウム形成後に、βガリア構造の酸化ガリウム(β−Ga)単結晶が確認された。この白金薄膜は、酸化ガリウムの成膜前にすでに一軸に配向しており、一軸に配向している白金薄膜上にβ型酸化ガリウム単結晶薄膜を形成することができた。
図27で示したSi{100}基板(熱酸化膜100nm、N型、0.525mm厚)上に、金を蒸着法で35nm成膜した試料においても、ミストCVD法を用いた酸化ガリウム形成後にβガリア構造の酸化ガリウム(β−Ga)単結晶が確認された。この金薄膜は、酸化ガリウムの成膜前にすでに一軸に配向しており、一軸に配向している金薄膜上にβ型酸化ガリウム単結晶薄膜を形成することができた。
各実験についての考察は、以下の通りである。
Si基板、具体的には、面方位{100}、{111}、{110}上に、直接、酸化ガリウムを成膜した場合、酸化ガリウムがアモルファスになってしまい、結晶性酸化ガリウムを形成することができなかった。また、Si基板上に白金薄膜を直接形成し、その上に酸化ガリウムの成膜を行ったところ、酸化ガリウムがアモルファスになってしまい、結晶性酸化ガリウムを形成することができなかった。なお、白金薄膜は、酸化ガリウムの成膜後にも一軸に配向していなかった。
サファイア基板上に、上記のスパッタ装置を用いて一軸に配向していないアルミニウム膜を形成し、その上に、酸化ガリウムを成膜した場合、酸化ガリウムがアモルファスになってしまい、結晶性酸化ガリウムを形成することができなかった。
以上のように、白金又は金の薄膜が酸化物半導体薄膜の成膜時までに一軸に配向している場合には、良好な結晶性を有する酸化物半導体薄膜を成膜することに成功した。
また、サファイア基板上に、上記のスパッタ装置を用いて一軸に配向しているパラジウム薄膜を形成し、その上に、酸化ガリウムを成膜した。その結果、パラジウム薄膜が一軸に配向している場合には、良好な結晶性を有するα−Ga単結晶膜およびβ−Ga単結晶膜をそれぞれ得ることができた。
白金薄膜の膜厚を300nmにし、ガリウムアセチルアセトナートに代えて臭化ガリウムを、窒素に代えて酸素を用いたこと以外は実験1と同様にして、結晶性積層構造体を作製した。この白金薄膜をショットキー電極とし、オーミック電極としてInを圧着して酸化物半導体薄膜上に形成し、SBDを作製した。
得られたSBDにつき、IV特性を評価した。結果を図29に示す。
また、上記実施例と同様にして、Si基板上に、一軸に配向しているPt膜を形成し、さらに、Pt膜上に、一軸に配向しているα−Ga単結晶膜を得た。得られた結晶性積層構造体の断面をTEMで観察した。TEM像を図33に示す。
本発明の結晶性積層構造体は、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、半導体特性に優れているため、特に、半導体装置に有用である。
1 酸化物半導体薄膜
2 金属層(白金、金又はパラジウムの薄膜又は基板)
3 酸化物半導体薄膜
4 金属層(白金、金又はパラジウムの薄膜又は基板)
5 下地材料
6 酸化物半導体薄膜
7 金属層(白金、金又はパラジウムの薄膜又は基板)
8 ブロック層
9 下地材料
10 酸化物半導体薄膜
11 金属層(白金、金又はパラジウムの薄膜又は基板)
12 密着度強化層
13 下地材料
14 酸化物半導体薄膜
15 金属層(白金、金又はパラジウムの薄膜又は基板)
16 ブロック層
17 密着度強化層
18 下地材料
19 酸化物半導体薄膜
20 緩衝層
21 金属層(白金、金又はパラジウムの薄膜又は基板)
22 ブロック層
23 密着度強化層
24 下地材料
25 ミストCVD装置
26 被成膜試料
27 試料台
28 キャリアガス源
29 流量調節弁
30 ミスト発生源
30a 原料溶液
31 容器
31a 水
32 超音波振動子
33 成膜室
34 ヒータ
101 n型半導体層
101a n−型半導体層
101b n+型半導体層
102 p型半導体層
103 金属層
104 絶縁体層
105a ショットキー電極
105b オーミック電極
109 下地基板
111a n−型半導体層
111b n+型半導体層
114 半絶縁体層
115a ゲート電極
115b ソース電極
115c ドレイン電極
118 緩衝層
121a バンドギャップの広いn型半導体層
121b バンドギャップの狭いn型半導体層
121c n+型半導体層
123 p型半導体層
124 半絶縁体層
125a ゲート電極
125b ソース電極
125c ドレイン電極
128 緩衝層
129 基板
131a n−型半導体層
131b 第1のn+型半導体層
131c 第2のn+型半導体層
132 p型半導体層
134 ゲート絶縁膜
135a ゲート電極
135b ソース電極
135c ドレイン電極
138 緩衝層
139 半絶縁体層
141a n−型半導体層
141b 第1のn+型半導体層
141c 第2のn+型半導体層
142 p型半導体層
145a ゲート電極
145b ソース電極
145c ドレイン電極
151 n型半導体層
151a n−型半導体層
151b n+型半導体層
152 p型半導体層
154 ゲート絶縁膜
155a ゲート電極
155b エミッタ電極
155c コレクタ電極
161 n型半導体層
162 p型半導体層
163 発光層
165a 第1の電極
165b 第2の電極
167 透光性電極
169 基板
171 下地基板
172 金属層

Claims (12)

  1. 一軸に配向している金属を主成分として含む金属層上に、直接又は他の層を介して、結晶性酸化物半導体を主成分として含む半導体層を備えている結晶性積層構造体であって、前記結晶性酸化物半導体が、ガリウムを含み且つコランダム構造を有する酸化物半導体であり、さらに、一軸に配向していることを特徴とする結晶性積層構造体。
  2. 前記金属が、白金、金またはパラジウムである請求項1記載の結晶性積層構造体。
  3. 前記金属層が、下地基板上に設けられた金属膜で構成されている請求項1または2に記載の結晶性積層構造体。
  4. 前記下地基板が、サファイア基板、Si基板、石英基板、窒化アルミニウム基板、窒化ホウ素基板、SiC基板、ガラス基板、SiGe基板またはプラスチック基板である請求項3記載の結晶性積層構造体。
  5. 請求項1〜4のいずれかに記載の結晶性積層構造体からなることを特徴とする半導体装置。
  6. 請求項1〜4のいずれかに記載の結晶性積層構造体上に、直接または他の層を介して、電極を備えていることを特徴とする半導体装置。
  7. 一軸に配向している金属を主成分として含む金属層と、前記金属層上に、直接又は他の層を介して、結晶性酸化物半導体を主成分として含む半導体層とを備えている半導体装置であって、前記結晶性酸化物半導体が、ガリウムを含み且つコランダム構造を有する酸化物半導体であり、さらに、一軸に配向していることを特徴とする半導体装置。
  8. 縦型デバイスである請求項5〜7のいずれかに記載の半導体装置。
  9. パワーデバイスである請求項5〜8のいずれかに記載の半導体装置。
  10. ショットキーバリアダイオード(SBD)、金属半導体電界効果トランジスタ(MESFET)、高電子移動度トランジスタ(HEMT)、金属酸化膜半導体電界効果トランジスタ(MOSFET)、静電誘導トランジスタ(SIT)、接合電界効果トランジスタ(JFET)、絶縁ゲート型バイポーラトランジスタ(IGBT)または発光ダイオード(LED)である請求項5〜9のいずれかに記載の半導体装置。
  11. ショットキーバリアダイオード(SBD)、金属酸化膜半導体電界効果トランジスタ(MOSFET)または静電誘導トランジスタ(SIT)である請求項5〜10のいずれかに記載の半導体装置。
  12. 前記結晶性積層構造体の上面または下面に、直接または他の層を介して、発光層を備えている発光ダイオードである請求項5または6に記載の半導体装置。
JP2015095287A 2014-05-08 2015-05-07 結晶性積層構造体および半導体装置 Active JP6627131B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015095287A JP6627131B2 (ja) 2014-05-08 2015-05-07 結晶性積層構造体および半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014097241 2014-05-08
JP2014097241 2014-05-08
JP2015095287A JP6627131B2 (ja) 2014-05-08 2015-05-07 結晶性積層構造体および半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019205166A Division JP6875627B2 (ja) 2014-05-08 2019-11-13 結晶性積層構造体および半導体装置

Publications (3)

Publication Number Publication Date
JP2015227279A JP2015227279A (ja) 2015-12-17
JP2015227279A5 JP2015227279A5 (ja) 2018-06-14
JP6627131B2 true JP6627131B2 (ja) 2020-01-08

Family

ID=52146232

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015095287A Active JP6627131B2 (ja) 2014-05-08 2015-05-07 結晶性積層構造体および半導体装置
JP2019205166A Active JP6875627B2 (ja) 2014-05-08 2019-11-13 結晶性積層構造体および半導体装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019205166A Active JP6875627B2 (ja) 2014-05-08 2019-11-13 結晶性積層構造体および半導体装置

Country Status (5)

Country Link
US (1) US9590050B2 (ja)
EP (1) EP2942804B1 (ja)
JP (2) JP6627131B2 (ja)
CN (1) CN105097896B (ja)
TW (1) TWI564937B (ja)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135487B2 (ja) * 2013-12-09 2017-05-31 富士通株式会社 半導体装置及び半導体装置の製造方法
CN108899359A (zh) 2014-07-22 2018-11-27 Flosfia 株式会社 结晶性半导体膜和板状体以及半导体装置
TW201638363A (zh) * 2015-02-18 2016-11-01 Idemitsu Kosan Co 積層體及積層體之製造方法
US11728356B2 (en) * 2015-05-14 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element and imaging device
JP6906217B2 (ja) * 2015-12-18 2021-07-21 株式会社Flosfia 半導体装置
JP2017118090A (ja) * 2015-12-21 2017-06-29 株式会社Flosfia 積層構造体および半導体装置
JP6749939B2 (ja) * 2015-12-25 2020-09-02 出光興産株式会社 積層体
US11189737B2 (en) * 2015-12-25 2021-11-30 Idemitsu Kosan Co., Ltd. Laminated body
JP6796086B2 (ja) * 2016-02-05 2020-12-02 株式会社半導体エネルギー研究所 半導体装置
CN109196656B (zh) * 2016-06-03 2022-04-19 株式会社半导体能源研究所 金属氧化物及场效应晶体管
WO2018004009A1 (ja) * 2016-06-30 2018-01-04 株式会社Flosfia p型酸化物半導体及びその製造方法
US10804362B2 (en) * 2016-08-31 2020-10-13 Flosfia Inc. Crystalline oxide semiconductor film, crystalline oxide semiconductor device, and crystalline oxide semiconductor system
WO2018052097A1 (ja) 2016-09-15 2018-03-22 株式会社Flosfia 半導体膜の製造方法及び半導体膜並びにドーピング用錯化合物及びドーピング方法
US20180097073A1 (en) * 2016-10-03 2018-04-05 Flosfia Inc. Semiconductor device and semiconductor system including semiconductor device
EP3567641A4 (en) * 2017-01-05 2020-02-05 Panasonic Corporation SOLID STATE RELAYS
JP2018137394A (ja) * 2017-02-23 2018-08-30 トヨタ自動車株式会社 半導体装置の製造方法
JP7116409B2 (ja) 2017-02-27 2022-08-10 株式会社タムラ製作所 トレンチmos型ショットキーダイオード
JP7291331B2 (ja) * 2017-02-27 2023-06-15 株式会社タムラ製作所 トレンチmos型ショットキーダイオード
JP6967238B2 (ja) 2017-02-28 2021-11-17 株式会社タムラ製作所 ショットキーバリアダイオード
JP7008293B2 (ja) * 2017-04-27 2022-01-25 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
US10777644B2 (en) * 2017-04-27 2020-09-15 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Heterojunction devices and methods for fabricating the same
JP6991503B2 (ja) 2017-07-06 2022-01-12 株式会社タムラ製作所 ショットキーバリアダイオード
JP7082390B2 (ja) * 2017-08-04 2022-06-08 高知県公立大学法人 深紫外発光素子およびその製造方法
JP7037142B2 (ja) * 2017-08-10 2022-03-16 株式会社タムラ製作所 ダイオード
JP7248962B2 (ja) * 2017-08-24 2023-03-30 株式会社Flosfia 半導体装置
JP7179276B2 (ja) * 2017-09-29 2022-11-29 株式会社タムラ製作所 電界効果トランジスタ
JP6933339B2 (ja) 2017-10-18 2021-09-08 矢崎総業株式会社 半導体装置および半導体ウェーハ
US11594601B2 (en) * 2017-11-15 2023-02-28 Flosfia Inc. Semiconductor apparatus
EP3712954A4 (en) * 2017-11-15 2021-07-28 Flosfia Inc. SEMICONDUCTOR COMPONENT
US20210226002A1 (en) * 2018-06-26 2021-07-22 Flosfia Inc. Crystalline oxide film
EP3823044A4 (en) * 2018-07-12 2022-04-20 Flosfia Inc. SEMICONDUCTOR DEVICE
TW202013716A (zh) * 2018-07-12 2020-04-01 日商Flosfia股份有限公司 半導體裝置和半導體系統
JP7315136B2 (ja) * 2018-12-26 2023-07-26 株式会社Flosfia 結晶性酸化物半導体
TWI706452B (zh) * 2019-04-11 2020-10-01 台灣茂矽電子股份有限公司 閘結構之製造方法及閘結構
WO2020235690A1 (ja) * 2019-05-23 2020-11-26 株式会社Flosfia 半導体装置
CN110571152A (zh) * 2019-08-14 2019-12-13 青岛佳恩半导体有限公司 一种igbt背面电极缓冲层的制备方法
KR20220052931A (ko) * 2019-08-27 2022-04-28 신에쓰 가가꾸 고교 가부시끼가이샤 적층구조체 및 적층구조체의 제조방법
WO2021095474A1 (ja) * 2019-11-14 2021-05-20 株式会社Flosfia 結晶性酸化物のエッチング方法およびトレンチ形成方法ならびに半導体装置の製造方法
CN111106167A (zh) * 2019-11-27 2020-05-05 太原理工大学 一种择优取向的Ga2O3和SnO2混相膜基传感器的制备方法
CN111180557A (zh) * 2019-12-25 2020-05-19 中南大学 一种新型紫外发光二极管及其制备方法
JP6873516B1 (ja) * 2020-06-05 2021-05-19 Eastwind合同会社 パワー半導体素子及びその製造方法
CN111933711B (zh) * 2020-08-18 2022-08-23 电子科技大学 一种集成sbd的超结mosfet
CN112713183B (zh) * 2020-12-28 2022-06-10 光华临港工程应用技术研发(上海)有限公司 气体传感器的制备方法及气体传感器
JP2022140933A (ja) 2021-03-15 2022-09-29 株式会社東芝 半導体装置
CN113629148A (zh) * 2021-06-24 2021-11-09 湖南大学 一种双栅极增强型氧化镓mesfet器件及其制作方法
CN115843391A (zh) * 2021-07-22 2023-03-24 华为技术有限公司 构件、晶体管器件、功率器件以及用于制造构件的方法
CN113794460B (zh) * 2021-09-17 2024-02-23 中国科学技术大学 纳米声子晶体及其制备方法
WO2023136309A1 (ja) * 2022-01-14 2023-07-20 株式会社Flosfia 半導体装置
WO2023182312A1 (ja) * 2022-03-25 2023-09-28 国立大学法人東海国立大学機構 β型酸化ガリウム膜付き基板及びその製造方法
WO2023249990A1 (en) * 2022-06-21 2023-12-28 Northwestern University Methods of forming stable conductive surface
JP2024016694A (ja) * 2022-07-26 2024-02-07 株式会社ノベルクリスタルテクノロジー フィン型電界効果トランジスタ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262829A (ja) * 1994-03-25 1995-10-13 Hitachi Ltd 透明導電膜及びその形成方法
JP3881407B2 (ja) * 1996-07-31 2007-02-14 Hoya株式会社 導電性酸化物薄膜、この薄膜を有する物品及びその製造方法
US6863943B2 (en) * 2001-01-12 2005-03-08 Georgia Tech Research Corporation Semiconducting oxide nanostructures
TW515116B (en) * 2001-12-27 2002-12-21 South Epitaxy Corp Light emitting diode structure
US7250627B2 (en) * 2004-03-12 2007-07-31 Hewlett-Packard Development Company, L.P. Semiconductor device
TWI253392B (en) 2004-03-29 2006-04-21 Canon Kk Dielectric member, piezoelectric member, ink jet head, ink jet recording apparatus and producing method for ink jet recording apparatus
CN100388519C (zh) 2005-11-17 2008-05-14 晶能光电(江西)有限公司 在硅衬底上制备高质量发光半导体薄膜的方法
JP2007305975A (ja) * 2006-04-13 2007-11-22 National Institute Of Advanced Industrial & Technology Iii族酸化物半導体を含む半導体素子
JP4415062B1 (ja) 2009-06-22 2010-02-17 富士フイルム株式会社 薄膜トランジスタ及び薄膜トランジスタの製造方法
JP5509419B2 (ja) 2009-07-24 2014-06-04 株式会社ユーテック 強誘電体膜、電子部品及び強誘電体膜の製造方法
KR101932576B1 (ko) * 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US9478668B2 (en) 2011-04-13 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
JP5613910B2 (ja) * 2011-05-17 2014-10-29 三菱マテリアル株式会社 Pzt強誘電体薄膜の製造方法
JP5828293B2 (ja) 2011-05-17 2015-12-02 三菱マテリアル株式会社 Pzt強誘電体薄膜の製造方法
US9299852B2 (en) * 2011-06-16 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5807282B2 (ja) 2011-09-08 2015-11-10 株式会社タムラ製作所 Ga2O3系半導体素子
JP2013058636A (ja) 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd β−Ga2O3系基板、LED素子、及びLED素子の製造方法
US20140217471A1 (en) 2011-09-08 2014-08-07 National Institute of Information and Communicatio ns Technology Ga2O3 SEMICONDUCTOR ELEMENT
WO2013035845A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
JP6083262B2 (ja) * 2012-03-14 2017-02-22 Tdk株式会社 ヘテロエピタキシャルpn接合酸化物薄膜を有する積層薄膜
JP5528612B1 (ja) * 2013-07-09 2014-06-25 Roca株式会社 半導体装置
JP6067532B2 (ja) * 2013-10-10 2017-01-25 株式会社Flosfia 半導体装置

Also Published As

Publication number Publication date
TWI564937B (zh) 2017-01-01
EP2942804A1 (en) 2015-11-11
JP2020036041A (ja) 2020-03-05
CN105097896A (zh) 2015-11-25
CN105097896B (zh) 2019-05-14
JP2015227279A (ja) 2015-12-17
EP2942804B1 (en) 2017-07-12
TW201543547A (zh) 2015-11-16
JP6875627B2 (ja) 2021-05-26
US9590050B2 (en) 2017-03-07
US20150325660A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP6627131B2 (ja) 結晶性積層構造体および半導体装置
JP6676254B2 (ja) 半導体装置
JP5528612B1 (ja) 半導体装置
JP6627138B2 (ja) 半導体装置
JP6230196B2 (ja) 結晶性半導体膜および半導体装置
JP6478425B2 (ja) 結晶性半導体膜および半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6627131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250